
Energy-aware edge server placement using the
improved butter�y optimization algorithm
Ali Asghari (Asghari_ali@aut.ac.ir)

Shafagh Institute of Higher Education
Marjan Sayadi

Shafagh Institute of Higher Education
Hossein Azgomi

Islamic Azad University

Research Article

Keywords: Server placement, BOA, CRO, Energy, Latency

Posted Date: September 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2071513/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2071513/v1
mailto:Asghari_ali@aut.ac.ir
https://doi.org/10.21203/rs.3.rs-2071513/v1
https://creativecommons.org/licenses/by/4.0/

Energy-aware edge server placement using the improved butterfly

optimization algorithm

Ali Asghari (Corresponding Author)

Department of computer engineering, Shafagh Institute of Higher Education, Tonekabon, Iran

Asghari_ali@aut.ac.ir

Marjan Sayadi

Department of computer engineering, Shafagh Institute of Higher Education, Tonekabon, Iran

msayadi@shafagh.ac.ir

Hossein Azgomi

Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

Azgomi@iaurasht.ac.ir

Abstract

Cloud service providers transfer some of their resources to the proximity of their users in order to increase

the quality of services provided to them. Proper placement of servers, considering the number of service

demands in different parts of the network, not only plays an important role in providing better services to

users but also causes more effective use of resources and reduces their energy consumption. Some related

research has been done in this context. However, designing a model that can meet the needs of both the

users and the service providers has received less attention. On the other hand, most researchers use discrete

models to select a number of candidate locations for resource deployment, while the proposed method

explores the entire search area to find optimal locations for server placement. The proposed method (ESPB)

using butterfly optimization algorithm(BOA), DVFS technic, and coral reefs optimization algorithm(CRO)

seeks to find the best locations for edge servers. In the first step, BOA is used to find the best locations for

resource deployment. Then the CRO algorithm is used to map between the optimal locations and the servers.

The experiments show that the proposed method can effectively save energy and reduces network latency.

Keywords: Server placement, BOA, CRO, Energy, Latency

1. Introduction:

Cloud computing is considered a popular model for providing various services offered to users. In this

model, cloud users can access the services anywhere and anytime [1]. The emergence of the 5G cellular

communication technology and the widespread use of smart communication equipment led to the formation

of new needs in this field. New applications include the Internet of Things, online games, social networks,

and electronic banking, which must consider users' mobility [2]. Due to the hardware limitation of mobile

smart equipment (processing power, battery, and memory), most of the services required by users should

be offloaded on network servers [3]. Therefore, the traditional models of cloud computing quickly adapted

to these conditions and with the aim of providing high-quality services, transferred some of their resources

to the edge of the network and in the vicinity of users [4]. However, due to the number of processes and

volume of data exchanged, more effective use of resources plays an important role in providing suitable

services to users.

Proper server placement has an important role in improving service quality, and consequently, users will

access the most suitable resources they need. Otherwise, server overloading and underloading may occur

mailto:Asghari_ali@aut.ac.ir
mailto:msayadi@shafagh.ac.ir
mailto:Azgomi@iaurasht.ac.ir

in different parts of the network [5]. Cloud service providers, while increasing the efficiency of their

services, prefer to reduce the energy consumption of servers, which consequently reduces costs [6]. On the

other hand, users need services with tolerable latency. For this reason, the proposed method considers the

interests of both service providers and users. In most research, some predefined candidate locations have

been provided for server placement [7]. This approach is due to the assumption of the discrete nature of the

problem. The proposed method ignores this limitation and explores the entire search space to find the

optimal resource placement locations. In the proposed method and in the first step, the butterfly

optimization algorithm [8] is used to find the optimal location of the servers. Each butterfly is considered a

solution. The attractiveness of a solution is proportional to its value according to the objective function of

the problem. In the second phase of the proposed method, the coral reefs optimization algorithm [9] is used

to find the best mapping between servers and the optimal locations obtained in the previous stage. optimal

server placement can lead to both optimizing the server's energy consumption and the resource access delay

reduction. The DVFS technique [10] has been used to reduce resource energy consumption. Based on this

technique, a server has different power states, and a task can be executed with its minimum possible power

mode.

The contributions of the proposed method are as follows:

 Using the butterfly optimization algorithm to find the best location of the servers in each area

 Utilization of the coral reefs optimization algorithm to allocate the best servers in each deployment

location

 Using the DVFS technique to save energy consumption of resources

 Exploring the entire search space to find the optimal resource placement locations

 Considering the interests of both service providers and users

Other sections of the paper are as follows:

In section two, a review of related research is conducted. In section three, the basics used in the proposed

method are described. In section four, the proposed method is introduced. Section five is related to the

evaluation of the proposed method. Finally, the paper concludes in section six.

2. literature review

Edge server placement as a new paradigm in mobile cloud computing has recently been considered by some

researchers. Due to the fact that the problem of server placement is an optimization problem, some meta-

heuristic and evolutionary algorithms have been used in this field.

The particle swarm optimization (PSO) algorithm is a classic and important method in solving problems

of continuous nature. In [11], and using the PSO algorithm, a multi-objective algorithm has been introduced

for server placement with the objectives of improving energy consumption and more effective use of

resources. In this algorithm, each server is considered a particle. The authors improved and adapted it for

server placement that has a discrete nature. Also, in [12], using PSO and genetic algorithm(GA), a new

method of edge server placement has been introduced with the objectives of energy consumption

optimization and better load balancing of servers. GA and PSO have been used in service offloading and

optimization of optimal server placement strategy, respectively. PSO algorithm has been used in another

study [13]. In this paper, the PSO is used to assign servers to locations in the 5G network. This algorithm

uses local and global experience in choosing the optimal location of servers. Consequently, this strategy

helps to find the best locations for servers. The objectives of this paper are to reduce both the energy

consumption of resources and server access delay. At the beginning of the algorithm, servers are randomly

placed in candidate locations, and then their optimal placement is gradually optimized by the iteration of

the PSO algorithm.

GA as an evolutionary algorithm has been used in many papers. This algorithm also has been deployed in

some server placement methods. In [14], using GA, hill climbing (HC), and simulated annealing (SA)

algorithms, a new method of server placement has been introduced. In this article, each server is considered

as a Gene, and a solution that includes the number of servers is modeled as a Chromosome. SA and HC

algorithms are used to further exploration of the environment to find new solutions and determine a state

between a server location and server connection, respectively. Reducing latency and better load balancing

of servers are the objectives of this paper. In [15] and by using NSGA-ii multi-objective genetic algorithm

and decision tree, a method of server placement has been introduced with the objectives of reducing the

cost and energy of resources and also improving latency in agricultural automation. Reducing the delay in

sending data from agricultural sensors to servers is the main objective of this research. Another model of

the multi-objective genetic algorithm, namely NSGA-iii, has been used in server placement [16]. In this

research, which was conducted in the field of social media services in the industrial cognitive internet of

vehicles, the CQP algorithm has been used with the objectives of reducing latency and increasing reliability.

Clustering is another technique that has been used in some related research in the field of server placement.

For example, in [17], using this technique, a method of server placement has been introduced, with the

objective of reducing both communication delay and the number of servers in the 5G network. The basis

of the proposed method is based on the reduction of clusters and resources based on a capacitated clustering

problem. Also, some heuristics have been used to face the challenges in the algorithm. In another work in

this category [18], and using a clustering method, a method of server placement has been introduced. In

this algorithm, and in the first step, the resource deployment area is divided into a number of clusters to

discover locations with high demands. Then, in the second phase, the processes belonging to each cluster

are distributed on the most suitable resources. Finally, in the third phase, the final location of all servers is

determined. More effective use of resources is the main goal of this paper. Also, in [19], the authors

presented a new clustering-based cloud resource placement model for reducing task overhead. The basis

of this method is an adaptive clustering of network access points with the objective of reducing both energy

consumption and response time. Then tasks are distributed on the servers based on their processing capacity.

Some other techniques used in this field are integer programming based [20], learning based [21], game

theory based [22], Dynamic Programming based [23], and Approximation Algorithm based [24].

A review of related papers shows that despite some solutions to the server placement problem, there are

still some challenges. Some methods that are based on population and iteration have difficulties, like

converging and reaching the optimal solution, as the problem gets bigger. In the methods based on

clustering, finding the optimal number of clusters and avoiding falling into the local optima are considered

some challenges in this field. In learning-based methods, the number of inputs cannot exceed a certain limit,

and there will be a possibility of overtraining and increasing time complexity. The proposed method of this

paper, using BOA and CRO algorithms, is designed to overcome the challenges in edge server placement

problems.

3. Research foundations

In this section, the basics of the proposed method, including BOA and CRO algorithms, as well as the

DVFS technique, have been described.

3.1 BOA

BOA [8] is a meta-heuristic algorithm based on the behavior of butterflies in sensing and processing the

smell of flowers. The quality of each flower or modality is determined based on three parameters: sensory

modality (C), stimulus intensity (I), and power exponent (a). sensory modality means determining the

quality of flower fragrance based on inputs. Stimulus intensity is the density or amount of the fragrance,

which is considered the quantity of a solution in the BOA algorithm. And finally, the Power exponent is a

parameter for strengthening and non-linearly behavior of the solution. Equation (1) shows the fitness

calculation of a solution that is measured according to the value of the fragrance, which means how

attractive this fragrance is to other butterflies. In most cases, a and c are considered random numbers

between [0,1]. When a = 1, there is no absorption of fragrance or the amount of fragrance emitted by a

particular butterfly is sensed in the same capacity by the other butterflies. Also, a=0 means that the emitted

fragrance is not sensed by any other butterfly. Therefore, the value of this parameter controls the behavior

of the algorithm. Finally, parameter C determines the speed of convergence.

(1) 𝑓 = 𝐶𝐼𝑎

BOA is an iterative-based method that has two types of global and local searches. Equation (2) shows the

global search of BOA. In this search, a butterfly randomly moves to the best solution or 𝑔∗ to obtain its new

position.

(2) 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖𝑡) × 𝑓𝑖
where 𝑥𝑖𝑡 is equal to solution 𝑥𝑖 for the ith butterfly in iteration number t. 𝑔∗ is the best current global

solution among all butterflies. 𝑓𝑖 is also the amount of fragrance of butterfly i. Finally, r is a random number

between [0,1].

Equation (3) shows the local search model of the BOA algorithm. where 𝑥𝑗𝑡 and 𝑥𝑘𝑡 are the jth and kth

butterflies in the local search area, respectively, and the current solution will move toward the area between

them. If 𝑥𝑗𝑡 and 𝑥𝑘𝑡 belong to the same swarm, and r is a random number between [0,1], then equation 3

becomes a random search.

 (3) 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + (𝑟2 × 𝑥𝑗𝑡 − 𝑥𝑘𝑡) × 𝑓𝑖
3.2 CRO

The coral reefs optimization [9] is an evolutionary algorithm based on the life of corals on reefs. This

algorithm has been used in some research related to traditional cloud computing [25,26]. In this algorithm,

the two-dimensional model of the system is represented by Λ = 𝑁 ∗ 𝑀. Each member (𝑖, 𝑗) ∈ Λ of this two-

dimensional network is a coral, i.e., Ξ𝑖,𝑗, which is coded with the alphabet 𝒜 and represents different solutions to a

problem. The ratio of empty to occupied cells is called ρ0, where 0 < 𝜌0 < 1. The fitness of a solution or coral is

determined by the health function, where 𝑓(Ξ𝑖,𝑗): 𝒜 → ℝ. The various operators of this algorithm include the

following:

(1) Broadcast Spawning(External Sexual Reproduction).

In each initial stage of reef formation, 𝐹𝑏 percent of corals are randomly selected for external sexual production, and

the recombination process is performed on them. The remaining corals (1 − 𝐹𝑏) will be used later. New larvae are

generated, and then their fitness is determined.

(2) Brooding(Internal Sexual Reproduction) 1 − 𝐹𝑏 percentage of the remaining corals of the previous stage participate in a mutation-like operation. This stage is

called internal sexual reproduction. The new larvae are added to the population to participate in the competition to

settle on the reefs.

(3) Larva Setting

At this stage, the larvae randomly try to choose the holes on the reef. If the holes are not empty, they can replace the

previous coral only when they have more merit than them. If the replacement process fails after several attempts,

these corals will be terminated.

(4) Budding or fragmentation(asexual reproduction)

In this step, the fitness of all corals settled on a reef is determined by the function 𝑓(Ξ𝑖,𝑗): 𝒜 → ℝ, and are sorted

according to their fitness, then 𝐹𝑎 percent of the best ones reproduce themselves to give more chance to good solutions.

(5) Depredation

In each stage, 𝐹𝑑 percentage of weak corals die. This will increase the number of empty holes for the establishment

of next corals and increase the exploration capability.

3.3 Energy model and DVFS Technic

The energy consumption of a server's processor includes its static and dynamic energy. The static energy of a processor

is related to its design and hardware structure. The dynamic energy of a processor is related to its working voltage and

frequency. Equation (4) shows the energy consumption of a processor, where 𝐸 is equal to total energy and 𝐸𝑠 and 𝐸𝑑 are static and dynamic energy, respectively. 𝐸 = 𝐸𝑠 + 𝐸𝑑 (4)

The dynamic energy is shown in Equation (5). where 𝑣 ،𝑓 ،𝑃𝑑 ،𝑡𝑝 are the voltage, frequency, power, and time interval

of processor activity, respectively. k is also constant and related to processor technology. 𝐸𝑑 = ∑ (𝑃𝑑 × 𝑡𝑝) =𝑡𝑝 ∑ (𝑘 × 𝑣2 × 𝑓 × 𝑡𝑝)𝑡𝑝 (5)

Static power is shown in Equation (6) where 𝑣𝑗.𝑚𝑖𝑛 ،𝑓𝑗.𝑚𝑖𝑛 ،𝑡𝑗.𝑖𝑑𝑙𝑒 are the minimum voltage, minimum frequency,

and activity time in processor j in idle mode, respectively [26-28]. 𝐸𝑠 = 𝐸𝑖𝑑𝑙𝑒 = ∑ (𝑘𝑗 × 𝑣𝑗.𝑚𝑖𝑛 × 𝑓𝑗.𝑚𝑖𝑛 × 𝑡𝑗.𝑖𝑑𝑙𝑒)𝑛𝑗=1 (6)

One of the important features of modern processors is having different power modes. This technique is called DVFS

(dynamic voltage and frequency scaling). Table 1 shows different voltage and frequency specifications of AMD

Turion MT-34 and AMD Opteron 2218 processors with different power modes[29]. This technique ensures using the

lowest power mode of the processor to execute a process, taking into account task requirements and its expiration

time. This technic significantly reduces energy consumption.

Table 1. The power settings of AMD processors[29]

AMD Turion MT-34 AMD Opteron 2218

Frequency

(GHz)

Voltage

(V)

Power

(W)

Frequency

(GHz)

Voltage

(V)

Power

(W)

0.8 0.90 6.25 1.0 1.10 26.16

1.0 1.00 9.65 1.8 1.15 51.47

1.2 1.05 12.76 2.0 1.15 57.19

1.4 1.01 16.34 2.2 1.20 68.49

1.6 1.15 20.41 2.4 1.25 81.08

1.8 1.20 25.00 2.6 1.30 95.00

3.4 Latency model

Latency refers to the time difference between the server response time and a user service request time. This time must

be tolerable, especially in online applications. Otherwise, such services will not be usable. Latency is a function of the

distance between each CBS and MES, as well as the Bandwidth of the communication network and the volume of

data sent or received. In most of the research, this time is only considered proportional to the distance between a CBS

and MES, without considering the network traffic and the Bandwidth of the communication network. In the proposed

method of this paper, latency is computed using Equation (7).

(7) 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑆, 𝐶) = 𝑃𝑑(𝑆, 𝐶) + 𝑇𝑑(𝑆, 𝐶)

Where 𝑃𝑑 and 𝑇𝑑 are equal to propagation delay and transmission delay, respectively. The propagation delay of a

signal depends on the length of the transmission line between Server S and the cellular base station C and the

propagation speed, which is shown in Equation (8). The distance between a CBS and MES is measured using

Euclidean distance. The propagation speed also depends on the propagation environment, which is proportional to the

speed of light.

(8)
 Pd =

𝐷(𝑆,𝐶)𝑆𝑝𝑒𝑒𝑑=
√(𝑥𝐶−𝑥𝑆)2+(𝑦𝐶−𝑦𝑆)2𝑠𝑝𝑒𝑒𝑑

The delay in sending a packet is also related to the size of the sent packet and the Bandwidth of the transmission

medium, which is shown in Equation (9).

(9) Td=
𝐷𝑎𝑡𝑎−𝑠𝑖𝑧𝑒𝐵𝑊

Where 𝐷𝑎𝑡𝑎 − 𝑠𝑖𝑧𝑒 and 𝐵𝑊 are equal to the size of the sent or received data and the Bandwidth of the

communication line, respectively.

The symbols used in this article and their explanations are given in Table 2

Table 2. symbols and descriptions

Description Symbol

Mobile Edge Server MES
Cellular Base Station CBS
Dynamic Voltage and Frequency Scaling DVFS
Static Energy 𝐸𝑠

Dynamic Energy 𝐸𝑑

Total Energy E
Coral Reefs Optimization Algorithm CRO
Butterfly Optimization Algorithm BOA
Population Size 𝑝𝑜𝑝𝑠𝑖𝑧𝑒

Iteration number 𝑖𝑡𝑟𝑛𝑢𝑚

Propagation delay 𝑃𝑑

Transmission delay 𝑇𝑑

4. Proposed method

In this section, the details of the proposed model are stated. The main entities of the proposed method are the set of

base stations and servers, where 𝐵 = 𝑏1, 𝑏2 … 𝑏𝑛 and 𝑆 = 𝑠1, 𝑠2 … 𝑠𝑚 are the sets of n base stations and m servers,

respectively. Each server belongs to one or more base stations that is in their range. Mobile network users can access

resources via cellular base stations. Considering the objectives of the proposed method and the tradeoff between them,

i.e., reducing both energy consumption and resource access delay, we define a new normalized objective function

model using the weighted average sum method by Equation (10).

(10) 𝐹 = min (𝑤1 × norm ∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑖, 𝑗)𝑖∈𝐵 ,𝐽∈𝑆 |𝐸| + 𝑤2 × norm ∑ 𝐸𝑘𝑘 ∈ 𝑆𝑚)

where 𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑖, 𝑗) is the delay between server i and base station j, |𝐸| is The total number of network links that

connect the servers to the base stations, 𝐸𝑘 is the energy consumption of the server k, and m is the total number of

resources. 𝑤1 and 𝑤2 are the weights of the objectives which can be adjusted. Norm is the normalized value of each

objective. In the proposed method, each mapping between the servers and the base station is considered a solution.

Due to a large number of servers and CBSs and to avoid increasing the time complexity of finding the solution, the

problem space is divided into smaller zones. In local search, the location server in each area is determined using the

BOA algorithm, and in global search, the CRO algorithm will be used for maping between servers and locations. Each

server is covered by one or more CBSs, and each CBS has access to only one server. The location of each server

among its covered CBSs plays an important role in server access delay reduction. Figure 1 shows the network model.

Fig.1 Network model

In this model, each MES is covered by one or more CBSs. Considering the heterogeneous nature of the service

requests in different parts of the network, finding the optimal resource locations and finding the best server, taking

into account the objectives of the proposed method, is the main goal of the proposed method. In each area, some

locations are randomly selected for server placement. If 𝑍𝑘 is the region k in the network, then 𝑣𝑘=𝑖 𝑓(𝑥(𝑡)𝑘𝑖 is equal

to the value of the current location or 𝑥(𝑡) of ith MES in zone k and iteration t that is computed by Equation (10).

After determining the fitness of all initial solutions, the best location of the server is determined as 𝑥𝑘∗ . At this stage,

all current locations are updated to be closer to 𝑥𝑘∗ . This update is done both globally and locally. Equation (11) shows

the global search of the server locations in the proposed method.

(11) 𝑥(𝑡 + 1)𝑘𝑖 = 𝑥(𝑡)𝑘𝑖 + (𝑟2 × 𝑥𝑘∗ − 𝑥(𝑡)𝑘𝑖) × 𝑣𝑘𝑖

Where 𝑥(𝑡 + 1)𝑘𝑖 is the new location of ith solution i in zone k, and r is the random number between [0,1]. Local

search is used to further explore the search space, avoiding greedy search and forcing the algorithm to more

random behavior. Equation (12) updates the position of a candidate location, where j and s are two random

locations to which the current position randomly moves toward them.

(12) 𝑥(𝑡 + 1)𝑘𝑖 = 𝑥(𝑡)𝑘𝑖 + (𝑟2 × 𝑥(𝑡)𝑘𝑗 − 𝑥(𝑡)𝑘𝑠) × 𝑣𝑘𝑖

And at the end of this step, the best solutions obtained in each iteration are transferred to the next round of the

algorithm. Algorithm 1 shows the details of this step.

Algorithm.1 local server placement

Initialize parameters (𝑝𝑜𝑝𝑠𝑖𝑧𝑒 , 𝑖𝑡𝑟𝑛𝑢𝑚, 𝑝, 𝑤𝑖)
 1: objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑑𝑖𝑚), 𝑑𝑖𝑚=no of dimensions

 2: generate the initial population of n Butterflies 𝑥𝑖 = (𝑖 = 1,2, … 𝑛)

 3: 𝑖𝑡𝑟 = 0

 4: for each zone

 4: for each solution bf in the population, do

 5: compute the fitness of each solution 𝑥𝑖𝑡 by 𝑓(𝑥𝑖𝑡) using Eq. (10)

 6: end For

 9: find the best bf

10: for each butterfly bf in the population, do

11: generate a random number r from [0, 1]

12: If 𝑟 < 𝑝 then

13: move towards best location(𝑥𝑘∗) using Eq. (11)

14: else

15: move randomly to solutions using Eq. (12)

16: end if

17: end for

18: end for

19: 𝑖𝑡𝑟 = 𝑖𝑡𝑟 + 1

20: if 𝑖𝑡𝑟 < 𝑖𝑡𝑟𝑛𝑢𝑚

21: continue the algorithm

22: else:

23: return the best location for each zone

After the first step of the proposed method, i.e., finding the optimal location of the server in each area, it is time for

the second step of the proposed method. In the first step, the best location of a randomly selected MES is determined

for each region, but there is no guarantee that this server is the best suitable MES needed in that area. In the second

step of the proposed method, and by using the CRO algorithm, the best MES that is suitable for each area will be

selected. The optimal server placement model of each area is shown in Table 3, where a server 𝑠𝑖 is assigned to a

region 𝑘𝑖 (for 𝑖 = 1 𝑡𝑜 𝑘).

Table 3. servers to zones assignments 𝑧𝑘 … 𝑧4 𝑧3 𝑧2 𝑧1 𝑠𝑘 𝑠4 𝑠3 𝑠2 𝑠1

As mentioned before, The model is inspired by the CRO algorithm. In this algorithm, the parameter 0 < 𝜌0 < 1 is

the ratio of empty to occupied cells, and the optimal value of this parameter has an important role in the performance

of this method. For further explanation, an example with nine regions and 12 servers is considered, which is shown in

Table 4. Obviously, three servers will not be used in every solution vector. Therefore, the ratio of unused servers to

used servers is determined as 3 to 9 or 𝜌0 = 0.33. Unused servers are different in each solution vector. Calculating

the optimal value of 𝜌0 plays an important role in improving the performance of the proposed method. Its increase

makes the problem space more complicated, whereas its decrease causes early convergence.

In the recombination phase (Broadcast Spawning), the new solution vector will be obtained in a multi-parent

sequential manner [30], as shown in Table 4. The results of the experiments performed on this recombination method

have shown that it has better efficiency than the simple order recombination method. Based on this method, four

solutions(𝑠𝑣1 𝑡𝑜 𝑠𝑣4) are combined in an orderly manner and create a new solution (𝑛𝑠𝑣5). The first parent(𝑠𝑣1) has the best fit as the base of the recombination. With this technique, good solutions have more chances to

participate in the recombination process.

Table 4. Broadcast spawning operator 𝑧9 𝑧8 𝑧7 𝑧6 𝑧5 𝑧4 𝑧3 𝑧2 𝑧1 𝑠7 𝑠6 𝑠4 𝑠12 𝑠1 𝑠2 𝑠9 𝑠10 𝑠3 𝑠𝑣1 𝑠12 𝑠2 𝑠6 𝑠4 𝑠3 𝑠7 𝑠10 𝑠1 𝑠9 𝑠𝑣2 𝑠12 𝑠4 𝑠9 𝑠2 𝑠7 𝑠1 𝑠3 𝑠6 𝑠10 𝑠𝑣3 𝑠6 𝑠12 𝑠10 𝑠1 𝑠3 𝑠4 𝑠9 𝑠2 𝑠7 𝑠𝑣4

 𝑠12 𝑠10 𝑠6 𝑠4 𝑠1 𝑠2 𝑠9 𝑠3 𝑠7 𝑛𝑠𝑣5

The second operator of this step is Brooding, in which the new solution is generated by changes of only one parent.

In the proposed method, swapping mutation is performed over the servers belonging to the regions. In this case, a

number of servers are randomly exchanged together. Table 5 shows an example of this operator. In this example,

servers 𝑠3 and 𝑠10 of solution vector 𝑠𝑣1 are randomly selected and exchanged with each other and create a new

solution vector 𝑛𝑠𝑣2.

Table 4. Brooding operator 𝑧9 𝑧8 𝑧7 𝑧6 𝑧5 𝑧4 𝑧3 𝑧2 𝑧1 𝑠12 𝒔𝟏𝟎 𝑠6 𝑠4 𝑠1 𝑠2 𝑠9 𝒔𝟑 𝑠7 𝑠𝑣1

 𝑠12 𝒔𝟑 𝑠6 𝑠4 𝑠1 𝑠2 𝑠9 𝒔𝟏𝟎 𝑠7 𝑛𝑠𝑣2

In order to preserve the good solutions, a number of the best solutions should be duplicated. Therefore, 𝐹𝑎 percentage

of the best ones is calculated by using equation 10 to increase the chances of finding better solutions in the current

iteration, which is called budding. And finally, to increase the exploration capability of the proposed method, the 𝑝𝑑

percentage of weak solutions is replaced by random solutions. This phase is called Depradation.

At the end, all the generated solutions are sorted according to their fitness and some of the best ones are selected for

the next iteration. The population number is 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 and the number of repetitions of the algorithm is 𝑖𝑡𝑟𝑛𝑢𝑚.

Algorithm 2 shows the global placement of resources in the proposed method.

Algorithm.2 global server placement

 Input: best servers location of k regions

 Output: best servers for all k regions

 1: initialize parameters(𝑝𝑜𝑝𝑠𝑖𝑧𝑒 , 𝑖𝑡𝑟𝑛𝑢𝑚 , 𝐹𝑏, 𝐹𝑎, 𝑝𝑑, 𝜌0 , k)

 2: create 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 random solution vectors with respect to 𝜌0

 3: 𝑖𝑡𝑟=0

 4: use the lowest possible power mode for servers

 5: apply broadcast spawning on 𝐹𝑏 percent of solution vectors

 6: apply Brooding on 1 − 𝐹𝑏 percent of solution vectors

 7: apply Budding on 𝐹𝑎 percent solution vectors

 8: compute fitness of all solution vectors using Eq. (10)

 9: add all new solution vectors to the population

10: if random(0, 1)< 𝑝𝑑

11: no operation!

12: else

13: apply Depredation on 𝐹𝑑 percent of worst solution vectors

14: eliminate 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 of best solution vectors and add them to the population

15: 𝑖𝑡𝑟 = 𝑖𝑡𝑟 + 1

16: if 𝑖𝑡𝑟 < 𝑖𝑡𝑟𝑛𝑢𝑚

17: continue the process

18: else

19: return the best solution vector of the population

5. Evaluation and simulation results

In this section, the proposed method is evaluated, and test scenarios, compared algorithms, and simulation

environment are described. Also, the performance of the proposed method is evaluated in various experiments.

5.1 Experiments Setup and Dataset

To evaluate the proposed method, the cellular communication network of Tehran has been used. As the capital of Iran,

Tehran is the most important political and economic city, with 750 square kilometers and a population of about 9

million people. This city has flat, mountainous, and marginal areas, and the demands for services during different

times and areas are not equal. Most of the administrative, educational and commercial areas are located in the center

of the city, and the population density varies in different areas. Figure 2 [31] shows a part of the cellular

telecommunication map of the MCI operator [32] of the 4G mobile network in Tehran. The numbers inside the circles

indicate the number of antennas covered in that area. MATLAB software version R-2016a has been used on a

computer with Intel (R) Core (TM) i7 2.50 GHz processor, 64-bit operating system, and 16.0 GB Ram for simulation.

Table 5 shows a part of the geographic characteristics of CBS antennas in Tehran, which include cell ID (CID),

longitudinal and latitude coordinates, covered range, and the average number of users on each base station. Also,

server features used in three different types and different processing power are given in Table 6, which include

frequency, voltage, and static power of servers. Data packets in size of 1 to 4 Giga Bytes are generated and sent based

on the number of users of each CBS, with Poisson distribution with λ = 4 per minute. The Bandwidth of the

communication network is considered 1 Giga Bytes per second.

Fig. 2. Part of MCI cellular base stations of Tehran

Table 5. The CBSs information on Tehran City
Online users Range Longitude Latitude CID Row

221 000m1 51.390609 35.689773 4675730 1

563 000m1 51.389786 35.690048 4675733 2

233 000m1 51.392396 35.689912 4668661 3

913 000m1 51.393356 35.689087 4677604 4

301 000m1 51.391856 35.687946 4724596 5

… … … … … …

51 000m1 51.391983 35.687714 4743140 320

Table 6. Servers features

Power (W) Voltage (V) Frequency (GHz) Type
30 2.2 2.0

A 40 2.7 2.5
50 3.5 3.0
75 5 4.0

B 100 7.8 5.0

120 11 6.5
150 15 8.0

C 175 21 10.0
220 32 12.0

5.2 Compared algorithms

To evaluate the proposed method, three related and state-of-the-art algorithms have been used. In [11], a PSO-based

multi-objective server placement algorithm with the objectives of server energy reduction and more efficient use of

resources has been introduced as similar work on the Shanghai Telecom telecommunication network. Based on this

algorithm, each solution is considered a particle, and for simplicity, it has been assumed that all servers are

homogeneous. Due to the feature of the PSO algorithm that is suitable for continuous problems, the authors have

made changes to this algorithm to design a new model with the ability of server placement that has a discrete nature.

in [5], a learning-based server placement algorithm that uses the Deep Q-Network model, and CRO algorithm (MOP-

DQ) has been introduced. To reduce the time complexity of the server placement problem, the authors clustered the

resource deployment area into small sub-regions. CRO and Deep Q-Network algorithms are used for local and global

search processes, respectively. Latency reduction and better load balancing are the objectives of this algorithm.

Finally, in [12], and using genetic and PSO algorithms, a new server placement method EPMOSO has been

introduced with the objectives of better load balancing of servers, reducing the energy consumption of resources, and

reducing the resource access delay. This algorithm is based on service offloading on the Internet of Things. Genetic

and PSO algorithms have been used in the field of service offloading and optimization of optimal server placement

strategy, respectively.

5.3 Evaluation results

In this section, the proposed method is evaluated and compared with similar algorithms. Optimization of servers'

energy consumption, servers' average access delay reduction, and also reducing the number of used resources are the

objectives of the proposed method.

A: Energy consumption

Reducing server energy consumption not only saves resource utilization costs but also avoids the production of toxic

pollutants. Figure 3 shows the energy consumption of the proposed method and other algorithms for 50 to 175 different

servers while the number of BTSs is constant. As this figure shows, the proposed method has better efficiency in

energy consumption compared to other algorithms. The reason for this superiority is due to the following reasons.

1. Applying continuous features and accurate local and global search of BOA algorithm to find servers deployment

locations by using its powerful operators.

2. Using the coral reef optimization algorithm, which has a suitable convergence speed in solving discrete optimization

problems, to find the best server in the locations determined in the first step of the proposed method.

3. Using the DVFS technique to operate MESs at their minimum power mode.

As this figure shows, when the number of servers increases, the performance of the proposed method improves

compared to other methods.

Fig. 3. Energy consumption of the servers(320 CBS)

Although reducing the number of CBSs will reduce the overall energy consumption of the network, it may cause the

network can not to meet the needs of all users. This forces the network to use servers located in traditional cloud data

centers to respond to some requests. Consequently, due to the long distance between cloud data centers and mobile

network users, some services are received with delay, which cannot be tolerated in some cases, especially in online

applications. This metric is called the local network server access error. Increasing the number of resources reduces

this error. On the other hand, excessive use of resources will reduce network efficiency. Figure 4 shows the local

network server access error rate in the proposed method and the compared algorithms. As this figure shows, the error

rate of the proposed method is lower than other algorithms. The reason is the proper performance of the proposed

method in better placing network edge servers.

Fig. 4. local network server access error rate

In the next scenario, we keep the number of servers constant and change the number of CBSs. The energy consumption

of the resources is measured simultaneously. By keeping the number of servers constant, the increase of CBS will lead

to the coverage of more users in the network, and the availability of servers will increase. However, the optimal

placement of resources will play an important role in reducing the error rate and optimal energy consumption. Figure

5 shows this problem. In this figure, the number of servers is 100, and the number of CBS will vary between 200 and

320. It is obvious that reducing the number of CBSs leads to the reduction of the coverage area. As Figure 5 shows,

due to the performance of the proposed method, the energy consumption of servers has decreased significantly

compared to other methods. The reason is the better placement of servers and deploying the most suitable server in

each region.

Fig. 5 Energy consumption of the servers(100 MES)

B: Latency

Latency is the time difference between the time of sending the request and the response of the server. This time is a

function of the distance between the user and the server, the type of transmission medium, and the Bandwidth of the

communication network. In most research, this delay is only considered proportional to the distance between a CBS

and MES. The proposed method, besides this parameter, will try to reduce this time by considering all related

parameters. Finding the optimal location and placing the most suitable server helps to reduce the average network

latency. The proposed method, by using the BOA algorithm, which is suitable for problems of continuous nature,

instead of choosing predefined candidate locations, tries to search the whole area and find the optimal location of

resources. After finding the best resource deployment locations, it is time to choose the most suitable server for each

region. in this step CRO algorithm finds the best mapping between resources and locations. In some studies [7], and

for simplicity, it is assumed that the resources have the qual processing power and are homogeneous. By removing

this limitation and paying attention to the real conditions of the network, the proposed method seeks to find the most

suitable servers according to the needs of a region. Figure 6 shows the latency of the proposed method and compared

algorithms. As this figure shows, the proposed method has less latency than other methods. The reason for this

improvement is due to consider all parameters affecting this delay and also to search the whole space to find the

optimal location of servers.

Fig. 6 Average latency of the network(320 CBS)

Another scenario for calculating latency is to keep the number of servers constant and change the number of CBSs. It

is expected that with the reduction of CBSs, the network coverage area will decrease, and some requests will face

errors. In this case, the network servers cannot respond to all requests due to the low coverage, and consequently,

some requests are sent to the cloud data center, which can increase the latency. However, this delay in the proposed

method is less compared to other algorithms. The reason for this reduction is due to better server placement, which

will result in fewer errors. As mentioned earlier, the proposed method places the cloud servers without limitation in

the selection of candidate locations. It also finds the optimal locations and assigns the most suitable resource to each

area. Figure 7 shows the average network latency in this scenario.

Fig. 7 Average latency of the network(100 MES)

C: Performance metrics

In this section, the efficiency of the proposed method is measured by two criteria. The first metric is the average

network resource utilization rate, and the second one is the minimum number of servers to be used without reducing

network efficiency. The appropriate server placement causes that due to the volume of users' demands, the most

suitable server is assigned to that area. Otherwise, there will be a possibility of servers overloading while the servers

of the adjacent areas are underloaded. This increases latency, reduces reliability, and increases energy consumption.

Our proposed method, in its first step, finds the best server location of each area, without any restrictions on the

location of resources, and then assigns the most suitable resource to that area in the second phase. Table 7 shows the

average server utilization. As expected, the proposed method, in most cases, has a better utilization rate except in the

first column, where the number of servers is 50. It is obvious that reducing the average resource utilization is directly

related to reducing the number of servers. Because, in this case, the network local server access error increases.

Table 7. Average resource utilization

 Number of edge servers Algorithm
175 150 125 100 75 50
0.93 0.84 0.75 0.69 0.62 0.55 ESPB

0.75 0.69 0.66 0.62 0.59 0.57 MOP-DQ
0.75 0.68 0.62 0.58 0.54 0.52 PSO
0.69 0.63 0.59 0.55 0.52 0.49 EPMOSO
0.58 0.54 0.50 0.46 0.43 0.40 Random

The second efficiency metric of the proposed method is the number of used servers. In other words, the minimum

number of servers that still maintain the efficiency of a method is considered. Reducing the number of servers will

reduce both energy consumption and cost. Table 8 shows the efficiency of algorithms proportional to reducing the

number of servers. The performance of each method has been measured independently and relative to the objective

function of that method. According to Table 8, by using 175 servers, each method performed best. By reducing the

number of servers to 170, the proposed method still maintains its efficiency, but the efficiency of other methods is

reduced. When the number of servers is reduced to 165, the performance of all methods, including the proposed

method, decreases, but this decrease for the proposed method is at a lower rate. As a result, the proposed method still

continues to work without performance reduction with 170 servers, while the efficiency of the other methods decreases

gradually. This saving in the number of servers will play an important role in reducing the cost and energy of resources.

Table 8. performance of the algorithms

 Number of edge servers Algorithm
155 160 165 170 173 175
0.9 0.93 0.97 1.00 1.00 1.00 ESPB

0.81 0.88 0.92 0.96 0.98 1.00 MOP-DQ
0.82 0.89 0.93 0.95 0.97 1.00 PSO
0.84 0.87 0.91 0.94 0.95 1.00 EPMOSO
0.79 0.83 0.87 0.90 0.93 1.00 Random

6. Conclusion

effective server placement plays an important role in providing appropriate services to mobile users and also saves

resources. Users prefer to receive services with low latency, while cloud service providers want to reduce both energy

consumption and costs. For this reason, in this article, using BOA and CRO algorithms, a new two-step multi-objective

server placement method has been introduced. Using the BOA algorithm, which is suitable for solving continuous

optimization problems, makes it possible to determine the location of a server in an area. Then, by using the CRO

algorithm, the best mapping between servers and their deployment locations is obtained. Also, the DVFS technique

makes servers work at minimum power mode to save energy. as a result, the proposed method reduces the energy

consumption of servers and reduces both the network latency and the number of used servers. For future work

suggestions, first, we intend to use the proposed method in other fields, such as offloading and workload balancing on

resources. Also, as a second suggestion for the development of the proposed method, we plan to use parallelization

techniques to increase its efficiency and speed.

Declarations

Ethical Approval: Not applicable

Competing interests: The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Authors' contributions: Asghari and sayadi wrote the main manuscript. Azgomi wrote the program code. sayadi

reviewed the manuscript. Asghari translated the manuscript into English.

Funding: No Funding

Availability of data and materials: The datasets generated during the current study are available from the

corresponding author upon request

References

[1] Asghari, Ali, Mohammad Karim Sohrabi, and Farzin Yaghmaee. "Task scheduling, resource provisioning, and load balancing

on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm." The Journal of

Supercomputing 77, no. 3 (2021): 2800-2828.

[2] Chang, V., 2018. An overview, examples, and impacts offered by emerging services and analytics in cloud computing virtual

reality. Neural Computing and Applications, 29(5), pp.1243-1256.

[3] Lin, H., Zeadally, S., Chen, Z., Labiod, H. and Wang, L., 2020. A survey on computation offloading modeling for edge

computing. Journal of Network and Computer Applications, 169, p.102781.

 [4] Fernando, N., Loke, S.W. and Rahayu, W., 2013. Mobile cloud computing: A survey. Future generation computer

systems, 29(1), pp.84-106.

[5] Asghari, A. and Sohrabi, M.K., 2022. Multi-objective edge server placement in mobile edge computing using a combination of

multi-agent deep Q-network and coral reefs optimization. IEEE Internet of Things Journal.

[6] Asghari, A. and Sohrabi, M.K., 2022. Bi-objective cloud resource management for dependent tasks using Q-learning and

NSGA-3. Journal of Ambient Intelligence and Humanized Computing, pp.1-21.

[7] Wang, S., Zhao, Y., Xu, J., Yuan, J. and Hsu, C.H., 2019. Edge server placement in mobile edge computing. Journal of Parallel

and Distributed Computing, 127, pp.160-168.

[8] Arora, S. and Singh, S., 2019. Butterfly optimization algorithm: a novel approach for global optimization. Soft

Computing, 23(3), pp.715-734.

[9] Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S. and Portilla-Figueras, J.A., 2014. The coral reefs optimization

algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.

[10] Wu, C.M., Chang, R.S. and Chan, H.Y., 2014. A green energy-efficient scheduling algorithm using the DVFS technique for

cloud datacenters. Future Generation Computer Systems, 37, pp.141-147.

[11] Li, Y. and Wang, S., 2018, July. An energy-aware edge server placement algorithm in mobile edge computing. In 2018 IEEE

International Conference on Edge Computing (EDGE) (pp. 66-73). IEEE.

[12] Ma, R., 2021. Edge Server Placement for Service Offloading in Internet of Things. Security and Communication

Networks, 2021.

[13] Li, Y., Zhou, A., Ma, X. and Wang, S., 2021. Profit-aware edge server placement. IEEE Internet of Things Journal, 9(1),

pp.55-67.

[14] Kasi, S.K., Kasi, M.K., Ali, K., Raza, M., Afzal, H., Lasebae, A., Naeem, B., Ul Islam, S. and Rodrigues, J.J., 2020. Heuristic

edge server placement in industrial internet of things and cellular networks. IEEE Internet of Things Journal, 8(13), pp.10308-

10317.

[15] Zhang, J., Li, X., Zhang, X., Xue, Y., Srivastava, G. and Dou, W., 2021. Service offloading oriented edge server placement in

smart farming. Software: Practice and Experience, 51(12), pp.2540-2557.

[16] Xu, X., Shen, B., Yin, X., Khosravi, M.R., Wu, H., Qi, L. and Wan, S., 2020. Edge server quantification and placement for

offloading social media services in industrial cognitive IoV. IEEE Transactions on Industrial Informatics, 17(4), pp.2910-2918.

[17] Lee, S., Lee, S. and Shin, M.K., 2019, October. Low cost MEC server placement and association in 5G networks. In 2019

International conference on information and communication technology convergence (ICTC) (pp. 879-882). IEEE.

[18] Mohan, N., Zavodovski, A., Zhou, P. and Kangasharju, J., 2018, August. Anveshak: Placing edge servers in the wild.

In Proceedings of the 2018 Workshop on Mobile Edge Communications (pp. 7-12).

[19] Li, B., Hou, P., Wu, H., Qian, R. and Ding, H., 2021. Placement of edge server based on task overhead in mobile edge

computing environment. Transactions on Emerging Telecommunications Technologies, 32(9), p.e4196.

[20] Cui, G., He, Q., Chen, F., Jin, H. and Yang, Y., 2020. Trading off between user coverage and network robustness for edge

server placement. IEEE Transactions on Cloud Computing.

[21] Kasi, M.K., Abu Ghazalah, S., Akram, R.N. and Sauveron, D., 2021. Secure mobile edge server placement using multi-agent

reinforcement learning. Electronics, 10(17), p.2098.

[22] Cao, K., Li, L., Cui, Y., Wei, T. and Hu, S., 2020. Exploring placement of heterogeneous edge servers for response time

minimization in mobile edge-cloud computing. IEEE Transactions on Industrial Informatics, 17(1), pp.494-503.

[23] Wang, F., Huang, X., Nian, H., He, Q., Yang, Y. and Zhang, C., 2019, December. Cost-effective edge server placement in

edge computing. In Proceedings of the 2019 5th international conference on systems, control and Communications (pp. 6-10).

[24] Meng, J., Shi, W., Tan, H. and Li, X., 2017, August. Cloudlet placement and minimum-delay routing in cloudlet computing.

In 2017 3rd international conference on big data computing and communications (BIGCOM) (pp. 297-304). IEEE.

[25] Asghari, A. and Sohrabi, M.K., 2021. Combined use of coral reefs optimization and reinforcement learning for improving

resource utilization and load balancing in cloud environments. Computing, 103(7), pp.1545-1567.

[26] Asghari, A. and Sohrabi, M.K., 2022. Combined use of coral reefs optimization and multi-agent deep Q-network for energy-

aware resource provisioning in cloud data centers using DVFS technique. Cluster Computing, 25(1), pp.119-140.

[27] M. Safari, R.Khorsand, Energy-aware scheduling algorithm for time-constrained workflow tasks in DVFS-enabled cloud

environment, Simulation Modelling Practice and Theory, 87 (2018) 311-326.

[28] Shirvani, Mirsaeid Hosseini, Amir Masoud Rahmani, and Amir Sahafi. "A survey study on virtual machine migration and

server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challenges." Journal of King Saud University-

Computer and Information Sciences 32, no. 3 (2020): 267-286.

[29] [26] Shirvani, Mirsaeid Hosseini, Amir Masoud Rahmani, and Amir Sahafi. "A survey study on virtual machine migration

and server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challenges." Journal of King Saud

University-Computer and Information Sciences 32, no. 3 (2020): 267-286.

[30] Arram, A. and Ayob, M., 2019. A novel multi-parent order crossover in genetic algorithm for combinatorial optimization

problems. Computers & Industrial Engineering, 133, pp.267-274.
: Feb 10, 2022https://www.cellmapper.net/map] 31[

[32] https://mci.ir/

https://www.cellmapper.net/map
https://mci.ir/

