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Abstract
Analyzing time-dependent data acquired in a continuous flow is a major challenge 
for various fields, such as big data and machine learning. Being able to analyze a 
large volume of data from various sources, such as sensors, networks, and the 
internet, is essential for improving the efficiency of our society’s production 
processes. Additionally, this vast amount of data is collected dynamically in 
a continuous stream. The goal of this research is to provide a comprehensive 
framework for forecasting big data streams from Internet of Things networks and 
serve as a guide for designing and deploying other third-party solutions. Hence, a 
new framework for time series forecasting in a big data streaming scenario, using 
data collected from Internet of Things networks, is presented. This framework 
comprises of five main modules: Internet of Things network design and deployment, 
big data streaming architecture, stream data modeling method, big data forecasting 
method, and a comprehensive real-world application scenario, consisting of a 
physical Internet of Things network feeding the big data streaming architecture, 
being the linear regression the algorithm used for illustrative purposes. Comparison 
with other frameworks reveals that this is the first framework that incorporates and 
integrates all the aforementioned modules.
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Notation
IoT	� Internet of things
LoRa	� Long range wide area
LoRaWAN	� Long range wide area networks
NB-IoT	� Narrowband internet of things
MOA	� Massive online analysis
JSON	� JavaScript object notation
MQTT	� Message queuing telemetry transport
HDFS	� Hadoop distributed file system
RDD	� Resilient distributed dataset
MAPE	� Mean absolute percentage error
GB	� Gigabytes

1  Introduction

In recent years, computer science has made significant advancements in all aspects 
related to data [1], including data processing, transformation, and management. 
Machine learning methods, which group, classify, and forecast reality, have also 
seen rapid growth in the field of data analysis.

Time series forecasting in large data streaming is a critical task in various 
industries such as finance, weather forecasting, and transportation. The goal of this 
process is to predict future values of a time series, such as stock prices, temperature, 
or traffic flow, by utilizing a stream of incoming data. The challenge of this task 
lies in the high volume, velocity, and variety of data that is typically involved. For 
example, in finance, stock prices fluctuate rapidly and require real-time prediction 
to make informed decisions. In weather forecasting, the data coming from various 
weather stations need to be analyzed in real-time to make accurate predictions. In 
transportation, the data coming from various traffic sensors need to be analyzed in 
real-time to optimize traffic flow. This requires the use of efficient algorithms and 
architectures that can process and analyze data as it is received, without the need for 
data to be stored and processed offline. Additionally, it is also important to consider 
the temporal dependencies and patterns in the data, as well as the ability to handle 
missing or incomplete data.

One of the key challenges in time series forecasting in large data streaming is 
the ability to handle data in real-time. This requires the use of efficient algorithms 
and architectures that can process and analyze data as it is received, without the 
need for data to be stored and processed offline. Additionally, it is also important to 
consider the temporal dependencies and patterns in the data, as well as the ability 
to handle missing or incomplete data. It is also important to consider the scalability 
and computational efficiency of these models as the data volume increases.

In order to effectively perform time series forecasting in large data streaming, 
it is important to have a robust and scalable architecture in place. One approach 
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is to use a distributed computing framework such as Apache Storm or Apache 
Kafka to handle the incoming data stream. These frameworks allow for parallel 
processing of the data, which can greatly improve the efficiency and scalability of 
the forecasting process. Additionally, using a distributed database such as Apache 
Cassandra or MongoDB can also help with handling the high volume of data.

The big data streaming environment requires developing new data models 
and machine learning algorithms to handle the aforementioned scenario. Also, 
new system architectures must be set up to support these functionalities [2]. 
Apache Hadoop is a commonly used platform for building big data streaming 
architectures, offering features like the Hadoop Distributed File System for 
storing large amounts of data using multiple machines, and MapReduce [3] for 
developing applications in a distributed infrastructure. To manage data streams, 
Apache Spark framework [4] is a popular solution, providing a variety of tools for 
processing and analyzing big data streams, such as data manipulation, machine 
learning, and graph-parallel computation.

The rapid development of Internet of Things (IoT) technologies was a major 
catalyst for big data streaming and architecture [5]. As IoT architectures are being 
deployed in various contexts, the demand for real-time processing of sensor data 
is dramatically increasing [6]. Furthermore, real-time prediction of sensor values 
can aid in enhancing production methods and decision-making [7].

This work proposes a complete framework to forecast time series coming 
from IoT networks. These time series are analyzed in a big data streaming 
scenario where the data is presented in a continuous flow and a vast amount of it. 
Moreover, the response of the prediction model is in near-real-time mode, and it 
has an adaptive functioning to be suitable for continuous data flow analysis.

The development of the framework has been divided into five main modules, 
which are analyzed in this paper, to meet the previously mentioned requirements: 

1.	 An IoT network architecture has been designed and deployed, utilizing compatible 
sensors to measure atmospheric pressure and temperature in a real-world 
environment.

2.	 Big data streaming architecture. A system for collecting and consuming data from 
IoT sensors has been developed.

3.	 Streaming-data modeling for time series forecasting. A methodology to model 
data streams as time series forecasting is presented.

4.	 Big data streaming forecasting method. A general workflow to forecast streams 
of data, responding in near-real-time.

5.	 System validation. A complete experimentation batch has been conducted to 
test the suitability of the framework in a real scenario using a linear regression 
algorithm based on the gradient descent method. The framework can incorporate 
other algorithms; however, linear regression was chosen for illustrative purposes 
due to its simplicity.

This framework integrates a solution for the generalized IoT domain, allowing for 
the analysis of all time series data sources, regardless of their origin (industrial, 
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smart home, healthcare, etc.). It also creates a method for modeling data streams 
for time series forecasting and a general workflow for consuming and feeding 
machine learning data. These goals were achieved after conducting a thorough 
state-of-the-art analysis (Sect.  2). Despite the presence of proposals related 
to individual modules or subsets, few solutions bring together all the aspects 
presented in this framework.

Furthermore, the framework was designed to provide a complete system for 
forecasting big data streams from IoT networks and serve as a guide for designing 
and deploying other solutions. It combines the time series forecasting modeling 
for streaming data (Module (3)) and the big data streaming forecasting method 
(Module (4)). As a result, other contributors can use the streaming data modeling to 
implement their own big data streaming forecasting system following the workflow 
in Module (4).

The remainder of the paper is structured as follows. Section 2 performs an analysis 
of previous and state-of-the-art research related to the modules. Section 3 provides 
a complete explanation of the framework. The experimentation environment and 
results are presented and discussed in Sect.  4. Finally, the conclusions and future 
work are outlined in Sect. 5.

2 � Related work

This research includes several modules and technologies as discussed in Sect.  1. 
The state-of-the-art of this study is analyzed in parts. First, the technologies and 
solutions for IoT networks are evaluated in Sect. 2.1. Sections 2.2 and 2.3 examine 
the technologies related to big data streaming architecture and infrastructure, and 
a review of the literature on streaming analysis, respectively. Lastly, Sect.  2.4 
compares solutions that integrate the previous modules, focusing on the advantages 
of the current proposal.

2.1 � IoT networks

IoT networks play a key role in Industry 4.0 [8]. Three widely used IoT technologies 
for machine-to-machine communication are LoRa [9], Sigfox [10], and Narrowband 
IoT (NB-IoT) [11]; a comparison of these technologies can be found in [12]. 
This research chose LoRa due to its high availability, low cost, and open-source 
characteristic [13].

IoT technologies have various application fields, such as smart cities, automotive, 
precision agriculture, and healthcare. [14] reviews IoT and cloud computing in smart 
cities. [15] analyzes IoT technology in the automotive industry and its future trends. 
[16] studies the performance of IoT networks in precision agriculture using LoRa 
technology. [17] presents a study of IoT-based devices in healthcare and related 
machine learning methods.
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Data transfer security [18] and user privacy are important in IoT and are currently 
open research areas [19]. Machine learning approaches are seen as a solution for 
both, such as in [20] for IoT access control [21] and for user privacy [22].

2.2 � Big data streaming infrastructure and architecture

As mentioned in Sect. 1, Apache Hadoop [23] is a platform for deploying big data 
infrastructures, with applications developed and deployed using the MapReduce 
paradigm [3]. It serves as the base for Apache Spark [4], a big data environment 
that facilitates programming and deployment of big data applications. Spark offers 
a range of tools for processing and analyzing big data, including data manipulation, 
machine learning, graph computation, and streaming analysis.

Scheduling is important in data processing because it enables the efficient and 
effective use of resources by determining the order and timing of tasks. It also helps 
to ensure that data is processed in a timely manner and that there are no delays in 
the data processing pipeline. Thus, the work in [24] presents a technique for efficient 
scheduling of real-time tasks on multicore systems, saving energy and reducing 
temperature by 2.52% and 9.59  ◦ C compared to existing methods. Analogously, 
RESET [25] improves resource utilization, reduces energy consumption and core 
temperature. TEFRED [26] saves energy and lowers peak temperatures while being 
fault-resistant. Finally, CETAS [27] is a strategy for efficient scheduling of periodic 
tasks for energy and temperature, improving success ratios, energy savings, and 
temperature reduction.

Three state-of-the-art technologies for data stream management and analysis are 
Apache Spark Streaming, Apache Storm and Apache Flink [28]. Spark Streaming 
processes data streams and provides a set of tools including online ML algorithms 
[29]. Storm is a real-time processing system [30], while Flink provides a native 
in-memory streaming processing framework [31]. Comparisons of the frameworks 
are in [32] (comparing Spark and Flink), [33] (benchmarking Spark and Storm), and 
[34] (comparing all three frameworks).

In [35], a Hadoop-Spark proposal was implemented with a scalability study 
showing feasibility and good performance for deploying big data apps in a 
real cluster. A comparison of the streaming platforms is in [36] highlighting 
performance, resource usage, and scalability.

2.3 � Streaming analysis

Time series forecasting from data streams is a main aspect covered in this proposal. 
Regression algorithms play a crucial role in modeling the problem as a regression 
problem in machine learning. The regression model must adapt to new data in a 
streaming environment.

Linear regression is widely used to solve forecasting problems in multiple 
domains. For example, in [37], it is used to predict future sales of an online market, 
in [38], to forecast the electronic work function of metal elements, and in [39], to 
predict new cases of COVID-19. In [40], linear regression is compared to other 
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machine learning approaches, and in [41] linear regression is compared to support 
vector machine. A current literature review of linear regression and its applications 
can be found in [42].

With the big data scenario, the collection of regression algorithms has been 
extended. For example, a new nearest neighbors algorithm for big data is presented 
in [43]. Ensemble models like in [44] combine several models to solve regression 
problems. In [44], decision trees, gradient-boosted trees, and random forests are used 
to forecast big data time series. Data modeling is crucial in the regression task; the 
authors in [45] propose a data modeling approach for big data time series forecasting. 
In [46], the approach is applied to a deep neural network for power consumption fore-
casting. Marine technology in the form of side-scan sonar images is analyzed in [47].

Focusing on streaming analysis, the adaptation to new data and prompt response 
is essential factors. In [48], a comparative study of Apache Spark MLlib and MOA 
is presented. In [49], the MORStreaming algorithm predicts two or more values in a 
row and quickly adapts to changes.

In [50], a nearest neighbors-based forecasting method is proposed and tested 
with electricity demand data, yielding promising results. [51] presents a three-
dimensional streaming algorithm for real-time anomaly detection in a sensor field 
and tests it with data from several sensors in Malaga (Spain) with good performance. 
The previous method was used for biological image screening in [52] to detect 
behavior patterns in cell structures over time.

2.4 � Big data streaming frameworks

This research involves several modules and technologies, as introduced in Sect. 1. 
The state-of-the-art in this field is analyzed in this paper by combining all previously 
discussed features into a framework to address a general problem. In Sect.  2, the 
authors compare current proposals in the literature with the main features of the 
proposed framework.

In [53], the authors present SCDAP, a novel big data analytics framework 
for smart cities, with a focus on the big data streaming architecture. In [54], the 
authors present BiDeL, a complete, scalable, and adaptable big data framework 
for e-learning that covers the big data streaming architecture and system validation 
features. In [55], the authors present a scalable and distributed framework for real-
time time series forecasting, focusing on streaming data modeling and forecasting 
and system validation.

Each of these proposals covers some aspects of the present research, but the 
authors aim to provide a comprehensive framework that integrates all the necessary 
components for a general solution. Also in this field, the authors in [56] present a 
framework for time series forecasting combining both historical and real-time 
data for predictions. The framework, called AESTSF, addresses adaptability and 
scalability challenges in time series forecasting. A distributed vector autoregression 
(VAR) algorithm was implemented using Apache Spark. The results of the 
experiments are evaluated and compared for different types of streaming time series 
data.
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Healthcare is an area where research has been applied, and the authors in [57] 
implement a health monitoring framework to analyze and predict COVID-19. 
They conduct descriptive, diagnostic, predictive, and prescriptive analyses using 
big data analytics and validate the system by solving a classification problem 
to predict COVID-19 infection using a novel dataset with different pandemic 
symptom measures. This proposal covers the big data streaming architecture and 
system validation aspects of the present research.

To address the scalability issue of storing data generated by IoT networks, the 
authors in [58] propose an adaptive multi-attribute index framework for big IoT 
data. Based on four main attributes and their queries (spatial, temporal, keyword, 
and value), they present an adaptive method to determine the most efficient index 
to store data in a key-value system. The system is validated using simulated and 
real data from Taiwan’s Open IoT platform, covering data modeling and providing 
a complete system validation. In [59], the author proposes a generic model for 
IoT Streaming Data Integration (ISDI) from multiple sources and presents several 
algorithms for ISDI including a generic window-based algorithm for processing 
IoT streaming data, a timing alignment algorithm for aligning timing conflicts, 
a de-duplication algorithm for resolving data redundancy, and experiments to 
demonstrate the practicality of the proposed ISDI approach. Finally, the authors 
in [60] present a framework for quick access and retrieval of IoT streaming data 
from multiple sources using indexing and optimizing data access. The framework 
includes a data compression approach for numerical data in IoT applications. The 
framework is evaluated through experiments with different indexing schemes for 
user query responses.

Confirming the previously discussed line of research based on frameworks, a 
systematic review of big data and IoT-based applications in smart environments 
can be found in [61]. The authors of [62] present a survey that focuses on the 
challenges and solutions for processing real-time big data streams. In conclusion, 
as observed in Table 1, this research covers a set of features that other proposals 
do not, making it a key contribution to the state-of-the-art.

Table 1   Comparative study of big data streaming frameworks

Framework IoT network Big data 
streaming

Streaming-data 
modeling

Forecasting Validation

Proposal ✓ ✓ ✓ ✓ ✓
[53] ✕ ✓ ✕ ✕ ✕
[54] ✕ ✓ ✕ ✕ ✓
[55] ✕ ✕ ✓ ✓ ✓
[57] ✕ ✓ ✕ ✕ ✓
[58] ✕ ✕ ✓ ✕ ✓
[56] ✕ ✓ ✕ ✓ ✓
[59] ✕ ✕ ✓ ✕ ✓
[60] ✕ ✕ ✓ ✕ ✓
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3 � Methodology for Apache Spark‑based framework

This proposal, as mentioned in Sect.  1, aims to establish a comprehensive 
methodology for near-real-time forecasting of big data streams in an IoT 
environment and provide a complete framework for its implementation. The 
ultimate goal is to make near-real-time predictions of time series from data 
streams obtained from IoT sensors.

In Fig. 1, a global overview of the methodology is shown, which encompasses 
the first four main modules outlined in Sect. 1. The input of the system is an IoT 
network that collects data from sensors measuring various variables, which are 
streamed in a continuous flow and processed by the data stream modeling sys-
tem. This module converts the data streams into inputs for a regression problem 
and makes them suitable for a machine learning algorithm to solve. The modeled 
data is then fed into the big data streaming architecture and used by the big data 
streaming forecasting method to train a regression model and generate predic-
tions. The forecasting results are stored in the big data streaming architecture for 
access by authorized clients or third-party applications.

Therefore, a comprehensive description of this research proposal is outlined 
in this section. To begin with, the IoT network architecture is explained in 
detail at the hardware level (Sect.  3.1). Additionally, an examination of the big 
data streaming architectures applied in the proposal is presented (Sect.  3.3). 
Finally, the proposed modeling for time series forecasting based on streaming 
data (Sect.  3.2) and the big data streaming forecasting method (Sect.  3.4) are 
introduced.

The framework can be accessed at the following URL: https://​github.​com/​
DataL​abUPO/​IOT_​frame​work.

Fig. 1   Methodology workflow

https://github.com/DataLabUPO/IOT_framework
https://github.com/DataLabUPO/IOT_framework


11086	 A. M. Fernández‑Gómez et al.

1 3

3.1 � IoT network architecture

The designed and deployed architecture is illustrated in Fig. 2. The infrastructure is 
based on LoRa technology and the LoRaWAN standard [63] that defines a commu-
nication protocol and system architecture for IoT networks. Its purpose is to collect 
the data that will later be processed and analyzed using the big data streaming fore-
casting method. LoRaWAN is an open standard and there are several open-source 
software solutions available for managing the network, in this case, the ChirpStack 
software [64].

Two LoRa-based devices have been developed to measure atmospheric pressure 
(in kilopascals, kPa) and temperature (in Celsius, ◦C). The data from these devices 
is transmitted through the LoRa network and managed by a LoRa gateway, which 
serves as the access point for the IoT network and transforms the binary packets from 
the devices into JSON files called payloads. These payloads are then transmitted 
to ChirpStack for management and control. The embedded MQTT broker in 
ChirpStack allows authorized applications to consume sensor data from the LoRa 
network as a data source.

3.2 � Data stream modeling system for time series forecasting

This method aims to transform a data stream, or, in other words, a continuous flow 
of values for a particular variable (e.g., temperature, pressure, etc.), into a dataset, 
which can then be used to train, test, and validate a machine learning algorithm. To 
meet the requirements of this proposal, the machine learning algorithm must have 
three key characteristics: it must be compatible with regression problems, since 
the ultimate goal is time series forecasting; it must be capable of performing train-
ing and testing in an online, incrementally manner, meaning the regression model 
must be able to adapt as new data becomes available from the stream; and finally, its 
implementation must meet the interface requirements of Apache Spark for streaming 
algorithms

As shown in Fig. 3, the inputs of the process are the data flow coming from 
the IoT network, defined as streaming variables SV, formalized as a set of values 
Vi measured at the time point i, and received continuously. These streaming vari-
ables can come from various sources, such as sensors, cameras, or other devices 
that are connected to the IoT network. The data can be in the form of numerical 
values, images, or other types of data that are relevant to the problem at hand. 

Fig. 2   IoT network architecture
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The number of arriving values N keeps increasing while the streaming channel 
is ON (e.g., a sensor is working), so it is considered that tending to infinity (Eq. 
(1b)). This means that the data stream is continuous and never-ending, making 
it essential to have a robust and scalable architecture in place to handle the high 
volume of data. Each time point i is a tuple defined by a value v, a unit u (sec-
onds, minutes, or hours), and a frequency f (Eq (1c)). This allows for a clear defi-
nition and understanding of the data stream and how it is being captured. As an 
example, a temperature sensor SVT streaming variable is considered. It generates 
a nearly infinite stream of values, acquired every 10 s ( u = s, f = 10 ). Therefore, 
the value of SVT at the time point 4 (40 s from the sensor is ON) is represented by 
V4 . This example illustrates how the data stream is defined and captured and how 
it can be used for time series forecasting. 

The streaming variables SV are transformed into a lagged dataset 
comprehensible for machine learning algorithms [65]. The process depends on 
the learning window parameter, denoted by w, which represents the number 
of past values used to predict the following value (h, the prediction horizon). 
Instances are built using Apache Spark’s Labeled Point format after w + 1 values 
have been received.

Each time k instances (Labeled Points) are generated, they are stored in a batch 
file and transferred to the big data streaming architecture. In production environ-
ments, k is set to 1, meaning that each instance is stored in a separate batch file. 
In development environments, k can be set to higher values to store larger batch 
files and test the other modules independently. The batches are stored in the big 
data streaming architecture in two channels (folders): training and prediction.

(1a)SV = {V1,V2,V3,… ,Vi,…VN}

(1b)N ∈ ℕ,N → ∞

(1c)⟨i ∈ ℕ, u ∈ {s,m, h}, f ∈ ℕ⟩

Fig. 3   Data stream modeling system
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An example of this method for w = 3 and k = 7 is shown in Fig. 4. For every four 
values, three correspond to the learning window ( VN−1 , VN−2 , VN−3 ) and VN is the 
value to be predicted (h). This module accumulates values in a buffer, and constructs 
an instance after receiving w values. In the example, where w = 3 , the module accu-
mulates four values ( V4 , V3 , V2 , or V1 ) to construct an instance.

3.3 � Big data streaming architecture

The training and prediction channels, referred to in Sect. 3.2, are part of the Kappa 
architecture [66] of the system. They are responsible for coordinating the data flow 
between the channels and the big data streaming forecasting method, making it scal-
able and fault-tolerant.

As can be seen in Fig. 5, the Service Layer is implemented by the Hadoop HDFS 
infrastructure. This layer acts as a foundation for the entire system, providing a 
robust and scalable platform to store and process the large amounts of data that are 

Fig. 4   Example of instances batch file building

Fig. 5   Big data streaming architecture
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received from the IoT network. The Hadoop HDFS infrastructure allows for distrib-
uted storage and processing of data, which is crucial for handling the high volume 
of data that is generated by the IoT network. Both channels feed the real-time layer 
composed of the implementation of the proposed big data streaming forecasting 
method based on Apache Spark Streaming technology. The real-time layer is where 
the data is processed and analyzed in near-real-time. The Apache Spark Stream-
ing technology allows for efficient and effective processing of the data stream, ena-
bling the system to quickly identify patterns and make predictions. Furthermore, 
the named Service Layer contains another two channels where the yielded regres-
sion models and prediction results are stored. These channels provide storage for 
the models and predictions that are generated by the system. This is important for 
future reference and for monitoring the performance of the models over time. This 
also allows for the data to be easily accessible and retrievable for further analysis 
and monitoring.

3.4 � Big data streaming forecasting method

The proposed methodology aims to forecast streaming variables (SV) in near-real-
time using the Apache Spark Streaming framework (as described in Sect. 3.2). The 
machine learning algorithm must have the capability to handle regression prob-
lems, employ auto-incremental learning, and be compatible with the Apache Spark 
Streaming framework [66].

For an auto-incremental regression algorithm, a first prediction model, Mt , is 
generated from a continuous stream of time-dependent data during the first training 
epoch. As new data arrive, the model is updated incrementally, resulting in mod-
els Mt+1 , Mt+2 , ..., Mt+n . To predict a future value at a specific moment, the most 
recent model is used. This process of generating prediction models for a data stream 
and making predictions is shown in Fig. 6. The Mt model is used to predict the Pq 
streaming variable that will arrive at time q. The prediction of the Pq+1 streaming 
variable, which will arrive later but not necessarily consecutively, is made using 
the Mt+1 model. This prediction cycle is repeated. Note that the model generation is 
time-dependent, while predictions are made asynchronously on demand, independ-
ent of time.

To train the regression algorithm and make real-time predictions over the 
streaming variable, the methodology in Fig. 7 is presented. It involves consuming 
two channels of batches of Labeled Points as described in Sect. 3.2: 

1.	 The training channel is the input for the training process and where batches 
Bt,… ,Bt+i are received. Each new batch generates a new model.

2.	 The Prediction channel receives batches Bq+j,… ,Bq with instances to be predicted 
by the last model. Each new batch results in as many predictions as instances.

The streams are collected and managed by Apache Spark’s DStream structure 
[67] in the Spark Streaming module, which is composed of a sequence of Spark’s 
RDD structures [4]. The chosen data source is Apache Hadoop’s HDFS [68]. The 



11090	 A. M. Fernández‑Gómez et al.

1 3

streaming context listener listens to the DStream and waits for new data. When 
new data arrive, the following tasks can be performed depending on the channel: 

1.	 Training task. The current regression model Mt is updated using the new data. 
If it is the first model, it will be generated as an offline linear regression model. 
In other cases, the update depends on the regression algorithm. In this research, 
Spark Streaming’s linear regression was used, updating the coefficients of Mt by 
applying the stochastic gradient descent method [69].

2.	 Prediction task. Mt is used to make predictions, considering historical data of 
length defined by the learning window w. The predictions are stored in HDFS for 
further analysis or consumption by third-party clients.

4 � Case study

A comprehensive case study is presented to validate the effectiveness of the entire 
system in a real-world scenario. This case study includes three experimental 
tasks: 

Fig. 6   Auto-incremental machine learning methodology
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1.	 The collection of data from sensors connected to the IoT network was tested to 
verify its proper functioning.

2.	 Streaming variables were predicted to evaluate the performance of the data stream 
modeling system and the big data streaming forecasting method in a near-real-
time environment.

3.	 Different batch sizes were simulated to assess the scalability of the big data 
streaming architecture.

The case study is organized as follows: the data collection task (Module (1)) is 
described in Sect. 4.1, followed by an analysis of the forecasting task (Module (2)) 
in Sect. 4.2, and finally, the scalability of the big data architecture (Module (3)) is 
presented in Sect. 4.3.

Fig. 7   Streaming analysis workflow



11092	 A. M. Fernández‑Gómez et al.

1 3

4.1 � Data collection

Temperature and air pressure sensors were connected to the IoT network (as detailed 
in Sect. 3.1), collecting data from various areas of the Pablo de Olavide University 
of Seville campus. Data was collected every 10 s for one month. During this period, 
the sensors experienced two main types of malfunctions: blackouts, caused by power 
faults, and saturation, where the sensor continuously measures the same value and 
provides false readings. There were also internal software lock issues.

After a preprocessing task that involved checking the data and removing 
erroneous and repetitive measurements, approximately fifty thousand records (out 
of seventy thousand collected) remained. From these records, two sets of 5,726 
records (one set for each variable type) were selected to perform streaming variables 
forecasting, resulting in the following two streaming variables: 

1.	 SVT . The temperature values, measured in Celsius degrees ( ◦C), captured every 
10 s.

2.	 SVP . The air pressure values, measured in kilopascals (kPa), captured every 10 s.

4.2 � Streaming variables forecasting

The next step after defining the streaming variables (as outlined in Sect.  4.1) is 
to create the experimental datasets using the data stream modeling system (as 
described in Sect. 3.2), and then perform a forecasting experiment using the big data 
streaming forecasting method (outlined in Sect. 3.4).

A collection of datasets has been created from the streaming variables SVT and 
SVP acquired from the IoT network (see Sect.  4.1) to simulate a near-real-time 
scenario and conduct a comprehensive experimental task. To achieve this goal, the 
data stream modeling system described in Sect. 3.2 was applied by following these 
steps: 

1.	 Definition of ten prediction scenarios with ten values of the learning window, 
w = {3, 4, 6, 12, 24, 90, 180, 360, 720, 1080} . As previously mentioned, each w 
represents the number of values to be taken into account to predict the next one; 
that is, if w = 3 , the historical values V1 , V2 , and V3 will be used to predict the V4 
value. The window sizes were selected based on the authors’ research experience 
and on the extensive studies performed in the literature. Additionally, ten w values 
were set to provide a representative sampling of experimental scenarios and 
identify possible overfitting situations.

2.	 Creation of labeled point instances file for each w.
3.	 Splitting each lagged stream file into thirty batches, Bi with i = {1,… , 30} , for 

training composed of 150 instances and one for testing, Btest , with 226 instances.

The methodology in this study aims to test the performance of a big data 
streaming forecasting method in a near-real-time environment by predicting the 
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SVT and SVP streaming variables using previous datasets. The study computes 
the mean absolute percentage error (MAPE) by feeding the auto-incremental 
learning model with new learning data through the streaming channel.

For each streaming variable (SVT and SVP ) and learning window 
( w = 3, 4, 6, 12, 24, 90, 180, 360, 720, 1080 ), the following steps are performed: 

1.	 Activate the big data streaming forecasting method in near-real-time.
2.	 Inject the training datasets ( Bi ) into the training channel with a time-lapse of 5 s 

between them, resulting in 30 generated models ( Mi).
3.	 Use each model ( Mi ) to make a prediction on the test dataset ( Btest ) and calculate 

the MAPE.

This results in a MAPE for each of the 30 generated models, and allows for 
analysis of how the MAPE changes as the learning algorithm is fed with more 
data. The observed values are compared with the predicted values, showing the 
best and worst predictions for each learning window (w).

The methodology uses a linear regression algorithm based on gradient descent 
in streaming [70]. The optimization of two parameters ( � and � ) is necessary 
to generate the models. An ad hoc comprehensive search algorithm has been 
developed to find the optimal values of these parameters. The algorithm explores 
different values within specified intervals and steps. For example, the explored 
values of � are obtained using the interval [10, 15] and step S = 1.

15,000 different instances (10,000 for training and 5000 for testing) were 
chosen to perform the training and evaluate the models. The process was 
applied to temperature and pressure experiments with all w values. The optimal 
parameters are shown in Table 2.

The thirty models, tested with ten different learning windows, were generated 
for the streaming variables SVP and SVT . The results showed that the MAPE for 
the pressure streaming variable was 0.43%, while the maximum reached 100%, 
with an average of 0.82% and a standard deviation of 5.74%. The best learning 
window for this variable was w = 24 , with an average MAPE of 0.44%. For the 
temperature streaming variable, the minimum MAPE was 6.93% and the maxi-
mum was 9.22%, with an average of 7.79% and a standard deviation of 7.79%. 
The best learning window for this variable was w = 360 , with an average MAPE 
of 7%.

An incremental study of the big data streaming forecasting method was per-
formed to analyze the evolution of the models in terms of the mean absolute 
percentage error (MAPE) as data arrives through the system. The results of this 
study are shown in Figs. 8 and 9 for the pressure streaming variable (SVP ) and 
temperature streaming variable (SVT ), respectively.

Table 2   Optimum parameters 
obtained for linear regression

Data � � MAPE

Pressure 10 3.33E − 11 1.27E − 05

Temperature 15 3.61E − 05 4.18E − 05
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Each figure shows ten plots, one for each of the learning windows considered 
in the experimental setup. The X-axis represents the number of instances (labeled 
points) that have arrived at the system, while the Y-axis represents the MAPE 
obtained by the auto-incremental linear regression model.

In the incremental study of SVP (Fig.  8), an unstable behavior of MAPE is 
predominant for most of the learning windows. Significant fluctuations are observed 
for learning windows in {90, 360, 720, 1080} , while smooth fluctuations are observed 
for learning windows in {3, 4, 6, 24} . A nearly constant value for MAPE is observed 
for learning window w = 180 . Finally, for learning window w = 12 , a combination 
of stabilization from the highest value and smooth fluctuation is observed.

In the incremental study of SVT (Fig. 9), three behaviors of MAPE are observed. 
For learning windows in {3, 4, 6} , MAPE reaches its highest values proportionally 
with low values of the number of instances and is reduced until it stabilizes around a 
specific value. Nearly constant values of MAPE are observed for learning windows 
w = 12 and w = 24 . Finally, an unstable behavior of MAPE with pronounced 
fluctuations (for learning windows in {720, 1080} ) and smooth fluctuations (for 
learning windows in {90, 180, 360} ) is observed.

These experimental results confirm that the big data streaming forecasting 
method produces better models in terms of MAPE as more data arrives from the 
streaming channel. The study also shows the influence of the learning window, w, 

Fig. 8   Incremental study for SVP streaming variable (pressure)
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on the stabilization of MAPE as new data arrives. Figures 8 and 9 demonstrate that 
for learning windows in {3, 4, 6, 24} , the values of MAPE are stable while new data 
arrives, whereas for learning windows in {90, 180, 360} , MAPE values fluctuate 
smoothly, and for learning windows in {720, 1080} , fluctuations are pronounced. 
The overfitting of the models when w increases is the reason for this effect. A high 
value of w implies a high number of coefficients for the linear equation that fits the 
data in the training process of a linear regression algorithm. As a result, the equation 
will be closely adapted to newly arrived data in the training stage, leading to pre-
dicted values that are close to the previous training data, resulting in a higher value 
of MAPE as the observed values have a different pattern than the training ones.

4.3 � Big data scalability

The final part of the case study focuses on evaluating the scalability of the big 
data streaming architecture. Specifically, the efficiency of the system in terms of 
execution time is tested.

The big data streaming architecture was implemented on a Spark cluster of four 
machines, each having an Intel Core i7-5820K 3.3 GHz CPU with six cores and 12 
execution threads, 15 MB of cache memory, and 50  GB of RAM. The machines 

Fig. 9   Incremental study for SVT variable (temperature)
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run Ubuntu 18.04 (64-bit version). The big data streaming forecasting method was 
applied to train a streaming linear regression algorithm for ten different learning 
windows ( w = {3, 4, 6, 12, 24, 90, 180, 360, 720, 1080} ) using batch sizes of 1  GB, 
5 GB, 10 GB, 50 GB, 100 GB, 150 GB, and 200 GB. The algorithm was executed 
using 2, 4, 8, 24, and 48 cores, resulting in 200 experiments (ten learning windows 
per four batch sizes per five core configurations).

The results of this experimentation are displayed in Fig. 10. The figure presents 
ten plots, one for each w value, where the x-axis represents the batch size in GB, and 
the y-axis represents the execution time in seconds. Hence, a point (s,  t) indicates 
that the big data streaming forecasting method took t seconds to process a batch of 
s GB.

The results obtained for all w values show similar patterns and depict a linear 
increase in execution time proportional to the batch size for each core configuration. 
Furthermore, the use of a greater number of cores leads to greater scalability, as 
evidenced by the lower slope of the linear equation.

In conclusion, this study highlights the competitiveness of the proposed 
framework in terms of execution time in big data environments. This is apparent 
in Fig.  10, where using a large number of cores in the cluster for each w value 
improves the efficiency of the system when processing large data sizes in big data 
environments.

Fig. 10   Big data efficiency study
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5 � Conclusions and future work

This work has introduced a new Apache Spark-based framework for big data 
streaming forecasting in IoT networks. The framework comprises four main 
components: an IoT network architecture, a big data streaming architecture, 
a time series forecasting model for streaming data, and a big data streaming 
forecasting method. The entire proposed system was tested using a case study 
that involved conducting three experimental tasks: data collection, streaming 
variable forecasting, and big data scalability. The results demonstrate the 
effectiveness of the framework in collecting data from IoT sensors, modeling, 
and forecasting streaming variables in a near-real-time environment, and 
efficiently handling big data streams. The proposed system faces a significant 
challenge in terms of deployment. It requires the integration of multiple third-
party software and a Hadoop cluster to utilize HDFS. Currently, the system only 
supports linear regression as the integrated stream algorithm. Moreover, the 
preprocessing of input data batches must be in LabelPoint format, as required 
by the algorithms implemented in Apache Spark. To address these limitations, 
future work will focus on developing scripts for the automated deployment of 
the entire framework. Additionally, the system will be enhanced by integrating 
more algorithms for streaming data flows, using the MLlib library provided by 
Apache Spark-streaming. This will increase the system’s versatility and ability 
to handle a wider range of data processing tasks. Moreover, the architecture 
could be expanded to include new machine learning tasks such as classification 
and clustering. Other parameters than efficiency, like memory usage or energy 
consumption, will be considered to assess the quality of the framework. Finally, 
additional parameters should be considered for fine-tuning the algorithms in order 
to optimize their performance. The researchers are also developing an online 
adaptive subsystem for tuning the hyperparameters of the streaming machine 
learning algorithm to improve performance based on the incoming data.
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