
Probabilistic Coverage in Mobile Directional Sensor
Networks: A Game Theoretical Approach
Elham Golrasan 

Malek-Ashtar University of Technology
Marzieh Varposhti  (  varposhti@aut.ac.ir )

Shahrekord university

Research Article

Keywords: directional sensor networks, mobile sensor networks, area coverage, probabilistic sensing
model, payoff-based learning algorithm

Posted Date: October 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2109601/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-2109601/v1
mailto:varposhti@aut.ac.ir
https://doi.org/10.21203/rs.3.rs-2109601/v1
https://creativecommons.org/licenses/by/4.0/


Probabilistic Coverage in Mobile Directional Sensor Networks: A Game 

Theoretical Approach 

Elham Golrasan1, Marzieh Varposhti2 

 
1- Faculty of Electrical and Computer Engineering, Malek-Ashtar University of Technology, Iran, Email: 

egolrasan@yahoo.com 
2- Corresponding Author, Department of Computer Engineering, Shahrekord university, Shahrekord, Iran, Email: 

mvarposhti@sku.ac.ir, Tel: +983832324401 

 

Abstract 

Directional sensor nodes deployment is indispensable to a large number of applications including Internet 

of Things applications. Nowadays, with the recent advances in robotic technology, directional sensor nodes 

mounted on mobile robots can move toward the appropriate locations. Considering the probabilistic sensing 

model along with the mobility and motility of directional sensor nodes, area coverage in such a network is 

more complicated than in a static sensor network. In this paper, we investigate the problem of self-

deployment and working direction adjustment in directional sensor networks in order to maximize the 

covered area. Considering the tradeoff between energy consumption and coverage quality, we formulate 

this problem as a finite strategic game. Then, we present a distributed payoff-based learning algorithm to 

achieve Nash equilibrium. The simulation results demonstrate the performance of the proposed algorithm 

and its superiority over previous approaches in terms of increasing the area coverage.  

Keywords: directional sensor networks, mobile sensor networks, area coverage, probabilistic sensing 

model, payoff-based learning algorithm. 

1. Introduction 

Mobile directional sensor networks (MDSNs) consist of directional sensor nodes which can move and rotate 

on their own and interact with the physical environment. A directional sensor, such as a video sensor, 

infrared sensor, and ultrasound sensor, is capable of adjusting its working direction and sensing an angular 

area at each unit of time. Such networks enable a variety of applications in industry and also our daily life, 

i.e. in IoT, sensor nodes collect information from the environment and send it to the sink through the 

wireless network [1]. Therefore, area coverage is an important and challenging problem due to the  energy 

constraint of sensor nodes [2-4].  

Most of the studies on area coverage problems in DSNs adopted the binary sensing model in which the 

sensing region is a deterministic sector that is a coarse approximation to sensing region in reality. In this 

model, an event is detectable by the sensor if and only if it falls into its covered sector. Whereas in reality 
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the probability of event detection decreases as its distance from the sensor increases, so the sensing model 

of a sensor node is practically probabilistic [5-7]. In [6], the authors have shown through experimental study 

that the normal distribution is reasonable for modeling the sensing range of sensor nodes. The authors in 

[7] have considered an exponentially reducible sensing range for sensor nodes. In this model, the sensing 

capacity is exponentially reduced by increasing the distance between the points and the sensor nodes.  

In this paper, we propose two algorithms, namely binary coverage based on game theory (BCGT) and 

probabilistic coverage based on game theory (PCGT). We model the area coverage problem as a finite 

strategic game in which the utility function is designed to capture the tradeoff between the amount of 

covered area and the energy consumption due to movement and rotation. Then, we propose a learning 

algorithm to solve this problem based on the log-linear learning algorithm proposed in [8]. It is proved that 

in this algorithm each sensor as a player finally selects the action profile that maximizes the total payoff. 

To the best of our knowledge, this is the first work that employs probabilistic sensing model for mobile 

directional sensor networks. The contributions of this work are as follows: 

• We formulate the problem of determining the direction and location of directional sensor nodes in 

order to maximize coverage for both binary and probabilistic sensing models as a multiplayer 

repeated game in which each sensor as a player try to maximize its utility function. The utility 

function is designed to capture the tradeoff between the worth of covered area and the energy 

consumption due to movement and rotation. 

• Then we prove that the proposed game is an exact potential game and its potential function is 

equivalent to covering the area with the least energy consumption to maximize network lifetime. 

• We propose a variant of log-linear algorithm called binary log-linear learning algorithm (BLLL) 

that converge to pure Nash equilibrium. 

The performance of our proposed algorithm is evaluated via simulations and compared to previous 

approaches. The simulation results show that our proposed algorithm significantly improves the 

sensing coverage performance. 

The paper is organized as follows: Section 2 briefly reviews some recent research related to solving the 

sensor coverage problem. In section 3 we introduce some preliminary game theory knowledge. In section 

4, first, the proposed approach is formulated for both binary and probabilistic sensing models based on 

game theory. Then, the binary log-linear learning algorithm is introduced to converge the game into an 

efficient action profile. In section 5, simulation results are presented through several experiments. Finally, 

we conclude the paper in section 6. 

2. Related Works 



In this section, we briefly review the research work on coverage in wireless sensor networks. The coverage 

problem is usually divided into three categories: area coverage, point coverage, and barrier coverage [9-

11]. The purpose of area coverage is to cover the whole area. Next, point coverage is the coverage for Points 

of Interest (PoI). Finally, the barrier coverage guarantees that every movement that crosses a barrier of 

sensors will be detected.  

Habibi et al. [12] proposed a distributed Voroni-based strategy to maximize the sensing coverage in a 

mobile sensor network. In this algorithm, each sensor moves through a gradient-based nonlinear 

optimization approach and places inside its Voroni cell. 

For the first time, Ai et al. [13] studied the problem of covering targets with directional sensors. They 

formulated the problem as maximum coverage with minimum number of sensors and proved that it is NP-

complete. Therefore, several greedy heuristic methods are presented to solve the problem. Here, the main 

idea is the selection of sensing sectors, which cover the maximum number of targets. 

Mohamadi et al [14] proposed two Greedy-based algorithms for target coverage in directional sensor 

networks with adjustable sensing range. They used both scheduling and adjusting sensing range techniques 

to form cover sets to cover all targets in the network and maximize network lifetime. 

In [15], the authors provided a GA-based algorithm to solve the MNLAR (Maximum Network Lifetime 

with Adjustable Ranges) problem. GA-based algorithm forms cover sets of directional sensors with 

appropriate sensing ranges. 

Yu et al. [11] addressed the problem of K-coverage in wireless sensor networks with both centralized and 

distributed protocols. Protocols introduced a new concept of Coverage Contribution Area (CCA). Based on 

this concept, a lower sensor spatial density was provided. In addition, the protocols considered the 

remaining energies of the sensors. Therefore, the proposed protocols prolonged the network lifetime. 

In [16], a Probabilistic coverage preserving protocol (CPP) is designed to achieve energy efficiency and to 

ensure a certain coverage rate. The purpose of the proposed protocol is to select the minimum number of 

probabilistic sensors to reduce energy consumption. 

A graph model named Cover Adjacent Net (CA-Net) was proposed by Weng et al [10] to simplify the 

problem of k-barrier coverage while reducing the complexity of computation. Based on the developed CA-

Net, two distributed algorithms, called BCA and TOBA, were presented for the purpose of energy balance 

and maximum network lifetime. 

Mostafaei et al. [9] Proposed a distributed boundary surveillance (DBS) algorithm to cover the boundary 

and reduce energy consumption of sensors. DBS selects the minimum number of sensors to increase the 

network lifetime using learning automata. 

Li et al. [17] Proposed the Voronoi-based distribution approximation (VDA) algorithm. In the proposed 

algorithm, in order to maximize the coverage of the desired area, the most Voronoi edges are covered. In 



[18], the authors proposed the distributed Voronoi-based self-redeployment algorithm (DVSA), aiming to 

improve the overall field coverage of mobile directional sensor networks. This paper utilized the 

geometrical features of Voronoi diagram and the advantages of a distributed algorithm. 

Recently, game theoretic approaches have been taken into consideration to solve coverage problem in 

WSNs [19-22]. In [23], the authors have proposed an algorithm based on game theory for the problem of 

maximizing coverage and reducing energy consumption. They have shown that the desired solution in this 

model is a NE strategy profile. In [24] the authors have proposed a game-theoretical complete coverage 

algorithm. This algorithm is used to ensure whole network coverage mainly through adjusting the covering 

range of nodes and controlling the network redundancy. The game theory control method has many 

advantages including robustness to failures and environmental disturbances, reducing communication 

requirements and improving scalability. The primary goal of game theory-based approaches is to design 

rules that guarantee the existence and efficiency of a pure Nash equilibrium [25]. Proper utility functions 

and reinforcement learning methods are designed for the coverage game of WSNs in [26, 27]. In these 

algorithms each player must have access to the utility values of its alternative actions. In [28] coverage of 

an unknown environment was investigated by robots. A state-based potential game was designed to control 

the robots’ actions. The reward of sensing the areas and the penalty of energy consumption due to the 

sensors’ movement were considered in the utility function. The sensors updated their action profile using 

the Binary Log-Linear Learning (BLLL) [29] in which the sensors must know an estimate of the outcome 

of their future actions. Hence, an estimation algorithm was used to assist the sensors in predicting the 

probability of targets in unknown areas. An improved EM algorithm was introduced to estimate the number 

of targets and other probability distribution parameters. In this study, we propose a game theory based 

algorithm to optimally cover targets and reduce energy consumption. 

3. Background in Game Theory 

In this section, we consider a brief review of the concepts in game theory. More information about game 

theory and learning in game theory are mentioned in [30, 31]. 

A strategic game 𝐺 ∶= 〈𝑉. 𝐴. 𝑈〉 has three components: A set of players, V, an action set 𝐴 = 𝐴1 ×⋯𝐴𝑛, 

where 𝐴𝑖 is the finite action set of player i, and the collection of utility functions U, where the action profile 

models the benefit of player ith over action profiles. 

For an action profile 𝑎 = (𝑎1. 𝑎2. ⋯ . 𝑎𝑛) ∈ 𝐴, 𝑎−𝑖 = {𝑎1.⋯ . 𝑎𝑖−1. 𝑎𝑖+1.⋯ . 𝑎𝑛} denotes the action profile 

of all players other than player i. Therefore, the action profile a can be represented as (𝑎𝑖. 𝑎−𝑖). Similarly, 

the utility function 𝑈𝑖(𝑎) is represented by 𝑈𝑖(𝑎𝑖. 𝑎−𝑖). The concept of (pure) Nash equilibrium (NE) is the 

most important one in game theory. Consider the strategic game G, an action profile 𝑎∗ ∈ 𝐴 is a pure Nash 



equilibrium if for all players 𝑖 ∈ 𝑁 and for all 𝑎𝑖 ∈ 𝐴𝑖 it holds that 𝑢𝑖(𝑎∗) ≥ 𝑢𝑖(𝑎𝑖 . 𝑎−𝑖∗ ). Simply speaking, 

Nash equilibrium is a set of strategies in which each player does not benefit from one-sided change. 

The strategic game G is an exact potential game [32] with potential function 𝜙: 𝐴 → 𝑅 if for every player 𝑖 ∈ 𝑁, for every 𝑎−𝑖 ∈ 𝐴−𝑖 and for every 𝑎𝑖 . 𝑎𝑖′ ∈ 𝐴𝑖, 𝜙(𝑎𝑖 . 𝑎−𝑖) − 𝜙(𝑎𝑖′. 𝑎−𝑖) = 𝑢𝑖(𝑎𝑖 . 𝑎−𝑖) − 𝑢𝑖(𝑎𝑖′. 𝑎−𝑖) (1) 

It is proved that any action profile that maximizes the potential function is a Nash equilibrium [33].  

In some cases, the actions available for player i is restricted to a subset of 𝐴𝑖, denoted by 𝐹𝑖(𝑎𝑖. 𝑎−𝑖) ⊆ 𝐴𝑖, 
which is the set of feasible actions of player i when the action profile is (𝑎𝑖. 𝑎−𝑖). The introduction of 𝐹 

leads to the notion of restricted strategic game 𝐺𝑟𝑒𝑠 ≔ 〈𝑉. 𝐴. 𝑈. 𝐹〉. 
An action profile 𝑎∗ is a restricted NE of the restricted strategic game 𝐺𝑟𝑒𝑠 if ∀𝑖 ∈ 𝑉 and ∀𝑎𝑖 ∈ 𝐹𝑖(𝑎𝑖∗. 𝑎−𝑖∗ ), 
it holds that 𝑢𝑖(𝑎∗) ≥ 𝑢𝑖(𝑎𝑖. 𝑎−𝑖∗ ). 

The game 𝐺𝑟𝑒𝑠  is a restricted exact potential game with potential function 𝜙(a) if for every player i, for 

every 𝑎−𝑖 ∈ 𝐴−𝑖, and for every 𝑎𝑖 ∈ 𝐴𝑖,, Eq. (1) holds for every 𝑎𝑖′ ∈ 𝐹𝑖(𝑎𝑖 . 𝑎−𝑖).  
The existence of NE in an exact potential game is guaranteed [33]. It then follows that any restricted exact 

potential game has at least one restricted NE. 

4. The Proposed Algorithm 

in this section, we propose a new game theory-based algorithm for both binary and probabilistic sensing 

models in mobile directional sensor networks in order to maximize the area coverage. We prove that the 

proposed method is a potential game and converges to Nash equilibrium using a distributed learning 

algorithm. 

4.1. Problem Formulation 

Suppose that N mobile directional sensor nodes are randomly deployed in a two-dimensional mission space. 

Figure 1 shows the binary sensing area of a directional sensor denoted by (𝑆. 𝑅. 𝜃𝑓 . 𝜃𝑠. �⃗�). S is the location 

of the sensor node on a two-dimensional plane. R represents the maximum sensing radius. The horizontal 

orientation of the sensor and angle of view are indicated by 𝜃𝑠 ∈ (0.2𝜋] and 𝜃𝑓, respectively. �⃗� is a unit 

vector that defines the orientation of the directional sensor. Let q be a point in the area. Point q is covered 

by sensor S if: ‖𝑑‖2 ≤ 𝑅 (2) 

𝜑 = cos−1 𝑑 ∙ �⃗�‖𝑑‖2 ≤ 𝜃𝑓2  .       0 ≤ 𝜑 ≤ 𝜋 
(3) 



where 𝑑 is the distance vector from sensor S to q. The first condition indicates whether q is within the 

sensing range of S, and the second one examines whether q is in the sensor’s angle of view. 

 

Figure 1. a Binary sensing model 

We assume that communication range of each sensor (Rc) is at least twice the sensing range (𝑅𝑐 ≥ 2𝑅). 

Thus, each sensor can transmit its state information to its neighbors. 

The two-dimensional mission space is discretized into a squared lattice. Each square of the lattice is 1 1  

and is represented by the coordinate of its center 𝑞 = (𝑞𝑥 . 𝑞𝑦). The coordinates of the center of all squares 

are determined by 𝑄. The location of sensor ith is denoted by 𝑙𝑖 ∈ 𝑄,  𝑖 = 1.… .𝑁. Sensors can move and 

rotate in the mission space. The direction of sensor ith is indicated by 𝜃𝑖 ∈ (0.2𝜋]. The motion of each 

sensor is limited to adjacent square lattices in four directions. The full area coverage is provided if the center 

of all the squares is covered by sensors.  

Under these assumptions, the problem is to find the appropriate location and orientation of each sensor to 

maximize the area coverage and minimize energy consumption. We model this problem as an optimization 

problem. For this purpose, we define several notations as follows: 

− 𝑛𝑞: the number of directional sensors that cover 𝑞 ∈ 𝑄. 

− 𝑥𝑛𝑖𝜃𝑠: a binary variable that indicates whether sensor n is placed at location i with orientation 𝜃𝑠. 
− 𝑦𝑖𝜃𝑠𝑞: a binary variable that indicates whether a sensor at location i with orientation 𝜃𝑠 covers 

control point q. 

− 𝐸𝑗𝑚𝑜𝑣: the energy consumed due to movement. 

− 𝐸𝑗𝑟𝑜𝑡𝑎𝑡𝑒: the energy consumed due to rotation. 

The goal is to maximize the coverage and reduce energy consumption due to the movement and rotation of 

sensor nodes. To this end, we define the objective function as follows: 



𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑1𝑗𝑛𝑞
𝑗=1𝑞∈𝑄𝑛𝑞≠0

−∑(𝐸𝑖𝑚𝑜𝑣𝑒 + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒)𝑁
𝑖=1  

(4) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑∑𝑥𝑛𝑖𝜃𝑠𝜃𝑠𝑖 = 1.   ∀𝑛 (5) 

                        𝑛𝑞 =∑∑∑𝑥𝑛𝑖𝜃𝑠𝑦𝑖𝜃𝑠𝑞𝜃𝑠𝑖𝑛 .   ∀𝑞 (6) 

                       𝑥𝑛𝑖𝜃𝑠 . 𝑦𝑖𝜃𝑠𝑞 ∈ {0.1} (7) 

Equation (5) ensures that only one working direction is assigned to each sensor node. 𝑛𝑞 is calculated by 

(6).  

In the following subsections, we formulate the utility function for both binary and probabilistic sensor 

nodes. 

4.2. Coverage Problem as an Exact Potential Game 

In our coverage problem, we are concerned with devising motion and orientation laws for repositioning of 

a finite number of mobile directional sensor nodes so that their converged positions in the limit correspond 

to a deployment with desirable coverage performance. In this section, we present our formulation of this 

problem in terms of a restricted exact potential game : , , ,mc mc mcG V A U F= . In the following, we 

describe the game components in more detail: 

• Player set V: The set of players consists of the N sensors in the mission space, denoted by 𝑉 ={𝑠1. 𝑠2. … 𝑠𝑁}   
• Action set A: The action of a player i is shown by 𝑎𝑖 = (𝑙𝑖. 𝜃𝑖) ∈ 𝐴𝑖, where 𝐴𝑖 is the available action 

set for sensor 𝑠𝑖. The joint action set across all players is 
1

N

i
i

A
=

= A .   

• Feasible action set Fmc: The feasible action for each agent is determined based on a motion vector 

in any four cardinal directions; more formally, we have 𝐹𝑚𝑐 = ∏ ⋃ 𝐹(𝑎𝑖)𝑎𝑖∈𝐴𝑁𝑖=1 , where F(ai) is 

the set of feasible locations that a sensor in location ai can move to, with any direction 𝜃𝑖. 
4.2.1 Utility Function Using Binary Sensing Model 

In this section, the directional sensors are considered as binary sensing models. As depicted in figure 1, the 

binary sensing model for sensor 𝑠𝑖 is defined as the following: 



𝐶𝑞(𝑎𝑖) = {0. (𝑑 > 𝑅) ∨ (𝜑 > 𝜃𝑓2 )1. (𝑑 ≤ 𝑅) ∧ (𝜑 ≤ 𝜃𝑓2 ) 
(8) 

Let 𝐷(𝑎𝑖) be a set of points that 𝑠𝑖 can cover. For each 𝑞 ∈ 𝑄, 𝑛𝑞(𝑎) represents the number of sensors that 

observe the point q. We define a utility function for each sensor 𝑠𝑖 as the following: ∑ 1𝑛𝑞(𝑎)𝑞∈𝐷(𝑎𝑖)  
(9) 

Due to energy constraints in sensor networks, we consider energy consumption in the design of the utility 

function. The energy consumption of sensor 𝑠𝑖 due to movement is defined as follows: 𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) = 𝐾𝑖(|𝑙𝑖 − 𝑙𝑖′|)  (10) 

Where 𝐾𝑖 > 0 is a coefficient, 𝑙𝑖 and 𝑙𝑖′ refer to the present and previous sensor locations, respectively. The 

energy consumption of sensor 𝑠𝑖 due to rotation is defined as follows: 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖) = 𝐾′𝑖(|𝜃𝑖−𝜃𝑖′2𝜋 |)  (11) 

Where 𝐾′𝑖 > 0 is a coefficient, 𝜃𝑖 and 𝜃𝑖′ refer to the present and previous sensor orientations, respectively. 

Therefore, the utility function of the sensor 𝑠𝑖 indicates the contribution of that sensor to the area coverage 

and energy consumption due to movement and rotation. We consider the utility function for sensor 𝑠𝑖 as 

the following: 𝑢𝑖(𝑎) = ∑ 1𝑛𝑞(𝑎)𝑞∈𝐹(𝑎𝑖) − 𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) − 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖) (12) 

The following lemma shows that the defined game is a potential game. 

Lemma 1. The strategic game : , , ,mc mc mcG V A U F= is an exact potential game with the following 

potential function: 

𝜙(𝑎) = ∑ ∑ 1𝑗𝑛𝑞(𝑎)
𝑗=1𝑞∈𝑄𝑛𝑞≠0

−∑(𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖))𝑁
𝑖=1  

(13) 

Proof: 

As shown in [32], a potential game has to satisfy the following condition. 

For any agent 𝑖 = 1.… .𝑁 and two consecutive action profiles 𝑎𝑖 = (𝑙𝑖. 𝜃𝑖) and 𝑎′𝑖 = (𝑙′𝑖. 𝜃′𝑖), equation (1) 

is established. Define 𝜂1 = 𝐷(𝑎𝑖)\𝐷(𝑎′𝑖) and 𝜂2 = 𝐷(𝑎′𝑖)\𝐷(𝑎𝑖). Since for each 𝑞 ∈ 𝜂1, 𝑛𝑞(𝑎) =𝑛𝑞(𝑎′) + 1 and for each 𝑞 ∈ 𝜂2, 𝑛𝑞(𝑎′) = 𝑛𝑞(𝑎) + 1. Thus we have: 

 

 



Figure 2. a Probabilistic sensing model 𝜙(𝑎𝑖. 𝑎−𝑖) − 𝜙(𝑎′𝑖. 𝑎−𝑖)
= ∑ ( ∑ 1𝑗𝑛𝑞(𝑎)

𝑗=1𝑞∈𝜂1 − ∑ 1𝑗𝑛𝑞(𝑎′)
𝑗=1 ) + ∑(− ∑ 1𝑗𝑛𝑞(𝑎)

𝑗=1𝑞∈𝜂2 + ∑ 1𝑗𝑛𝑞(𝑎′)
𝑗=1 )

− (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖)) + (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎′𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎′𝑖))= ∑ 1𝑛𝑞(𝑎)𝑞∈𝜂1 − ∑ 1𝑛𝑞(𝑎′)𝑞∈𝜂2 − (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖)) + (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎′𝑖)+ 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎′𝑖)) = 𝑢𝑖(𝑎𝑖 . 𝑎−𝑖) − 𝑢𝑖(𝑎′𝑖 . 𝑎−𝑖) 
 

(14) 

4.2.2. Utility Function Using Probabilistic Sensing Model 

In probabilistic sensing models, the probability of point detection is a reduction function of the sensing 

distance. As shown in figure 2, the probabilistic sensing area in DSNs can be denoted by (𝑆. 𝑅. 𝑅𝑒 . 𝜃𝑓 . 𝜃𝑠. �⃗�). 
Similarly, S is the location coordinate on a two-dimensional plane, 𝑅𝑒 indicates the uncertain sensing range, 

and 𝑅 − 𝑅𝑒 specifies the maximum certain sensing range. The point q is probabilistically covered if the 

Euclidean distance d between 𝑞 and 𝑆 is in the range (𝑅 − 𝑅𝑒 . 𝑅 + 𝑅𝑒). The horizontal orientation of the 

sensor and angle of view are indicated by 𝜃𝑠 ∈ (0.2𝜋] and 𝜃𝑓, respectively. �⃗� is a unit vector and defines 

the orientation of the directional sensor. In DSNs, the probabilistic sensing model for sensor 𝑠𝑖 is described 

as follows: 



𝐶𝑞(𝑎𝑖) =
{  
  0. (𝑑 > 𝑅 + 𝑅𝑒) ∨ (𝜑 > 𝜃𝑓2 )𝑒−𝜆[𝑑−(𝑅−𝑅𝑒)]𝛽 (𝑅 − 𝑅𝑒 < 𝑑 ≤ 𝑅 + 𝑅𝑒) ∧ (𝜑 ≤ 𝜃𝑓2 )1. (𝑑 ≤ 𝑅 − 𝑅𝑒) ∧ (𝜑 ≤ 𝜃𝑓2 )

 

 

(15) 

Where 𝜆 and 𝛽 are parameters that measure the probability of point detection and vary in different types of 

sensors. 

Definition (Probabilistic Coverage): The desired area is covered by n sensors with probability Pc, if for 

each point q in the area, the following equation is established. 𝑃(𝑞) = 1 −∏ (1 − 𝐶𝑞(𝑎𝑖))𝑛𝑖=1 ≥ 𝑃𝑐 (16) 

According to Equation (15), 𝐶𝑞(𝑎𝑖) is the probability of detecting the point q by the sensor 𝑠𝑖. (1 − 𝐶𝑞(𝑎𝑖)) 
is the probability that the point q is not covered by the sensor 𝑠𝑖. Since the probabilistic coverage of a point 

by a sensor node is independent of other sensors, the term ∏ (1 − 𝐶𝑞(𝑎𝑖))𝑛𝑖=1  is the probability that the point 

q is not be covered by any of the sensors. Hence, the expression 1 − ∏ (1 − 𝐶𝑞(𝑎𝑖))𝑛𝑖=1  is the probability 

that the point q be covered by at least one sensor. 

In this problem, the goal is to move and rotate the directional sensor nodes in a way that the coverage 

probability of each point 𝑞 ∈ 𝑄 is greater than or equal to Pc. We define the utility function of player i in 

the probabilistic sensing model as follows: 𝑢𝑖(𝑎) = ∑ 𝑤𝑞(𝑎𝑖)𝑞∈𝐹(𝑎𝑖) − 𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) − 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖) (17) 

Where 𝑤𝑞(𝑎𝑖) is the contribution of directional sensor 𝑠𝑖 in detecting the point q, which is defined as 

follows: 

𝑤𝑞(𝑎𝑖) = { 𝐶𝑞(𝑎𝑖)∑ 𝐶𝑞(𝑎𝑘)𝑛𝑞(𝑎)𝑘=1 . 𝑖𝑓 𝑃(𝑞) ≥ 𝑃𝑐0. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

(18) 

𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) and 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖) are defined in (10) and (11). The following lemma shows that our defined game 

is a potential game. 

Lemma 2. The strategic game : , , ,mc mc mcG V A U F= is an exact potential game with the following 

potential function: 



𝜙(𝑎) = ∑ ∑ 𝐶𝑞(𝑎𝑗)∑ 𝐶𝑞(𝑎𝑙)𝑗𝑙=1
𝑛𝑞(𝑎)
𝑗=1𝑞∈𝑄𝑃(𝑞)≥𝑃𝑐

−∑(𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖))𝑁
𝑖=1  

(19) 

Proof: 

For any agent 𝑖 = 1.… .𝑁 and two consecutive action profiles 𝑎𝑖 = (𝑙𝑖. 𝜃𝑖) and 𝑎′𝑖 = (𝑙′𝑖. 𝜃′𝑖), (1) is 

established. Define 𝜂1 = 𝐷(𝑎𝑖)\𝐷(𝑎′𝑖) and 𝜂2 = 𝐷(𝑎′𝑖)\𝐷(𝑎𝑖). ). Since for each 𝑞 ∈ 𝜂1, 𝑛𝑞(𝑎) =𝑛𝑞(𝑎′) + 1 and for each 𝑞 ∈ 𝜂2, 𝑛𝑞(𝑎′) = 𝑛𝑞(𝑎) + 1. Thus we have: 𝜙(𝑎𝑖. 𝑎−𝑖) − 𝜙(𝑎′𝑖. 𝑎−𝑖)
= ∑ ( ∑ 𝐶𝑞(𝑎𝑗)∑ 𝐶𝑞(𝑎𝑙)𝑗𝑙=1

𝑛𝑞(𝑎)
𝑗=1𝑞∈𝜂1𝑃(𝑞)≥𝑃𝑐

− ∑ 𝐶𝑞(𝑎𝑗)∑ 𝐶𝑞(𝑎𝑙)𝑗𝑙=1
𝑛𝑞(𝑎′)
𝑗=1 )

+ ∑ (− ∑ 𝐶𝑞(𝑎𝑗)∑ 𝐶𝑞(𝑎𝑙)𝑗𝑙=1
𝑛𝑞(𝑎)
𝑗=1𝑞∈𝜂2𝑃(𝑞)≥𝑃𝑐

+ ∑ 𝐶𝑞(𝑎𝑗)∑ 𝐶𝑞(𝑎𝑙)𝑗𝑙=1
𝑛𝑞(𝑎′)
𝑗=1 )

− (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖)) + (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎′𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎′𝑖))= ∑ 𝐶𝑞(𝑎𝑖)∑ 𝐶𝑞(𝑎𝑙)𝑛𝑞(𝑎)𝑙=1𝑞∈𝜂1𝑃(𝑞)≥𝑃𝑐
− ∑ 𝐶𝑞(𝑎′𝑖)∑ 𝐶𝑞(𝑎𝑙)𝑛𝑞(𝑎′)𝑙=1𝑞∈𝜂2𝑃(𝑞)≥𝑃𝑐

− (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎𝑖))
+ (𝐸𝑖𝑚𝑜𝑣𝑒(𝑎′𝑖) + 𝐸𝑖𝑟𝑜𝑡𝑎𝑡𝑒(𝑎′𝑖)) = 𝑢𝑖(𝑎𝑖 . 𝑎−𝑖) − 𝑢𝑖(𝑎′𝑖. 𝑎−𝑖) 

 

(20) 

4.3. Distributed Learning Algorithm 

In the game theoretical formulation, the sensor nodes play the coverage game 𝐺 repeatedly starting from a 

desired initial configuration. At each time step 𝑡 ∈ {0,1,2.… }, one senor 𝑠𝑖 is randomly selected and plays 

an action 𝑎𝑖(𝑡) While other sensors repeat their actions, i.e. 𝑎−𝑖(𝑡) = 𝑎−𝑖(𝑡 − 1). The role of the learning 

algorithm is to provide an action update rule so that the sensor actions converge to a Nash equilibrium. 

In order to maximize potential function and achieve Nash equilibrium, log-linear learning is presented in 

[34], where only one player updates its action at each iteration. In log-linear learning, sensors can select 

suboptimal actions with low probability. Therefore, sensors are allowed to explore, and this plays an 

important role for sensors in finding optimal actions and achieving Nash equilibrium. Log-linear learning 

assumes that players have a constant action set. In general, convergence to the potential maximizer is not 

guaranteed when the practical actions available to a player depend on the player's state, i.e. each player is 

allowed to choose its next action 𝑎𝑖(𝑡 + 1) from the set of actions 𝐴𝑖𝑐(𝑎𝑖(𝑡)) that depends on its current 

action 𝑎𝑖(𝑡). A modified version of log-linear learning called binary log-linear learning was introduced for 



the problem of constrained action set in [29]. Binary log-linear learning can be used to converge to a set of 

potential maximizer action profiles if the constrained action sets meet the following two properties. 

Property 1 (Feasibility) For any player 𝑠𝑖 ∈ 𝑆 and any action pair 𝑎𝑖(0). 𝑎𝑖(𝑘) ∈ 𝐴𝑖, there exists a sequence 

of actions {𝑎𝑖(0). … . 𝑎𝑖(𝑘)} such that 𝑎𝑖(𝑡) ∈ 𝐴𝑖𝑐(𝑎𝑖(𝑡 − 1)) for all 𝑡 ∈ {1.2.… . 𝑘}. 
Property 2 (Reversibility) For any agent 𝑠𝑖 ∈ 𝑆 and any action pair 𝑎𝑖. 𝑎′𝑖 ∈ 𝐴𝑖, 𝑎′𝑖 ∈ 𝐴𝑖𝑐(𝑎𝑖) ⟷ 𝑎𝑖 ∈𝐴𝑖𝑐(𝑎′𝑖). 
We can easily show that the above properties are met according to the problem settings. In binary log-linear 

learning, only one sensor is randomly selected at each time step. The selected sensor, assuming the other 

sensors are stationary, selects a trial action randomly in its constrained action set. The sensor receives a 

hypothetical utility by playing the trial action and updates its action depending on the current utility and 

hypothetical utility. The general binary log-linear learning algorithm presented in [29] is as follows: 

BLLL Algorithm 

1: Initialization: 𝑡 = 0. 𝑇 𝜖 R+ 𝑠𝑚𝑎𝑙𝑙. 𝑎(0) 𝜖 𝐴  
2: while (1) 

3:Pick a random 𝑝𝑖  𝜖 𝑃. 

4:        Pick a random  𝑎𝑖′ ∈ 𝐴𝑖𝑐(𝑎𝑖). 
5:        𝑎𝑗(𝑡 + 1) = 𝑎𝑗(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑗 ≠ 𝑝𝑖. 
6:        𝛼 = 𝑒𝑈𝑖(𝑎(𝑡))/𝑇. 

7:        𝛽 = 𝑒𝑈𝑖(𝑎𝑖′.𝑎−𝑖(𝑡))/𝑇. 

8:        𝑎𝑖(𝑡 + 1) = {𝑎𝑖(𝑡) 𝑤∙𝑝⋅  𝛼𝛼+𝛽 .𝑎𝑖′ 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒∙ 
9:        𝑡 = 𝑡 + 1. 

10: end while 

5. Simulation Results 

In this section we present the simulation results of the proposed algorithm. To evaluate the performance of 

the proposed algorithms, several experiments have been performed in MATLAB. The simulation results 

are compared with the results of VDA [17], DVSA [18] and RND algorithms. RND means the initial value 

after the random deployment of sensors (with random position and random direction). The algorithms are 

compared with respect to coverage. We consider the fraction of the area which is covered by the deployed 

sensors as the coverage criterion. 

Experiment 1. In the first experiment, we consider an example of applying BCGT in a mobile directional 

sensor network. We consider a 15×15 square in which 20 directional sensors are located in the middle of 



the area. Sensing range of each sensor is 3, and angle of view of each sensor is considered as 90 degrees. 

We have chosen 𝑇 = 0 ∙ 1 in the learning algorithm. Figure 3 shows the position and orientation of sensor 

nodes at iteration 2000. 

The evaluation of the potential function in each iteration is shown in figure 4. This figure shows that sensor 

nodes try to increase their potential function, which corresponds to better location and orientation 

exploration. It is now necessary to show that maximizing the potential function leads to maximizing the 

coverage of the whole area. Figure 5 displays that the area coverage is increasing during the time. 

 

Figure 3. Final configuration of the network at iteration 2000 of BCGT algorithm 

 

Figure 4. Average potential function of sensor nodes during the time 



 

Figure 5. The percentage of covered area during the time 

Experiment 2. In this experiment, we compare the performance of the proposed algorithm with RND, VDA 

and DVSA algorithms in terms of coverage criteria. The directional sensor nodes are randomly placed in 

the 500 × 500 square areas. The experiment is performed for 𝑁 = 100. 200. 300. 400 𝑎𝑛𝑑 500 sensors. 

The sensing range and angle of view of the sensors are fixed and equal to 50 and 120°, respectively. The 

comparison of the proposed algorithm BCGT with the existing deployment algorithms is shown in figure 

6. As shown in figure 6, BCGT performance is better than RND, VDA and DVSA in terms of coverage 

criteria. Figure 7 compares the behavior of BCGT with existing algorithms in terms of coverage criteria for 

setting parameters as 𝑁 = 200. 𝑅 = 50 𝑎𝑛𝑑 𝜃𝑓 = 60°. 90°. 120°. 180° 𝑎𝑛𝑑 240° . According to Fig. 7, the 

BCGT again performs better than existing algorithms. From the comparisons, we conclude that the 

proposed BCGT performs very well under different number of sensors and angles of view. 



 

Figure 6. Comparison of BCGT with existing deployment algorithms in terms of coverage (𝑵 = 𝟏𝟎𝟎~𝟓𝟎𝟎. 𝒓 =𝟓𝟎 𝒂𝒏𝒅 𝜽𝒇 = 𝟏𝟐𝟎𝟎 ) 

 

Figure 7. Comparison of BCGT with existing deployment algorithms in terms of coverage (𝑵 = 𝟐𝟎𝟎. 𝒓 = 𝟓𝟎 𝒂𝒏𝒅 𝜽𝒇 =𝟔𝟎𝟎~𝟐𝟒𝟎𝟎 ) 
Experiment 3. In order to establish the probabilistic coverage using the proposed PCGT algorithm, we 

consider a 500 × 500 area. The sensors are probabilistic with parameters (𝑅. 𝑅𝑒 . 𝜆. 𝛽), (50, 15, 0.9, 0.1) and 

90 ° viewing angle. We consider the confidence probabilities 𝑃𝑐 to be 80%, 85%, 90% and 95%. The sensors 

are randomly placed in the area. Figure 8 shows the simulation results of the PCGT algorithm for 𝑁 =



100~600 sensors and different confidence probabilities. The results show that at higher confidence 

probability 𝑃𝑐, more sensor nodes are needed to fully cover the area. 

 

Figure 8. Coverage rate vs. node density 

Experiment 4. In the proposed PCGT algorithm, λ and β are two important parameters in the utility function 

and determining the action of sensor nodes. Therefore, we select two sets of parameters to examine their 

effect on coverage and compare them with the BCGT algorithm. With the simulation results shown in figure 

9, it can be concluded that with increasing the number of sensors, the coverage percentage of the area 

increases. Similarly, with increasing λ and decreasing β, the probability of sensor coverage and 

consequently the coverage percentage of the area increases. 



 

Figure 9. Comparison of BCGT with PCGT for different parameters in terms of coverage 

6. Conclusion 

In this paper, we proposed a game theory-based algorithm for deploying and orienting a number of mobile 

directional sensor nodes for both binary and probabilistic sensing models to maximize area coverage. An 

appropriate utility function for each player is designed to improve coverage quality and reduce energy 

consumption. Then we proved that the designed game is a potential game and in order to converge the game 

and achieve Nash equilibrium, we used the binary log-linear learning algorithm. The simulation results 

showed the performance of our proposed algorithm over previous approaches in terms of coverage rate. 
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