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 Abstract— Cloud Computing (CC) is the most popular tool of choice for conducting scientific experimentation on Cloud Servers 

(CDs). It can be even more efficient strategy to use Fog Computing (FC) for allocating and executing operations on Fog Devices 

(FDs). Complex scientific operations need the effective use of virtual machines (VMs). Scientific workflow scheduling problem is 

regarded as NP-complete. This problem is constrained by various factors, such as Quality of Service (QoS), interdependence 

between tasks, user deadlines, etc. There is a very less research available on scientific workflow scheduling in Fog-Cloud 

Environments (FCE). Classical scheduling techniques, evolutionary optimization algorithms, and other methodologies are the 

available solution to this problem. In this paper, an efficient meta-heuristic approach named Multi-objective Artificial Algae (MAA) 

algorithm is presented for scheduling scientific workflows in heterogeneous FCE. In the first phase, the algorithm preprocesses 

scientific workflow and prepares a tasks list. In order to speed up execution, bottleneck tasks are executed with high priority. The 

MAA algorithm is used to schedule tasks in the following stage to reduce execution times, energy consumption and costs. In order 

to effectively use fog resources, the algorithm also utilizes the weighted sum based objective function. The suggested approach is 

evaluated using five benchmark scientific workflows. To verify the performance, the proposed algorithm's results are compared to 

those of conventional and specialized scheduling algorithms. In comparison to previous methodologies, the results demonstrate 

significant improvements in execution time, energy consumption and total cost without any trade-offs. 

Index Terms - Fog computing, Workflow Scheduling, Artificial Algae Algorithm, MAA Algorithm.  

I. INTRODUCTION 

A popular term in computer science for decades, cloud computing (CC) includes innovations including complexity abstraction and 
concealing, resource visualisation, and effective utilisation of distributed resources. GoGrid, Google App Engine, Microsoft Azure, 
and Amazon EC2 are a few popular CC platforms [1]. Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure 
as a Service (IaaS) are three categories into which CC services can be divided [2]. The calculation needs of real-time latency-
sensible applications of highly dispersed Internet of things (IoT) systems are protected by a new computation pattern termed as "fog 
computing" (FC) [3]. In the cloud-to-things continuity, FC, reservations, management and networking are employed to distribute 
these services among end users [4]. The proof and development of the previous embedded systems is based on the FC platform 
that brings the cloud services onto the network edge [5]. We also see the challenge of IoT data processing as an interesting approach 
[6]. This system supports different applications including IoT, wireless fifth-generation (5G) and artificial intelligence embedded 
[4]. FC is good for reducing latency and cloud pricing, whereas CC is only useful to satisfy the rising demands of computer-
intensive offloading programs [7]. Fog's primary characteristics are low latency and consciousness of the location, extensive 
geographical distribution, mobility, multiple nodes, a prominent role in availability of wireless, a substantial presence of flowing 
programmes and real time differences [8].  

Workflows are modelled as Directed Acyclic Graphs (DAGs) with n tasks, where the vertices correspond to the tasks and the edges 
to their dependencies. Scientific workflows contain a huge number of tasks. These jobs also contain dependencies, which makes 
it challenging for the scheduler to organise tasks and use cloud resources effectively. The scheduler serves as a bridge between 
workflow tasks and cloud resources. Scheduling workflows in a cloud context is regarded as NP-complete. The efficiency of 
scheduling algorithms is affected by a variety of variables, including quality of service (QoS), user deadlines, financial cost, 
execution time, data privacy and security, etc. The vast computational resources required by workflow scheduling algorithms make 
them appropriate for FC systems. Workflow tasks can be carried out using scalable and affordable FC infrastructure. Workflow 
tasks vary in execution duration and computing demand [9]. While certain workflows require a lot of computing power, others 
may require a lot of memory and bandwidth. 

Extensive literature study is available on workflow scheduling with CC settings while literature with FC settings is very rare. In 
order to overcome the issue, some academics have employed conventional scheduling algorithms, while others have concentrated 
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on optimization techniques. There are single-objective, bi-objective, and multi-objective solutions. The majority of researchers 
have focused on makespan, cost, load balancing, etc. Heuristics or meta-heuristics are two possible approaches. The literature [11], 
[12] uses heuristics like min-min, max-min, etc. or combines these methods with meta-heuristics. In the Fog-Cloud Environment 
(FCE), a variety of meta-heuristic optimization methods have been employed to overcome workflow issues. To reduce the 
makespan, workflow scheduling employs the Genetic Algorithm (GA) [13]. Despite taking a little longer to get the solution, the 
GA method is reliable and produces a high-quality search in polynomial time. Particle Swarm Optimization (PSO) was employed 
by Pandey et al. [14] for scheduling workflow applications in a cloud computing environment. Although, PSO is a quick 
optimization technique, however it has drawbacks such early convergence and local optimal solution entrapment [15]. Recently, a 
meta-heuristic method called Grey Wolf Optimization (GWO) that imitates the leadership structure of grey wolves was suggested 
[16]. The enhanced version of Grey Wolf Optimizer was suggested by Khalil and Babamir [17] as a solution to the workflow issue. 

The purpose of this research is to propose a meta heuristic algorithm for scheduling and distributing task across fog nodes in order 
to maximise the usage of network resources by users [6]. The following are our major contributions to this paper:  

1) An efficient meta-heuristic approach namely Multi-objective Artificial Algae (MAA) Algorithm is proposed for workflow 
scheduling in Heterogeneous Fog Cloud Environment (HFCE). It includes a pre-processing stage to get tasks ready for the 
MAA algorithm. It is challenging for the scheduler to create an ideal plan since workflow tasks have interdependence. The 
dependencies are the focus of the proposed approach in order to achieve better scheduling. 

2) The proposed workflow scheduling approach is evaluated on five realistic scientific workflow datasets like Montage, 
CyberShake, Epigenomics, LIGO, and SIPHT to optimize three performance objectives namely- total execution time (makespan), 
energy consumption and total cost. 

The remaining part of the paper is structured as follows: The section II explains the classification of task scheduling strategies and 
section III examines the related work. In Section IV, we present our proposed task scheduling method. The simulation results are 
presented in Section V, and the conclusions are presented in Section VI. 

II. RELATED WORK 

The concept of workflow, which divides a complicated scientific procedure into manageable activities, is quite well known among 
scientists [18]. These activities may be carried out via distributed and parallel computing, such as fog computing. In fog computing, 
workflow scheduling is a well-known NP-hard issue. In order to improve the efficiency of fog computing, a number of list-based 
algorithms have been proposed for task scheduling, including first come, first served (FCFS), round-robin (RR), shortest job first 
(SJF), minimal completion time (MCT), etc. The main principle of list-based heuristics is to prioritize each task and allocate the 
resources at hand in accordance with the preferences specified. In order to accommodate systems with heterogeneous 
multiprocessors, the Heterogeneous Earliest Finish Time (HEFT) was developed. When compared to current HEFT and Critical 
Path on a Processor (CPOP), Dubey et al [19] suggested improved version of HEFT can shorten the makespan. 

The Min-Min method maps the job with the shortest possible execution time to the device with the shortest possible completion 
time [20]. A related technique is the Max-Min algorithm, which assigns the task with the longest possible execution time to the 
device with the shortest possible completion time. The tasks are not assigned to the resources as they enter when using the offline 
scheduling methods Min- Min and Max-Min, which operate in batch mode [21]. The problem with Min-Min and Max-Min 
algorithms is that they suffer from starvation [22]. In addition, they solely take time into account when evaluating resources. The 
user viewpoints are the exclusive focus of list-based heuristics; resource quality factors are given less attention. 

These aforementioned standard heuristics methods are straightforward, simple to use, and quick, but meta-heuristic techniques can 
provide a solution that is almost optimal for complicated issues like workflow scheduling and can further increase the quality of 
the solution [23]. Additionally, heuristic algorithms are problem-dependent approaches, but meta-heuristic methods are problem-
independent strategies. Because they are straightforward and offer powerful searching capabilities in a short amount of time and 
money, meta-heuristic algorithms are frequently employed. For overcoming the workflow problem, many meta-heuristic 
techniques were suggested. Ant Colony Optimization (ACO), Particle Swarm Optimization, and Genetic Algorithm (GA) are a 
few examples of common algorithms (PSO). 

A genetically based approach for solving the job scheduling problem was proposed by Dasgupta et al. [1]. In comparison to Round 
Robing (RR), First Come First Serve (FCFS), and the local search method Stochastic Hill Climbing (SHC), the test's results 
demonstrate greater performance in terms of makespan. It has been claimed that the GA algorithm takes a long time to arrive at 
the best solutions [24]. In order to reduce the makespan, Tawfeek et al. [25] applied the Ant Colony Optimization (ACO) task 
scheduling method. They discovered that ACO outperformed FCFS and RR. Although, ACO is a fairly complicated algorithm, 
and it takes some time to achieve the best results [26]. Task dependencies are not taken into consideration. One of the well-known 
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meta-heuristic methods is particle swarm optimization (PSO). It converges quickly and is easy to implement. Despite its benefits, 
it is unable to escape the local optimum for complicated problems [27]. 

The ability to exploit and explore is a characteristic of meta-heuristic algorithms [28]. Exploitation indicates how effective the 
algorithm is in conducting local searches. Exploring indicates that the approach may be used to identify the first answer, which 
may be close to the overall optimal value. An effective meta-heuristic algorithm strikes a balance between exploitation and 
exploration potential. Despite having a great capacity for exploration, particle swarm optimization has a limited capacity for 
exploitation. According to Mirjalili et al. [16], the grey wolf optimizer has a good blend of exploitation and exploratory abilities. 

For complicated issues like scientific process scheduling, a single meta-heuristic could not yield the best solution and instead 
become trapped in the local best solution. Choosing one or more meta-heuristic algorithms and combining them according to their 
strongest traits is a superior strategy. Hybrid algorithms have gained popularity during the past couple decades. Only existing 
algorithms that are either hybrids of PSO or GWO are discussed here. The GA-PSO algorithm, which Manasrah and Ali [29] 
devised, is a combination of the Genetic Algorithm and Particle Swarm Optimization. Comparing the hybrid GA-PSO method to 
GA, PSO, and other algorithms, the overall execution time is decreased. Another hybrid method, a combination of the PSO and 
gravity search algorithm (GSA), has been published in [30].  In terms of cost, this hybrid method outperforms several non-
heuristics, PSO, and GSA algorithms. Bouzary and Frank [31] suggested a combination of the Grey Wolf Optimization (GWO) 
and Genetic Approach (GA), and they discovered that the proposed algorithm outperformed the GWO and GA in terms of cost. 
When compared to flower pollination with genetic algorithms, Khurana and Singh's [32] hybrid flower pollination algorithm with 
GWO gives more effective outcomes while taking less time and money. 

Although the aforementioned hybrid algorithms have advantages, one can wonder why the proposed technique was chosen. The 
free lunch theory [33] holds the key to the solution. According to the free lunch theory, a single method is ineffective for handling 
all optimization issues.  It might perform better for a specific optimization issue.  However, it might not perform well for the other 
optimization problems. Optimization issues don't have a single, universal answer. 

III. BACKGROUND 

In this section we first formulate the problem then discuss the fitness function used during the designing of the proposed algorithm. 
The standard Artificial Algae Algorithm (AAA) employed in the proposed approach is also described in this section.  

A. Problem Formulation 

DAGs are used to represent workflows. Dependencies among tasks in a workflow are defined as G = (V, E), where V denotes the 
vertices and stands for the tasks in the workflow and E denotes the edges and stands for dependencies between tasks. Prior to 
beginning the execution of any child task, the parent task must be completed [34]. Workflow tasks include several attributes, 
including execution time, data to be provided or received, and parent-child task relationships. Tasks in the workflow may be 
computation intensive or data-intensive, and sometimes both. 

Several Fog Nodes (FDs), Cloud Datacenters (CDs) and End Devices (EDs) make up the FCE model. Numerous physical machines 
make up each FD/CD. Resources for computation and storage make up the physical machines. Each resource has the capability 
for processing, storage, memory, and bandwidth. Resources are shown as Virtual Machines (VMs) in FCE. The bandwidth, 
computing power, and cost of storage per unit of time for VMs are all fixed. Any of the resources that are accessible can 
execute workflow tasks scheduled for them. The quantity and strength of each Processing Element (PE) are used to calculate the 
processing capability of VM. 

B. Fitness Function 

The fitness function described the desired outcomes to be optimized with the proposed scheduling method [35]. A fitness function 
can be made multi-objective in two ways: priori and posteriori [36]. Each associated aim is given a weight based on its importance 
in the priori method, resulting in a single-valued function, also known as fitness value. In contrast, the posteriori technique uncovers 
the collection of non-dominant options. To design the fitness function, we use the priori technique. Makespan (MS) and Total Cost 
(TC) are the components of the fitness function. The considered fitness function can be described mathematically using the equation 
(1). 𝑓(𝑀) =  𝛼1 × 𝑀𝑆 +  𝛼2 ×  𝑇𝐶              (1) 

Where M denotes mapping of workflow’s n tasks to the m available VMs in EDs, FDs, and CDs, MS is for total execution time 
(makespan), EC stands for energy consumption and TC stands for total cost (computation and communication). The weights 
allocated to each aim are α1 and α2. We use a weight of 0.5 to equate the values of α1 and α2. The following sub-sections provide 
a comprehensive description of total execution time (makespan), total energy consumption and total execution cost: 
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1) Total execution time (makespan): The total execution time (makespan) is the time it takes for tasks in a workflow to complete. 
To put it another way, makespan is the amount of time it takes to complete all of the tasks assigned to various virtual machines 
[27]. The workflow's makespan can be calculated mathematically using equation 2. 𝑀𝑆𝑊 =  𝑚𝑎𝑥{𝐶𝑇𝑖 | 𝑖 =  1, 2, . . . 𝑚}                (2) 

where CTi is the task Ti is completion time in the workflow. The entire time spent completing the tasks is the completion time. 
When tasks are interdependent, the time spent waiting for previous tasks is taken into account. Equation 3 represents the completion 
time CTi. 

𝐶𝑇𝑖  = { 𝐸𝑇𝑖, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖)  =  ∅𝑊𝐾𝑖 +  𝐸𝑇𝑖, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖)  ≠ ∅        (3) 

As indicated in equation 4, the waiting time of task Ti is equal to the total completion time of all its predecessor tasks. 

𝑊𝐾𝑖  = { 0, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖)  =  ∅𝑚𝑎𝑥(𝐶𝑇𝑖), 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖)  ≠ ∅         (4) 

𝐸𝑇𝑖,𝑗 = 𝑆𝑍𝑇𝑎𝑠𝑘𝑁𝑢𝑚(𝑃𝐸𝑖)×𝑃𝐸𝑈𝑛𝑖𝑡           (5)  
Equation 5 is used to compute the execution time of task Ti on virtual machine VM j, where SZTask is the task's size in million 
instructions (MI), Num(PEj) is the number of cores assigned to the virtual machine VM j, and PE Unit is the size of each core in 
MIPS. 

2) Total Cost: Because FC is based on a pay-as-you-go billing structure [37], cost is an important goal to minimize. The 
majority of fog service providers charge for a fixed period of time based on the fog services used. Execution, connection, and 
storage costs are all included in the cost of FC. The total execution cost of a VM is the product of the VM's cost per unit interval 
and the time it takes to complete tasks on that VM. The total execution cost (TC) of workflow W is calculated using equation 6 
[38]. 

𝑇𝐶𝑊 =  ∑ 𝐸𝑇𝑖.𝑗𝜏  × 𝐶𝑂𝑗 ∶ 𝑗 ∈ 𝑉𝑀𝑗𝑘𝑖∈𝑊,𝑖=1          (6) 

where COj is the cost of a type-i VM instance in the CD/FD per unit time. τ is the amount of time that the user uses the resources. 
ETi,j is the time it takes for type-j VM instance to complete task Ti. 

3) Energy Consumption: The energy consumption is taken from [10], which contains active energy components denoted by 
Eactive and idle energy components denoted Eidle. The Eactive is related to the energy used while performing a task, whereas the 
Eidle, is referred to the energy consumed by idle resources. The term "active energy" can be determined using 𝐸𝑎𝑐𝑡𝑖𝑣𝑒 =  ∑ α𝑓𝑖𝑣𝑖2𝑛𝑖=1 (𝐹𝑇𝑡𝑖 − 𝑆𝑇𝑡𝑖)        (7) 

where α is the constant, fi represents the frequency and vi represent the supply voltage for the resource on which task i is being 
performed. When idle, the resource enters a sleep state with a low power supply and less relative frequency. As a result, [10] is 
used to calculate the energy consumed over this period: 𝐸𝑖𝑑𝑙𝑒 =  ∑ ∑ 𝑖𝑑𝑙𝑒𝑗𝑘 ∈ 𝐼𝐷𝐿𝐸𝑗𝑘 α𝑓𝑚𝑖𝑛𝑖𝑣𝑚𝑖𝑛𝑖2𝑚𝑗=1 𝐿𝑗𝑘       (8) 

where IDLEjk is a set of all idle slots of resource j. fmini and vmini represent the lowest supply voltage and 
frequency of resource j, respectively. Ljk is the amount of idle time for idlejk. During the execution of tasks in the 
workflow, the overall energy consumed by the FCE is  

 𝐸𝐶 =  𝐸𝑎𝑐𝑡𝑖𝑣𝑒+𝐸𝑖𝑑𝑙𝑒               (9) 
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C. Artificial Algae Algorithm 

Using idealized versions of the attributes of algae, artificial algae are matched to each solution in the problem space. Artificial 
algae are similar to actual algae in that they can migrate toward the light source to photosynthesize by helical swimming, and they 
can adapt to their environment, alter the dominant species, and reproduce through mitotic division. The algorithm thus consisted 
of three fundamental components, referred to as "Evolutionary Process," "Adaptation," and "Helical Movement." Algae represent 
the primary genera in the algorithm. Algal colonies made up the entire population here. A collection of living algae is referred to 
as an algal colony as represented in equation (10) and (11) [39]. One algal cell split into two new algal cells, which live next to 
one another. When these two are divided again, another four cells live next to one another, and so on. Algal colonies functions like 
a single cell, moves as a unit, and its cells are susceptible to death in unfavorable environmental conditions. The colony may be 
divided into smaller parts by an external force like a shear force or by unfavorable conditions, and as life continues, each divided 
portion develops into a new colony. The colony that exists at the optimum point is known as the colony of optimums and is made 
up of the best-performing algae cells. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑙𝑔𝑎𝑙 𝐶𝑜𝑙𝑜𝑛𝑦 = [𝑥11 ⋯ 𝑥1𝐷⋮ ⋱ ⋮𝑥𝑁1 ⋯ 𝑥𝑁𝐷]      (10) 

𝑖𝑡ℎ 𝑎𝑙𝑔𝑎𝑙 𝑐𝑜𝑙𝑜𝑛𝑦 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷]        (11) 

where 𝑥𝑖𝑗 is algal cell in jth dimension of ith algal colony.  

• Evolutionary process:  When given adequate nutrients and light, an algal colony may expand and replicate, producing 
two new algal cells in time t, which is analogous to an actual mitotic division. On the other hand, an algal colony that 
doesn't get enough light persists for a time before passing away. The Monod model, which is provided in [39], was used 

to calculate the growth kinetics of the algal colony. Here, 𝜇 is the specific growth rate, max is the maximum specific 
growth rate, S is the nutrient concentration, which is the fitness value (f t (xi)) at time t in the model, and K is the algal 
colony's substrate half saturation constant. max was taken to be 1, as the conservation of mass principle states that the 
maximum amount that can be converted to biomass should be equal to the maximum amount of substrate that can be eaten 
in a given amount of time. K was calculated as the algal colony's growth rate in time t under circumstances of half nutrients.  
In the Monod equation, the size of the ith algal colony at time t+1 is determined by the following equation [39]: 
 𝐺𝑖𝑡+1 =  𝜇𝑖𝑡𝐺𝑖𝑡             𝑖 = 1,2, … 𝑁       (12) 
 

where N is the total number of algal colonies in the system and 𝐺𝑖𝑡 is the size of the ith algal colony in time t.  

 
Algal colonies that offer good solutions (the most effective and economical) grow more as the amount of nutrients they 
receive increases. In the course of evolution, an algae cell from the largest colony gets duplicated for every algal cell that 
dies in the smallest colony as shown in equation (13), (14) and (15) [39]. 
 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 = max 𝐺𝑖𝑡,                  𝑖 = 1,2, … . 𝑁      (13) 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑡 = min 𝐺𝑖𝑡,                 𝑖 = 1,2, … . 𝑁      (14) 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑚𝑡 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑚𝑡 ,        𝑚 = 1,2, … . 𝑁      (15) 
 
where biggestt represents the largest algal colony and smallestt represents the smallest, and D represents the problem 
dimension. Algal colonies are arranged in AAA according to their sizes at time t. Algal cells from the smallest colony 
perish, whereas those from the largest colony multiply themselves in any randomly chosen dimension. 
 

• Adaptation:  When an algal colony struggles to expand adequately in a given environment, it tries to adapt, which changes 
the dominant species. An inadequately developed algal colony attempts to imitate the largest algal colony in its 
surroundings through the process of adaptation. The algorithmic modification to the starvation threshold puts an end to 
this process. For each artificial alga, the starvation value is initially set at zero. As algal cells receive inadequate light, 
starvation value rises over time t. The artificial alga with the highest starvation value according to equation (16) has 
evolved according to equation (17) [39] 
 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 = max 𝐴𝑖𝑡 ,                                                                                 𝑖 = 1,2, … . 𝑁  (16) 
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where 𝐴𝑖𝑡  is the ith algal colony's starvation value at time t. starvingt is the algal colony with the highest starvation value 

during time t. The application of the adaptation process at time t is determined by the adaptation parameter (Ap). Ap 
remains constant between [0, 1]. 
 

• Helical movement: Algal colonies and cells often swim and strive to remain near the water's surface because there, they 
can get enough light to survive. Thanks to the helically swimming motion of their flagella. Their flagella allow them to 
move ahead but are constrained by gravity and viscous drag as they swim helically in the fluid. Different algae cells move 
in different ways. Growing algal cells have a bigger friction surface, which enhances their capacity to conduct local 
searches and increases the frequency of helical motions. The amount of energy an algae cell has determines how much 
movement it can make. The quantity of nutrition taken in by an algal cell at time t is directly related to its energy level at 
that moment. As a result, an algae cell closer to the surface has more energy, giving it a better opportunity to travel around 
the liquid. On the other hand, because of the reduced friction surface, their moving distance in the liquid is greater. 
Consequently, they have a wider range of search possibilities. In contrast, they are less mobile in relation to its energy. 
An algae cell moves in a helical pattern, much like in real life. In AAA, viscous drag is represented as shear force, which 
is proportional to the size of the algal cell, and the gravitational force that restricts mobility is represented as 0. It has a 
spherical form, and the volume of it in the model determines its size. As a result, the friction surface is transformed into 
the hemisphere's surface area as represented in equation (18) and (19) [39]. 𝜏(𝑥𝑖) = 2𝜋𝑟2          (18) 𝜏(𝑥𝑖) = 2𝜋( √3𝐺𝑖4𝜋3  )         (19) 

where (xi) is the surface of friction. The three dimensions for the algal cell's helical movement are chosen at random. One 
of these allows for linear movement in Equation (20), and the other two dimensions allow for angular movement in 
Equations (21) and (22) [39]. Algal cells and colonies only migrate in one direction; hence equation (20) is utilized for 
one-dimensional issues. Since algal movement in two dimensions is sinusoidal, equations. (20) and (22) are used. Algal 
movement is helical when there are three dimensions or more, and equations (20)-(22) are employed. The movement's 
step size is determined by the friction surface and the distance from the light source: 
 𝑥𝑖𝑚𝑡+1 =  𝑥𝑖𝑚𝑡 + (𝑥𝑗𝑚𝑡 − 𝑥𝑖𝑚𝑡 )(∆ − 𝜏𝑡(𝑥𝑖))𝑝      (20) 𝑥𝑖𝑘𝑡+1 =  𝑥𝑖𝑘𝑡 + (𝑥𝑗𝑘𝑡 − 𝑥𝑖𝑘𝑡 )(∆ −  𝜏𝑡(𝑥𝑖))𝑐𝑜𝑠𝛼      (21) 𝑥𝑖𝑙𝑡+1 =  𝑥𝑖𝑙𝑡 + (𝑥𝑗𝑙𝑡 − 𝑥𝑖𝑙𝑡 )(∆ − 𝜏𝑡(𝑥𝑖))𝑠𝑖𝑛𝛽      (22) 

  

where 𝑥𝑖𝑘𝑡 , 𝑥𝑖𝑙𝑡 , and 𝑥𝑖𝑚𝑡  represent the ith algal cell's x, y, and z coordinates at time t, [0, 2]; p [1, 1]; ∆ is shear force; and 𝜏𝑡(𝑥𝑖) represents the ith algal cell's friction surface area. 

IV. PROPOSED ALGORITHM 

This section starts with explaining how the tasks are scheduled for resources available and how this schedule can be utilized to 
build an optimal solution vector. It also introduces an efficient meta heuristic approach for scheduling workflows. Preprocessing 
the scientific workflows and AAA based scheduling optimization are the two main phases of the proposed MAA algorithm. 
Description of the proposed MAA algorithm is presented in the subsequent sections. Its flowchart is depicted in Figure 1 and 2, 
while the stepwise details are provided in Algorithms 1 and 2. 

A. Modeling the Solution Vector  

In this research, tasks can be scheduled to run on the resources like EDs, FDs, or CDs, as previously described. Concerning the 
sensor nodes, all computing resources have their processing capability and communication bandwidth. ED can only offload their 
tasks to FDs and CDs. They cannot offload their tasks to other EDs. As a result, only one representative ED is included in the 
encoding process for each sensor node when tasks are scheduled. 

Each artificial algae cell of an algal colony is represented using natural numbers because task scheduling in FCE is a discrete 
problem. Like a solution is represented as individual chromosome in GA, particle in PSO, we used artificial algae cell in MAA. 
Here task-resource schedules are taken as artificial algae cells. Each vector has a length n equal to the total number of tasks in 
the workflow. Each index in the vector is a positive number representing the task number. The VM ID used to complete the task 
is the value supplied to this slot. The VM ID is chosen from all VMs accessible in the three-tier architecture of FCE. Assume a 
workflow includes ten scheduled tasks on five VMs: one ED, two FDs, and two CDs. The length of the individual, in this case, 
is ten, and each element is an integer between one and five. This individual's task assignment may look like this: 
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[4,3,2,4,5,4,2,1,5,1]. Table I and Table II show a more complete depiction of the solution vector and schedule. 
 

TABLE 1: SOLUTION VECTOR EXAMPLE 

 
 

TABLE II: TASK-RESOURCE SCHEDULING EXAMPLE 

 

B. Fitness Function Evaluation 

The method starts with the computation of execution time and assigning these values to the makespan matrix, as depicted by 
equation (23). Each element value represents the execution time; for instance, ET1,1 represents the execution time of task T1 on 
VM1. Using equation 5, the value of execution time in the matrix is computed. 

𝑀𝑆 =  . 𝑉𝑀1 … 𝑉𝑀𝑚𝑇1⋮𝑇𝑛 [𝐸𝑇1,1 ⋯ 𝐸𝑇1,𝑚⋮ ⋱ ⋮𝐸𝑇𝑛,1 ⋯ 𝐸𝑇𝑛,𝑚]        (23) 

As stated in equation (24), a task dependency matrix (TD) can be used to depict the interdependence of tasks in a workflow. Each 
matrix entry is either 1 or 0. If d1,2 equals 1, then task T2 is performed after task T1. 

𝑇𝐷 =  . 𝑇1 … 𝑇𝑛𝑇1⋮𝑇𝑛 [𝑑1,1 ⋯ 𝑑1,𝑛⋮ ⋱ ⋮𝑑𝑛,1 ⋯ 𝑑𝑛,𝑛]         (24) 

As indicated in equation (25), the cost matrix records the execution cost per unit time for each VM. C1, C2,..., Cm represent the unit 
execution costs for VMs VM1, VM2,..., VMm respectively. 𝑇𝐶 = (𝐶1, 𝐶2, … . , 𝐶𝑚 )           (25) 

As depicted in equation (26), the energy consumption matrix records the energy consumption per unit time for each VM. EC1, 
EC2,,... , ECm represent the unit energy consumption for VMs VM1, VM2,..., VMm respectively. 𝐸𝐶 = (𝐸𝐶1, 𝐸𝐶2, … . , 𝐸𝐶𝑚 )          (26) 

Based on above matrices, we can determine the makespan (MS), the energy consumption (EC), the total cost (TC), and the fitness 
function f(M) for each solution as described in equations (1)-(9) of Section III-B. 

C. Preprocessing the workflow 

The proposed approach employs preprocessing stages to prepare task lists and resource lists for MAA algorithm prior to its use. 
The suggested method organizes tasks based on the number of offspring; hence, tasks having a large number of descendants are 
handled first. These tasks act as a bottleneck for fog-based resources, resulting in lengthy execution durations [40]. The method 
also organizes fog resources based on their processing power, categorizing them as high-processing-power and low-processing-
power resources. To perform workflow tasks, two resource lists are generated.  

Parent tasks requiring a significant amount of execution time are executed on nodes with a high processing speed in order to swiftly 
reduce dependencies. After executing parent tasks, child tasks are executed based on their location in the graph, i.e. leaf tasks are 
executed with nodes with a low processing speed, while parent and intermediate tasks are executed with nodes with a high 
processing speed. Algorithm 1 uses lines 4-5 to separate the root tasks from workflow W. These root tasks are kept in a parent task 
list L1. Now, the workflow is checked for leaf tasks in lines 6-7. These leaf tasks are transferred to child task list L2. Before including 
the intermediate/dependent tasks in the list, line-8 first verifies the status of their parent tasks. If the parent task is already included 
in the list, then the intermediate tasks are transferred to parent task list else it has to wait till all its parent tasks are included. In line 
16 two separate task-lists L1 and L2 are created for processing using MAA algorithm for workflow scheduling. 

Task ID -> T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

VM ID -> 4 3 2 1 5 4 2 1 5 1

 VM Layer CD FD FD ED ED

VM ID 1 2 3 4 5

Assigned Task 4,8,10 3,7 2 1,6 5,9
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Algorithm 1: Preprocessing Phase of MAA algorithm for Workflow Scheduling 

1. Input : workflow W 

2. Output : task-lists L1 and L2 
3. for each task ti in W do 

4.   if ti is not a child task (root task) then 

5.    append ti in L1 
6.    else  if ti is not a parent task (leaf tasks) then 

7.     append ti in L2 

8.    else  if all parent tasks of ti present in L1 (intermediate tasks) then 

9.      append ti in L1 
10.      else 

11.      wait till all parent tasks are appended in L1 

12.      end-if 

13.     end-if 

14.    end-if 

15. end-for 
16. task-lists L1 and L2 ready for MAA algorithm 

 

Fig 1:  Flow of the preprocessing phase of the proposed algorithm 
 

 

 

 

 

 

 

Task List L1 and L2 ready for MAA 

Task ti from workflow W 

Is ti Child Task? 

Is ti Parent Task? 

Is Parents of ti 

present in L1? 

Append ti to L1 

Append ti to L2 

Append ti to L1 

Task left in W? 

Determine all parent tasks of ti 

YES 

YES 

YES 

YES 

N0 

N0 

N0 

N0 
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Algorithm 2:  Proposed Multi-objective Artificial Algae (MAA) Algorithm for Workflow Scheduling. 

1. Input: Task-lists L1 and L2 and Resource lists R1 and R2 from pre-processing phase 

2. Output: Optimal solution vector (Best mapping between tasks and resources) 

3. Define Algorithmic Parameters (shear force ∆, energy loss e and Adaptation parameter Ap)  

4. Initialize population size (N) and Maximum number of iterations (MaxIter). 

5. Randomly initialize N algal colonies. 

6. Calculate colony size (Gi) for all algal colonies 

7. While (t < MaxIter) 

8.    Evaluate energy (E) and Friction surface (𝜏) of all algae  

9.    For (i = 1: N) 

10.    Starvation = true 

11.    While (E (xi ) > 0) 

12.     Select j among all colonies via tournament selection method 

13.     Randomly select three dimensions (k, l and m) for helical movement 

14.     Randomly generate angles 𝛼 and 𝛽 in range [0, 2π] and p in range [-1,1] 𝑥𝑖𝑘𝑡+1 =  𝑥𝑖𝑘𝑡 + (𝑥𝑗𝑘𝑡 − 𝑥𝑖𝑘𝑡 )(∆ −  𝜏𝑡(𝑥𝑖))𝑐𝑜𝑠𝛼 𝑥𝑖𝑙𝑡+1 =  𝑥𝑖𝑙𝑡 + (𝑥𝑗𝑙𝑡 − 𝑥𝑖𝑙𝑡 )(∆ − 𝜏𝑡(𝑥𝑖))𝑠𝑖𝑛𝛽 𝑥𝑖𝑚𝑡+1 =  𝑥𝑖𝑚𝑡 + (𝑥𝑗𝑚𝑡 − 𝑥𝑖𝑚𝑡 )(∆ − 𝜏𝑡(𝑥𝑖))𝑝 

 15.    Evaluate new algal colony 

 16.     Calculate energy loss due to movement, 𝐸(𝑥𝑖) =  𝐸(𝑥𝑖) − ( 𝑒2 ) 

 17.     If (new algal colony is better solution) 

 18.      Update current best colony/solution 

 19.       Starvation = false 

 20.     Else 

 21.      Calculate energy loss due to metabolism, 𝐸(𝑥𝑖) =  𝐸(𝑥𝑖) − ( 𝑒2 ) 

 22.     End if 

 23.    End While 

 24.    If (Starvation = true) 

 25.     Increment starvation, A(xi) 

 26.    End if  

 27.    End For 

 28.   Update colony size (Gi) for all colonies 

 29.     Randomly select one dimension for reproduction, r 

 30.     𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑟𝑡 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑟𝑡   

 31.   If (rand < Ap) 

 32.    𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡+1 = 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 + (𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 −  𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡)  × 𝑟𝑎𝑛𝑑  

 33.   End if 

 34.   Update current best colony/solution 

 35.  End While 
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Fig 2:  Flow of Multi-Objective Artificial Algae (MAA) Algorithm for Workflow Scheduling 

D. Applying the Multi-objective Artificial Algae (MAA) Algorithm 

The proposed approach is based on AAA [39] technique to decrease workflow execution time (makespan) and cost while 
distributing the workload evenly across all computing nodes. Speedy and quicker algorithmic convergence are AAA's key 
advantages over other meta-heuristics. The technique has not been utilized in any literature on FCE for a variety of workflow tasks, 
including scheduling and resource allocation algorithms. It is expected that the scheduler is aware of how different workflow tasks 
are dependent on one another. Workflow task execution times are likewise predetermined. The proposed algorithm's goal is to 
allocate computing resources (VMs) to workflow tasks while minimizing their cost and execution time. The scheduling method 
aims to assign resource Ri to workflow task Tj in a way that makes effective use of computing resources. When allocating 
computing resources (VMs), the scheduler must take other factors into account. The MAA method assigns computing resources to 
tasks from both lists. The algorithm begins with randomly generating N algal colonies. Each colony representing a solution is 
assessed based on its fitness function value. Fitness value is determined by equation 1 based on the execution time and cost. During 
each iteration, all the variables are updated and the procedure is repeated until the halting requirement is not met.  

It is quite difficult to design an effective mapping of tasks and resources [43]. We employ a search space with n dimensions for 
n tasks with a set of discrete potential values ranging from 1 to m, where m is the number of VMs. We employ notations from 

earlier research [44] to denote allocation of VMs to tasks i.e. 𝑥𝑖𝑡 =  (𝑥𝑖1𝑡 , 𝑥𝑖2𝑡 , … . , 𝑥𝑖𝑗𝑡 ). Where 𝑥𝑖𝑗𝑡  indicates the VMi is allocated to 

a jth algae cell of an algal colony at time t. The number of tasks in a workflow represents the dimension of an algal colony. The 
suggested algorithm stores viable solutions, i.e. colonies that are not dominated. The repository is initially empty. The repository 
is updated whenever the algorithm discovers a new solution. There are only non-dominated solutions in the repository. If the 
current solution is surpassed by any other solution during the process, the existing solution is replaced in the repository with the 
new solution. The judgement is based on the fitness criteria employed. In the final stage of the algorithm, the repository contains 
only viable solutions, which are non-dominated in nature. 
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V. PERFORMANCE EVALUATION 

A. Experimental Environment 

This section describes the experimental setup, followed by the findings and discussion of the experiment. The suggested 
technique was experimentally evaluated using scientific workflows [42] from various fields of study. Workflows are comprised 
of varying numbers of tasks, degrees of task dependencies, and data transmission between tasks. Some of the most practical 
scientific procedures, including Montage, CyberShake, Epigenomics, LIGO, and SIPHT, were published by the Pegasus project 
[45]. Figure 3 depicts the architectures of five scientific workflows. Table 3 provides information about some datasets utilized 
in tests. The algorithms were assessed based on their makespan, cost, and energy consumption. Makespan refers to the sum of 
all task execution times inside a workflow. Cost refers to the cost associated with the execution and transport of data for workflow 
application processes. Energy consumption is the matrix that indicates if the system's power consumption is optimal. 
Energy consumption is assessed as that of the summation of energy consumption during idle and active duty-cycles for all levels 
of computing resources. Minimum values are desirable for all performance parameters.  

TABLE III: DATASETS USED IN THE EXPERIMENT 
 

Dataset Number of Tasks Description 

Montage 20,40,60,80,100,200,300 
An astronomy tool developed by NASA/IPAC that generates unique sky mosaics 
from several input photos 

Epigenomics 24, 47, 100 
Utilized in bioinformatics to automate several activities in genome sequence 
processing. 

SIPHT 30, 60, 100 
Used to automate the search for untranslated RNAs (sRNAs) in the NCBI 
database for bacterial replicons. 

LIGO 30, 50, 100 
Used to create and analyze gravitational waves based on compact binary system 
coalescence data. 

CyberShake 30, 50, 100 
The Southern California Earthquake Center used it to quantify earthquake 
hazards in a given location. 

 

Fig 3: The structure of five realistic scientific workflows [42] 

B. Simulation Settings 

All the simulations are executed on a machine with a Windows 10 Pro 64-bit operating system, an Intel(R) Xeon(R) processor 
running at 3.70 GHz, and 16 GB of RAM. We used the Java IDE Eclipse to run the FogWorkflowSim-1.1 toolbox. 
FogWorkflowSim [40] is an extension of iFogsim that simulates user-defined task workflows in order to evaluate resource 
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management strategies in FCE. The proposed approach is compared to Particle Swarm Optimization (PSO) [46], Ant Colony 
Optimization (ACO) [47], Grey Wolf Optimization (GWO) [48], and HPSOGWO [49] techniques. For each algorithm, the 
number of iterations and the size of population is taken as 100 and 25 respectively. The population size is assumed to be 25 for 
each algorithm. Table IV displays the simulation environment parameter settings for the three layers of HFCE. Table V displays 
the parameter settings used specifically for evaluating each method. We have modelled each technique for weighted sum 
objectives based on TIME, ENERGY, and COST. All three of the weighted coefficients w1, w2, and w3 are set to the same value 
of 0.33. The algorithms can be evaluated using different realistic scientific workflows. The five scientific workflows that are 
under consideration are Montage, CyberShake, Epigenoimics, LIGO (Inspiral), and SIPHT.  The Pegasus-generated 
scientific workflow structures are represented via a DAG XML file for each workflow [45].  These workflows are available with 
a range of task counts. For example, Montage is available with 20, 40, 60, 80, 100, 200, 300 and 1000 tasks.  Simulations are 
conducted ten times for different combinations of workflow types and tasks counts in order to examine the algorithms' average 
performance. 

TABLE IV. SIMULATION ENVIRONMENT SETTINGS 

Parameters ED FD CD 

Number of Servers / Devices 5 5 5 

Processing Speed (MIPS) 
ED1-1000 ED2-1000 ED3-1000 

ED4-1000 ED5-1000 
FD1- 1200 FD2- 1300 FD3- 1400 

FD4- 1500 FD5- 1600 
CD1-1600 CD2-1700 CD3-1800 

CD4-1900 CD5-2000 

Task Execution Cost ($) 
 

0 
FD1- 0.1 FD2- 0.2 FD3- 0.3 

FD4- 0.4 FD5- 0.5 
CD1-0.5 CD2-0.6 CD3-0.7 

CD4-0.8 CD5-0.9 

Communication cost ($) 0 0.01 0.02 

Active power (MW) 700 800 1600 

Idle power (MW) 30 40 1300 

Uplink bandwidth (Mbps) 20 10 1 

Downlink bandwidth (Mbps) 40 10 10 

TABLE V. ALGORITHM PARAMETERS OF WORKFLOW SCHEDULING. 

Algorithm Parameters Values/Range Explanation 

MaxIter 100 The total number of runs of the algorithm. 

For PSO algorithm   

Particle Size 25 The number of particles, each particle represents a solution. 

C1, C2 2 They are the acceleration coefficients. 

Wp 0.1 It is inertia weight. 

For ACO algorithm   

Ant count 25s The number of ants, each ant represents a solution. 

PR 0.1 They the Pheromone updating rate 

CP 0.85 The choosing probability 

Wa 0.95 The influence weights 

For GWO algorithm   

Pack Size 25 The total number of wolves in a pack, each wolf is a potential solution. 

a [2,0] This parameter decreases from 2 to 0 during the iterations of algorithm. 

A [-a, a] This parameter is used to regulate the convergence rate, initially set to 0.  

when (A > 1) wolves diverge away from prey, when (A < 1) wolves converge towards prey. 

C [0,2] This parameter is used to restrict falling into local optima, initially set to 0. 

D Any value It is an empirical model used to surround the prey. 

r1, r2 [0,1] These are random coefficients. Their values vary from 0 to 1. 

For MAA (Proposed)   

N 25 The number of algal colonies, each algal colony represents a solution. 
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e 0.3 The loss of energy ∆ 2 The shear force 

Ap 0.5 The adaptation probability constant 

C. Results and Discussion 

The Result and Discussion has been divided into 3 parts based on the performance parameters evaluated during the experiment. 
In this section, we have discussed performance comparison of our suggested MAA algorithm with PSO [46], ACO [47], GWO 
[48], and HPSOGWO [49] algorithms. The performance is evaluated for five well-known workflows: Montage, CyberShake, 
Epigenomics, LIGO (Inspiral), and Sipht with task counts ranging from 20 to 300 in terms of Makespan (MS), Energy 
Consumption (EC), and Total Cost (TC). There was a limit of 100 iterations. Each scenario is performed 10 times before the 
average value of the result is taken into account. The simulation results are compiled in Tables VI, VII, and VIII. Fig. 3-17 shows 
the three-performance metrics concerning five workflows taking weighted sum based objective function. 

TABLE VI. MAKESPAN FOR DIFFERENT WORKFLOW SETTINGS. 

Scenario ACO PSO GWO HPSOGWO MAA 

Montage 20 0.29 0.22 0.25 0.21 0.16 

Montage 40 0.24 0.32 0.29 0.34 0.30 

Montage 60 0.36 0.50 0.37 0.38 0.35 

Montage 80 0.46 0.44 0.41 0.47 0.38 

Montage 100 0.61 0.42 0.45 0.62 0.47 

Montage 200 0.95 0.95 0.82 0.90 0.83 

Montage 300 1.54 1.24 1.48 1.51 1.13 

CyberShake 30 70.43 68.51 74.44 64.40 60.28 

CyberShake 50 90.50 83.93 83.90 95.63 72.62 

CyberShake 100 100.79 93.43 101.60 102.13 90.79 

Epigenomics 24 9.78 10.48 10.36 8.09 6.96 

Epigenomics 47 14.16 14.89 16.31 14.20 10.62 

Epigenomics 
100 

74.71 72.27 78.02 74.93 57.90 

Inspiral 30 1.66 1.49 1.71 1.85 1.08 

Inspiral 50 2.31 2.32 2.33 2.34 1.51 

Inspiral 100 3.28 2.91 2.88 2.89 2.34 

Sipht 30 3.92 3.74 3.56 4.06 1.08 

Sipht 60 4.19 4.27 4.75 4.68 1.51 

Sipht 100 5.36 4.65 5.06 4.75 2.34 
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TABLE VII. ENERGY CONSUMPTION FOR DIFFERENT WORKFLOW SETTINGS 

Scenario ACO PSO GWO HPSOGWO MAA 

Montage 20 43 26 44 41 43 

Montage 40 85 105 92 96 83 

Montage 60 147 158 148 149 150 

Montage 80 202 206 207 192 202 

Montage 100 260 243 246 265 276 

Montage 200 534 573 502 497 514 

Montage 300 801 802 799 804 774 

CyberShake 30 2332 6760 2290 2725 2167 

CyberShake 50 3071 14771 2954 2878 3178 

CyberShake 100 3703 24984 3739 3804 3706 

Epigenomics 24 4411 3242 4634 4429 4647 

Epigenomics 47 8490 6719 11599 10038 8800 

Epigenomics 
100 

89090 80447 83415 97905 77852 

Inspiral 30 1582 1463 1425 1544 791 

Inspiral 50 2649 2838 2753 2507 2400 

Inspiral 100 4906 4765 4706 5299 4530 

Sipht 30 1700 791 1105 1339 1290 

Sipht 60 2205 2400 3084 3491 2698 

Sipht 100 4513 4530 5058 4542 3664 

TABLE VIII. TOTAL COST FOR DIFFERENT WORKFLOW SETTINGS 

Scenario ACO PSO GWO HPSOGWO MAA 

Montage 20 239 206 214 161 190 

Montage 40 273 378 328 352 329 

Montage 60 424 420 476 425 552 

Montage 80 537 531 471 514 500 

Montage 100 688 700 556 678 533 

Montage 200 1002 987 947 1009 955 

Montage 300 1589 1398 1530 1521 1275 

CyberShake 30 65997 73673 52946 82856 50756 

CyberShake 50 104854 115154 102463 112564 90129 

CyberShake 100 182732 181543 171322 195005 163653 

Epigenomics 24 8472 9813 8478 7563 7021 

Epigenomics 47 14669 17121 15087 16510 15188 

Epigenomics 
100 

120313 124962 118109 123156 116871 

Inspiral 30 1664 2123 1686 1755 1746 

Inspiral 50 2910 3038 2825 2970 3115 



 
 

 

15 

Inspiral 100 4941 5018 4788 5080 4699 

Sipht 30 1164 2123 1416 1408 1264 

Sipht 60 3084 3038 2662 2613 2146 

Sipht 100 4029 5018 3968 3932 3899 

The findings for makespan, cost, and energy usage for the Montage workflow are shown in Figures 3–5. As per expectations, all 
the measures increase with the number of tasks. The result demonstrates that ACO performs somewhat worse than all the other 
four techniques. On the other hand, out of the other three compared techniques PSO performs somewhat better. This is most 
likely due to PSO's most popular attribute of carrying out global search and local searches simultaneously. The MAA algorithm, 
which uses evolution and exploitation, clearly benefits from its capacity to see a wide variety of solutions thanks to the random 
reproduction and adaptation operators. 

Fig 3: Makespan for Montage Workflow Fig 4: Energy Consumption for Montage Workflow 

Fig 5: Cost for Montage Workflow  Fig 6: Makespan for Cybershake Workflow  
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Fig 7: Energy Consumption for Cybershake Workflow Fig 8: Cost for Cybershake Workflow  

The findings for makespan, cost, and energy usage for the Cybershake workflow are shown in Figures 6-8. The results 
demonstrate that MAA performs better than the other four techniques. On the other hand, all the three techniques perform at a 
comparable level. However, there is an exception in the case of energy, since PSO performs worse than all the other alternatives 
in that regard. This is most likely due to PSO's prevalent issue with early convergence and becoming stuck in the local minima. 
The statistics for ACO, GWO, HPSOGWO and MAA tasks are pretty low, but PSO is high and rises rapidly as the number of 
tasks increases. For example, when makespan increases from less than 60 seconds for 30 tasks to more than 90 seconds for 100 
tasks; energy rises drastically from less than 8KJ for 30 tasks to more than 25KJ for 100 tasks and price hikes from less than 
nearly eighty thousand dollars for 30 tasks to almost one lakh eighty thousand dollars for 100 tasks.  

Figures 9–11 demonstrate the findings for the Epigenomics workflow in terms of makespan, cost, and energy usage. The statistics 
for 24 and 47 tasks are pretty small, but they rise dramatically as the number of tasks increases. For example, makespan increases 
from less than 20 seconds for 24 and 47 tasks to more than 60 seconds for 100 tasks; price hikes from less than ten thousand 
dollars for 24 and 47 tasks to more than one lakh dollars for 100 tasks; and energy increases from less than 10KJ for 24 and 47 
tasks to more than 70 KJ for 100 tasks. This is because the mapping tasks in the Epigenomics workflow [23], which are 
responsible for matching genome sequences, become much more computationally expensive making turnaround time even 
longer as the number of activities increases. Compared to the other techniques, MAA still perform better in the case of makespan, 
energy and cost.  

 

Fig 9: Makespan for Epigenomics Workflow Fig 10: Energy Consumption for Epigenomics Workflow 
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Fig 11: Cost for Epigenomics Workflow Fig 12: Makespan for LIGO Workflow 

Fig 13: Energy Consumption for LIGO Workflow Fig 14: Cost for LIGO Workflow  

The findings for makespan, cost, and energy usage for the LIGO workflow are shown in Figures 12–14. The makespan of all 
methods is consistently increasing in Fig. 12. MAA performs the best for all tasks, but ACO appears to perform worse than that 
of the prior three workflows. As shown in Fig. 13, with the rise in the number of tasks, the energy consumed by all algorithms 
are consistent except HPSOGWO which increases dramatically. As shown in fig. 14, with the increase in the number of tasks, 
all algorithms perform consistently. For 100 tasks, MAA continues to outperform all the other techniques. As the number of 
tasks rises, it appears that the HPSOWO algorithm distributes more tasks to FD/CDs, increasing the cost significantly. This 
results in significant energy usage on FCE, as demonstrated in Fig. 13. 

The findings for makespan, cost, and energy usage for the SIPHT workflow are shown in Figures 15–17. The makespan of all 
methods is reasonably consistent in Fig. 15. MAA performs the best for all tasks, but ACO appears to perform worse than that 
of the other workflows. As the number of tasks rises, all algorithms except GWO perform consistently in Fig. 16. With the rise 
in the number of tasks, GWO increases dramatically than other techniques. As shown in Fig. 17, with the increase in the number 
of tasks, the cost of MAA continues to increase but is slower than the other techniques. Overall, it appears that with the rise in 
the number of tasks, the PSO algorithm distributes more work to FD/CDs, increasing the cost significantly. This results in 
significant energy usage on FCE, as demonstrated in Fig. 16. 
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Fig 15: Makespan for SIPHT Workflow Fig 16: Energy Consumption for SIPHT Workflow 

Fig 17: Cost for SIPHT  Workflows 

At first sight, the newly introduced algorithms seem to works properly, following logical thinking to reduce the makespan, energy 
consumption and cost. Although, some problems related to the objective specific scenarios can easily make it perform worse 
than the existing classic algorithms and provide the opposite desired result. By prioritizing the execution of the independent tasks 
to the available host/VM that guarantee the lowest makespan, energy and cost, we can provide incredible desired results. Here, 
scheduling a task to a VM may force another task to be later assigned on to another resource and may make the second task 
execution last a higher amount of time than necessary, which could finally increase the total execution time, power consumption, 
and cost as well. 

VI. CONCLUSION 

A Multi-objective Artificial Algae (MAA) algorithm for scheduling scientific workflows in heterogeneous FCE is presented in 
this article. The MAA algorithm targets to minimize a weighted sum objective function based on execution time, energy 
consumption and cost. At first, the proposed algorithm preprocesses the scientific workflows to remove bottleneck tasks. The 
algorithm is then used to schedule the preprocessed tasks list on the available VMs. The proposed approach is supported by 
experimental findings on scientific workflows taken from various research areas. With respect to the specified performance 
parameters like execution time, energy consumption and cost, the method outperforms all the existing algorithms.  

This empirical study is bounded to 20-300 tasks to measure the performance of optimization algorithm for task scheduling in 
FCE.  In future work, the number of tasks in workflows can be extended to 2000 to measure the effectiveness of the scheduling 
algorithms. Some more objectives like reliability, fault tolerance with the constraints like deadline and budget can also be 
considered. Considering some hybrid optimization approaches may also help to improve the overall performance of the FCE.  
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