
MAA: Multi-objective Arti�cial Algae Algorithm for
Work�ow Scheduling in Heterogeneous Fog-Cloud
Environment
Prashant Shukla ( pshukla.phd2019.it@nitrr.ac.in)

National Institute of Technology Raipur
Sudhakar Pandey

National Institute of Technology Raipur

Research Article

Keywords: Fog computing, Work�ow Scheduling, Arti�cial Algae Algorithm, MAA Algorithm

Posted Date: December 2nd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1871192/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-1871192/v1
mailto:pshukla.phd2019.it@nitrr.ac.in
https://doi.org/10.21203/rs.3.rs-1871192/v1
https://creativecommons.org/licenses/by/4.0/

1

 Abstract— Cloud Computing (CC) is the most popular tool of choice for conducting scientific experimentation on Cloud Servers

(CDs). It can be even more efficient strategy to use Fog Computing (FC) for allocating and executing operations on Fog Devices

(FDs). Complex scientific operations need the effective use of virtual machines (VMs). Scientific workflow scheduling problem is

regarded as NP-complete. This problem is constrained by various factors, such as Quality of Service (QoS), interdependence

between tasks, user deadlines, etc. There is a very less research available on scientific workflow scheduling in Fog-Cloud

Environments (FCE). Classical scheduling techniques, evolutionary optimization algorithms, and other methodologies are the

available solution to this problem. In this paper, an efficient meta-heuristic approach named Multi-objective Artificial Algae (MAA)

algorithm is presented for scheduling scientific workflows in heterogeneous FCE. In the first phase, the algorithm preprocesses

scientific workflow and prepares a tasks list. In order to speed up execution, bottleneck tasks are executed with high priority. The

MAA algorithm is used to schedule tasks in the following stage to reduce execution times, energy consumption and costs. In order

to effectively use fog resources, the algorithm also utilizes the weighted sum based objective function. The suggested approach is

evaluated using five benchmark scientific workflows. To verify the performance, the proposed algorithm's results are compared to

those of conventional and specialized scheduling algorithms. In comparison to previous methodologies, the results demonstrate

significant improvements in execution time, energy consumption and total cost without any trade-offs.

Index Terms - Fog computing, Workflow Scheduling, Artificial Algae Algorithm, MAA Algorithm.

I. INTRODUCTION

A popular term in computer science for decades, cloud computing (CC) includes innovations including complexity abstraction and
concealing, resource visualisation, and effective utilisation of distributed resources. GoGrid, Google App Engine, Microsoft Azure,
and Amazon EC2 are a few popular CC platforms [1]. Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS) are three categories into which CC services can be divided [2]. The calculation needs of real-time latency-
sensible applications of highly dispersed Internet of things (IoT) systems are protected by a new computation pattern termed as "fog
computing" (FC) [3]. In the cloud-to-things continuity, FC, reservations, management and networking are employed to distribute
these services among end users [4]. The proof and development of the previous embedded systems is based on the FC platform
that brings the cloud services onto the network edge [5]. We also see the challenge of IoT data processing as an interesting approach
[6]. This system supports different applications including IoT, wireless fifth-generation (5G) and artificial intelligence embedded
[4]. FC is good for reducing latency and cloud pricing, whereas CC is only useful to satisfy the rising demands of computer-
intensive offloading programs [7]. Fog's primary characteristics are low latency and consciousness of the location, extensive
geographical distribution, mobility, multiple nodes, a prominent role in availability of wireless, a substantial presence of flowing
programmes and real time differences [8].

Workflows are modelled as Directed Acyclic Graphs (DAGs) with n tasks, where the vertices correspond to the tasks and the edges
to their dependencies. Scientific workflows contain a huge number of tasks. These jobs also contain dependencies, which makes
it challenging for the scheduler to organise tasks and use cloud resources effectively. The scheduler serves as a bridge between
workflow tasks and cloud resources. Scheduling workflows in a cloud context is regarded as NP-complete. The efficiency of
scheduling algorithms is affected by a variety of variables, including quality of service (QoS), user deadlines, financial cost,
execution time, data privacy and security, etc. The vast computational resources required by workflow scheduling algorithms make
them appropriate for FC systems. Workflow tasks can be carried out using scalable and affordable FC infrastructure. Workflow
tasks vary in execution duration and computing demand [9]. While certain workflows require a lot of computing power, others
may require a lot of memory and bandwidth.

Extensive literature study is available on workflow scheduling with CC settings while literature with FC settings is very rare. In
order to overcome the issue, some academics have employed conventional scheduling algorithms, while others have concentrated

MAA: Multi-objective Artificial Algae Algorithm for Workflow

Scheduling in Heterogeneous Fog-Cloud Environment

Prashant Shukla*, Sudhakar Pandey
Department of Information Technology,

National Institute of Technology, Raipur, Chhattisgarh, India, 492010.

E-mail: pshukla.phd2019.it@nitrr.ac.in*, spandey.it@nitrr.ac.in

mailto:pshukla.phd2019.it@nitrr.ac.in*
mailto:spandey.it@nitrr.ac.in

2

on optimization techniques. There are single-objective, bi-objective, and multi-objective solutions. The majority of researchers
have focused on makespan, cost, load balancing, etc. Heuristics or meta-heuristics are two possible approaches. The literature [11],
[12] uses heuristics like min-min, max-min, etc. or combines these methods with meta-heuristics. In the Fog-Cloud Environment
(FCE), a variety of meta-heuristic optimization methods have been employed to overcome workflow issues. To reduce the
makespan, workflow scheduling employs the Genetic Algorithm (GA) [13]. Despite taking a little longer to get the solution, the
GA method is reliable and produces a high-quality search in polynomial time. Particle Swarm Optimization (PSO) was employed
by Pandey et al. [14] for scheduling workflow applications in a cloud computing environment. Although, PSO is a quick
optimization technique, however it has drawbacks such early convergence and local optimal solution entrapment [15]. Recently, a
meta-heuristic method called Grey Wolf Optimization (GWO) that imitates the leadership structure of grey wolves was suggested
[16]. The enhanced version of Grey Wolf Optimizer was suggested by Khalil and Babamir [17] as a solution to the workflow issue.

The purpose of this research is to propose a meta heuristic algorithm for scheduling and distributing task across fog nodes in order
to maximise the usage of network resources by users [6]. The following are our major contributions to this paper:

1) An efficient meta-heuristic approach namely Multi-objective Artificial Algae (MAA) Algorithm is proposed for workflow
scheduling in Heterogeneous Fog Cloud Environment (HFCE). It includes a pre-processing stage to get tasks ready for the
MAA algorithm. It is challenging for the scheduler to create an ideal plan since workflow tasks have interdependence. The
dependencies are the focus of the proposed approach in order to achieve better scheduling.

2) The proposed workflow scheduling approach is evaluated on five realistic scientific workflow datasets like Montage,
CyberShake, Epigenomics, LIGO, and SIPHT to optimize three performance objectives namely- total execution time (makespan),
energy consumption and total cost.

The remaining part of the paper is structured as follows: The section II explains the classification of task scheduling strategies and
section III examines the related work. In Section IV, we present our proposed task scheduling method. The simulation results are
presented in Section V, and the conclusions are presented in Section VI.

II. RELATED WORK

The concept of workflow, which divides a complicated scientific procedure into manageable activities, is quite well known among
scientists [18]. These activities may be carried out via distributed and parallel computing, such as fog computing. In fog computing,
workflow scheduling is a well-known NP-hard issue. In order to improve the efficiency of fog computing, a number of list-based
algorithms have been proposed for task scheduling, including first come, first served (FCFS), round-robin (RR), shortest job first
(SJF), minimal completion time (MCT), etc. The main principle of list-based heuristics is to prioritize each task and allocate the
resources at hand in accordance with the preferences specified. In order to accommodate systems with heterogeneous
multiprocessors, the Heterogeneous Earliest Finish Time (HEFT) was developed. When compared to current HEFT and Critical
Path on a Processor (CPOP), Dubey et al [19] suggested improved version of HEFT can shorten the makespan.

The Min-Min method maps the job with the shortest possible execution time to the device with the shortest possible completion
time [20]. A related technique is the Max-Min algorithm, which assigns the task with the longest possible execution time to the
device with the shortest possible completion time. The tasks are not assigned to the resources as they enter when using the offline
scheduling methods Min- Min and Max-Min, which operate in batch mode [21]. The problem with Min-Min and Max-Min
algorithms is that they suffer from starvation [22]. In addition, they solely take time into account when evaluating resources. The
user viewpoints are the exclusive focus of list-based heuristics; resource quality factors are given less attention.

These aforementioned standard heuristics methods are straightforward, simple to use, and quick, but meta-heuristic techniques can
provide a solution that is almost optimal for complicated issues like workflow scheduling and can further increase the quality of
the solution [23]. Additionally, heuristic algorithms are problem-dependent approaches, but meta-heuristic methods are problem-
independent strategies. Because they are straightforward and offer powerful searching capabilities in a short amount of time and
money, meta-heuristic algorithms are frequently employed. For overcoming the workflow problem, many meta-heuristic
techniques were suggested. Ant Colony Optimization (ACO), Particle Swarm Optimization, and Genetic Algorithm (GA) are a
few examples of common algorithms (PSO).

A genetically based approach for solving the job scheduling problem was proposed by Dasgupta et al. [1]. In comparison to Round
Robing (RR), First Come First Serve (FCFS), and the local search method Stochastic Hill Climbing (SHC), the test's results
demonstrate greater performance in terms of makespan. It has been claimed that the GA algorithm takes a long time to arrive at
the best solutions [24]. In order to reduce the makespan, Tawfeek et al. [25] applied the Ant Colony Optimization (ACO) task
scheduling method. They discovered that ACO outperformed FCFS and RR. Although, ACO is a fairly complicated algorithm,
and it takes some time to achieve the best results [26]. Task dependencies are not taken into consideration. One of the well-known

3

meta-heuristic methods is particle swarm optimization (PSO). It converges quickly and is easy to implement. Despite its benefits,
it is unable to escape the local optimum for complicated problems [27].

The ability to exploit and explore is a characteristic of meta-heuristic algorithms [28]. Exploitation indicates how effective the
algorithm is in conducting local searches. Exploring indicates that the approach may be used to identify the first answer, which
may be close to the overall optimal value. An effective meta-heuristic algorithm strikes a balance between exploitation and
exploration potential. Despite having a great capacity for exploration, particle swarm optimization has a limited capacity for
exploitation. According to Mirjalili et al. [16], the grey wolf optimizer has a good blend of exploitation and exploratory abilities.

For complicated issues like scientific process scheduling, a single meta-heuristic could not yield the best solution and instead
become trapped in the local best solution. Choosing one or more meta-heuristic algorithms and combining them according to their
strongest traits is a superior strategy. Hybrid algorithms have gained popularity during the past couple decades. Only existing
algorithms that are either hybrids of PSO or GWO are discussed here. The GA-PSO algorithm, which Manasrah and Ali [29]
devised, is a combination of the Genetic Algorithm and Particle Swarm Optimization. Comparing the hybrid GA-PSO method to
GA, PSO, and other algorithms, the overall execution time is decreased. Another hybrid method, a combination of the PSO and
gravity search algorithm (GSA), has been published in [30]. In terms of cost, this hybrid method outperforms several non-
heuristics, PSO, and GSA algorithms. Bouzary and Frank [31] suggested a combination of the Grey Wolf Optimization (GWO)
and Genetic Approach (GA), and they discovered that the proposed algorithm outperformed the GWO and GA in terms of cost.
When compared to flower pollination with genetic algorithms, Khurana and Singh's [32] hybrid flower pollination algorithm with
GWO gives more effective outcomes while taking less time and money.

Although the aforementioned hybrid algorithms have advantages, one can wonder why the proposed technique was chosen. The
free lunch theory [33] holds the key to the solution. According to the free lunch theory, a single method is ineffective for handling
all optimization issues. It might perform better for a specific optimization issue. However, it might not perform well for the other
optimization problems. Optimization issues don't have a single, universal answer.

III. BACKGROUND

In this section we first formulate the problem then discuss the fitness function used during the designing of the proposed algorithm.
The standard Artificial Algae Algorithm (AAA) employed in the proposed approach is also described in this section.

A. Problem Formulation

DAGs are used to represent workflows. Dependencies among tasks in a workflow are defined as G = (V, E), where V denotes the
vertices and stands for the tasks in the workflow and E denotes the edges and stands for dependencies between tasks. Prior to
beginning the execution of any child task, the parent task must be completed [34]. Workflow tasks include several attributes,
including execution time, data to be provided or received, and parent-child task relationships. Tasks in the workflow may be
computation intensive or data-intensive, and sometimes both.

Several Fog Nodes (FDs), Cloud Datacenters (CDs) and End Devices (EDs) make up the FCE model. Numerous physical machines
make up each FD/CD. Resources for computation and storage make up the physical machines. Each resource has the capability
for processing, storage, memory, and bandwidth. Resources are shown as Virtual Machines (VMs) in FCE. The bandwidth,
computing power, and cost of storage per unit of time for VMs are all fixed. Any of the resources that are accessible can
execute workflow tasks scheduled for them. The quantity and strength of each Processing Element (PE) are used to calculate the
processing capability of VM.

B. Fitness Function

The fitness function described the desired outcomes to be optimized with the proposed scheduling method [35]. A fitness function
can be made multi-objective in two ways: priori and posteriori [36]. Each associated aim is given a weight based on its importance
in the priori method, resulting in a single-valued function, also known as fitness value. In contrast, the posteriori technique uncovers
the collection of non-dominant options. To design the fitness function, we use the priori technique. Makespan (MS) and Total Cost
(TC) are the components of the fitness function. The considered fitness function can be described mathematically using the equation
(1). 𝑓(𝑀) = 𝛼1 × 𝑀𝑆 + 𝛼2 × 𝑇𝐶 (1)

Where M denotes mapping of workflow’s n tasks to the m available VMs in EDs, FDs, and CDs, MS is for total execution time
(makespan), EC stands for energy consumption and TC stands for total cost (computation and communication). The weights
allocated to each aim are α1 and α2. We use a weight of 0.5 to equate the values of α1 and α2. The following sub-sections provide
a comprehensive description of total execution time (makespan), total energy consumption and total execution cost:

4

1) Total execution time (makespan): The total execution time (makespan) is the time it takes for tasks in a workflow to complete.
To put it another way, makespan is the amount of time it takes to complete all of the tasks assigned to various virtual machines
[27]. The workflow's makespan can be calculated mathematically using equation 2. 𝑀𝑆𝑊 = 𝑚𝑎𝑥{𝐶𝑇𝑖 | 𝑖 = 1, 2, . . . 𝑚} (2)

where CTi is the task Ti is completion time in the workflow. The entire time spent completing the tasks is the completion time.
When tasks are interdependent, the time spent waiting for previous tasks is taken into account. Equation 3 represents the completion
time CTi.

𝐶𝑇𝑖 = { 𝐸𝑇𝑖, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅𝑊𝐾𝑖 + 𝐸𝑇𝑖, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅ (3)

As indicated in equation 4, the waiting time of task Ti is equal to the total completion time of all its predecessor tasks.

𝑊𝐾𝑖 = { 0, 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅𝑚𝑎𝑥(𝐶𝑇𝑖), 𝑖𝑓𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅ (4)

𝐸𝑇𝑖,𝑗 = 𝑆𝑍𝑇𝑎𝑠𝑘𝑁𝑢𝑚(𝑃𝐸𝑖)×𝑃𝐸𝑈𝑛𝑖𝑡 (5)
Equation 5 is used to compute the execution time of task Ti on virtual machine VM j, where SZTask is the task's size in million
instructions (MI), Num(PEj) is the number of cores assigned to the virtual machine VM j, and PE Unit is the size of each core in
MIPS.

2) Total Cost: Because FC is based on a pay-as-you-go billing structure [37], cost is an important goal to minimize. The
majority of fog service providers charge for a fixed period of time based on the fog services used. Execution, connection, and
storage costs are all included in the cost of FC. The total execution cost of a VM is the product of the VM's cost per unit interval
and the time it takes to complete tasks on that VM. The total execution cost (TC) of workflow W is calculated using equation 6
[38].

𝑇𝐶𝑊 = ∑ 𝐸𝑇𝑖.𝑗𝜏 × 𝐶𝑂𝑗 ∶ 𝑗 ∈ 𝑉𝑀𝑗𝑘𝑖∈𝑊,𝑖=1 (6)

where COj is the cost of a type-i VM instance in the CD/FD per unit time. τ is the amount of time that the user uses the resources.
ETi,j is the time it takes for type-j VM instance to complete task Ti.

3) Energy Consumption: The energy consumption is taken from [10], which contains active energy components denoted by
Eactive and idle energy components denoted Eidle. The Eactive is related to the energy used while performing a task, whereas the
Eidle, is referred to the energy consumed by idle resources. The term "active energy" can be determined using 𝐸𝑎𝑐𝑡𝑖𝑣𝑒 = ∑ α𝑓𝑖𝑣𝑖2𝑛𝑖=1 (𝐹𝑇𝑡𝑖 − 𝑆𝑇𝑡𝑖) (7)

where α is the constant, fi represents the frequency and vi represent the supply voltage for the resource on which task i is being
performed. When idle, the resource enters a sleep state with a low power supply and less relative frequency. As a result, [10] is
used to calculate the energy consumed over this period: 𝐸𝑖𝑑𝑙𝑒 = ∑ ∑ 𝑖𝑑𝑙𝑒𝑗𝑘 ∈ 𝐼𝐷𝐿𝐸𝑗𝑘 α𝑓𝑚𝑖𝑛𝑖𝑣𝑚𝑖𝑛𝑖2𝑚𝑗=1 𝐿𝑗𝑘 (8)

where IDLEjk is a set of all idle slots of resource j. fmini and vmini represent the lowest supply voltage and
frequency of resource j, respectively. Ljk is the amount of idle time for idlejk. During the execution of tasks in the
workflow, the overall energy consumed by the FCE is

 𝐸𝐶 = 𝐸𝑎𝑐𝑡𝑖𝑣𝑒+𝐸𝑖𝑑𝑙𝑒 (9)

5

C. Artificial Algae Algorithm

Using idealized versions of the attributes of algae, artificial algae are matched to each solution in the problem space. Artificial
algae are similar to actual algae in that they can migrate toward the light source to photosynthesize by helical swimming, and they
can adapt to their environment, alter the dominant species, and reproduce through mitotic division. The algorithm thus consisted
of three fundamental components, referred to as "Evolutionary Process," "Adaptation," and "Helical Movement." Algae represent
the primary genera in the algorithm. Algal colonies made up the entire population here. A collection of living algae is referred to
as an algal colony as represented in equation (10) and (11) [39]. One algal cell split into two new algal cells, which live next to
one another. When these two are divided again, another four cells live next to one another, and so on. Algal colonies functions like
a single cell, moves as a unit, and its cells are susceptible to death in unfavorable environmental conditions. The colony may be
divided into smaller parts by an external force like a shear force or by unfavorable conditions, and as life continues, each divided
portion develops into a new colony. The colony that exists at the optimum point is known as the colony of optimums and is made
up of the best-performing algae cells.

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑙𝑔𝑎𝑙 𝐶𝑜𝑙𝑜𝑛𝑦 = [𝑥11 ⋯ 𝑥1𝐷⋮ ⋱ ⋮𝑥𝑁1 ⋯ 𝑥𝑁𝐷] (10)

𝑖𝑡ℎ 𝑎𝑙𝑔𝑎𝑙 𝑐𝑜𝑙𝑜𝑛𝑦 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷] (11)

where 𝑥𝑖𝑗 is algal cell in jth dimension of ith algal colony.

• Evolutionary process: When given adequate nutrients and light, an algal colony may expand and replicate, producing
two new algal cells in time t, which is analogous to an actual mitotic division. On the other hand, an algal colony that
doesn't get enough light persists for a time before passing away. The Monod model, which is provided in [39], was used

to calculate the growth kinetics of the algal colony. Here, 𝜇 is the specific growth rate, max is the maximum specific
growth rate, S is the nutrient concentration, which is the fitness value (f t (xi)) at time t in the model, and K is the algal
colony's substrate half saturation constant. max was taken to be 1, as the conservation of mass principle states that the
maximum amount that can be converted to biomass should be equal to the maximum amount of substrate that can be eaten
in a given amount of time. K was calculated as the algal colony's growth rate in time t under circumstances of half nutrients.
In the Monod equation, the size of the ith algal colony at time t+1 is determined by the following equation [39]:
 𝐺𝑖𝑡+1 = 𝜇𝑖𝑡𝐺𝑖𝑡 𝑖 = 1,2, … 𝑁 (12)

where N is the total number of algal colonies in the system and 𝐺𝑖𝑡 is the size of the ith algal colony in time t.

Algal colonies that offer good solutions (the most effective and economical) grow more as the amount of nutrients they
receive increases. In the course of evolution, an algae cell from the largest colony gets duplicated for every algal cell that
dies in the smallest colony as shown in equation (13), (14) and (15) [39].
 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 = max 𝐺𝑖𝑡, 𝑖 = 1,2, … . 𝑁 (13) 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑡 = min 𝐺𝑖𝑡, 𝑖 = 1,2, … . 𝑁 (14) 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑚𝑡 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑚𝑡 , 𝑚 = 1,2, … . 𝑁 (15)

where biggestt represents the largest algal colony and smallestt represents the smallest, and D represents the problem
dimension. Algal colonies are arranged in AAA according to their sizes at time t. Algal cells from the smallest colony
perish, whereas those from the largest colony multiply themselves in any randomly chosen dimension.

• Adaptation: When an algal colony struggles to expand adequately in a given environment, it tries to adapt, which changes
the dominant species. An inadequately developed algal colony attempts to imitate the largest algal colony in its
surroundings through the process of adaptation. The algorithmic modification to the starvation threshold puts an end to
this process. For each artificial alga, the starvation value is initially set at zero. As algal cells receive inadequate light,
starvation value rises over time t. The artificial alga with the highest starvation value according to equation (16) has
evolved according to equation (17) [39]
 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 = max 𝐴𝑖𝑡 , 𝑖 = 1,2, … . 𝑁 (16)

6 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡+1 = 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 + (𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 − 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡) × 𝑟𝑎𝑛𝑑 (17)

where 𝐴𝑖𝑡 is the ith algal colony's starvation value at time t. starvingt is the algal colony with the highest starvation value

during time t. The application of the adaptation process at time t is determined by the adaptation parameter (Ap). Ap
remains constant between [0, 1].

• Helical movement: Algal colonies and cells often swim and strive to remain near the water's surface because there, they
can get enough light to survive. Thanks to the helically swimming motion of their flagella. Their flagella allow them to
move ahead but are constrained by gravity and viscous drag as they swim helically in the fluid. Different algae cells move
in different ways. Growing algal cells have a bigger friction surface, which enhances their capacity to conduct local
searches and increases the frequency of helical motions. The amount of energy an algae cell has determines how much
movement it can make. The quantity of nutrition taken in by an algal cell at time t is directly related to its energy level at
that moment. As a result, an algae cell closer to the surface has more energy, giving it a better opportunity to travel around
the liquid. On the other hand, because of the reduced friction surface, their moving distance in the liquid is greater.
Consequently, they have a wider range of search possibilities. In contrast, they are less mobile in relation to its energy.
An algae cell moves in a helical pattern, much like in real life. In AAA, viscous drag is represented as shear force, which
is proportional to the size of the algal cell, and the gravitational force that restricts mobility is represented as 0. It has a
spherical form, and the volume of it in the model determines its size. As a result, the friction surface is transformed into
the hemisphere's surface area as represented in equation (18) and (19) [39]. 𝜏(𝑥𝑖) = 2𝜋𝑟2 (18) 𝜏(𝑥𝑖) = 2𝜋(√3𝐺𝑖4𝜋3) (19)

where (xi) is the surface of friction. The three dimensions for the algal cell's helical movement are chosen at random. One
of these allows for linear movement in Equation (20), and the other two dimensions allow for angular movement in
Equations (21) and (22) [39]. Algal cells and colonies only migrate in one direction; hence equation (20) is utilized for
one-dimensional issues. Since algal movement in two dimensions is sinusoidal, equations. (20) and (22) are used. Algal
movement is helical when there are three dimensions or more, and equations (20)-(22) are employed. The movement's
step size is determined by the friction surface and the distance from the light source:
 𝑥𝑖𝑚𝑡+1 = 𝑥𝑖𝑚𝑡 + (𝑥𝑗𝑚𝑡 − 𝑥𝑖𝑚𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑝 (20) 𝑥𝑖𝑘𝑡+1 = 𝑥𝑖𝑘𝑡 + (𝑥𝑗𝑘𝑡 − 𝑥𝑖𝑘𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑐𝑜𝑠𝛼 (21) 𝑥𝑖𝑙𝑡+1 = 𝑥𝑖𝑙𝑡 + (𝑥𝑗𝑙𝑡 − 𝑥𝑖𝑙𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑠𝑖𝑛𝛽 (22)

where 𝑥𝑖𝑘𝑡 , 𝑥𝑖𝑙𝑡 , and 𝑥𝑖𝑚𝑡 represent the ith algal cell's x, y, and z coordinates at time t, [0, 2]; p [1, 1]; ∆ is shear force; and 𝜏𝑡(𝑥𝑖) represents the ith algal cell's friction surface area.

IV. PROPOSED ALGORITHM

This section starts with explaining how the tasks are scheduled for resources available and how this schedule can be utilized to
build an optimal solution vector. It also introduces an efficient meta heuristic approach for scheduling workflows. Preprocessing
the scientific workflows and AAA based scheduling optimization are the two main phases of the proposed MAA algorithm.
Description of the proposed MAA algorithm is presented in the subsequent sections. Its flowchart is depicted in Figure 1 and 2,
while the stepwise details are provided in Algorithms 1 and 2.

A. Modeling the Solution Vector

In this research, tasks can be scheduled to run on the resources like EDs, FDs, or CDs, as previously described. Concerning the
sensor nodes, all computing resources have their processing capability and communication bandwidth. ED can only offload their
tasks to FDs and CDs. They cannot offload their tasks to other EDs. As a result, only one representative ED is included in the
encoding process for each sensor node when tasks are scheduled.

Each artificial algae cell of an algal colony is represented using natural numbers because task scheduling in FCE is a discrete
problem. Like a solution is represented as individual chromosome in GA, particle in PSO, we used artificial algae cell in MAA.
Here task-resource schedules are taken as artificial algae cells. Each vector has a length n equal to the total number of tasks in
the workflow. Each index in the vector is a positive number representing the task number. The VM ID used to complete the task
is the value supplied to this slot. The VM ID is chosen from all VMs accessible in the three-tier architecture of FCE. Assume a
workflow includes ten scheduled tasks on five VMs: one ED, two FDs, and two CDs. The length of the individual, in this case,
is ten, and each element is an integer between one and five. This individual's task assignment may look like this:

7

[4,3,2,4,5,4,2,1,5,1]. Table I and Table II show a more complete depiction of the solution vector and schedule.

TABLE 1: SOLUTION VECTOR EXAMPLE

TABLE II: TASK-RESOURCE SCHEDULING EXAMPLE

B. Fitness Function Evaluation

The method starts with the computation of execution time and assigning these values to the makespan matrix, as depicted by
equation (23). Each element value represents the execution time; for instance, ET1,1 represents the execution time of task T1 on
VM1. Using equation 5, the value of execution time in the matrix is computed.

𝑀𝑆 = . 𝑉𝑀1 … 𝑉𝑀𝑚𝑇1⋮𝑇𝑛 [𝐸𝑇1,1 ⋯ 𝐸𝑇1,𝑚⋮ ⋱ ⋮𝐸𝑇𝑛,1 ⋯ 𝐸𝑇𝑛,𝑚] (23)

As stated in equation (24), a task dependency matrix (TD) can be used to depict the interdependence of tasks in a workflow. Each
matrix entry is either 1 or 0. If d1,2 equals 1, then task T2 is performed after task T1.

𝑇𝐷 = . 𝑇1 … 𝑇𝑛𝑇1⋮𝑇𝑛 [𝑑1,1 ⋯ 𝑑1,𝑛⋮ ⋱ ⋮𝑑𝑛,1 ⋯ 𝑑𝑛,𝑛] (24)

As indicated in equation (25), the cost matrix records the execution cost per unit time for each VM. C1, C2,..., Cm represent the unit
execution costs for VMs VM1, VM2,..., VMm respectively. 𝑇𝐶 = (𝐶1, 𝐶2, … . , 𝐶𝑚) (25)

As depicted in equation (26), the energy consumption matrix records the energy consumption per unit time for each VM. EC1,
EC2,,... , ECm represent the unit energy consumption for VMs VM1, VM2,..., VMm respectively. 𝐸𝐶 = (𝐸𝐶1, 𝐸𝐶2, … . , 𝐸𝐶𝑚) (26)

Based on above matrices, we can determine the makespan (MS), the energy consumption (EC), the total cost (TC), and the fitness
function f(M) for each solution as described in equations (1)-(9) of Section III-B.

C. Preprocessing the workflow

The proposed approach employs preprocessing stages to prepare task lists and resource lists for MAA algorithm prior to its use.
The suggested method organizes tasks based on the number of offspring; hence, tasks having a large number of descendants are
handled first. These tasks act as a bottleneck for fog-based resources, resulting in lengthy execution durations [40]. The method
also organizes fog resources based on their processing power, categorizing them as high-processing-power and low-processing-
power resources. To perform workflow tasks, two resource lists are generated.

Parent tasks requiring a significant amount of execution time are executed on nodes with a high processing speed in order to swiftly
reduce dependencies. After executing parent tasks, child tasks are executed based on their location in the graph, i.e. leaf tasks are
executed with nodes with a low processing speed, while parent and intermediate tasks are executed with nodes with a high
processing speed. Algorithm 1 uses lines 4-5 to separate the root tasks from workflow W. These root tasks are kept in a parent task
list L1. Now, the workflow is checked for leaf tasks in lines 6-7. These leaf tasks are transferred to child task list L2. Before including
the intermediate/dependent tasks in the list, line-8 first verifies the status of their parent tasks. If the parent task is already included
in the list, then the intermediate tasks are transferred to parent task list else it has to wait till all its parent tasks are included. In line
16 two separate task-lists L1 and L2 are created for processing using MAA algorithm for workflow scheduling.

Task ID -> T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

VM ID -> 4 3 2 1 5 4 2 1 5 1

 VM Layer CD FD FD ED ED

VM ID 1 2 3 4 5

Assigned Task 4,8,10 3,7 2 1,6 5,9

8

Algorithm 1: Preprocessing Phase of MAA algorithm for Workflow Scheduling

1. Input : workflow W

2. Output : task-lists L1 and L2
3. for each task ti in W do

4. if ti is not a child task (root task) then

5. append ti in L1
6. else if ti is not a parent task (leaf tasks) then

7. append ti in L2

8. else if all parent tasks of ti present in L1 (intermediate tasks) then

9. append ti in L1
10. else

11. wait till all parent tasks are appended in L1

12. end-if

13. end-if

14. end-if

15. end-for
16. task-lists L1 and L2 ready for MAA algorithm

Fig 1: Flow of the preprocessing phase of the proposed algorithm

Task List L1 and L2 ready for MAA

Task ti from workflow W

Is ti Child Task?

Is ti Parent Task?

Is Parents of ti

present in L1?

Append ti to L1

Append ti to L2

Append ti to L1

Task left in W?

Determine all parent tasks of ti

YES

YES

YES

YES

N0

N0

N0

N0

9

Algorithm 2: Proposed Multi-objective Artificial Algae (MAA) Algorithm for Workflow Scheduling.

1. Input: Task-lists L1 and L2 and Resource lists R1 and R2 from pre-processing phase

2. Output: Optimal solution vector (Best mapping between tasks and resources)

3. Define Algorithmic Parameters (shear force ∆, energy loss e and Adaptation parameter Ap)

4. Initialize population size (N) and Maximum number of iterations (MaxIter).

5. Randomly initialize N algal colonies.

6. Calculate colony size (Gi) for all algal colonies

7. While (t < MaxIter)

8. Evaluate energy (E) and Friction surface (𝜏) of all algae

9. For (i = 1: N)

10. Starvation = true

11. While (E (xi) > 0)

12. Select j among all colonies via tournament selection method

13. Randomly select three dimensions (k, l and m) for helical movement

14. Randomly generate angles 𝛼 and 𝛽 in range [0, 2π] and p in range [-1,1] 𝑥𝑖𝑘𝑡+1 = 𝑥𝑖𝑘𝑡 + (𝑥𝑗𝑘𝑡 − 𝑥𝑖𝑘𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑐𝑜𝑠𝛼 𝑥𝑖𝑙𝑡+1 = 𝑥𝑖𝑙𝑡 + (𝑥𝑗𝑙𝑡 − 𝑥𝑖𝑙𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑠𝑖𝑛𝛽 𝑥𝑖𝑚𝑡+1 = 𝑥𝑖𝑚𝑡 + (𝑥𝑗𝑚𝑡 − 𝑥𝑖𝑚𝑡)(∆ − 𝜏𝑡(𝑥𝑖))𝑝

 15. Evaluate new algal colony

 16. Calculate energy loss due to movement, 𝐸(𝑥𝑖) = 𝐸(𝑥𝑖) − (𝑒2)

 17. If (new algal colony is better solution)

 18. Update current best colony/solution

 19. Starvation = false

 20. Else

 21. Calculate energy loss due to metabolism, 𝐸(𝑥𝑖) = 𝐸(𝑥𝑖) − (𝑒2)

 22. End if

 23. End While

 24. If (Starvation = true)

 25. Increment starvation, A(xi)

 26. End if

 27. End For

 28. Update colony size (Gi) for all colonies

 29. Randomly select one dimension for reproduction, r

 30. 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑟𝑡 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑟𝑡

 31. If (rand < Ap)

 32. 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡+1 = 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 + (𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 − 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡) × 𝑟𝑎𝑛𝑑

 33. End if

 34. Update current best colony/solution

 35. End While

10

Fig 2: Flow of Multi-Objective Artificial Algae (MAA) Algorithm for Workflow Scheduling

D. Applying the Multi-objective Artificial Algae (MAA) Algorithm

The proposed approach is based on AAA [39] technique to decrease workflow execution time (makespan) and cost while
distributing the workload evenly across all computing nodes. Speedy and quicker algorithmic convergence are AAA's key
advantages over other meta-heuristics. The technique has not been utilized in any literature on FCE for a variety of workflow tasks,
including scheduling and resource allocation algorithms. It is expected that the scheduler is aware of how different workflow tasks
are dependent on one another. Workflow task execution times are likewise predetermined. The proposed algorithm's goal is to
allocate computing resources (VMs) to workflow tasks while minimizing their cost and execution time. The scheduling method
aims to assign resource Ri to workflow task Tj in a way that makes effective use of computing resources. When allocating
computing resources (VMs), the scheduler must take other factors into account. The MAA method assigns computing resources to
tasks from both lists. The algorithm begins with randomly generating N algal colonies. Each colony representing a solution is
assessed based on its fitness function value. Fitness value is determined by equation 1 based on the execution time and cost. During
each iteration, all the variables are updated and the procedure is repeated until the halting requirement is not met.

It is quite difficult to design an effective mapping of tasks and resources [43]. We employ a search space with n dimensions for
n tasks with a set of discrete potential values ranging from 1 to m, where m is the number of VMs. We employ notations from

earlier research [44] to denote allocation of VMs to tasks i.e. 𝑥𝑖𝑡 = (𝑥𝑖1𝑡 , 𝑥𝑖2𝑡 , … . , 𝑥𝑖𝑗𝑡). Where 𝑥𝑖𝑗𝑡 indicates the VMi is allocated to

a jth algae cell of an algal colony at time t. The number of tasks in a workflow represents the dimension of an algal colony. The
suggested algorithm stores viable solutions, i.e. colonies that are not dominated. The repository is initially empty. The repository
is updated whenever the algorithm discovers a new solution. There are only non-dominated solutions in the repository. If the
current solution is surpassed by any other solution during the process, the existing solution is replaced in the repository with the
new solution. The judgement is based on the fitness criteria employed. In the final stage of the algorithm, the repository contains
only viable solutions, which are non-dominated in nature.

Initialization of MAA algorithm

(Generate algal colony, evaluate fitness and size of algal colonies)

Helical Movement Phase

(For each algal colony, select light source, three algal cells of

colony, and then modify colony until its energy gets finished)

Reproduction Phase

(Select the smallest and the biggest colonies,

Replicate one single cell from the biggest colony)

Max iterations?

Output: Optimal Solution Vector (Task-Resource Mapping)

Adaptation Phase

(Select the most starving colony and modify it)

N0

YES

Input: Task lists L1 and L2 and Resource lists R1 and R2

(VMs)

Keep the Best Colony (Solution)

Determine Algorithmic Parameters

(Shear Force, Energy Loss, Adaption Parameter)

11

V. PERFORMANCE EVALUATION

A. Experimental Environment

This section describes the experimental setup, followed by the findings and discussion of the experiment. The suggested
technique was experimentally evaluated using scientific workflows [42] from various fields of study. Workflows are comprised
of varying numbers of tasks, degrees of task dependencies, and data transmission between tasks. Some of the most practical
scientific procedures, including Montage, CyberShake, Epigenomics, LIGO, and SIPHT, were published by the Pegasus project
[45]. Figure 3 depicts the architectures of five scientific workflows. Table 3 provides information about some datasets utilized
in tests. The algorithms were assessed based on their makespan, cost, and energy consumption. Makespan refers to the sum of
all task execution times inside a workflow. Cost refers to the cost associated with the execution and transport of data for workflow
application processes. Energy consumption is the matrix that indicates if the system's power consumption is optimal.
Energy consumption is assessed as that of the summation of energy consumption during idle and active duty-cycles for all levels
of computing resources. Minimum values are desirable for all performance parameters.

TABLE III: DATASETS USED IN THE EXPERIMENT

Dataset Number of Tasks Description

Montage 20,40,60,80,100,200,300
An astronomy tool developed by NASA/IPAC that generates unique sky mosaics
from several input photos

Epigenomics 24, 47, 100
Utilized in bioinformatics to automate several activities in genome sequence
processing.

SIPHT 30, 60, 100
Used to automate the search for untranslated RNAs (sRNAs) in the NCBI
database for bacterial replicons.

LIGO 30, 50, 100
Used to create and analyze gravitational waves based on compact binary system
coalescence data.

CyberShake 30, 50, 100
The Southern California Earthquake Center used it to quantify earthquake
hazards in a given location.

Fig 3: The structure of five realistic scientific workflows [42]

B. Simulation Settings

All the simulations are executed on a machine with a Windows 10 Pro 64-bit operating system, an Intel(R) Xeon(R) processor
running at 3.70 GHz, and 16 GB of RAM. We used the Java IDE Eclipse to run the FogWorkflowSim-1.1 toolbox.
FogWorkflowSim [40] is an extension of iFogsim that simulates user-defined task workflows in order to evaluate resource

12

management strategies in FCE. The proposed approach is compared to Particle Swarm Optimization (PSO) [46], Ant Colony
Optimization (ACO) [47], Grey Wolf Optimization (GWO) [48], and HPSOGWO [49] techniques. For each algorithm, the
number of iterations and the size of population is taken as 100 and 25 respectively. The population size is assumed to be 25 for
each algorithm. Table IV displays the simulation environment parameter settings for the three layers of HFCE. Table V displays
the parameter settings used specifically for evaluating each method. We have modelled each technique for weighted sum
objectives based on TIME, ENERGY, and COST. All three of the weighted coefficients w1, w2, and w3 are set to the same value
of 0.33. The algorithms can be evaluated using different realistic scientific workflows. The five scientific workflows that are
under consideration are Montage, CyberShake, Epigenoimics, LIGO (Inspiral), and SIPHT. The Pegasus-generated
scientific workflow structures are represented via a DAG XML file for each workflow [45]. These workflows are available with
a range of task counts. For example, Montage is available with 20, 40, 60, 80, 100, 200, 300 and 1000 tasks. Simulations are
conducted ten times for different combinations of workflow types and tasks counts in order to examine the algorithms' average
performance.

TABLE IV. SIMULATION ENVIRONMENT SETTINGS

Parameters ED FD CD

Number of Servers / Devices 5 5 5

Processing Speed (MIPS)
ED1-1000 ED2-1000 ED3-1000

ED4-1000 ED5-1000
FD1- 1200 FD2- 1300 FD3- 1400

FD4- 1500 FD5- 1600
CD1-1600 CD2-1700 CD3-1800

CD4-1900 CD5-2000

Task Execution Cost ($)

0
FD1- 0.1 FD2- 0.2 FD3- 0.3

FD4- 0.4 FD5- 0.5
CD1-0.5 CD2-0.6 CD3-0.7

CD4-0.8 CD5-0.9

Communication cost ($) 0 0.01 0.02

Active power (MW) 700 800 1600

Idle power (MW) 30 40 1300

Uplink bandwidth (Mbps) 20 10 1

Downlink bandwidth (Mbps) 40 10 10

TABLE V. ALGORITHM PARAMETERS OF WORKFLOW SCHEDULING.

Algorithm Parameters Values/Range Explanation

MaxIter 100 The total number of runs of the algorithm.

For PSO algorithm

Particle Size 25 The number of particles, each particle represents a solution.

C1, C2 2 They are the acceleration coefficients.

Wp 0.1 It is inertia weight.

For ACO algorithm

Ant count 25s The number of ants, each ant represents a solution.

PR 0.1 They the Pheromone updating rate

CP 0.85 The choosing probability

Wa 0.95 The influence weights

For GWO algorithm

Pack Size 25 The total number of wolves in a pack, each wolf is a potential solution.

a [2,0] This parameter decreases from 2 to 0 during the iterations of algorithm.

A [-a, a] This parameter is used to regulate the convergence rate, initially set to 0.

when (A > 1) wolves diverge away from prey, when (A < 1) wolves converge towards prey.

C [0,2] This parameter is used to restrict falling into local optima, initially set to 0.

D Any value It is an empirical model used to surround the prey.

r1, r2 [0,1] These are random coefficients. Their values vary from 0 to 1.

For MAA (Proposed)

N 25 The number of algal colonies, each algal colony represents a solution.

13

e 0.3 The loss of energy ∆ 2 The shear force

Ap 0.5 The adaptation probability constant

C. Results and Discussion

The Result and Discussion has been divided into 3 parts based on the performance parameters evaluated during the experiment.
In this section, we have discussed performance comparison of our suggested MAA algorithm with PSO [46], ACO [47], GWO
[48], and HPSOGWO [49] algorithms. The performance is evaluated for five well-known workflows: Montage, CyberShake,
Epigenomics, LIGO (Inspiral), and Sipht with task counts ranging from 20 to 300 in terms of Makespan (MS), Energy
Consumption (EC), and Total Cost (TC). There was a limit of 100 iterations. Each scenario is performed 10 times before the
average value of the result is taken into account. The simulation results are compiled in Tables VI, VII, and VIII. Fig. 3-17 shows
the three-performance metrics concerning five workflows taking weighted sum based objective function.

TABLE VI. MAKESPAN FOR DIFFERENT WORKFLOW SETTINGS.

Scenario ACO PSO GWO HPSOGWO MAA

Montage 20 0.29 0.22 0.25 0.21 0.16

Montage 40 0.24 0.32 0.29 0.34 0.30

Montage 60 0.36 0.50 0.37 0.38 0.35

Montage 80 0.46 0.44 0.41 0.47 0.38

Montage 100 0.61 0.42 0.45 0.62 0.47

Montage 200 0.95 0.95 0.82 0.90 0.83

Montage 300 1.54 1.24 1.48 1.51 1.13

CyberShake 30 70.43 68.51 74.44 64.40 60.28

CyberShake 50 90.50 83.93 83.90 95.63 72.62

CyberShake 100 100.79 93.43 101.60 102.13 90.79

Epigenomics 24 9.78 10.48 10.36 8.09 6.96

Epigenomics 47 14.16 14.89 16.31 14.20 10.62

Epigenomics
100

74.71 72.27 78.02 74.93 57.90

Inspiral 30 1.66 1.49 1.71 1.85 1.08

Inspiral 50 2.31 2.32 2.33 2.34 1.51

Inspiral 100 3.28 2.91 2.88 2.89 2.34

Sipht 30 3.92 3.74 3.56 4.06 1.08

Sipht 60 4.19 4.27 4.75 4.68 1.51

Sipht 100 5.36 4.65 5.06 4.75 2.34

14

TABLE VII. ENERGY CONSUMPTION FOR DIFFERENT WORKFLOW SETTINGS

Scenario ACO PSO GWO HPSOGWO MAA

Montage 20 43 26 44 41 43

Montage 40 85 105 92 96 83

Montage 60 147 158 148 149 150

Montage 80 202 206 207 192 202

Montage 100 260 243 246 265 276

Montage 200 534 573 502 497 514

Montage 300 801 802 799 804 774

CyberShake 30 2332 6760 2290 2725 2167

CyberShake 50 3071 14771 2954 2878 3178

CyberShake 100 3703 24984 3739 3804 3706

Epigenomics 24 4411 3242 4634 4429 4647

Epigenomics 47 8490 6719 11599 10038 8800

Epigenomics
100

89090 80447 83415 97905 77852

Inspiral 30 1582 1463 1425 1544 791

Inspiral 50 2649 2838 2753 2507 2400

Inspiral 100 4906 4765 4706 5299 4530

Sipht 30 1700 791 1105 1339 1290

Sipht 60 2205 2400 3084 3491 2698

Sipht 100 4513 4530 5058 4542 3664

TABLE VIII. TOTAL COST FOR DIFFERENT WORKFLOW SETTINGS

Scenario ACO PSO GWO HPSOGWO MAA

Montage 20 239 206 214 161 190

Montage 40 273 378 328 352 329

Montage 60 424 420 476 425 552

Montage 80 537 531 471 514 500

Montage 100 688 700 556 678 533

Montage 200 1002 987 947 1009 955

Montage 300 1589 1398 1530 1521 1275

CyberShake 30 65997 73673 52946 82856 50756

CyberShake 50 104854 115154 102463 112564 90129

CyberShake 100 182732 181543 171322 195005 163653

Epigenomics 24 8472 9813 8478 7563 7021

Epigenomics 47 14669 17121 15087 16510 15188

Epigenomics
100

120313 124962 118109 123156 116871

Inspiral 30 1664 2123 1686 1755 1746

Inspiral 50 2910 3038 2825 2970 3115

15

Inspiral 100 4941 5018 4788 5080 4699

Sipht 30 1164 2123 1416 1408 1264

Sipht 60 3084 3038 2662 2613 2146

Sipht 100 4029 5018 3968 3932 3899

The findings for makespan, cost, and energy usage for the Montage workflow are shown in Figures 3–5. As per expectations, all
the measures increase with the number of tasks. The result demonstrates that ACO performs somewhat worse than all the other
four techniques. On the other hand, out of the other three compared techniques PSO performs somewhat better. This is most
likely due to PSO's most popular attribute of carrying out global search and local searches simultaneously. The MAA algorithm,
which uses evolution and exploitation, clearly benefits from its capacity to see a wide variety of solutions thanks to the random
reproduction and adaptation operators.

Fig 3: Makespan for Montage Workflow Fig 4: Energy Consumption for Montage Workflow

Fig 5: Cost for Montage Workflow Fig 6: Makespan for Cybershake Workflow

0.00

0.50

1.00

1.50

2.00

20 40 60 80 100 200 300

M
a

k
e

sp
a

n
 (

se
c)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0.00

200.00

400.00

600.00

800.00

1000.00

20 40 60 80 100 200 300E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
J)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0.00

500.00

1000.00

1500.00

2000.00

20 40 60 80 100 200 300

C
o

st
 (

$
)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

20

40

60

80

100

120

30 50 100

M
a

k
e

sp
a

n
 (

se
c)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

16

Fig 7: Energy Consumption for Cybershake Workflow Fig 8: Cost for Cybershake Workflow

The findings for makespan, cost, and energy usage for the Cybershake workflow are shown in Figures 6-8. The results
demonstrate that MAA performs better than the other four techniques. On the other hand, all the three techniques perform at a
comparable level. However, there is an exception in the case of energy, since PSO performs worse than all the other alternatives
in that regard. This is most likely due to PSO's prevalent issue with early convergence and becoming stuck in the local minima.
The statistics for ACO, GWO, HPSOGWO and MAA tasks are pretty low, but PSO is high and rises rapidly as the number of
tasks increases. For example, when makespan increases from less than 60 seconds for 30 tasks to more than 90 seconds for 100
tasks; energy rises drastically from less than 8KJ for 30 tasks to more than 25KJ for 100 tasks and price hikes from less than
nearly eighty thousand dollars for 30 tasks to almost one lakh eighty thousand dollars for 100 tasks.

Figures 9–11 demonstrate the findings for the Epigenomics workflow in terms of makespan, cost, and energy usage. The statistics
for 24 and 47 tasks are pretty small, but they rise dramatically as the number of tasks increases. For example, makespan increases
from less than 20 seconds for 24 and 47 tasks to more than 60 seconds for 100 tasks; price hikes from less than ten thousand
dollars for 24 and 47 tasks to more than one lakh dollars for 100 tasks; and energy increases from less than 10KJ for 24 and 47
tasks to more than 70 KJ for 100 tasks. This is because the mapping tasks in the Epigenomics workflow [23], which are
responsible for matching genome sequences, become much more computationally expensive making turnaround time even
longer as the number of activities increases. Compared to the other techniques, MAA still perform better in the case of makespan,
energy and cost.

Fig 9: Makespan for Epigenomics Workflow Fig 10: Energy Consumption for Epigenomics Workflow

0

5000

10000

15000

20000

25000

30000

30 50 100

E
n

e
rg

y
 C

o
n

su
m

e
d

 (
J)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

50000

100000

150000

200000

250000

30 50 100

C
o

st
 (

$
)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

20000

40000

60000

80000

100000

120000

24 47 100E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
J)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

20

40

60

80

100

24 47 100

M
a

k
e

sp
a

n
 (

S
e

c)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

17

Fig 11: Cost for Epigenomics Workflow Fig 12: Makespan for LIGO Workflow

Fig 13: Energy Consumption for LIGO Workflow Fig 14: Cost for LIGO Workflow

The findings for makespan, cost, and energy usage for the LIGO workflow are shown in Figures 12–14. The makespan of all
methods is consistently increasing in Fig. 12. MAA performs the best for all tasks, but ACO appears to perform worse than that
of the prior three workflows. As shown in Fig. 13, with the rise in the number of tasks, the energy consumed by all algorithms
are consistent except HPSOGWO which increases dramatically. As shown in fig. 14, with the increase in the number of tasks,
all algorithms perform consistently. For 100 tasks, MAA continues to outperform all the other techniques. As the number of
tasks rises, it appears that the HPSOWO algorithm distributes more tasks to FD/CDs, increasing the cost significantly. This
results in significant energy usage on FCE, as demonstrated in Fig. 13.

The findings for makespan, cost, and energy usage for the SIPHT workflow are shown in Figures 15–17. The makespan of all
methods is reasonably consistent in Fig. 15. MAA performs the best for all tasks, but ACO appears to perform worse than that
of the other workflows. As the number of tasks rises, all algorithms except GWO perform consistently in Fig. 16. With the rise
in the number of tasks, GWO increases dramatically than other techniques. As shown in Fig. 17, with the increase in the number
of tasks, the cost of MAA continues to increase but is slower than the other techniques. Overall, it appears that with the rise in
the number of tasks, the PSO algorithm distributes more work to FD/CDs, increasing the cost significantly. This results in
significant energy usage on FCE, as demonstrated in Fig. 16.

0

20000

40000

60000

80000

100000

120000

140000

24 47 100

C
o

st
 (

$
)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

0.5

1

1.5

2

2.5

3

3.5

30 50 100

M
a

k
e

sp
a

n
 (

se
c)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

1000

2000

3000

4000

5000

6000

30 50 100E
n

e
rg

y
 C

o
m

su
m

p
ti

o
n

 (
J)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

1000

2000

3000

4000

5000

6000

30 50 100

C
o

st
 (

$
)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

18

Fig 15: Makespan for SIPHT Workflow Fig 16: Energy Consumption for SIPHT Workflow

Fig 17: Cost for SIPHT Workflows

At first sight, the newly introduced algorithms seem to works properly, following logical thinking to reduce the makespan, energy
consumption and cost. Although, some problems related to the objective specific scenarios can easily make it perform worse
than the existing classic algorithms and provide the opposite desired result. By prioritizing the execution of the independent tasks
to the available host/VM that guarantee the lowest makespan, energy and cost, we can provide incredible desired results. Here,
scheduling a task to a VM may force another task to be later assigned on to another resource and may make the second task
execution last a higher amount of time than necessary, which could finally increase the total execution time, power consumption,
and cost as well.

VI. CONCLUSION

A Multi-objective Artificial Algae (MAA) algorithm for scheduling scientific workflows in heterogeneous FCE is presented in
this article. The MAA algorithm targets to minimize a weighted sum objective function based on execution time, energy
consumption and cost. At first, the proposed algorithm preprocesses the scientific workflows to remove bottleneck tasks. The
algorithm is then used to schedule the preprocessed tasks list on the available VMs. The proposed approach is supported by
experimental findings on scientific workflows taken from various research areas. With respect to the specified performance
parameters like execution time, energy consumption and cost, the method outperforms all the existing algorithms.

This empirical study is bounded to 20-300 tasks to measure the performance of optimization algorithm for task scheduling in
FCE. In future work, the number of tasks in workflows can be extended to 2000 to measure the effectiveness of the scheduling
algorithms. Some more objectives like reliability, fault tolerance with the constraints like deadline and budget can also be
considered. Considering some hybrid optimization approaches may also help to improve the overall performance of the FCE.

0

1

2

3

4

5

6

30 60 100

M
a

k
e

sp
a

n
 (

se
c)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

1000

2000

3000

4000

5000

6000

30 60 100

E
n

e
rg

y
 C

o
m

su
m

p
ti

o
n

 (
J)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

0

1000

2000

3000

4000

5000

6000

30 60 100

C
o

st
 (

$
)

Number of Tasks

ACO PSO GWO HPSOGWO MAA

19

DECLARATION

Ethical Approval: Not Applicable.

Competing interests

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to
influence the work reported in this paper.

Authors' contributions:
Prashant Shukla: Conceptualization, Methodology, Implementation, Validation, Writing original draft
Sudhakar Pandey: Resources, Conceptualization, Writing-Review & Editing, Supervision.

Funding: Not Applicable.

Availability of data and materials: Not Applicable.

REFERENCES

[1] K. Dasgupta, B. Mandal, P. Dutta, and S. Dam, “A Genetic Algorithm (GA) based Load Balancing Strategy for Cloud Computing,”
Procedia Technology, vol. 10, pp. 340–347, jan 2013.

[2] A. Mazrekaj, I. Shabani, and B. Sejdiu, “Pricing Schemes in Cloud Computing: An Overview,” International Journal of Advanced Com-
puter Science and Applications, vol. 7, no. 2, pp. 80–86, 2016.

[3] Mahmud, R. and Buyya, R. (2016), “Fog computing: a taxonomy, survey and future directions”, Internet of Everything, Springer,
Singapore. arXiv preprint arXiv:1611.05539.

[4] Y. Zhao, Y. Li, I. Raicu, S. Lu, C. Lin, Y. Zhang, W. Tian, and R. Xue, “A service framework for scientific workflow management in the
cloud,” IEEE Trans. Services Computing, vol. 8, no. 6, pp. 930–940, 2015.

[5] W. Song, F. Chen, H. A. Jacobsen, X. Xia, C. Ye, and X. Ma, “Scientific workflow mining in clouds,” IEEE Transactions on Parallel and
Distributed Systems, 28(10), pp.2979-2992, 2017.

[6] M.A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing
environments,” Concurrency and Computation: Practice and Experience, 29(8), p.e4041, 2017.

[7] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm optimization for scientific workflow scheduling,” Parallel Computing,
62, pp.1-19., 2017.

[8] Y. Xie, Y. Wang, and Y. Yang, “A novel directional and non-local- convergent particle swarm optimization based workflow scheduling
in cloud–edge environment,” Future Gener. Comput. Syst., 97, 361–378, 2019.

[9] N. Anwar and H. Deng, “Elastic scheduling of scientific workflows under deadline constraints in cloud computing environments,” Future
Internet, vol. 10, no. 1, p. 5, 2018.

[10] S. Yassa, R. Chelouah, H. Kadima, B. Granado, “Multi-objective approach for energy-aware workflow scheduling in cloud computing
environments,” Sci. World J. 2013, 2013.

[11] P. Kumar and A. Verma, “Scheduling using improved genetic algorithm in cloud computing for independent tasks,” in Proceedings of the
Inter- national Conference on Advances in Computing, Communications and Informatics. ACM, 2012, pp. 137–142.

[12] H. Xu, B. Yang, W. Qi, and E. Ahene, “A multi-objective optimization approach to workflow scheduling in clouds considering fault
recovery,” KSII Transactions on Internet and Information Systems (TIIS), vol. 10, no. 3, pp. 976–995, 2016.

[13] J. Yu and R. Buyya, “A budget constrained scheduling of workflow applications on utility grids using genetic algorithms,” 2006 Workshop
on Workflows in Support of Large-Scale Science, WORKS ’06, 2006.

[14] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proceedings - International Conference on Advanced Information Networking and Applications,
AINA, 2010.

[15] M. Hosseini Shirvani, “A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing
systems,” Engineering Applications of Artificial Intelligence, vol. 90, no. September 2019, p. 103501, 2020.

[16] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, 2014.
[17] A. Khalili and S. M. Babamir, “Optimal scheduling workflows in cloud computing environment using Pareto-based Grey Wolf Optimizer,”

Concurrency Computation, vol. 29, no. 11, pp. 1–11, 2017.
[18] L. Zhang, L. Zhou, and A. Salah, “Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud computing

environments,” Information Sciences, vol. 531, pp. 31–46, 2020.
[19] K. Dubey, M. Kumar, and S. C. Sharma, “Modified HEFT Algorithm for Task Scheduling in Cloud Environment,” Procedia Computer

Science, vol. 125, pp. 725–732, 2018.
[20] G. Patel, R. Mehta, and U. Bhoi, “Enhanced Load Balanced Min-min Algorithm for Static Meta Task Scheduling in Cloud Computing,”

in Procedia Computer Science, 2015.
[21] R. Vijayalakshmi and V. Vasudevan, “Static batch mode heuristic algorithm for mapping independent tasks in computational grid,” 2015.
[22] M. M. Golchi, S. Saraeian, and M. Heydari, “A hybrid of firefly and improved particle swarm optimization algorithms for load

balancing in cloud environments: Performance evaluation,” Computer Networks, vol. 162, p. 106860, 2019.
[23] K. L. Eng, A. Muhammed, M. A. Mohamed, and S. Hasan, “A hybrid heuristic of Variable Neighbourhood Descent and Great Deluge

algorithm for efficient task scheduling in Grid computing,” European Journal of Operational Research, 2019.

20

[24] Y. Ge and G. Wei, “GA-based task scheduler for the cloud computing systems,” Proceedings - 2010 International Conference on Web
Information Systems and Mining, WISM 2010, vol. 2, pp. 181–186, 2010.

[25] M. Tawfeek, A. El-Sisi, A. Keshk, and F. Torkey, “Cloud task scheduling based on ant colony optimization,” International Arab Journal
of Information Technology, vol. 12, no. 2, pp. 129–137, 2015.

[26] T. Deepa and D. Cheelu, “A Comparative Study of Static and Dynamic Computing,” 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), pp. 3375–3378, 2017.

[27] F. Ebadifard and S. M. Babamir, “A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud
computing environment,” Concurrency Computation, vol. 30, no. 12, pp. 1–16, 2018.

[28] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bo¨lo¨ni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A Comparison
of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems,” Journal of
Parallel and Distributed Computing, vol. 61, no. 4, pp. 810–837, 2001.

[29] A. M. Manasrah and H. B. Ali, “Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing,” Wireless
Communications and Mobile Computing, vol. 2018, 2018.

[30] S. Mirzayi and V. Rafe, “A hybrid heuristic workflow scheduling algorithm for cloud computing environments,” Journal of Experimental
and Theoretical Artificial Intelligence, 2015.

[31] H. Bouzary and F. Frank Chen, “A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service
composition and optimal selection in cloud manufacturing,” International Journal of Advanced Manufacturing Technology, 2019.

[32] S. Khurana and R. Singh, “Workflow scheduling and reliability improvement by hybrid intelligence optimization approach with task
ranking,” ICST Transactions on Scalable Information Systems, 2018.

[33] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[34] L. Liu, M. Zhang, R. Buyya, and Q. Fan, “Deadline-constrained coevo- lutionary genetic algorithm for scientific workflow scheduling in
cloud computing,” Concurrency and Computation: Practice and Experience, vol. 29, no. 5, p. e3942, 2017.

[35] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,” Journal of Supercomputing, 2015.
[36] S. Mirjalili, S. Saremi, and S. Mohammad, “Multi-objective grey wolf optimizer : A novel algorithm for multi-criterion optimization,”

Expert Systems With Applications, vol. 47, pp. 106–119, 2016.
[37] A. Pasdar, Y. C. Lee, and K. Almi’ani, “Hybrid scheduling for scientific workflows on hybrid clouds,” Computer Networks,

vol. 181, no. August, p. 107438, 2020.
[38] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling strategies for workflows in cloud environment and emerging trends,”

ACM Computing Surveys, vol. 52, no. 4, 2019.
[39] Uymaz, S. A., Tezel, G., & Yel, E., “Artificial algae algorithm (AAA) for nonlinear global optimization” Applied soft computing, 31,

153-171., 2015
[40] K. Wu, “A tunable workflow scheduling algorithm based on particle swarm optimization for cloud computing,” 2014.
[41] X. Liu, L. Fan, J. Xu, X. Li, L. Gong, J. Grundy, and Y. Yang, “FogWorkflowSim: an automated simulation toolkit for workflow

performance evaluation in fog computing,” In the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)
(pp. 1114-1117), 2019.

[42] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.H. Su, and K. Vahi, “Characterization of scientific workflows,” In the Third
Workshop on Workflows in Support of Large-Scale Science, pp. 1-10, 2008.

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing en- vironments and evaluation of resource provisioning algorithms,” Software: Practice and experience, vol. 41, no. 1, pp. 23–
50, 2011.

[44] Sardaraz, M. and Tahir, M., “A hybrid algorithm for scheduling scientific workflows in cloud computing”, IEEE Access, 7, pp.186137-
186146, 2019.

[45] “Pegasus,” [Online]. Available: https://pegasus.isi.edu/. [Accessed 20 August 2021].
[46] Subramoney, D., & Nyirenda, C. N. (2020, December). A comparative evaluation of population-based optimization algorithms for

workflow scheduling in cloud-fog environments. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 760-767).
IEEE.

[47] M. Tawfeek, A. El-Sisi, A. Keshk, and F. Torkey, “Cloud task scheduling based on ant colony optimization,” International Arab Journal
of Information Technology, 2015.

[48] B. V. Natesha, N. Kumar Sharma, S. Domanal and R. M. Reddy Guddeti, "GWOTS: Grey Wolf Optimization Based Task Scheduling at
the Green Cloud Data Center," 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), 2018, pp. 181-187

[49] Arora, N., & Banyal, R. K., HPSOGWO: A Hybrid Algorithm for Scientific Workflow Scheduling in Cloud Computing. International
Journal of Advanced Computer Science and Applications,11, no. 10 (2020).

