
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:13744–13765
https://doi.org/10.1007/s11227-023-05129-y

1 3

Flexible multi‑client functional encryption for set
intersection

Mojtaba Rafiee1,2

Accepted: 21 February 2023 / Published online: 29 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
A multi-client functional encryption (����) scheme [Goldwasser–Gordon–Goyal
2014] for set intersection is a cryptographic primitive that enables an evaluator to
learn the intersection from all sets of a predetermined number of clients, without
need to learn the plaintext set of each individual client. Using these schemes, it is
impossible to compute the set intersections from arbitrary subsets of clients, and
thus, this constraint limits the range of its applications. To provide such a possibil-
ity, we redefine the syntax and security notions of ���� schemes, and introduce
flexible multi-client functional encryption (�����) schemes. We extend the ����
security of ���� schemes to ���� security of ����� schemes in a straightforward
way. For a universal set with polynomial size in security parameter, we propose an
����� construction for achieving ���� security. Our construction computes set
intersection for n clients that each holds a set with m elements, in time O(nm) . We
also prove the security of our construction under DDH1 that it is a variant of the
symmetric external Diffie–Hellman (SXDH) assumption.

Keywords Functional encryption · Secure computation · Set intersection · Multi-
client · Flexible

1 Introduction

The dramatic growth of information, as well as increasing communications between
different organizations to cover social activities in the digital world, has made the
secure data sharing as a hot topic in the academic and industrial community.

 * Mojtaba Rafiee
 m.rafiee@mcs.ui.ac.ir

1 Department of Applied Mathematics and Computer Science, Faculty of Mathematics
and Statistics, University of Isfahan, Isfahan, Iran

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box:
574619395, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05129-y&domain=pdf

13745

1 3

Flexible multi‑client functional encryption for set…

In secure data sharing, the organizations tend to share their data in a control-
lable way such that users do not get more information. Any real-world computa-
tional function can be considered as an authorized control by a group of organi-
zations that have shared their data. In the following, we present two examples of
these functionalities in the practical environments:

• In order to track the prevalence of COVID-19 in European countries, an
organization like ECDC needs the personal information of COVID-positive
patients from the testing centers and hospitals where they were hospitalized,
as well as the their acquaintances from the Civil Registry Office. In this exam-
ple, our computational function is to extract the addresses of patients and their
acquaintances from information records stored in the hospital and registry
office, such that none of the other information fields are disclosed.

• A large-scale food advertising company needs to have information about
consumer purchases in the chain stores across the country to deliver targeted
and intelligent advertising. In this example, our computational function is to
extract the mobile phone number and ten goods with the highest purchase
request, such that other information such as volume of orders, value of orders
and date of purchase is not revealed.

In general, the available solutions for secure data sharing can be divided into two
categories: 1) trivial solutions and 2) non-trivial solutions. A brief description of
each is given below.

Trivial solutions. At first glance, there are two naive solutions: 1) trivial full-
trusted party and 2) trivial computing-trusted party, which are explained below.

• Trivial full-trusted party. In this setting, the organizations send their plain data
to a third party that is reliable in terms of computing and storage. Then, the
trusted party employs the considered functionality in the plaintext scenario to
get the result and shares it with the authorized parties.

• Trivial computing-trusted party. In this setting, the trusted party has limited
storage resources. Therefore, the organizations first encrypt their data and
then outsource their encrypted data (instead of plain data) to the storage party
(instead of the trusted party). Later, when needed, the trusted party in sev-
eral steps, downloads the encrypted data from the storage party, decrypts them
and employs the considered functionality in the plaintext scenario to get the
intermediate results. Finally, the trusted party shares the final result with the
authorized parties.

Non-trivial solutions. The academic and industrial researchers are trying to mini-
mize the role of the trusted parties and ultimately eliminate these parties by pro-
viding distributed solutions. In this paper, we follow such an approach and assume
that the trusted parties have limited storage and computation capabilities, and only
perform the necessary coordination between organizations for a secure evaluation.
In such a setting, the organizations encrypt their data using the parameters shared
by the trusted party and send their encrypted data to the storage party. Then, each

13746 M. Rafiee

1 3

authorized evaluator (such as participating organizations or even any other organi-
zation) that wants to perform an evaluation function first receives an evaluation key
from the trusted party, then downloads the encrypted data from the storage party and
finally computes the desired result.

Table 1 provides an asymptotic comparison of different solutions in terms of the
storage, communication and computation overheads (for n organizations, each with
m data values). In Table 1, the highlighted rows show the overheads imposed on the
trusted party in each of the solutions described above.

Functional encryption (��) schemes and their various types are the cryptographic
tools that meet our requirements for the expected solution. These schemes provide a
new paradigm for encryption that extend the traditional “all-or-nothing” requirement
of the cryptosystems in a much more flexible way. In the following, we briefly intro-
duce some of the most relevant ones.

– The basic �� schemes. A basic �� scheme [1, 2] is a cryptographic primitive
that extends the decryption algorithm of the cryptosystems in a much more flex-
ible way. In these scheme, the decryption algorithm requires a decryption key
assigned to a 1-ary function f and a ciphertext ct computed for value x to output
f (x) (instead of the original value x from the ciphertext ct).

– Multi-Input Functional Encryption (����) schemes. In the basic �� schemes,
the function f is a 1-ary function. An extension on these schemes is to support
the n-ary functions. The ���� schemes [3] cover such a setting. In the ����
schemes, the decryption algorithm needs a decryption key assigned to an n-
ary function f and n ciphertexts ct1,… , ct

n
 computed, respectively, for values

x1,… , x
n
 to output f (x1,… , x

n
).

Table 1 An asymptotic comparison of the different solutions for secure evaluation

n: the total number of organizations, m: the maximum number of data values

Overheads Parties Trivial full-trusted Trivial computing-
trusted

Our
expected
solution

Storage Organization – – –
Trust party O(nm) – –
Storage – O(nm) O(nm)
Evaluator – - –

Communication Organization O(nm) O(nm) O(nm)
Trust party O(m) O(m) O(1)
Storage – – –
Evaluator – – O(m)

Computation Organization – – –
Trust party O(nm) O(nm) –
Storage – – –
Evaluator – – O(nm)

13747

1 3

Flexible multi‑client functional encryption for set…

– Multi-Client Functional Encryption (����)schemes. A strict subset of the
���� schemes are called the ���� schemes [3, 4]. In these schemes, the input
components for the n-ary function f are labeled by a tag t and are independently
provided by n distinct clients. Usually, the tag is the identifier of a time window
in which clients generate their dataset. In these schemes, each set is labeled by a
tag and the evaluation of function f can only be done on the sets with the same
tag. Therefore, in such a setting, the decryption algorithm requires a decryp-
tion key assigned to an n-ary function f and n ciphertexts ct

t,1,… , ct
t,n labeled

for the same tag t (according to the values x
t,1,… , x

t,n , respectively) to output
f (x

t,1,… , x
t,n).

Our desired scheme and functionality. In this paper, we specifically study the
set intersection functionality as a function in a more flexible version of the ����
schemes, called flexible multi-client functional encryption (�����) schemes. These
schemes support the set intersections from arbitrary subsets of clients (instead of a
fixed set of the clients).

The following example intuitively summarizes and compares the schemes
described above. Consider three different organizations and three distinct time win-
dows. Each organization owns a set in each time window. For simplicity, we
assumed that each set contains only one element. Also, we denote the elements as xi

j
 ,

where i is organization identifier and j is tag identifier. For such a setting, Fig. 1
shows the computable results for different types of �� schemes along with their
leakages.

As it can be seen, our ����� schemes have the most flexibility to obtain the
desired results with the least leakage. More precisely, from the aspect of flexibil-
ity, the computable functions in FE, MIFE and MCFE have a fixed arity, while the
computable functions in FMCFE schemes are flexible due to the variable arity. Con-
sequently, schemes FE, MIFE and MCFE are a special case of FMCFE schemes. In
terms of leakage, since the function generated in FE and MIFE can be applied to all
ciphertexts with any desired combination, the size of the obtained results is uncon-
trollable and is far more than MCFE and FMCFE schemes.

In the following, we first review the researches related to ���� schemes for set
intersection. Then for the comprehensiveness of our discussion, we also introduce
some other important cryptographic tools for our desired functionality.

1.1 The ���� schemes for set intersection

Kamp et al. [5] proposed several multi-client functional encryption schemes for set
intersection and its derivatives (such as set intersection cardinality, threshold set
intersection and set intersection with data transfer). In their settings, they consider
n clients and one evaluator. Each client labels his set with a tag, and then encrypts
and holds it. The evaluator, by having a decryption key and receiving encrypted sets

13748 M. Rafiee

1 3

from the clients, can learn the result of considered operation on all sets without hav-
ing to learn the plaintext set of each individual client. Their constructions support
only a set intersection, and therefore, they do not need to define key generation algo-
rithm to produce a decryption key. In the literature, these ���� schemes are called
single-key ���� schemes.1

Lee and Seo [6] proposed a multi-client functional encryption scheme for set
intersection in multi-client setting. In their settings, they consider n clients and one
evaluator (termed server). Each client labels his set with a tag, and then encrypts
and outsources it to a server. Next, the server upon receiving a decryption key for a
pair of sets can evaluate the set intersection for this pair. It should be noted that the
construction proposed in [6], despite being provided for multi-client settings, and
its decryption key allow the set intersection for each pair of clients, and therefore, it
is different from the standard ���� schemes that computes the set intersection for
all sets of the clients. They also presented in [7] a decentralized version of MCFE

Fig. 1 Computable results for different types of �� schemes

1 In the single-key ���� schemes, the decryption key is usually initialized along with other parameters
used in the scheme in ����� algorithm.

13749

1 3

Flexible multi‑client functional encryption for set…

Ta
bl

e
2

 A
n

as
ym

pt
ot

ic
 c

om
pa

ris
on

 o
f t

he
 e

xi
sti

ng
 c

on
str

uc
tio

ns
 fo

r a
 ti

m
e

ste
p

n:
 th

e
to

ta
l n

um
be

r o
f c

lie
nt

s,
m

: t
he

 m
ax

im
um

 si
ze

 o
f e

ac
h

se
t

C
on

str
uc

tio
n

C
ry

pt
og

ra
ph

ic
 to

ol
A

ss
um

pt
io

n
Sc

en
ar

io
 m

od
el

In
te

rs
ec

tio
n

tim
e

Se
cu

rit
y

le
ve

l

#c
lie

nt
ar

ity
co

ns
tra

in
t

Le
e

et
 a

l.
[6

]
Pa

iri
ng

-b
as

ed
A

 v
ar

ia
nt

 o
f X

D
H

 [
6]

n
=
2

Fi
xe

d
–

O
(m

)
�
�
�
�

K
am

p
et

 a
l.

[5
]

G
ro

up
-b

as
ed

D
D

H
 [9

]
n
≥
2

Fi
xe

d
–

O
(m

n
)

�
-�
�
�
�

Li
be

rt
et

 a
l.

[8
]

G
ro

up
-b

as
ed

LW
E

[1
0]

n
≥
2

Fi
xe

d
∣
s
i
∣=

1
O
(n
)

�
�
�
�

C
ho

ta
rd

 e
t a

l.
[4

]
G

ro
up

-b
as

ed
D

D
H

 [9
]

n
≥
2

Fi
xe

d
∣
s
i
∣=

1
O
(n
)

�
�
�
�

O
ur

 c
on

str
uc

tio
n

Pa
iri

ng
-b

as
ed

D
D

H
1

[1
1]

n
≥
2

Fl
ex

ib
le

∣
W

∣=
�
�
��
(�
)

O
(m

n
)

�
-�
�
�
�

13750 M. Rafiee

1 3

schemes for set intersection, in which the process of generating the decryption key is
done with the participation of all clients and in a decentralized manner.

In addition to the mentioned constructions, Libert et al. in [8] and Chotard et al.
in [4] have proposed MCFE schemes for linear functions that can be specifically
applied to the set intersection. However, the security definitions proposed for these
schemes restrict clients to having only single-element sets.

Table 2 summarizes the strengths and weaknesses of existing ���� schemes for
set intersection compared to our desired scheme, in terms of the cryptographic tool
used, the underlying hardness assumption, the properties of the scenario model (the
total number of the clients, intersection flexibility and considered constraints), the
intersection time (for n sets each of size m) and security level.

1.2 Some similar schemes for set intersection

In this subsection, we present some schemes that are somewhat similar to our multi-
client settings. In the following, each of these schemes is explained, and then, their
similarities and differences with our scheme are presented.

Private Set Intersection (PSI) Protocols. The classic problem of private set
intersection (PSI) protocols in the standard multi-party computation (MPC) [12] is
somewhat similar to MCFE schemes for set intersection. The basic scenario model
for these protocols includes several parties who each locally holds a private set.
These parties interact with each other and perform set intersection. The goal is to
compute the set intersection result in such a way that none of them is able to acquire
any additional information besides what can be inferred from their own input and
the computed result. A more advanced scenario model is “Delegated PSI” [13]. This
scenario model considers a new party (termed server) compared to previous model.
In this model, the parties outsource their sets to the server and take the advantages
of its computational and storage superiority. Similar to the previous model, goal is
to compute the result in such a way that none of the parties is able to obtain any
additional information.

The similarities and differences. In a general view, both PSI protocols and MCFE
schemes for set intersection have several parties, and the goal is to evaluate the set
intersection of their sets. However, in the PSI scenario models, all parties learn the
outcome of intersection, while in the MCFE schemes we require only one dedicated
evaluator to only learn this outcome.

Multi-adjustable Join (M-Adjoin) Schemes. The M-Adjoin scheme, first pro-
posed by Khazaei and Rafiee [14, 15], is a symmetric-key primitive that supports
the secure join queries for a list of column labels on an encrypted database. The sce-
nario model for this functionality consists of two main parties: a user and a server.
The user outsources a database to the server, where the database contains a number
of tables and each table includes several data records that are vertically partitioned
into columns. When the user wishes to issue a join query on the database, he gener-
ates a join token and sends it to the server. A join query is formulated as a list of
column labels. Finally, the server executes the requested join query on the encrypted
database and returns the result to the user.

13751

1 3

Flexible multi‑client functional encryption for set…

The similarities and differences. Here columns play the role of sets, and join
queries play the role of set intersection. However, this scenario model is intended
for single-user cloud scenarios (and no multi-user), all encrypted columns have
the same tag, and its security notions [16] are different from the standard security
notions of the MCFE schemes.

1.3 Challenges and contributions

In this paper, we are looking a solution for set intersection in multi-client setting that
has the following features:

– In order to reduce the communication overheads, the evaluation of set inter-
section must be done non-interactively. Since �� schemes and its variants are
designed for this purpose, and our solution is proposed in this framework, the
challenge is addressed.

– In order to increase efficiency, the evaluation of set intersection must be done in
polynomial-time complexity while no information is revealed except the intersec-
tion result. In the literature, the computation of set intersection in such a setting
and without any constraints on the problem is known as an open problem and is
investigated from a theoretical perspective [5, 14]. To overcome this problem, we
consider a relaxed version in which size of universal set shared between clients is
polynomial in security parameter.

– Another feature is the ability to publicly share sets of clients on a public bulletin
board. With this feature, the clients can encrypt their sets in any time step and
share it on the public board. Then, the evaluator can perform their evaluation at
any time (no need for clients to be online). It should be noted that such a feature
is not generally considered for the �� schemes and its variants.

– The last feature is the flexibility to compute the functions with arbitrary arities.
The decryption key generated by ���� schemes is applicable to all sets and not
an arbitrary subset of them. To this end, we introduce flexible multi-client func-
tional encryption (�����) schemes as an extension of ���� schemes, which
provides such a feature.

In this paper, we have covered the above-mentioned features through:

– extending the syntax and security notions of the MCFE schemes, and introducing
����� schemes,

– extending the ���� security of ���� schemes to a similar security notion for
����� schemes,

– for a universal set with polynomial size in security parameter, building a �����
scheme to achieve ���� security level,

– computing the set intersection for n clients, each containing m elements in time
O(nm),

– proving security of our ����� construction in the random oracle model under
the symmetric external Diffie–Hellman (SXDH) assumption,

13752 M. Rafiee

1 3

– providing a concrete evaluation of our construction in the terms of time and
space complexity.

1.4 Paper organization

The remaining of this paper is organized as follows. The problem statement and
the preliminaries are explained in Sects. 2 and 3, respectively. We formalize the
syntax and security of the ����� schemes for set intersection in Sect. 4. Our pro-
posed ����� construction and its security are presented in Sect. 5 and Sect. 6,
respectively. The performance analysis of our construction is provided in Sect. 7.
Finally, Sect. 8 concludes the paper and points out future directions.

2 System model

Our scenario model considers four types of parties to securely evaluate the set
intersection:

– Client Parties (CP): A group of parties who want to securely share their sets
on a public bulletin board and allow to securely perform the set intersection on
every arbitrary subset of their sets.

– Evaluator Parties (EP): The evaluators are the parties that allowed to com-
pute the set intersection for a subset of sets shared on the public bulletin
board. To this end, the evaluators download the desired sets and compute the
outcome of the set intersection.

– Storage Provider (SP): The storage provider is a party that provides and
manages the required storage for the public bulletin board.

– Trusted Party (TP): The trusted party is a party that determines and distrib-
utes the required parameters to securely share the sets owned by clients, and
provides the required information to compute the set intersection for the eval-
uator.

Remark 1 In our model, each of the parties introduced above can play the role of
evaluator. For example, responsibilities of the evaluator and storage provider can be
performed by one party, simultaneously. This case is very similar to cloud scenario
models where computation and storage facilities are outsourced to a cloud service
provider (CSP).

Threat model. All of the parties introduced above, except the trusted party
(TP), are assumed the honest-but-curious parties. A party is called the honest-
but-curious if it follows the scheme correctly, but plays the role of an eavesdrop-
per to infer additional information from encrypted sets, requested set intersec-
tions and corresponding responses.

13753

1 3

Flexible multi‑client functional encryption for set…

Desired functionality and flexibility. Before the detailed description of the
problem statement, we describe the desired function and its expected property in
the mentioned scenario model. The function that we are interested in this paper
is set intersection, and the property that we expect for this function is the pos-
sibility of intersection on any arbitrary subset of dataset (instead of a fixed size).
We call such functions flexible function.

Suppose we have 10 sets s1 to s10 . For a function f with constant arity 10, it is
only possible to calculate f on the entire sets s1 to s10 , and it is not possible on an
arbitrary subset of the dataset. It is clear that flexible functions are more general
form compared to fixed-arity functions, and therefore cover a wider range of
applications.

Problem statement. Suppose that W is the universal set of all set elements
available to the clients, and si ⊆ W is a set belong to ith client that holds it
locally. Our problem is to design a cryptographic primitive, according to the
scenario model and the threat model described above, that enables the clients
to securely share their sets, and to evaluate the outcome of the set intersection
for every arbitrary subset of them. Figure 2 shows an illustration of our system
model.

Fig. 2 An illustration of our system model

13754 M. Rafiee

1 3

3 Preliminaries

In this section, we introduce some notations and basic cryptographic primitives
that are used throughout the paper.

3.1 Notation

Throughout the paper, we consider the symbol � to denote the security parameter. We
use [n] to denote the set {0, 1,… , n} , where n is a positive integer. Let A is a (possibly)
probabilistic algorithm, y ← A(x) shows that y is the output of the algorithm A on x. We
use the abbreviation PPT for probabilistic polynomial time. Suppose that S is a finite
set, x ← S means that the element x selected as uniform from the set S. We say that a
function is negligible and denotes it by ���� , if it is smaller than the inverse of any poly-
nomial in the security parameter � for sufficiently large values of � . As a convention,
we denote the output of a defined experiment by the experiment name itself. We use the
symbol ∣ to denote the concatenation of bit strings (e.g., 010 ∣ 101 = 010101).

3.2 Basic primitives

In this subsection, we review some basic cryptographic primitives that are used in our
construction. The readers familiar with these primitives can safely skip this subsection.

Pseudorandom Function (PRF). Let X, Y be two sets. A polynomial-time comput-
able function 𝖥 ∶ {0, 1}� × X → Y is a pseudorandom function, if for every PPT adver-
sary A , we have:

where �� is the set of all the functions from X to Y.
Collision resistance hash function. Function 𝖧 ∶ {0, 1}∗ → 0, 1

� is a collision
resistance hash function, if it holds the following properties:

• The function �(x) is easy to compute for any x,
• It is hard to find x ≠ x′ such that �(x) = �(x�).

Bilinear map: Let �1 , �2 , �T are cyclic groups of prime order q, and g1 , g2 are genera-
tors for �1 , �2 , respectively. A bilinear map is a map e ∶ �1 × �2 → �T that satisfies
the following properties:

1. Bilinearity: ∀x, y ∈ ℤq ∶ e(gx
1
, g

y

2
) = e(g1, g2)

xy,

2. Non-degeneracy: e(g1, g2) ≠ 1,

3. Computability: e can be computed efficiently.

We assume that we have an efficient bilinear map generator such as G that on the secu-
rity parameter � as input, outputs tuple (�1,�2,�T , g1, g2, q, e).

∣ Pr[k ← {0, 1}� ∶ A
𝖥k(⋅)(1�) = 1] − Pr[f ← 𝖱𝖥 ∶ A

f (⋅)(1�) = 1] ∣≤ 𝗇𝖾𝗀𝗅(�),

13755

1 3

Flexible multi‑client functional encryption for set…

4 �����-�� scheme

In this section, we define the syntax and security notions of ����� schemes for set
intersection. For convenience, hereafter we call these schemes �����-�� . It should
be noted that we only define the �����-�� schemes in private-key setting, and leave
the study of the �����-�� schemes in the public-key setting for future works. In the
following, each of syntax and security definitions are first explained informally and
then the formal definitions are provided.

4.1 �����-�� syntax

A �����-�� is a symmetric primitive that enables a group of predetermined clients
to securely share their sets, and also enables an evaluator to learn the set intersection
of every arbitrary subset of these sets, without having to learn the plaintext set of
each individual client.

Figure 3, for n clients, shows how to use �����-�� schemes. At first, the trusted
party generates a set of public parameters pp , a master secret key msk and a list
of client keys (cki)ni=1 using a key generation algorithm denoted by ����� . Then, for

Fig. 3 Generate the parameters by the trusted party

13756 M. Rafiee

1 3

every i ∈ [n] , the trusted party sends cki to the client with identifier i and shares pp
on the public bulletin board (Fig. 3a). Next, each client encrypts its set using an
encryption algorithm denoted by ��� and sends it to the storage provider (Fig. 3b).
Later, when the trusted party wants to send a functional decryption key to the evalu-
ator, on demand, he selects a time window t and a list of clients L ⊆ [n] , and calls
the key generation algorithm denoted by ������ . Finally, the evaluator downloads
the requested sets and computes the outcome of the set intersection using a decryp-
tion algorithm denoted by ��� (Fig. 3c).

In the following, we provide a formal definition of the �����-�� schemes.

Definition 1 (�����-�� syntax) A �����-�� scheme is a collection of four poly-
nomial-time algorithms Π = (�����,���,������,���) such that:

•
(
pp,msk, (cki)

n
i=1

)
← 𝖲𝖾𝗍𝗎𝗉(�, n) : takes as input a security parameter � and a pre-

determined number of the clients n, and returns a set of public parameters pp , a
master secret key msk and a list of client keys (cki)ni=1.

• ctt,i ← 𝖤𝗇𝖼(cki, si, t) : takes as input the client key cki , a set si and a tag t , and
returns a ciphertext ctt,i.

• dkL ← 𝖪𝖾𝗒𝗀𝖾𝗇(msk, L) : takes as input the master secret key msk and a list of cli-
ent identifiers L , and outputs a functional decryption key dkL.

• y ← 𝖣𝖾𝖼(dkL, t,CT) : takes as input a decryption key dkL , a tag t and a |L|-list
ciphertext CT . It returns as output y =

⋂
i∈L

si if CT is a valid encryption of sets

(si)i∈[L] for tag t , or y = ⊥ otherwise.

Correctness. The �����-�� scheme is said to be correct, if for any integer n ≥ 2 ,
any list L ⊆ [n] with size ∣ L ∣≥ 2 , any tag t and any list of sets (si)i∈L , it holds that:

4.2 �����-�� security

In this subsection, we formalize the security notions of �����-�� schemes based
on the indistinguishability games. To this end, we have taken ideas from the security
definitions proposed in [17] to handle the flexibility of the function arity, and also
we have taken ideas from the security definitions presented in [4] to handle the time
step in our �����-�� schemes.

In our security game, we need that the encrypted elements of the clients do not
reveal any information about their plaintext elements. We also need that by hav-
ing the evaluation key for a subset of sets, only the intersection of this subset can
be computed and no information beyond it can be revealed. Additionally, our game
consider three capabilities for the adversaries: 1) the adaptive queries to get the

Pr

⎡⎢⎢⎢⎢⎣

�
pp,msk, (cki)

n
i=1

�
← 𝖲𝖾𝗍𝗎𝗉(�, n);

∀i ∈ [L] ctt,i ← 𝖤𝗇𝖼(cki, si, t);

dkL ← 𝖪𝖾𝗒𝗀𝖾𝗇(msk, L) ∶

𝖣𝖾𝖼(dkL, t,CT) =
⋂
i∈L

si

⎤
⎥⎥⎥⎥⎦
= 1 .

13757

1 3

Flexible multi‑client functional encryption for set…

evaluation key for each desired subset, 2) the adaptive queries to encrypt any ele-
ment form each client and 3) the adaptive queries to corrupt from each client. In this
game, we also consider the constraints that cause the adversary to easily not be able
to win the game. In the following, we provide a formal definition of our game.

The adaptive indistinguishability-based (����) security game �������
A,Π

(�) :

1. Initialization phase: The challenger runs
(
pp,msk, (cki)

n
i=1

)
← 𝖲𝖾𝗍𝗎𝗉(�, n) and

selects a random bit b ← {0, 1} . Also, the challenger considers a set HS of honest
clients (initialized to HS = [n]) and a set CS of corrupted clients (initialized to
CS = �).

2. Pre-challenge query phase: The adversary A may adaptively issue ���(⋅, ⋅, ⋅) ,
������(⋅) and �������(⋅) queries, which are defined as follows:

(a) ���(i, si, t) : The challenger computes and returns to the adversary A a
ciphertext ctt,i ← 𝖤𝗇𝖼(cki, si, t) . For any given pair (i, t) , only one query is

allowed and later queries involving the same pair (i, t) are ignored.
(b) ������(L) : The challenger runs the key generation algorithm

dkL ← 𝖪𝖾𝗒𝗀𝖾𝗇(msk, L) and returns to the adversary the decryption key dkL.
(c) �������(i) : The challenger adds i to CS (i.e., CS = CS∪{i}), removes i from

the set HS (i.e., HS = HS�{i}) and returns to the adversary A the client key cki.

3. Challenge query phase: The adversary A adaptively issues challenge que-
ries of the form ���(i, s∗

i,0
, s∗

i,1
, t∗) and as a response obtains a ciphertext

ctt∗,i ← 𝖤𝗇𝖼(cki, s
∗
i,b
, t∗) . It should be noted that in this phase, only one tag t∗ can

be queried and also similar to the pre-challenge phase, query for the same pair
(i, t∗) will later be ignored.

4. Post-challenge query phase: Identical to the pre-challenge phase.
5. Finalize phase: The adversary A outputs a value b̂ ∈ {0, 1} which is defined as

the output of the experiment.

Valid adversary. We say that the adversary A is a valid adversary for the game
���

����

A,Π
(�) , and if for every security parameter � , in all transcripts of the game

���
����

A,Π
(�) , it holds that for every queried list L = (i1,… , i

l
) , there does not exist

where for every i ∈ L , we have

– i ∈ CS ; therefore, there is no constraint on s∗
i,0

 and s∗
i,1

.

– There is a challenge query of the form ���(i, s� , s�� , t∗) such that s∗
i,0

= s
� and

s∗
i,1

= s
��.

⋂
i∈L

s∗
i,0

≠

⋂
i∈L

s∗
i,1
,

13758 M. Rafiee

1 3

Definition 2 (�����-�� security) A �����-�� scheme such as
Π = (�����,���,������,���) is ����-secure if for every PPT valid adversary A ,
there exists a negligible function ���� such that

Weaker security notions. Similar to [4], we can consider two weaker security
notions for the �����-�� schemes:

– Passive security (�-����): The �-���� security is defined similar to the ����
security except that no corruption query is issued. We show the game of this
security notion with ����-����

A,Π
.

– Static security (�-����): The �-���� security is defined similar to the ����
security except that all corruption queries are sent before the initialization phase.
We denote the game of this security notion by ����-����

A,Π
.

Generally, the various features and functionalities that can be provided by a new
cryptographic scheme are reasons that make it difficult to propose a construction
with strong security notion, and lead us to weaker security notions. In this regard,
past research in the literature confirms this and shows that the constructions with
weaker security notions are first introduced, and then, steps are gradually taken to
provide constructions with stronger security.

In this paper, based on the reasons mentioned above, we follow a similar approach
and present a �����-�� with �-���� security level.

5 Our �����-�� construction

In this section, we propose a �����-�� construction that supports a universal set
of polynomial size in the security parameter � , and in Sect. 6, we prove that it is
�-����-secure. Our construction use a bilinear group generator G that takes as input
the security parameter � and returns a tuple (�1,�2,�T , g1, g2, q, e) , where q is a �
-bit prime number, �1 , �2 , �T are cyclic groups of order q, e ∶ �1 × �2 → �T is a
non-degenerate efficiently computable bilinear map, and g1 , g2 are generators of �1
and �2 , respectively. In addition, our construction uses a cryptographic hash func-
tion 𝖧 ∶ {0, 1}⋆ → �1 . The algorithms of our �����-�� construction are defined as
follows:

•
(
��,���, (���)

�
�=�

)
← 𝖲𝖾𝗍𝗎𝗉(�,�) ∶ On input of the security parameter � and a

number of clients n, it acts as follows:

1. It runs bilinear map generator (�1,�2,�T , g1, g2, q, e) ← G(�).
2. For every i ∈ [n] , it samples a client key cki.

���
����

A,Π
=∣ Pr[�������

A,Π
(�) = 1] −

1

2
∣≤ ����(�).

13759

1 3

Flexible multi‑client functional encryption for set…

3. It defines the master secret key msk = (cki)
n
i=1

 and the public parameters
pp = (�1,�2,�T , g1, g2, q, e).

4. It returns as output (pp,msk, (cki)ni=1).

• ���,� ← 𝖤𝗇𝖼(���, ��, �) ∶ Given the client key cki , a set si and a tag t , it works as fol-
lows:

1. For every w ∈ W , it computes ctt,i[w] as follows:

– if w ∈ si , it computes ctt,i[w] =
(
�(w ∣ t)

)cki.
– if w ∉ si , it selects a random value r ← ℤ

∗
q
 and then defines

ctt,i[w] = gr
1
∈ �1.

• dkL ← 𝖪𝖾𝗒𝗀𝖾𝗇(msk, L) : On input of the master secret key msk and a list of clients
L , it computes dkL as follows:

1. It parses msk as
(
cki

)n
i=1

 and L as (i1,⋯ , il).
2. For every i ∈ L , it samples zi ← ℤ

∗
q
 such that

∑
i∈L

zi = 0.

3. For every i ∈ L , it computes ati ← g
zick

−1
i

2
 and finally defines dkL = (ati)i∈L.

• y ← 𝖣𝖾𝖼(dkL, t,CT) : Given the decryption key dkL , a tag t and a |L|-list cipher-
text CT , it computes y as follows:

1. It parses dkL as (ati)i∈L and CT as (ctt,i)i∈L.

2. If
∏
i∈L

e(ctt,i[w], ati) = 1 , then it appends w to y , for every w ∈ W.

Remark 2 As it can be seen in Algorithm ��� , this algorithm parameterized based
on dkL and t, and it can only compute the result of set intersection related to the cli-
ents involved in dkL . Therefore, the decryption of the our scheme is different from
the decryption of common symmetric/asymmetric encryption schemes.

Correctness. For any integer n ≥ 2 , any list L ⊆ [n] with size ∣ L ∣≥ 2 , any tag t ,
any list of sets (si)i∈L and any w ∈ W , it holds that:

where
(
pp,msk, (cki)

n
i=1

)
 is the output of �����(�, n) , the ciphertext ctt,i is the output

of ���(cki, si, t) for any i ∈ L , the decryption key dkL = (ati)i∈L is the output of
������(msk, L) , and (zi)i∈L are random values from ℤ∗

q
 (s.t.

∑
i∈L

zi = 0).

Therefore, if w ∈
⋂
i∈L

si , using Eq. 1 we have:

(1)
∏
i∈L

e(ctt,i[w], ati) =
∏
i∈L

e(g
ŵt,icki

1
, g

zick
−1
i

2
) =

∏
i∈L

e(g1, g2)
ŵt,izi

13760 M. Rafiee

1 3

and since
∑
i∈L

zi = 0 , we have e(g1, g2)
ŵt

∑
i∈L

zi
= 1 , and finally, w belongs to the result

set.
Moreover, if there is i, j ∈ L such that w ∈ si and w ∉ sj , then with a overwhelm-

ing probability we have �(w, t)cki ≠ gr
1
 , where r is a random value from ℤ∗

q
 . It is easy

to show that the probability that e(g1, g2)
∑

i∈L ŵt,izi = 1 (i.e., w ∈ ���(dkL, t,CT)) is at
most 1

q
+ ����(�) , where ����(�) is some negligible function and q is the range size of

hash function � . The claim then follows, since q is exponential in the security
parameter � . ◻

In the following, we show how the above construction cover the challenges
raised in Subsection 1.3.

Minimal client interaction. As it can be seen in Algorithms ����� and ��� ,
each client with his secret key (which is determined by Algorithm �����) can
encrypt and share his sets independently and without interacting with other cli-
ents. As a result, due to the non-interaction of clients with each other, the over-
heads imposed by sharing sets are reduced.

Evaluation with offline clients. After sharing the encrypted sets by clients, as
it can be seen in Algorithm ��� , the clients do not need to be online to compute
the set intersection.

Flexible functionality. As it can be seen in Algorithm ������ , due to the use
of secret sharing scheme ideas, it is possible to generate decryption keys to be
applied to any arbitrary subset of the dataset. Therefore, with such decryption
keys, flexible intersection is guaranteed.

Efficient construction. Assuming that the size of the universal set is polyno-
mial in terms of the security parameter, as it can be seen in Algorithm ��� , our
evaluation method for m sets each of size n is of the order O(mn) . More precisely,
during encryption, each set is appropriately expanded to the size of the universal
set, and then, during evaluation, it should be checked for each element of the uni-
versal set whether this element exists in the queried sets or not. It should be noted
that in the literature, the problem of computing the set intersection in polynomial
time, without restrictions on the size of the universal set and without disclosing
any information except the intersection result, is known as an open problem [5,
14].

6 Security analysis

In this section, we first review a well-known computational hardness assumption
used to prove the security of our �����-�� construction. Then, we prove that our
construction is �-����-secure.

(2)
�
i∈L

e(g1, g2)
ŵt,izi = e(g1, g2)

∑
i∈L

ŵt,izi
= e(g1, g2)

ŵt

∑
i∈L

zi
,

13761

1 3

Flexible multi‑client functional encryption for set…

The symmetric external Diffie–Hellman (SXDH) assumption, formalized in
[11, 18–20], is a computational hardness assumption that underlies the security
of several pairing-based cryptosystems such as [21, 22]. Our �����-�� construc-
tion is proved secure under DDH1 that it is a variant of the SXDH assumption.

Assumption 1 (DDH1) Decisional Diffie–Hellman assumption in �1 (DDH1) for the
bilinear map generator G states that it is hard to distinguish gam

1
 from a random group

element gr
1
 , when given g1, g2 , and random group elements ga

1
 and gm

1
.

The dual of Assumption 1 is decisional Diffie–Hellman assumption in G2
(DDH2), which is identical to the above assumption with the roles of �1 and �2
reversed. We say that symmetric external Diffie–Hellman (SXDH) assumption holds
for the bilinear map generator G , if DDH problems are intractable in both �1 and �2.

Theorem 1 If � be a collision-resistant hash function modeled as random oracle,
and the DDH1 assumption holds relative to G , then our �����-�� construction of
Sect. 5 is �-����-secure.

Proof To prove the security of the proposed construction, we use the experiment
defined in subsection 4.2, the computational hardness assumption DDH1 and some
standard proof techniques in the literature. In particular, using technique “Proof By
Reduction,” we show that if there is a successful attack on our construction, then the
hard problem DDH1 will be solved and no longer hard. In other words, we tie the
solution of the hard problem to maintaining the security of our construction. There-
fore, since problem DDH1 is difficult to solve, the security of the proposed construc-
tion is also preserved. The details of the proof are given below.

We need to show that advantage of every PPT valid adversary A in the game
���

�-����

A,Π
(�) is negligible.

In the following, we describe an algorithm that is able to break the DDH1 prob-
lem, if the valid adversary A has a non-negligible advantage in winning the game
���

�-����

A,Π
(�).

The challenger simulates the random function f and key values (cki)i∈L as follows
(without knowing values m and a explicitly):

where ht,w and (a�

i
)i∈[n] are the random values from ℤ∗

q
 . It should be noted that based

on the desired security, in which no corruption is considered for the clients, no keys
are provided to the clients, and the keys only appear in the encryption and token
algorithms in the form of powers of g1 . Therefore, as we will see below, the chal-
lenger can easily simulate the computations required on these keys. In the following,
we describe the challenger in details:

(3)�(t,w) =

{
(gm

1
)ht,w if t = t∗

g
ht,w

1
otherwise

,

(4)cki = a ⋅ a
�

i
,

13762 M. Rafiee

1 3

– Initialization phase. Given a bilinear group description (�1,�2,�T , g1, g2, q, e)
and a tuple (ga

1
, gm

1
, gs

1
) from the DDH1 problem, where s = am or s = z , the chal-

lenger acts as follows:

1. The challenger def ines a set of the public parameters as
pp = (�1,�2,�T , g1, g2, q, e).

2. For every i ∈ [n] , the challenger samples a′

i
 from ℤ∗

q
 and defines cki = a ⋅ a

�

i
.

3. Finally, the challenger samples b ← {0, 1} , defines the master secret key

msk = (cki)i∈[n] and initializes HS = [n] and CS = �.

– Pre-challenge query phase. In the following, we determine how the challenger
handles the adversary’s queries in the pre-challenge:

– ���(�, ��, �) ∶ The challenger computes ctt,i as follows: [1.] For every w ∈ W
acts as follows: – For pair (t,w) , the challenger selects ft,w ← ℤ

∗
q
 , unless

it has already been sampled. – If w ∈ si , then the challenger computes
ctt,i[w] = (ga

1
)a

�

i
ft,w . – If w ∉ si , then challenger selects a random value r from

ℤ
∗
q
 and computes ctt,i[w] = gr

1
 . [2.]

– Finally, the challenger returns ctt,i to the valid adversary A.
– ������(�) ∶ The challenger computes dkL as follows: [1.] The challenger

selects a list of random values (zi)i∈L from ℤ∗
q
 such that

∑
i∈L zi = 0 . [2.] For

every i ∈ L , the challenger computes ati = (g
a
�−1

i

2
)ri , where ri = a−1zi . Note

that we do not directly have the value of a−1 to compute the value of the
tokens ati , but we can easily assume that this value is absorbed in the ran-
dom value of ri . [3.] Finally, the challenger returns dkL = (ati)i∈L.

– Challenge query phase. For every i ∈ [n] , upon receiving the challenge
queries ���(i, s∗

i,0
, s∗

i,1
, t∗) , the challenger computes ctt∗,i as follows: [1.] For

every w ∈ W , the challenger acts as follows: – For tuple (t∗,w) , the chal-
lenger selects ft∗,w ← ℤ

∗
q
 , unless it has already been sampled. – If w ∈ s∗

i,b
 ,

then the challenger computes ctt∗,i[w] = (gs
1
)a

�

i
ft∗ ,w . – If w ∉ s∗

i,b
 , then chal-

lenger selects a random value r from ℤ∗
q
 and computes ctt∗,i[w] = gr

1
 . [2.]

Finally, the challenger returns ctt∗,i to the adversary A . Based on the details
described above, the challenger of Game ����-����

A,Π
 successfully performs

its simulation because:

The challenger correctly generates the input and output distributions of all
algorithms,

The challenger uses all parts of the computational hardness assumption
correctly: – It uses gm

1
 to produce the outputs of hash function � , – It

uses ga
1
 to produce the encrypted sets and decryption keys, – It uses gs

1
 to

produce the encrypted challenge set.

 Note that if s = am , the ciphertext is distributed properly according the
scheme, and if s = z, then the challenger returns a ciphertext of a randomly
distributed set element.

13763

1 3

Flexible multi‑client functional encryption for set…

– Post-challenge query phase. The challenger replies the adversary’s que-
ries similar to the pre-challenge phase.

7 Performance analysis

In this section, we provide a concrete evaluation of effective components in our
construction in terms of the latency and the output size.

Since that the existing constructions have different security levels and differ-
ent flexibility compared to our construction, and also because our construction is
based on bilinear maps which has a moderate overhead compared to other crypto-
graphic primitives, our goals of performance analysis are summarized in:

– Finding a good view of the execution time of the effective components in our
construction,

– Highlighting the execution time with/without constraint on the size of universal
set.

We implemented our construction in Java and used the jPBC library [23] for imple-
mentation of a Type-D curve (parameter d159) for the pairing setting. The evalu-
ations are done on an Ubuntu 17.04 desktop PC with an Intel Processor 2.9 GHz.
Table 3 shows a concrete evaluation of our construction in terms of the latency and
the output size related to: the setup algorithm, the encryption algorithm (for every
set element), the key generation algorithm (for each set involved in the set intersec-
tion) and the decryption algorithm (adjust and compare for any two elements in �

T
).

Table 3 A concrete evaluation of our construction

Algorithm #exp #hash #mapping Time (milliseconds) Size (byte)

����� – – – 1124 979
��� (for every set element) 1 1 – 0.4 40
������ (for every selected set) 1 – – 3 120
��� (adjust and compare for any

two elements)
– – 2 3 + 2 × 10−4 240

Table 4 Effect of limiting the size of the universal set

#client n = 2 n = 4 n = 6 n = 8 n = 10

With constraint
(∣ W ∣= ����(�))

6 s 12 s 19 s 25 s 30 s

Without constraint 6.2 s ∼ 72 h ∼ 6000 years ∼ 6 billion years ∼ 6000
billion
years

13764 M. Rafiee

1 3

Table 4, based on the execution times given in Table 3, shows the effect of the
constraint on the size of the universal set for different ranges of clients that each
holds a set of size 1000. As an example in this table, a setting with 6 clients that
each holds a set of size 1000, the existing constructions with polynomial size con-
straint need to approximately spend 19 seconds while without this constraint need
to approximately spend about 6000 years. As a result, this relaxation is necessary to
obtain the desired security as well as applying it in practical applications.

8 Conclusions and future works

In this paper, we first introduced a more flexible version of the ���� schemes for
set intersection, called the �����-�� scheme, where an evaluator can learn the out-
come of the set intersection for every arbitrary subset of a predetermined number of
clients (instead of all clients). In addition, for a universal set with polynomial size in
security parameter, we proposed an efficient �����-�� construction for achieving
�-���� security level. Our construction computes set intersection for n clients that
each holds a set with m elements, in time O(nm).

Future contributions can be made in aspects such as proposing the �����-��
schemes that satisfy ���� security in the standard model, developing the �����-��
schemes for a decentralized setting in which the trusted party is eliminated and the
clients work together to generate the decryption keys, and providing the �����-��
schemes with polynomial-time complexity without constraint on the size of univer-
sal set.

Acknowledgements This research was in part supported by a grant from IPM (No. 1401940052).

Author Contributions This declaration is not applicable. (This is a single-authored article.)

Funding This declaration is not applicable.

Availability of data and materials This declaration is not applicable.

Declarations

Conflict of interest We declare that have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Ethical approval This declaration is not applicable.

References

 1. Boneh D, Sahai A, Waters B (2011) Functional encryption: definitions and challenges. Springer,
London, pp 253–273

 2. Sahai A, Waters B (2005) Fuzzy identity-based encryption. Springer, London, pp 457–473
 3. Goldwasser S, Gordon SD, Goyal V, Jain A, Katz J, Liu F-H, Sahai A, Shi E, Zhou H-S (2014)

Multi-input functional encryption. Springer, London, pp 578–602

13765

1 3

Flexible multi‑client functional encryption for set…

 4. Chotard J, Sans ED, Gay R, Phan DH, Pointcheval D (2018) Decentralized multi-client functional
encryption for inner product. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. (Springer: London, pp 703–732)

 5. van de Kamp T, Stritzl D, Jonker W, Peter A (2019) Two-client and multi-client functional encryp-
tion for set intersection. Australasian Conference on Information Security and Privacy. Springer,
Germany, pp 97–115

 6. Lee K, Seo M (2022) Functional encryption for set intersection in the multi-client setting. Des
Codes Cryptog 90(1):17–47

 7. Lee K (2022) Decentralized multi-client functional encryption for set intersection with improved
efficiency. Des Codes Cryptog 102:1–41

 8. SD, L.B.Ţ.R.G., Moriai, S (2019) Multi-client functional encryption for linear functions in the
standard model from lwe. In: Advances in Cryptology–ASIACRYPT. 2019

 9. Boneh D (1998) The decision diffie-hellman problem. International algorithmic number theory
symposium. Springer, Berlin, pp 48–63

 10. Regev O (2009) On lattices, learning with errors, random linear codes, and cryptography. J ACM
(JACM) 56(6):1–40

 11. Scott M (2002) Authenticated id-based key exchange and remote log-in with simple token and PIN
number. IACR Cryptol ePrint Archive 2002:164

 12. Freedman MJ, Nissim K, Pinkas B (2004) Efficient private matching and set intersection. Springer,
Heidelberg, pp 1–19

 13. Dong C, Chen L, Camenisch J, Russello G (2013) Fair private set intersection with a semi-trusted
arbiter. IFIP Annual Conference on Data and Applications Ssecurity and Privacy. Springer, Ger-
many, pp 128–144

 14. Khazaei S, Rafiee M (2020) Towards more secure constructions of adjustable join schemes. IEEE
Trans Depend Sec Comput 19(2):1079–1089

 15. Rafiee M, Khazaei S (2021) Private set operations over encrypted cloud dataset and applications.
Comput J 64(8):1145–1162

 16. Rafiee M, Khazaei S (2021) Security of multi-adjustable join schemes: Separations and implica-
tions. IEEE Trans Depend Secure Comput 19(4):2535–2545

 17. Agrawal S, Clear M, Frieder O, Garg S, O’Neill A, Thaler J (2020) Ad hoc multi-input functional
encryption. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020) . Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

 18. Ballard L, Green M, de Medeiros B, Monrose F (2005) Correlation-resistant storage via keyword-
searchable encryption. IACR Cryptol ePrint Arch 2005:417

 19. Galbraith SD, Rotger V (2004) Easy decision diffie-hellman groups. LMS J Comput Math
7:201–218

 20. Boneh D, Boyen X, Shacham H (2004) Short group signatures. Springer, London, pp 41–55
 21. Ateniese G, Camenisch J, de Medeiros B (2005) Untraceable RFID tags via insubvertible encryp-

tion. pp 92–101
 22. Camenisch J, Hohenberger S, Lysyanskaya A (2005) Compact e-cash, pp 302–321
 23. De Caro A, Iovino V (2011) jpbc: Java pairing based cryptography. In: 2011 IEEE Symposium on

Computers and Communications (ISCC), pp 850–855

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Flexible multi-client functional encryption for set intersection
	Abstract
	1 Introduction
	1.1 The schemes for set intersection
	1.2 Some similar schemes for set intersection
	1.3 Challenges and contributions
	1.4 Paper organization

	2 System model
	3 Preliminaries
	3.1 Notation
	3.2 Basic primitives

	4 scheme
	4.1 syntax
	4.2 security

	5 Our construction
	6 Security analysis
	7 Performance analysis
	8 Conclusions and future works
	Acknowledgements
	References

