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Abstract
Iron is one of the trace elements that plays a vital role in the human immune sys-
tem, especially against variants of SARS-CoV-2 virus. Electrochemical methods 
are convenient for the detection due to the simplicity of instrumentation available 
for different analyses. The square wave voltammetry (SQWV) and differential pulse 
voltammetry (DPV) are useful electrochemical voltammetric techniques for diverse 
types of compounds such as heavy metals. The basic reason is the increased sen-
sitivity by lowering the capacitive current. In this study, machine learning models 
were improved to classify concentrations of an analyte depending on the voltam-
mograms obtained alone. SQWV and DPV were used to quantify the concentrations 
of ferrous ions (Fe+2 ) in potassium ferrocyanide (K

4
Fe(CN)

6
 ), validated by machine 

learning models for the data classifications. The greatest classifier algorithms mod-
els Backpropagation Neural Networks, Gaussian Naive Bayes, Logistic Regression, 
K-Nearest Neighbors Algorithm, K-Means clustering, and Random Forest were 
used as data classifiers, based on the data sets obtained from the measured chemical. 
Once competed to other algorithms models used previously for the data classifica-
tion, ours get greater accuracy, maximum accuracy of 100% was obtained for each 
analyte in 25 s for the datasets.
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1 Introduction

Iron constitutes only 0.008 percent of human body mass (about 6 g for a 75 kg adult 
male); even with the low concentration in the body, it plays a vital role in human 
immunity [1]. Therefore, an adequate supply of iron is essential for keeping the 
human immune system effective in fighting against diseases [2]. People with iron 
deficiency are unable to produce sufficient hemoglobin to meet up the body’s oxy-
gen transport needs [3]. One of the diseases associated with iron deficiency is ane-
mia which occurs due to insufficient red blood cells (RBCs) circulating in the blood 
or as a result of low hemoglobin content of these RBCs. Moreover, the body stores 
the excess iron in the tissues; however, overloading of this heavy metal results in a 
condition known as hemochromatosis which severely damages the body tissues and 
their functions [4]. The ethylenediamine tetra acetic acid (EDTA) titration method 
is the traditional method used for determining iron in samples by assuming the end-
point of complex formation [5]. Other commonly used analytical methods include 
the use of spectroscopic and chromatographic techniques such as atomic absorption 
spectrometry and ion chromatography. These methods are used for the detection of 
heavy metals, but have disadvantages where they require sophisticated instrumen-
tation, experienced personnel, and high analytical costs [6]. Electrochemical tech-
niques have achieved significant attention in most and recent research applications 
in all aspects of industrial and scientific site [7]. The electrochemical measurements 
generated a lot of interest from recent studies due to the low cost, less processing 
time, environment-friendly, low detection limit and high selectivity [8]. Voltammet-
ric methods are the most widely used electrochemical techniques adopted by many 
scientists in several research and applications. Moreover, the methods of voltamme-
try consist of different techniques such as cyclic voltammetry (CV) and differential 
pulse voltammetry (DPV) which vary in their properties, characteristics, specificity, 
and applications. However, the most widely adopted methods are those with higher 
sensitivity [9, 10]. Voltammetric techniques are more sensitive to redox currents 
(oxidation–reduction currents) or so-called faradic currents, which are measured 
in order to determine the chemicals of concern’s concentrations, which generates 
when they are reduced or oxidized. In modern electrochemical techniques, extensive 
modifications have increased sensitivity [11]. The running of numerous machine 
learning techniques in classifying pulse voltammetric methods data sets has also 
been evaluated, containing cyclic voltammetry (CV), differential pulse voltammetry 
(DPV) and square wave voltammetry (SQWV) [12, 13]. For example, CV has been 
used with sensors to evaluate some biological compounds [14]. Machine learning is 
used to carry out the data analysis obtained by the electrochemical technique used 
to simply, precisely and rapidly classify harmful chemicals and heavy metals. Addi-
tionally, some other useful properties of the algorithms model assessed in the study 
were highlighted. Voltammetry is a powerful tool, and recently, it is being used with 
machine learning in classification purposes [15].

Working on the pulse electrochemical techniques indicates one of the previous 
works that we present in previous years in 2019 and 2020. The analyte used is 
potassium ferrocyanide (K4 Fe (CN)6 ) as a model solution for the electrochemical 
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techniques. The main differences between our previous studies and this work 
indicate test size iteration, different machine learning models used for the clas-
sification of the electrochemical data obtained, and the higher accuracy achieved, 
moreover, the type of electrochemical method chosen to detect the chemical of 
concern. In 2019, different five concentrations of potassium ferricyanide (K3

Fe(CN)6 ) were prepared and detected by the cyclic voltammetry (CV) method. 
Gradient boosting algorithm was chosen to classify the data obtained by giv-
ing 60% training and 40% testing. The accuracy achieved was up to 76.6% [16]. 
In 2020, K 4 Fe (CN)6 was detected by two electrochemical methods DPV and 
SQWV. The data obtained were classified by gradient boosting algorithm and the 
accuracy achieved was 75% and 60%, respectively, for both voltammetric tech-
niques [17].

It is noteworthy to state that the novelty of this current study can be presented in 
a dissimilar approach. First, the detection of the inorganic compound by analyzing 
the forward and backward scan of a SQWV data was done which is the first time 
to be presented in the published technical research literature due to the complexity. 
Machine learning is used effectively in various applications in the literature for clas-
sification and regression [18–20]. So secondly, the classification of the electrochem-
ical data by using the six different machine learning models which weren’t used in 
our previous research was also done. Finally, the accuracies of data classification 
output were obtained with high accuracy and higher sensitivity in comparison with 
our previous studies. In this study, an attempt was made to test several algorithm 
models, involving the lately advanced technology in machine learning [21, 22]. 
Backpropagation Neural Networks (BPNN), Gaussian Naive Bayes (GaussianNB), 
Logistic Regression (LR), K-Nearest Neighbors Algorithm (k-NN), K-Means clus-
tering, and Random Forest are the methods used to classify the electrochemical 
database obtained. Some of these methods were used as a preliminary work before. 
It has been seen that these methods were effective. When research about applica-
tions of machine learning was done, some other effective methods were also found 
and added to this research for comparison [23, 24].

DPV and SQWV were selected to detect iron II using the model compound 
potassium ferrocyanide K 4Fe(CN)6 solution, each method characterized by its own 
identity and uniqueness, while voltammograms generated from the techniques are 
integrated as input for quantification of species using electrochemical cells relies on 
sensors that play a vital role in the projected observation. By detecting the analyte of 
interest in the recorded voltammogram (current vs. potential), it is possible to deter-
mine the concentration of the analyte in the sample. However, SQWV is avoided in 
many studies due to its complexity compared to other pulse electrochemical tech-
niques [25]. It is also important to realize that voltammetric analysis for real samples 
generally gives us complicated voltammograms due to the existence of other electro-
chemically active components. Using machine learning approach with voltammetric 
data applied in this study, will be a promising method which can be used in the 
analysis of complex voltammograms. Nevertheless, in this study, the forward and 
backward scans of SQWV were used for the detection of Fe+2 in various concentra-
tions, which improve the sensitivity over the traditional SQWV [26, 27]. Afterward, 
all data obtained were examined and classified by the suggested machine learning 
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algorithm models in which no work has been applied before in analytical studies 
validated with ML for data classification. However, machine learning was intro-
duced in this study due to its high accuracy and its contributions in terms of creativ-
ity and innovation.

2  Materials and methods

2.1  Chemicals and instrument

All the chemicals and instrument used were reported in the previous study [28]. All 
chemicals used were purchased from Sigma-Aldrich (Istanbul, Turkey) and con-
tained phosphate-buffered saline (PBS) solution, potassium nitrate (KNO3 ) and 
potassium ferrocyanide (K4 Fe (CN)6 ). Deionized (DI) water (18.2 MΩ.cm), treated 
with pure lab Ultra Analytic (ELGA Lab Water, UK), was used for all the aqueous 
solutions preparation. Pencil graphite electrodes PGEs were used in the form of pen-
cil tips tom-bow 0.5/HB which were picked up from local stationeries.

AUTO LAB Potentiostat/Galvanostat PGSTAT101 with NOVA 2.1.2 Software 
(Pine Instrument Company, USA) was used to carry out the DPV and SQWV meas-
urements. The electrochemical pulse measurements for both techniques were carried 
out via an electrochemical cell consisting of three main electrodes; the first electrode 
called the counter electrode (CE) or auxiliary electrode was a wire made of plati-
num. The second electrode indicates the reference electrode (RE) which was made 
of Ag/AgCl-KCl 3 M concentration. The final one is called working electrode (WE). 
For each ferrocyanide concentration, the solutions were stirred before measurement 
and not through the measurement detection to restructure initial conditions. Moreo-
ver, all the detection procedures were detected under room temperature 25◦ C. Both 
pulse voltammetric techniques, DPV and SQWV, were carried out using the same 
parameters of start potential from 0V, end potential from 1V, step height of 0.004 
mV, pulse height of 0.02 and frequency of 2Hz.

2.2  Electrochemical data

Throughout the study, unless otherwise mentioned, analytical-grade reagents 
were used. All electrochemical data used here are based on our previously pub-
lished results [28]. The preparation of five different concentrations of the analyte 
which is potassium ferrocyanide (K4 Fe (CN)6 ) was carried out by preparing the 
stock solution of it first with a concentration of 10 mmole/L and dissolved in a 
potassium nitrate of 1  M concentration to get a total volume of 250  mL (with 
distilled water as a solvent); then, for each concentration, a proper amount was 
taken from the stock solution prepared and diluted to the mark of the volumetric 
flask using deionized water. The final five different concentrations of potassium 
ferrocyanide (K4Fe(CN)6 ) fit a total volume of 25 mL of 2,4,6,8 and 10 mmol/L. 
Each potassium ferrocyanide concentration was carried in both pulse voltammet-
ric measurements, respectively, starting from the lowest concentration until the 



12476 D. Kayali et al.

1 3

highest concentration. Twenty pencil graphite were used for every single concen-
tration in each pulse detection measurement.

The data used here in this research is related to the DPV and SQWV measure-
ment for potassium ferrocyanide. The DPV and SWV scans were used to get the 
peak position, peak height, peak area, base start, base end, peak width (1/2), peak 
(1/2), and peak total data. These data have been chosen because they contain fea-
tures and connections that can distinguish voltammograms, which have formed 
5 different classes. Furthermore, the forward and backward scans of SQWV also 
were included and compared in this study, and by using new machine learning 
algorithms to classify the electrochemical data obtained, modern data and accu-
racy were obtained. For each detection, and for each step is illustrated in Fig. 1.

Fig. 1  The proposed electro-chemo-metric flowchart system: a stock solution of potassium ferrocyanide; 
b the 5 standard solutions; c pulse voltammetric techniques used; d voltammograms results from analy-
sis; e converted data used; f calibration graphs of iron II by voltammetric methods; g six machine learn-
ing algorithms used for classification
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3  Machine learning

3.1  Dataset

Five different input datasets SQWV, forward scan of SQWV, backward scan of 
SQWV, net of SQWV, and data obtained from DPV were taken and normalized to 
obtain five different scenarios for the training process. To examine if machines iden-
tify the forms of data fed into the models in terms of better accuracy and sensitivity, 
machines must be trained using training datasets [12]. Figure 2 shows the method-
ology used in this research. To ascertain if the machine classified the dataset effi-
ciently and effectively, it must be tested using testing datasets. Splitting data into 2 
datasets, as supported by the literature, is an essential method for the evaluation of 
models [29]. Based on recent studies, higher percentage of datasets are used as the 
training data, while a smaller percentage of dataset are used as a testing data [30]. In 
this study, we made a system that iterates over different test sizes ranging from 0.2 
to 0.8 with an increment of 0.1 to find the best ratio for each algorithm. This method 
is used to compare the results of different machine learning algorithms on different 
train test ratios. The dataset consists of 100 samples in total which has 20 samples 
for each 5 classes. Train test ratios in this research were iterated from 0.2 to 0.8 
because out of this range, enough samples for each class were not included in train 
or test datasets.

3.2  Model training

Six machine learning models were examined on each iron II concentration data-
set. K 4Fe(CN)6 was used and detected by DPV and SQWV. Forward square wave 
voltammetry (FSQWV), backward square wave voltammetry (BSQWV), and Net 
square wave voltammetry (NSQWV) scans of SQWV data were also used and clas-
sified in this work, looking forward to higher accuracy. Backpropagation Neural 
Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest Neighbors Algo-
rithm, K-Means clustering, and Random Forest were used for data classification as 
mentioned before.

Fig. 2  Projected machine learning methodology for continuous examining of PGE: from the left to the 
right, the chemical is detected by the electrochemical sensor PGE, the SQWV and DPV data extracted to 
be given to ML models to classify the chemical concentrations used
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Backpropagation is a machine learning algorithm that computes gradient of the 
loss function according to the weights of the network, and it is used for training 
feedforward neural networks. The term backpropagation indicates backward propa-
gation of errors [13]. This method updates weights to minimize the loss. Backpropa-
gation Neural Network used in this study is a multilayer network which has multiple 
connected dense layers, and a single dense layer as output and its results are then 
rounded to the closest class when obtaining the final decision.

Gaussian Naive Bayes is a type of Naïve Bayes Classifiers which are based on the 
Bayes theorem. Bayes theorem is used to calculate the conditional probability, and it 
is used in machine learning for classification problems. For Gaussian Naive Bayes, it 
is assumed that each class is distributed as in Gaussian distribution.

Logistic regression is a model used in statistics to find the probability of classes, 
which is also very useful in machine learning. For binary classification, outputs are 
labeled as 0 and 1 where the outputs are classified according to a threshold value. 
This method can also be used for multiclass problems when there are three or more 
output classes. In this case, a probability value is assigned to each class which is 
between 0 and 1 and their sum is equal to 1. The class with the highest probability 
value is the output class. This method is called multinomial logistic regression.

K-Nearest Neighbors are a machine learning algorithm that is based on the simi-
larity of the data, which means this algorithm assumes that similar things are close 
to each other and they can be classified according to the distances. This algorithm 
stores the data and when a new data point is given the K-Nearest Neighbors Algo-
rithm classifies the data in the most suitable class according to the closeness or simi-
larity. In this research, k value was used as 5 and the distance measure was used as 
Euclidean distance.

K-Means clustering is an unsupervised machine learning algorithm that makes 
clusters with the data according to the given number of k, which is the desired num-
ber of centroids, in other words, classes. Algorithm starts with random centroids 
which are the beginning positions for each cluster. Then, calculations are done in 
iterations to optimize the positions of the centroids. Although it is an unsupervised 
method, K-means algorithm was used to obtain 5 different clusters of data, and then, 
it was compared to the real class each data belongs to.

Random forest is an ensemble learning method which is based on construct-
ing multiple decision trees during training. For classification problems like in our 
case, the output class is decided according to the class selected by most of the trees. 
Usage of random forest helps preventing over fitting that can happen when using a 
single decision tree. In this research, there were 100 decision trees.

By applying an approach of training and testing of datasets, the effect of data 
divergences would be decreased and also improved the characteristic models 
employed. After the termination step of choosing the best algorithm models, mov-
ing to the next step of testing the model by formulating the classifications counter 
to the test dataset; for this reason, the testing dataset is previously enclosed with 
known values based on the feature which is needed to be classified, hence it is an 
easy way to determine the model estimate correctly. The training test sets were made 
randomly and iterated several times at different train test ratios between 80–20 and 
20–80% to examine the maximum obtained accuracy for each scenario on different 



12479

1 3

Machine learning‑based models for the qualitative…

algorithms. All the machine learning models were trained on Windows operating 
system with Spyder IDE by using the Keras and Scikit libraries with an Nvidia 
Geforce RTX2060 GPU.

4  Results, analysis & discussion

For the DPV and SQWV methods, 100 voltammograms were obtained from the 
redox reaction of potassium ferrocyanide which previously has been reported 
[28]. The oxidation peak of ferrocyanide into ferricyanide obviously can also be 
observed at ∼ 0.25 V due to the electron transfer. Moreover, this pulse technique 
provides much more detailed information about the analyte of interest, forward scan 
and backward scans were measured and detected for the five different concentra-
tions of potassium ferrocyanide. This helps in deeply analyzing the analyte by pro-
viding more information and hence increasing the sensitivity of the method used. 
The response single increased due to the increase of the concentration applied, the 
current was enhanced due to the electron transfer of the reduction of K 4Fe(CN)6 
reaction.

The experiments were conducted under the same standard conditions to verify 
the accuracy of the process, which is further confirmed by the graphs of peak cur-
rent values (Ipa) against K 4Fe(CN)6 concentration, where reported before [28]. It is 
noted that the concentration range examined in these experiments was between 2 
and 10 mM.

The result obtained from SQWV performed better compared to DPV due to its 
sensitivity and low availability of background current [31]. By considering the lin-
ear regression equation, it is possible to calculate the limit of detection (LOD) and 
the limit of quantitation (LOQ) using the formulas below:

SD indicates the standard deviation for the intercept of the five measurements, and 
m is the slope obtained from the calibration curves. The LOD values recorded from 
the analysis for detection of potassium ferrocyanide detection using both techniques 
are presented in Table 1 based on calibration curves reported before [28]. Both LOD 

(1)LOD = 3.33xSD/m

(2)LOQ = 10xSD/m

Table 1  Figures of merit for the voltammetric methods of iron II

a
  Percentage relative standard deviation, n = 100. [32]

Method R2 m SD %RSDa LOD LOQ
(� A/ mM) (�A) mM mM

SQWV 0.9991 4.0 x 10−05 11.672 46.688 0.87847 26.380
DPV 0.9976 2.0 x 10−05 101.178 404.712 13.899 417.375
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and LOQ are given in mM due to the potassium ferrocyanide solutions that were 
prepared in the mM unit. The values obtained showed the difference in sensitivity 
between both pulse electrochemical techniques.

When machine learning is considered, results are obtained by using six differ-
ent machine learning algorithms on five different dataset scenarios at different test 
sizes between 0.2 and 0.8 with an increment of 0.1. For square wave voltamme-
try (FSQWV) scenario, Logistic Regression had its best accuracy both at test sizes 
of 0.2 and 0.5 which was 80%, while Backpropagation Neural Network had the 
best accuracy at only 0.5 test size with 82%. Gaussian Naive Bayes and K-Nearest 
Neighbors Algorithm had their best accuracy 85% at 0.2 test size. The accuracy of 
K-Means was lower when compared to other algorithms. The maximum accuracy 
obtained by the K-Means algorithm was 42.5% at 0.8 test size. And finally, Random 
Forest which had higher results than other algorithms at all test sizes, obtained 95% 
accuracy at 0.2 and 0.4 test sizes as shown in Figs. 3 and 4 (Table 2).

The second scenario was backward square wave voltammetry (BSQWV), where 
Gaussian Naive Bayes, K-Nearest Neighbors Algorithm, and Logistic Regression 
algorithms had their best accuracies at 0.2 test size with 90, 90, and 95%, respec-
tively. Backpropagation Neural Network obtained 82.5% accuracy at 0.4 test size, 
while K-Means had 50% accuracy at 0.7 test size. Again Random Forest algorithm 
obtained better accuracies at all test sizes when compared to other algorithms. 100% 
accuracy was obtained at 0.2 test size (Fig. 5, Table 3).

For net square wave voltammetry (NSQWV) scenario, results were different from 
the first two. Logistic Regression had 90% of accuracy at 0.2 test size which is also 
the best result of the scenario which is shown in Fig. 6. At 0.2 test size, Gaussian 
Naive Bayes and K-Nearest Neighbors Algorithm also had their best results with 
85%. Random Forest algorithm, which was the best network for previous scenarios, 

Fig. 3  Forward square wave voltammetry (FSQWV) Random Forest confusion matrix at 0.2 test size
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had 85% of accuracy at both 0.2 and 0.4 test sizes. K-Means algorithm had 50% 
accuracy at 0.5 test size and for Backpropagation Neural Network highest result 
was obtained at 0.3 test size with 83.3%. When we look at the algorithm perfor-
mances for each specific test size, at 0.2 Logistic Regression was the best algorithm 
as mentioned in the previous paragraph. At 0.3 Backpropagation Neural Network 
was the network with the highest accuracy which was also mentioned. From test 

Fig. 4  Forward square wave voltammetry (FSQWV) Random Forest confusion matrix at 0.4 test size

Fig. 5  Backward Square Wave voltammetry (BSQWV) Random Forest confusion matrix at 0.2 test size
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size 0.4–0.8, Random Forest had the highest results with accuracies of 85, 78, 80, 
72.9, and 73.8%, respectively. But at the test size 0.5, Gaussian Naive Bayes and 
K-Nearest Neighbors Algorithm algorithms also shared the result of 78% (Table 4). 

For all square wave voltammetry (SQWV) scenario, results were similar to the 
first two scenarios where the Random Forest algorithm outperformed all other algo-
rithms. All algorithms except K-Means had their highest accuracies at 0.2 test size. 
K-Means had 46.7% accuracy at 0.3 test size which was much lower than the other 
algorithms. Backpropagation Neural Network had the second-lowest result with 
85%, while the remaining results were 90% and higher. K-Nearest Neighbors Algo-
rithm and Gaussian Naive Bayes had 90% and Logistic Regression passed them with 
95%. The final algorithm Random Forest had the highest results at every test size 
and obtained an accuracy of 100% (Fig. 7, Table 5).

For the last scenario differential pulse voltammetry (DPV), most of the networks 
obtained their best results at 0.2 test size. Logistic Regression had 70% accuracy, 
while Gaussian Naive Bayes, K-Nearest Neighbors Algorithm, and Random Forest 
all had 85% accuracy at this test size. Backpropagation Neural Network had its best 
result at 0.3 test size with 70% of accuracy, and the last algorithm K-Means again 
had lower results according to the other algorithms with the highest accuracy of 56% 
at 0.5 test size. When we look at each test size, we see that Gaussian Naive Bayes, 
K-Nearest Neighbors Algorithm, and Random Forest had the better results for 0.2 
test size which is also the highest accuracy 85% obtained within this scenario. Their 
results are shown in Figs.  8, 9, and 10. Random Forest also had better results at 
the test sizes 0.3, 0.6, and 0.7 with accuracies 80%, 75%, and 67.1%, respectively. 
Gaussian Naive Bayes and K-Nearest Neighbors Algorithm both had better results 
for 0.4 and 0.5 test sizes with 75% and 70% accuracies, respectively. And finally, for 

Fig. 6  Net square wave voltammetry (NSQWV) Random Forest confusion matrix at 0.2 test size
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0.8 test size Backpropagation Neural Network was the network to have the highest 
accuracy with 60% (Table 6).

For comparison and precision verification, several methods were used. To 
develop upon the algorithm in data classification applied in N. A. Shama et al. [28]. 
We examined six different algorithm models for the data classifications; Backpropa-
gation Neural Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest 

Fig. 7  All square wave voltammetry (SQWV) Random Forest confusion matrix at 0.2 test size

Fig. 8  Differential pulse voltammetry (DPV) Gaussian Naive Bayes confusion matrix at 0.2 test size
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Neighbors Algorithm, K-Means clustering, and Random Forest. Comparable algo-
rithms, type, chemical method, and percent accuracies were obtained, suggesting 
that both techniques have similar analytical efficiency, as shown in Table 7. How-
ever, the key value of the proposed voltammetric methods with machine learning 
at a much lower cost is strategic over the former. The concentrations of iron II are 

Fig. 9  Differential pulse voltammetry (DPV) K-Nearest Neighbors Algorithm confusion matrix at 0.2 
test size

Fig. 10  Differential pulse voltammetry (DPV) Random Forest confusion matrix at 0.2 test size



12485

1 3

Machine learning‑based models for the qualitative…

statistically in agreement with the two samples tested using both techniques. For 
the determination of iron II in potassium ferrocyanide, the method’s efficacy is also 
contrasted with other methods reported in the literature, taking into account factors 
such as time of study, sensitivity, linearity, and repeatability. Quickness, simplicity, 
and cost-effectiveness were the key benefits of this strategy over others. Study time 
was nearly short, including the type of algorithm for classification of the chemical 
data obtained in several studies as shown in Table 3. Moreover, accuracies can be 
shown obviously different in each article. Regardless of the chemical method used 

Table 2  Accuracy Results for Forward square wave voltammetry (FSQWV) data

Method Test size

0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%)

BPNN 75 76.7 77.5 82 75 75.7 52.5
k-NN 85 80 82.5 82 80 71.4 73.8
Logistic regression 80 76.7 75 80 70 62.9 51.2
Gaussian NB 85 80 82.5 82 80 71.4 73.8
K-Means 35 40 27.5 38 41.7 27.1 42.5
Random forest 95 93.3 95 90 88.3 78.6 82.5

Table 3  Accuracy Results for Backward square wave voltammetry (BSQWV) data

Method Test size

0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%)

BPNN 80 66.7 82.5 76 73.3 71.4 57.5
k-NN 90 83.3 82.5 88 85 82.9 70
Logistic regression 95 83.3 72.5 60 63.3 48.6 45
GaussianNB 90 83.3 82.5 88 85 82.9 70
K-Means 40 46.7 40 30 40 50 38.8
Random forest 100 96.7 95 96 95 87.1 82.5

Table 4  Accuracy Results for Net square wave voltammetry (NSQWV) data

Method Test size

0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%)

BPNN 80 83.3 77.5 74 70 70 71.3
k-NN 85 76.7 75 78 73.3 71.4 67.5
Logistic regression 90 76.7 72.5 72 66.7 52.9 51.2
Gaussian NB 85 76.7 75 78 73.3 71.4 67.5
K-Means 45 30 42.5 50 33.3 35.7 47.5
Random forest 85 80 85 78 80 72.9 73.8
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in each study, which indicates the methods that took a longer duration for the analy-
sis. Sensitivity was comparable to that given by the detection of conductivity [33], 
LAD, CART, and SVM were used as algorithms to classify the chemical data and 
81.6% accuracy was achieved. On the other hand, higher accuracy was obtained in 
the second study of about 94.95%. By using the GBA for classification, 76.6% was 
obtained, and by improving through using other electrochemical techniques in coop-
eration with other algorithms, the accuracy increased up to 100% in this study, the 

Table 5  Accuracy results for all square wave voltammetry (SQWV) data

Method Test size

0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%)

BPNN 85 76.7 82.5 84 73.3 71.4 82.5
k-NN 90 80 80 80 88.3 75.7 72.5
Logistic regression 95 83.3 80 86 81.7 71.4 63.7
GaussianNB 90 80 80 80 88.3 75.7 72.5
K-Means 40 46.7 45 36 33.3 40 36.2
Random forest 100 96.7 95 94 93.3 87.1 85

Table 6  Accuracy Results for Differential pulse voltammetry (DPV) data

Method Test size

0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%)

BPNN 60 70 55 56 55 61.4 60
k-NN 85 73.3 75 70 70 57.1 47.5
Logistic regression 70 66.7 60 62 56.7 47.1 40
GaussianNB 85 73.3 75 70 70 57.1 47.5
K-Means 35 36.7 37.5 56 46.7 38.6 46.3
Random forest 85 80 72.5 68 75 67.1 58.8

Table 7  The total accuracy results in each electrochemical data

Method Accuracy Accuracy Accuracy Accuracy
Net Forward Backward ALL Accuracy

(NSQWV) (%) (FSQWV) (%) (BSQWV) (%) (SQWV) (%) DPV (%)

BPNN 83.3 82 82.5 85 70
k-NN 85 85 90 90 85
LR 90 80 95 95 70
GaussianNB 85 85 90 90 85
K-Means 50 42.5 50 46.7 56
Random forest 85 95 100 100 85
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total data are shown in more details in Table 8. The repeatability of the method pro-
posed was as good as the other methods offered.

This research functioned the potentiostat, which has been previously illustrated 
by N.A. Shama et al. [28], the objective is to develop mechanical distinction. The 
essential side and expected following stage in getting this purpose are to improve 
a universal DPV and SQWV dataset classifier. At this point, we look to develop 
the electrochemical detection algorithms projected in the previous study [12] and 
improve a self-determining public library model which can be used to accurately 
identify on-site electrochemical analytes by using SQWV and DPV data set, 
looking forward getting more programmed classification method. Estimate the 
performance of recognized and innovative machine learning and deep learning 
algorithms; contains the benchmark model algorithm used for SQWV and DPV 
experiment classification in the former report. We practiced the period cycle’s 
structure of SQWV and DPV data, inwards where the potential is adapted during 
measurement at a cycle of systematic intermissions current. The electrocatalytic 
activity of potassium ferrocyanide solution was measured against iron II using 
a pencil graphite electrode (PGE). Because of the hybridized carbon of pencil 
graphite, which shows good adsorption, conductivity, high sensitivity, lower 
background current, ease of preparation, and properties of surface modification, 
pencil graphite electrodes have attracted widespread attention among different 
carbon-based electrodes. Besides, the whole reaction takes place on the PG work-
ing electrode surface where the ferrous ions Fe2+ are oxidized into Fe3+ according 
to equation (3) shown below. As an oxidant, the electrode works, and the cur-
rent of oxidation rises to a peak. Both pulse voltammetric techniques, DPV and 
SQWV, were carried out using the same parameters based on start potential of 
0V, end potential of 1V, the step height of 0.004 mV, and modulation amplitude 
of 0.025V. However, the SQWV technique also used a frequency of 2Hz. Each 
potassium ferrocyanide concentration of 2, 4, 6, 8, 10 mM was analyzed in both 

Table 8  Comparison of machine learning with other methods for chemical data classification

a Linear discriminant analysis
b Classification and regression trees, and support vector machines
c Support vector machine
d k-Nearest Neighbor
e Quantitative structure–activity relationship

Authors Algorithms Chem. method Max. accu-
racy (%)

Ref.

Zang et al. LDAa, CARTb and SVMc QSARe 81.6 [13]
Rahman et al. k-NNd and SVM HPLC 94.95 [34]
Suleyman et al. GBA CV 76.6 [17]
Nemah et al. GBA SQWV & DPV 75 [28]
This research BPNN, LR, K-Means, k-NN, SQWV & DPV 100 This study

GaussianNB & Random forest
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voltammetric measurements, respectively, starting from the lowest concentration 
to the highest one.

The electrochemical data obtained from the two techniques used have been identi-
fied and classified by the machine learning models suggested. Furthermore, for prac-
tical usefulness and for main scientific concerns, the BP algorithm model can be 
compared with notes of DPV and SQWV data. For instance, researchers can rapidly 
classify the overlapping peaks when existing in a voltammogram in a mixed other 
heavy metals analyte such as Hg, Cd, and Al. By the data collection of each vol-
tammogram peak, peak height, peak area, peak potential, etc., the classified deci-
sion can be obtained for each different concentration prepared and used for heavy 
metal in a way as to provide the machine learning models used all these information 
to be able to classify with high accuracy [35]. Even though training of maximum 
machine learning models (such as the models in this study) may need many cal-
culations, strongly and high-cost hardware, the mathematical calculations concen-
tration of the model made by the area demands will be greatly decreased. For the 
usage in the field, we improved a systematic model application to request the singu-
lar analyte model. Further than feasible applied efficiency, classification of machine 
learning models can be contrasted with scientist’s comments of the electrochemical 
pulse voltammetry methods. For instance, the oxidation peak matching to 0.25 of 
the heavy metal sample was easily detected and readable by the researcher to Fe+2 . 
Nevertheless, some oxidation peaks 0.25 V vs. Ag/AgCl were not simply identified 
by the models scan, especially for the DPV method, whereas the SQWV peaks were 
more readable and identified due to the more additional information details given 
from this electrochemical technique to the algorithm model. Nevertheless, by using 
a trained model, the scheme achieves readings of DPV and SQWV scans on inex-
pensive processors and computers, which can be attached with our cheap convenient 
potentiostat voltage. In addition, the most presenting models have been applied in 
the intranet applications and hence can be easily applied in current electrochemical 
experiments.

5  Conclusion

This study shows the successful use of different machine learning models to clas-
sify the electrochemical data obtained from DPV and SQWV data. The applications 
of both pulse electrochemical techniques DVP and SQWV for the oxidation of iron 
II in potassium ferrocyanide model solution using carbon graphite electrodes were 
successfully studied using phosphate buffer, pH 7.0 solution. The diversity of those 
voltammetric techniques makes it favorable in overcoming many drawbacks of other 
analytical methods. The voltammograms obtained were affected by the concentra-
tions of potassium ferrocyanide solutions, as shown in the occurrence of iron II, 
which oxidized to ferric ions. By involving machine learning in the study, six differ-
ent dataset scenarios were classified with the popular machine learning algorithms 

(3)Fe(CN)−4
6

�→ Fe(CN)−3
6

+ −e
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Back Propagation Neural Networks, K-Nearest Neighbors, Logistic Regression, 
Gaussian Naive Bayes, K-Means clustering, and Random Forest. Used datasets used 
are all SQWV, forward scan of SQWV, backward scan of SQWV, net of SQWV, and 
DPV. With our test size iterating system all of the used algorithms were iterated on 
every dataset individually and their highest results were examined. When we looked 
at the results in general, we saw that mostly 0.2 test size was the most effective ratio 
which means the dataset was split as 80% for training and 20% for testing. Results 
for K-Means were significantly lower than the other algorithms with a maximum of 
56% with the dataset obtained by DPV. For other algorithms, the results were over 
70% and higher results were obtained from the backward scan of SQWV data and 
all SQWV data. Random Forest algorithm outperformed all other algorithms and 
had 100% accuracy both on the backward scan of SQWV data and all SQWV data.

The amount of data will be increased so that deep learning models with convo-
lutional neural networks will be generalized and tested, and cross-validation tests as 
well as an ablation study will be performed as future work.
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