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Abstract 

Combination rule explosion problem of belief rule base (BRB) is a difficult problem to solve in 

complex systems and has attracted wide attention at present. Aiming at the problem of combination 

rule explosion in belief rule base, a new interval constructed belief rule base with rule reliability 

(IBRB-r) is proposed. On the basis of BRB, IBRB-r innovatively introduced rule reliability and 

established the belief table in the form of interval. This approach can not only clearly indicate the 

contribution degree of each rule to the model but also solve the problem of combination rule 

explosion. Therefore, IBRB-r is more suitable for complex system modeling. In the case study 

section, the structural safety assessment of liquid launch vehicle is introduced to conduct a concrete 

example analysis. The experimental results show that the proposed model is effective and accurate. 

Keywords: belief rule base, combination rule explosion, rule reliability, complex system, liquid 

launch vehicle 

1. Introduction 

The belief rule base (BRB) method based on evidence reasoning was developed on the basis 

of decision theory, fuzzy theory, traditional IF-THEN rule base and D-S evidence theory[1]. It is a 

method driven by mixed data and knowledge, which can deal with uncertain information and has 

good processing performance for small sample data[2]. At present, the BRB has been widely used 

in fault diagnosis[3], medical diagnosis[4], risk assessment[5] and other fields. 

In practical engineering applications, the safety assessment of complex systems can no longer 

meet the needs of practical systems by subjective judgment alone. The expert knowledge base in 

the BRB can participate in the security assessment of complex systems well and has a certain 

validity and accuracy. However, the assessment model based on BRBs still has the following two 

problems. On the one hand, due to the complex system situation, when the assessment indexes and 

assessment referential values are too many, the rules of the safety assessment model based on BRB 

may cause the phenomenon of "combination explosion". When there are too many attributes or 
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referential points, the traditional BRB adopts the Cartesian product form to establish the belief table, 

which easily produces the phenomenon of "combination explosion". This will increase the 

complexity of the algorithm and reduce the processing performance of the model. On the other hand, 

the traditional BRB does not consider rule reliability and cannot clearly indicate the contribution of 

each rule to the assessment model. In practical engineering applications, rules are not completely 

reliable due to the limitations of environmental noise and conditions. This will directly reduce the 

accuracy of the model and indirectly lead to the difficulty of the reduction rules, which is not 

conducive to human judgment. 

There are two solutions to the rule redundancy problem in BRB. First, rule reduction methods 

are used to reduce rules. In this respect, domestic and foreign scholars have performed much 

research. Wu et al.[6] introduced information entropy and K-prototypes to remove redundant rules 

based on fuzzy rough set theory. Yang et al. [7] proposed a rule reduction method based on data 

envelopment analysis for a belief rule base. Ben Li et al.[8] used Petri nets to solve the problem of 

combinatorial rule explosion in complex systems. Zhang et al.[9] used the density-based spatial 

clustering with noise (DBSCAN) algorithm to reduce belief rules and proposed a new training 

method based on parameter learning. Chang et al.[10] introduced grey target (GT), multi-

dimensional scale (MDS), isometric mapping (ISOMAP), principal component analysis (PCA) and 

other feature extraction methods to carry out rule reduction to screen important attributes. Second, 

the original BRB is replaced by a hierarchical BRB model. Hierarchical BRB can split a multi-

attribute dataset, selecting two attributes at a time and working its way up. This method can 

effectively reduce the number of attributes to solve the problem of combination rule explosion to a 

certain extent. 

The above two methods have been proven to be effective in reducing rules, but there are still 

many problems. Using the rule reduction method to reduce rules can easily lead to the loss of 

precision of BRB, an increase in model complexity and the influence of model representation ability. 

Specifically, (1) the model cannot guarantee high accuracy after the reduction rule, such as GT and 

MDS. (2) The accuracy after the reduction rule is ideal, but the complexity of the algorithm is too 

high to be realized, such as ISOMAP, PCA, DBSCAN, etc. (3) Belief rules based on feature 

extraction cannot guarantee the integrity and consistency of rule reduction at the same time, such as 

PCA. With hierarchical BRB modeling, there are two problems: (1) The large structure of the 

hierarchical BRB model network easily causes the problem of high model complexity. (2) The initial 

model is constructed in a hierarchical way, and the middle layer cannot be trained. As a result, the 

results of the middle layer cannot be determined, and the uncertainty of the model increases. 

Although these two methods can effectively reduce rules, they need to establish BRB model 



first and then reduce rules on this basis. In essence, this method of establishing the original model 

first and then reducing the rules still cannot reduce the rules effectively. In addition, both the rule 

reduction method and hierarchical BRB method do not consider rule reliability and cannot clearly 

indicate the contribution degree of each rule to the model. 

Since the traditional BRB does not consider reliability, the current research only considers 

attribute reliability and attribute weight. Feng et al.[11] innovatively introduced premise attribute 

reliability into the belief rule base and proposed a BRB model with attribute reliability. However, 

the model without considering the reliability of rules has some disadvantages. On the one hand, the 

unreliable redundant rules cannot be removed, which increases the difficulty of rule reduction, 

resulting in a large number of rules. On the other hand, the complexity of the algorithm increases 

and the performance of the model is reduced. 

From the above discussion, there is much of a lack of the method of conventional BRB and the 

lack of reliability of the rules. Therefore, a new interval constructed belief rule base with rule 

reliability (IBRB-r) is proposed. On the one hand, the IBRB-r model has abandoned the way that 

the old BRB builds the belief table in the form of carte accumulation but is based on the addition of 

the interval. This rule combination greatly reduces the number of rules and reduces the complexity 

of the model. The initial model is built in the interval form, the original BRB model is established, 

and the explosive problem of the combination rule is solved fundamentally. The IBRB-r model also 

introduces rule reliability. It uses the experience of the expert to evaluate the knowledge of the rules, 

which form the reliability of the rules and the removal of the rules. It is found that the IBRB-r model 

retains the advantages of the traditional BRB. At the same time, it completely solves the problem of 

the combination rule of BRB without breaking the model structure, fully considers the reliability of 

the rules and is more suitable for engineering applications. 

The framework of this paper is organized as follows: The first part summarizes the 

shortcomings of the traditional BRB. To address these shortcomings, the IBRB-r model is proposed. 

The second part gives a preliminary introduction to BRB and puts forward the challenges of 

establishing the IBRB-r model. The third part elaborates the overall structure of the IBRB-r model 

from three aspects: modeling, reasoning and optimization. The fourth part provides case studies to 

demonstrate the effectiveness and accuracy of the IBRB-r model. The fifth part is the summary of 

the thesis and the prospect of future work. 

2. Preliminary: BRB and existing problems 

In 2006, Yang proposed a belief rule base inference method based on evidential inference 

rules[12]. BRB is essentially a rule-based expert system that can use a mixture of data and 

knowledge to drive modeling and establish nonlinear mapping between input and output. The belief 



distribution of a BRB can effectively represent the multi-source information of uncertainty, 

including probabilistic uncertainty and fuzzy uncertainty[13]. BRB has a set of belief rules, and the 

k th−  rule can be expressed as follows: 
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where the k rule of the BRB is denoted as kR . The M premises attribute is denoted by ( 1,..., )ix i M= . 

The set of referential values of M premise attributes in rule k is denoted as ( 1 , )k

i
A i M= ， . The N  

results are denoted as ( 1,..., )iD i N= , and the corresponding belief degree of each result under the 

k rule is denoted as
, ( 1, , )

i k
i N =  . The rule weight of rule k is denoted as k . The total number of 

rules is denoted L . 

BRB is mainly composed of knowledge base, inference engine and optimization algorithm. 

The knowledge base of BRB is expert knowledge acquired through long-term and extensive practice, 

which is the accumulation of professional knowledge. BRB adopts evidence reasoning (ER), and 

the reasoning process can be traced and explained. The optimization algorithm of BRB uses 

projection covariance matrix adaptation evolutionary strategies (P-CMA-ES). This chapter will 

analyze the original BRB model in detail from the perspectives of modeling, reasoning and 

optimization and point out the existing problems. 

Belief rules

ER

BRB optimization model

Optimum parameter Accuracy rate

Expert knowledge
Initial parameters

Monitoring data

Expected utility

 

Figure 1. Overall structure of the BRB 

2.1 BRB modeling process: Modeling and problems 

This section will examine the traditional BRB modeling process in detail and point out its 

problems. The following will focus on analyzing the modeling process of traditional BRB from 



three aspects: problem mechanism analysis, referential point setting and belief table construction. 

(1) Problem mechanism analysis 

The first step in modeling should be to identify the problem the model is intended to solve. It 

is important to identify the factors that influence the problem and determine the possible outcomes 

of the problem. The influencing factors of the problem are taken as the prerequisite attributes of the 

traditional BRB, and the possible results of the problem are taken as the labels of the traditional 

BRB. 

(2) Set referential values and referential points 

Referential points should be selected where the attributes have typical significance, usually in 

most data sets. The referential point contains upper and lower bounds and can represent the range 

of data values. The number of referential points should be defined according to the actual problem. 

The more general referential points there are, the higher the model accuracy, but the model 

complexity will also increase. 

For example, if premise attribute 1 has 5 referential points and premise attribute 2 has 6 

referential points, 30 belief rules need to be established. However, if you have 5 premise attributes 

and 20 referential points for each premise attribute you need to establish 205 rules. It can be seen 

that with an increasing number of premise attributes and referential values, the number of rules 

increases exponentially, and the established rules are prone to the problem of combination rule 

explosion. 

(3) Build belief table 

After setting the premise attributes and the result referential points and referential values, the 

belief table needs to be established. According to the corresponding belief rules, the belief table is 

constructed. The following is a brief example of how traditional BRB build belief tables. 

For example, suppose two premise attributes each have three reference levels, and the result 

has four reference levels. The referential point and referential value of premise attribute 1 are set in 

Table 1, and the referential point and referential value of premise attribute 2 are set in Table 2. The 

referential points and referential values of the results are shown in Table 3. 

Table 1 Referential points and values of prerequisite attribute 1 

Referential point A B C 

Referential value 1 2 3 

Table 2 Referential points and values of prerequisite attribute 2 

Referential point I J K 

Referential value 4 5 6 

Table 3 Referential points and referential values for the results 



Result L M O H 

Referential value 1 2 3 4 

In this case, 9 belief rules need to be constructed, and the corresponding belief table is shown 

in Table 4. 

Table 4 BRB belief table 

Number Attribute 1 Attribute 2 Output belief distribution 

1 A I {(L,0.9), (M,0.1), (O,0), (H,0)} 

2 A J {(L,0.8), (M,0.2), (O,0), (H,0)} 

3 A K {(L,0.7), (M,0.2), (O,0.1), (H,0)} 

4 B I {(L,0.6), (M,0.3), (O,0.1), (H,0)} 

5 B J {(L,0.5), (M,0.3), (O,0.2), (H,0)} 

6 B K {(L,0.4), (M,0.3), (O,0.2), (H,0.1)} 

7 C I {(L,0.2), (M,0.3), (O,0.2), (H,0.3)} 

8 C J {(L,0), (M,0.2), (O,0.2), (H,0.6)} 

9 C K {(L,0), (M,0.1), (O,0.2), (H,0.7)} 

The above traditional BRB constructs belief tables in the form of cartesian products. In the 

above example, the number of attributes is small, and the number of referential values and referential 

points is small, so the combination of rules of the belief table does not produce a combination 

explosion. However, when the number of premise attributes and referential values and referential 

points increase, it is easy to produce the problem of combination rule explosion. This is mainly due 

to the way the rules are combined because the number of rules that build belief tables as cartesian 

products increases exponentially. It can be seen that the traditional BRB is only suitable for a simple 

system with a small number of prerequisite attributes and referential values but not for a complex 

system with a large number of prerequisite attributes and referential values. 

2.2 The reasoning process of BRB: Reasoning and problems 

As the inference engine of BRB, ERs are a multi attribute decision-making method formed on 

the basis of decision theory and D-S evidence theory. Its belief framework has good performance in 

describing uncertain problems, so it is chosen by BRB for model reasoning. The inference of BRB 

is mainly divided into four parts: calculation of rule fitness, calculation of rule activation weight, 

rule synthesis by the ER analytic algorithm, and calculation of expected utility value. 

First, the rule fitness is calculated. This step completes the transformation of the input data 

according to the different properties of the premise attributes. The equivalent transformation based 

on utility can fully retain the features of the original data and is suitable for the input data 



transformation of BRB reasoning process. The specific conversion rules are as follows: 
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where the matching degree between rule k  and attribute i  is denoted as k
ia  . The i th−   attribute 

sample is called ix . The referential value of the i th−  attribute in rule l  is denoted as l
iA . 

Then, the rule activation degree is calculated. BRB combines rules in the form of cartesian 
products, and each combination rule has a different practical meaning. In practical models, not every 
rule is equally important. The activation degree of each rule is different. The rule activation weight 
is calculated as follows: 
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where the rule activation weight of rule k is denoted as k . The attribute weight of the i th− premise 
attribute is denoted as ( 1 )

i
i M =  . 

Then, the ER analytic approach is used for rule synthesis. In 2007, Yang proposed the ER 
analytical method[14]. In the process of model reasoning, the ER analytical method is widely used. 
The ER parsing method is expressed as follows: 
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where the corresponding belief degree of the i th−   result under rule l   is denoted as 

, ( 1 )
i l

i N =  . The utility value is  . 

Finally, the model output results are calculated based on utility theory. After the fusion of all 

rules is completed, the output set of the BRB inference process can be expressed as follows:

 ,{( ),  1,..., }n ny D n N= =  (6) 
After obtaining the output result set of the BRB inference process, the final output result can 

be expressed as: 
1

( )
N

n n
n

Z u D 
=

=   (7) 

where ( )
n

u D is the utility value of
n

D . Z is the final expected utility value of outcome set y and 

the final output of the BRB model. 

The BRB model uses ER reasoning. ER inference integrates multiple sources of information 

and can show better processing ability for uncertain information. Moreover, the process of ER 

inference is traceable and explainable, and the process is obvious in the circuit. However, traditional 



BRB reasoning does not consider rule reliability, which will have a great impact on model integrity 

and representation ability. Therefore, it is necessary to introduce rule reliability into the new model 

to enhance the integrity of the model. 

2.3 BRB optimization process: Parameter training model 

The initial parameters of BRB are given by experts, including the belief, attribute weight and 

rule weight. Based on long-term practice, experts can give a general distribution in line with the 

trend of the actual system, but it may not be the optimal solution of the model. Therefore, it is 

necessary to design an optimization model to correct the initial distribution given by expert 

knowledge so that BRB can achieve the optimal effect. 

First, there are clear optimization objectives. Mean square error (MSE) is an important 

indicator to measure the effectiveness of a model [15]. The smaller the numerical gap between the 

model output and the label value is, the better the model optimization effect. The objective function 

of BRB optimization can be expressed as: 

 min  ( , , )MSE     (8) 

Among them, the optimized parameters include rule weight, attribute weight and belief. The MSE 

is calculated as follows: 

 2
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1
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where trainT  is the number of training samples and *Z  and Z  are the label value and the output 

value of the BRB model, respectively. Based on the above analysis and discussion, the complete 

optimization objective function of the BRB can be expressed as: 
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Then, an appropriate optimization algorithm is selected to construct the optimization model. 

The optimization model continuously modifies the parameters by calculating the MSE value of the 

label value and the BRB model output value. This process is shown in Figure 2. 
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Figure 2. Parameter training model of BRB 

2.4 Question 

According to the above analysis of the traditional BRB, it can be found that the traditional BRB 

still has many shortcomings. These deficiencies greatly degrade the performance of the model and 

must be addressed properly. It can be summarized as follows: 

(1) Rule combination explosion in BRB modeling process 

The combination explosion of rules is a thorny issue for the BRB. Based on the analysis of the 

traditional BRB belief table construction method in Section 2.1, it can be found that combining rules 

in the form of cartesian products easily produces a combination explosion. As the number of premise 

attributes and referential points increases, the combination of rules increases exponentially. This 

problem seriously increases the complexity of the model and reduces the efficiency of optimization, 

so it must be properly solved. 

(2) Rule reliability is not fully considered in BRB reasoning 

Traditional BRB reasoning uses the ER analytic approach, but the ER analytic approach does 

not consider rule reliability. This results in an incomplete model that cannot clearly indicate how 

much each rule contributes to the model. 

(3) BRB is not suitable for engineering applications with many attributes and referential values 

Traditional BRB modeling methods are not suitable for engineering applications. This is 

caused by the complex conditions of data noise, a large number of premise attributes, and many 

referential values and referential points in engineering applications. 

Based on the above analysis, a new interval constructed belief rule base with rule reliability 

(IBRB-r) is proposed. In this model, belief tables are constructed in the form of intervals, and regular 

reliability is considered. This not only solves the problem of combination rule explosion in the 

process of traditional BRB modeling but also solves the problem that rule reliability is not 

considered in the process of traditional BRB reasoning, which can be fully applied to engineering 

practice. 



3. Model description based on IBRB-r 

Similar to a traditional BRB, the IBRB-r model is also composed of a series of belief rules. 

The difference is that the new model has a great change in the modeling method, and rule reliability 

is introduced into the reasoning method. Assuming that the premise attributes are independent of 

each other, the IBRB-r model can be described by the IF-THEN statement as： 
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where the M  premise property is denoted as ( 1,..., )ix i M=  . The reference interval of the M  

premise attribute can be denoted as [ , ]i ia b  , where 1,...,i M=  . The rule reliability of rule k  is 

denoted as k . The rule weight of rule k is denoted as k . 

3.1 Problem formulation 

In Section 2, the IBRB-r model is proposed based on the lack of traditional BRB analysis. 

IBRB-r can perfectly solve the problem that the traditional BRB model easily causes the explosion 

of combination rules and does not consider the reliability of rules. This section will propose how to 

construct the IBRB-r model from the following three perspectives and formulate the problem. 

Problem 1: How to reasonably design the modeling process of IBRB-r model. According to 

the analysis in Section 2, there are problems in the combination of rules in the modeling process of 

traditional BRB, which easily causes the explosion of combined rules. Therefore, it is necessary to 

propose a new rule combination method to reasonably design the modeling process of the new 

model. The set of parameters after reasonable modeling can be described as: 

 0
1 1 1{ ,..., , ,..., , ,..., }L L Lw      =  (12) 

where L  represents the number of rules. 1,..., L  represents the initial belief given by the expert 

knowledge. 1,..., L  represents the initial rule reliability. 1,..., L  represents the initial rule weight. 
0

w represents the parameter set consisting of belief, rule weight, and rule reliability. 

Problem 2: How to reasonably design the reasoning process of IBRB-r model. The traditional 

BRB does not consider rule reliability, so it is necessary to add rule reliability in the reasoning 

process to reasonably design the reasoning process of IBRB-r model. The reasoning process of the 

new model can be formulated as: 

 0( , , )Z inference w x=  (13) 

where Z represents the expected utility value of the IBRB-r model. represents the parameter 



set in the model inference process. x  represents the set of prerequisite attributes of the model. 

( )inference   represents the formal description function of the inference process. 

Question 3: How to reasonably optimize the parameters of IBRB-r model. It is also a problem 

to select an appropriate optimization algorithm and optimize the parameters of IBRB-r. The 

optimization process of the new model can be described as: 

 0( , , , )bestw optimize x Z w =  (14) 

where bestw   is the optimal parameter set of IBRB-r model.   is a set of parameters in the 

optimization model. ( )optimize  is a formal description function of the optimization process. 

3.2 IBRB-r modeling process: a new way to set reference intervals and a new way to 

build belief tables 

The modeling method of the IBRB-r model has been greatly changed from that of the 

traditional BRB. This section will introduce the modeling process of the IBRB-r model in detail 

from three aspects: problem mechanism analysis, referential point setting and belief table 

construction. 

(1) Mechanism analysis of the problem 

In terms of mechanism analysis, IBRB-r is the same as a traditional BRB. They all need to first 

identify the main influencing factors and possible outcomes of the problem, that is, the premise 

properties and possible outcomes. After that, data samples of premise attributes and possible 

outcomes are fed into the model for modeling, reasoning, and optimization. 

(2) Setting the new reference interval 

Different from the traditional BRB, IBRB-r sets the referential values and referential points of 

the premise attributes in the form of reference levels and reference intervals. IBRB-r replaces the 

referential value of the premise attribute with the reference interval and the referential point with 

the reference level. When the sample data of the premise attribute falls into one of the reference 

intervals, the corresponding belief rule will be activated. The activated rules are then involved in 

model inference and optimization. 

IBRB-r's new reference interval setting is suitable for engineering applications. In practical 

engineering applications, monitoring data are easily affected by noise, and data samples have great 

uncertainty. This method of representing the data reference interval in the form of an interval can 

better describe the uncertainty of the model to be applied to engineering practice. 

For example, suppose two premise attributes each have three reference levels, and the result 

has four reference levels. The following is an example of how to set the new reference level and 

reference interval. The reference level and reference interval settings of the two premise attributes 

are shown in Table 5 and Table 6, respectively. The reference levels and reference intervals of the 



results are shown in Table 7. 

Table 5 Reference levels and reference intervals of prerequisite attribute 1 

Referential point A B C 

Reference interval 1 1[ , ]a b  2 2[ , ]a b  3 3[ , ]a b  

Table 6 Reference levels and reference intervals of prerequisite attribute 2 

Referential point I J K 

Reference interval 1 1[ , ]c d  2 2[ , ]c d  3 3[ , ]c d  

Table 7 Reference levels and reference intervals of results 

Referential point L M O H 

Reference interval 1 2 3 4 

(3) New belief table construction method 

The IBRB-r model proposes a new way of constructing a belief table and a new way of rule 

combination. Its rules are combined in additive form, not in Cartesian product form. This 

combination of rules results in a dramatic change in the construction of belief tables and has the 

following advantages. On the one hand, the combination of rules in the form of addition avoids the 

exponential growth of the number of rules and can effectively reduce the number of rules. This kind 

of rule combination perfectly solves the problem of combination rule explosion. On the other hand, 

the method of constructing a belief table in addition to form is more suitable for engineering practice. 

Due to the large number of premise attributes, referential points and referential values in engineering 

practice, it is easy to cause large and complex problems in the model. Using an addition form to 

construct a belief table can not only solve the problem of combination rule explosion but also 

simplify the model and reduce the complexity of the model. 

The following is an example of the new belief table construction. If the value of each attribute 

is divided into different non-overlapping interval ranges, each interval corresponds to a rule. If you 

have two premise properties, premise property 1 has three reference intervals, and premise property 

2 has four reference intervals, then the number of rules is 3+4=7. However, the traditional BRB 

requires 3*4=12 rules. It can be seen that in this case, the number of rules in the IBRB-r model is 

reduced by 42% compared with the traditional BRB. Assuming premise property 1 has 6 reference 

intervals and premise property 2 has 10 reference intervals, then the number of rules is 6+10=16. 

However, the traditional BRB requires 6*10=60 rules. It can be seen that in this case, the number 

of rules in the IBRB-r model is reduced by 73% compared with the traditional BRB. Given that 

premise property 1 has 30 reference intervals and premise property 2 has 30 reference intervals, the 

number of rules is 30+30=60. However, the traditional BRB requires 30*30=900 rules. It can be 

seen that in this case, the number of rules of the IBRB-r model is reduced by 93% compared with 



the traditional BRB. 

As shown in Table 5-7, assume that the reference levels of premise attribute 1 are A, B, and C, 

and the reference levels of premise attribute 2 are I, J, and K. Figure 3-4 shows the comparison of 

the two rule combinations. 

BRB rule combination mode

A B C

I J K JI K I J K
 

Figure 3. Rule construction in a traditional BRB

IBRB-r rule combination mode

A B C I J K
 

Figure 4. Rule construction of IBRB-r 

As a result, the new belief table construction table is shown in Table 5. Compared with the 

traditional BRB belief table construction method, the belief table constructed by the IBRB-r model 

greatly reduces the difficulty of rule construction. In addition, the way IBRB-r constructs belief 

tables completely solves the problem of exploding combination rules. 

Table 5 IBRB-r belief degree 

Number Reference interval Output belief distribution 

1 1 1[ , ]a b  {(L,0.9), (M,0.1), (O,0), (H,0)} 

2 2 2[ , ]a b  {(L,0.8), (M,0.2), (O,0), (H,0)} 

3 3 3[ , ]a b  {(L,0.7), (M,0.2), (O,0.1), (H,0)} 

4 1 1[ , ]c d  {(L,0.6), (M,0.3), (O,0.1), (H,0)} 

5 2 2[ , ]c d  {(L,0.5), (M,0.3), (O,0.2), (H,0)} 

6 3 3[ , ]c d  {(L,0), (M,0.1), (O,0.2), (H,0.7)} 

3.3 IBRB-r inference process: New ER rules and a new rule activation mode are 

introduced 

(1) New rule activation mode 

After completing the modeling process, the traditional BRB activates the rule when the 

matching degrees of the prerequisite attributes are not 0. However, the IBRB-r model is different 



from the traditional BRB. When the data sample of the premise attribute falls in a certain interval, 

the corresponding rule of this interval is activated. For example, referring to the belief table shown 

in Table 5, when premise attribute 1 falls in the interval 1 1[ , ]a b and premise attribute 2 falls in the 

interval 2 2[ , ]c d , rules 1 and 5 are activated accordingly. 

(2) Newly introduced ER rule 

The inference process of IBRB-r introduces ER rules, which further considers the rule 

reliability compared with ER analytic approach. Different ways of obtaining evidence are different, 

and it is easy to be disturbed by the environment in the process of obtaining evidence. As a result, 

evidence may not be completely reliable, so ER rule introduces evidence reliability, that is, regular 

reliability of the IBRB-r model. Different from ER analytic approach, the reasoning process of the 

ER rule algorithm is mainly shown in Figure 5. 

Multiple evidence belief 

distribution

Calculate basic 

probability mass 

Calculate the mixed 

probability mass
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belief degree in the outcome

The utility computes the 

final result

Rule weight Evidence reliability 

 

Figure 5. Implementation process of ER rule 

The rules in the IBRB-r model modeling process are actually used as evidence in the ER rules. 

Mark the independent evidence in section L  as ( 1,..., )ie i L=  . The identification framework is 

denoted as   , which consists of N  assessment level ( 1,..., )nD n N=  . This can be represented as

1{ ,..., }ND D = . A piece of evidence can then be represented as the following belief distribution: 
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where ,n i is expressed as the belief degree that the assessment scheme is evaluated as nD  

under the evidence ie . ,i is expressed as global ignorance, that is, the belief of the i th− attribute 

with respect to the identification framework  . 

Suppose that the weight of evidence is ( 1,..., )i i L = , and [0,1]i  . The evidence reliability is

( 1,..., )i i L =  , and [0,1]i   . Then, the belief distribution of evidence mixed weighting with 

reliability can be expressed as: 

 , ( ),{( , ), ;( ( ), )}i n n i n im D m D m =      (16) 

where the power set is denoted by ( )  . The mixed probability mass of the i th− attribute in the 

hierarchy nD is denoted as ,n im , which can be obtained by the following formula: 
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where the normalized coefficient is denoted by , 1 (1 )w i i ic  = + −  , which satisfies

, ( ),

1

1
N

n i i

n

m m 
=

+ =  . The joint support of any two pieces of evidence , (2)n e   is calculated as 

follows: 
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Then, the joint support of L independent evidence , ( )n e L can be generalized to be computed in 

the following way： 

 , ( ) , ( 1) ( ), ( 1) , , ( 1) ,
ˆ, (1 )

n
n n e k k n e k e k n k A e k B kA B D

D m m m m m m −  − − =
   = − + +    (20) 

 ( ), ( ) ( ), ( 1)
ˆ (1 )e k k e km m   −= −  (21) 

 , ( ), ( )

, ( ) ( ), ( )

0,                                      

ˆ
,

ˆ ˆ

n

n e kn e k
n

A e k e kA

D

mm
D

m m 

= 


=    +
 (22) 

 , ( ), ( )

, ( )

0,      

ˆ , ,

ˆ

n

n e kn e k n n

A e kA

D

m D D

m





= 


=    



 (23) 

where 3,4,...,k L= 。 , ( )n e k is the belief degree of the former k attributes with respect to the level

nD after fusion, and , (1) ,1n e nm m= ， ( ), (1) ( ),1em m  = . Through the above formula calculation, the 

comprehensive assessment results can be obtained as follows: 

 , ( ) , ( )( ) {( , ), 1,..., ,( , )}n n e L e Le L D n N = =   (24) 

The utility at level nD is denoted as ( )
n

u D . The final output is Z , the expected utility. The final 

expected utility is calculated as follows: 
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3.4 IBRB-r parameter optimization process: P-CMA-ES algorithm 

For the BRB parameter optimization problem, the main optimization methods include 

sequential quadratic programming (SQP) and constrained particle swarm optimization (PSO), P-



CMA-ES, and the differential evolution algorithm (DE). Zhou et al.[16] used PSO, SQP, P-CMA-

ES and other algorithms to optimize the hidden power set BRB and found that the model using the 

P-CMA-ES algorithm had higher accuracy. Cao et al.[17] compared the optimization effects of DE 

and P-CMA-ES on interpretable BRBs and found that P-CMA-ES has high accuracy and 

interpretability. 

Due to the superiority of P-CMA-ES in the BRB optimization algorithm, the P-CMA-ES 

algorithm was used to optimize the initial parameters in subsequent experiments IBRB-r and BRB. 

The optimization process of the P-CMA-ES algorithm is mainly divided into six parts: parameter 

initialization, sampling, projection, updating the next generation mean, updating the covariance 

matrix, and recursive execution[18]. 

First, the parameters are initialized. Initialize the parameters of the BRB that need to be 

optimized, including the belief degree, rule weights, and attribute weights. The initialization 

parameter can be expressed as: 

 0 0
w =  (26) 

 0
1,1 , 1 1{ ,..., , ,..., , ,..., }N L L L      =  (27) 

Then, the sample. The parameters of each generation are obtained through a sampling operation, 

which can be expressed as: 

 1 ~ (0, ), 1,...,s s s s
i w N C i  + + =  (28) 

where 1s
i + is used to represent the solution i  in generation 1s + . s

w is used to represent the mean 

of the s generation search distribution. s is used to represent the step size of generation s . s
C  is 

used to represent the s th−  covariance matrix. ( )N  is used to represent the normal distribution. 

  is used to represent the number of offspring. 

Then, the projection. To satisfy the constraints, the solution is projected onto the feasible 

hyperplane, which can be expressed as: 
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where the parameter vector is denoted as 1[1,...,1] N=Q . The number of variables with constraints 

is denoted 1,...,en N= . The number of equality constraints is denoted as 1,.., 1N = + . 

Then, the mean of the next generation search distribution is updated[19]. Denote the weight 

coefficient as ih and the offspring population size as . The i th−  solution of   solutions of the 

1s +  generation search distribution is denoted as :
s
i  . The operation to update the mean can be 

expressed as: 

 1 1
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=
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Then, the covariance matrix is updated[20]. Update the covariance matrix using the following 

equation: 
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where the step of generation s  is denoted as s  . The learning rate is denoted as 1e  and 2e  . The 

evolutionary path of generation 1s + is denoted as 1s

e
P

+ . The offspring population of generation s is 

denoted as s . The i th− parameter vector in the  vector of the 1s + generation is denoted as 1

i:

s
K 

+ . 

After the modeling, inference and optimization of the IBRB-r model, the complete IBRB-r 

model can be obtained. Compared with the traditional BRB model, the IBRB-r model has undergone 

great changes in the modeling process and reasoning process. Among them, IBRB-r designed a new 

reference interval and a new confidence table construction method in the modeling process, and a 

new rule activation method and a new ER rule were designed in the reasoning process. The specific 

IBRB-r model structure is shown in Figure 6. 

• New setting method of reference interval

• New Belief table construction method
Belief rules

ER

BRB optimization model

Optimum parameter Accuracy rate

Expert knowledge

Initial parameters

Monitoring data

• New rule activation mode

• Innovative introduction of ER rules

Expected utility

 

Figure 6. Structure diagram of the IBRB-r model 

4. Case study 

This experiment takes the result safety assessment of a liquid launch vehicle as the main case 

to prove the effectiveness and accuracy of the IBRB-r model. At the same time, the effectiveness 

and accuracy of the IBRB-r model under different data sets are compared. The data "Rocket" for 

the structural safety of the liquid launch vehicle was collected from a laboratory platform. The 

monitoring indicators of the experimental platform of a liquid launch vehicle include shaking, 

inclining, ambient temperature, ambient humidity, etc.[21]. Only the shaking and inclining are used 

to evaluate the structural safety of the liquid launch vehicle. This is because the ambient temperature 

and humidity are basically unchanged during the experiment, so the influence of these two factors 

is not considered temporarily. There are 515 liquid launch vehicle monitoring data, 445 

experimental training samples and 70 test samples. The other datasets of the experimental control 

group are from the public UCI platform dataset. 



4.1 Establishment of a structural safety assessment model of a liquid launch vehicle based on 

IBRB-r 

Based on the IBRB-r model, combined with shaking and inclining indexes and assessment 

results, the safety assessment rules of a liquid launch vehicle structure can be described as IF-THEN 

rules as follows: 
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Among them, Shaking  and Inclining  of the liquid launch vehicle structure are the prerequisite 

attributes of IBRB-r. The experiment set 20 reference intervals for each attribute. k is the rule 

reliability of rule k , and k is the rule weight of rule k . 1D , 2D  and 3D , as the three assessment 

grades of liquid launch vehicle structure safety, represent normal, medium and low, respectively. 

Through the analysis of data samples, the reference levels and reference intervals of Shaking  and 

Inclining  are set as shown in Table 8. The larger the sample value of the two attributes, the higher 

the assessment level. The reference level and reference interval of the assessment result are set as 

shown in Table 9, which reflects the safe failure probability of the liquid launch vehicle result and 

thus reflects its safe state. 

Table 8 Reference grades and reference intervals for Shaking and Inclining  

No. Reference degree Shaking   Inclining   

1 A [3.1, 3.5] [0.020, 0.025] 

2 B [3.5, 4.0] [0.025, 0.028] 

3 C [4.0, 5.0] [0.028, 0.030] 

4 D [5.0, 5.5] [0.030, 0.035] 

5 E [5.5, 6.0] [0.035, 0.038] 

6 F [6.0, 6.5] [0.038, 0.040] 

7 G [6.5, 7.0] [0.040, 0.045] 

8 H [7.0, 7.5] [0.045, 0.048] 

9 I [7.5, 8.0] [0.048, 0.050] 

10 J [8.0, 8.5] [0.050, 0.053] 

11 K [8.5, 9.0] [0.053, 0.055] 

12 L [9.0, 9.5] [0.055, 0.060] 

13 M [9.5 50] [0.060, 0.063] 



14 N [50, 55] [0.063, 0.065] 

15 O [55, 56] [0.065, 0.070] 

16 P [56, 58] [0.070, 0.075] 

17 Q [58, 60] [0.075, 0.078] 

18 R [60, 62] [0.078, 0.080] 

19 S [62, 64] [0.080, 0.085] 

20 T [64, 66] [0.085, 0.090] 

Table 9 Liquid launch vehicle safety grades and referential values 

Reference degree 1D  2D  3D  

Referential value 1.0 0.5 0 

After setting the reference level and interval for shaking and inclining, the initial IBRB-r liquid 

launch vehicle safety assessment model can be obtained. The initial model specifically includes the 

initial confidence, rule reliability and rule weight, as shown in Table 10. Table 10 not only shows 

the initial parameters but also clearly shows the method of constructing the confidence table of the 

IBRB-r model. When the two prerequisite properties are shaking and incline, each with 20 reference 

intervals, the traditional BRB requires 21 referential points. At this time, the traditional BRB has 

21*21=441 rules, while the IBRB-r model only needs 20+20=40 rules, which reduces the number 

of rules by nearly 91%. This greatly reduces the number of rules and makes the model much less 

complex. 

Table 10 Initial model for safety assessment of liquid launch vehicles 

No. 
Reference 

Interval 

reliab

ility 
weight Output No. 

Reference 

Interval 

reliabi

lity 
weight Output 

1 [3.1, 3.5] 1 1 {1,0,0} 21 [0.020, 0.025] 1 1 {0,0,1} 

2 [3.5, 4.0] 1 1 {0,1,0} 22 [0.025, 0.028] 1 1 {1,0,0} 

3 [4.0, 5.0] 1 1 {0,0,1} 23 [0.028, 0.030] 1 1 {0,1,0} 

4 [5.0, 5.5] 1 1 {1,0,0} 24 [0.030, 0.035] 1 1 {0,0,1} 

5 [5.5, 6.0] 1 1 {0,1,0} 25 [0.035, 0.038] 1 1 {1,0,0} 

6 [6.0, 6.5] 1 1 {0,0,1} 26 [0.038, 0.040] 1 1 {0,1,0} 

7 [6.5, 7.0] 1 1 {1,0,0} 27 [0.040, 0.045] 1 1 {0,0,1} 

8 [7.0, 7.5] 1 1 {0,1,0} 28 [0.045, 0.048] 1 1 {1,0,0} 

9 [7.5, 8.0] 1 1 {0,0,1} 29 [0.048, 0.050] 1 1 {0,1,0} 

10 [8.0, 8.5] 1 1 {1,0,0} 30 [0.050, 0.053] 1 1 {0,0,1} 

11 [8.5, 9.0] 1 1 {0,1,0} 31 [0.053, 0.055] 1 1 {1,0,0} 



12 [9.0, 9.5] 1 1 {0,0,1} 32 [0.055, 0.060] 1 1 {0,1,0} 

13 [9.5 50] 1 1 {1,0,0} 33 [0.060, 0.063] 1 1 {0,0,1} 

14 [50, 55] 1 1 {0,1,0} 34 [0.063, 0.065] 1 1 {1,0,0} 

15 [55, 56] 1 1 {0,0,1} 35 [0.065, 0.070] 1 1 {0,1,0} 

16 [56, 58] 1 1 {1,0,0} 36 [0.070, 0.075] 1 1 {0,0,1} 

17 [58, 60] 1 1 {0,1,0} 37 [0.075, 0.078] 1 1 {1,0,0} 

18 [60, 62] 1 1 {0,0,1} 38 [0.078, 0.080] 1 1 {0,1,0} 

19 [62, 64] 1 1 {1,0,0} 39 [0.080, 0.085] 1 1 {0,0,1} 

20 [64, 66] 1 1 {0,1,0} 40 [0.085, 0.090] 1 1 {1,0,0} 

4.2 Inference and optimization of the structural safety assessment model of a liquid 

launch vehicle based on IBRB-r 

After model establishment, the output belief degree, rule reliability and rule weight will be obtained 

after model reasoning and parameter optimization. The parameter values after inference and optimization 

are shown in Table 11. 

Table 11 Optimized parameters 

No. Reference Interval Rule reliability Rule weight Output 

1 [3.1, 3.5] 0.99 0.71 {0.00,0.02,0.98} 

2 [3.5, 4.0] 0.11 0.37 {0.40,0.07,0.53} 

3 [4.0, 5.0] 0.49 0.36 {0.21,0.38,0.41} 

4 [5.0, 5.5] 0.51 0.80 {0.50,0.25,0.25} 

5 [5.5, 6.0] 0.21 0.97 {0.22,0.73,0.05} 

6 [6.0, 6.5] 0.97 0.87 {0.00,0.05,0.95} 

7 [6.5, 7.0] 0.32 0.68 {0.54,0.13,0.33} 

8 [7.0, 7.5] 0.34 0.71 {0.53,0.35,0.12} 

9 [7.5, 8.0] 0.55 0.44 {0.17,0.64,0.19} 

10 [8.0, 8.5] 0.46 0.55 {0.60,0.40,0.00} 

11 [8.5, 9.0] 0.91 0.39 {0.39,0.10,0.51} 

12 [9.0, 9.5] 0.97 0.47 {0.00,0.00,1.00} 

13 [9.5 50] 1.00 0.82 {0.97,0.03,0.00} 

14 [50, 55] 0.60 0.73 {0.31,0.61,0.08} 

15 [55, 56] 0.82 0.84 {0.32,0.52,0.16} 

16 [56, 58] 0.99 0.33 {0.93,0.01,0.06} 

17 [58, 60] 1.00 0.66 {0.97,0.02,0.01} 

18 [60, 62] 0.58 0.35 {0.32,0.47,0.21} 



19 [62, 64] 0.99 0.71 {0.95,0.05,0.00} 

20 [64, 66] 0.22 0.16 {0.69,0.23,0.08} 

21 [0.020, 0.025] 0.87 0.85 {0.72,0.07,0.21} 

22 [0.025, 0.028] 0.13 0.10 {0.18,0.48,0.34} 

23 [0.028, 0.030] 0.91 0.10 {0.34,0.20,0.46} 

24 [0.030, 0.035] 0.57 0.19 {0.70,0.10,0.20} 

25 [0.035, 0.038] 0.12 0.06 {0.83,0.07,0.10} 

26 [0.038, 0.040] 0.74 0.00 {0.70,0.12,0.18} 

27 [0.040, 0.045] 0.25 0.08 {0.09,0.11,0.80} 

28 [0.045, 0.048] 0.23 0.33 {0.16,0.51,0.33} 

29 [0.048, 0.050] 0.09 0.18 {0.05,0.56,0.39} 

30 [0.050, 0.053] 0.10 0.15 {0.22,0.30,0.48} 

31 [0.053, 0.055] 0.32 0.80 {0.70,0.10,0.20} 

32 [0.055, 0.060] 0.77 0.90 {0.53,0.29,0.18} 

33 [0.060, 0.063] 0.18 0.74 {0.62,0.25,0.13} 

34 [0.063, 0.065] 0.34 0.45 {0.41,0.18,0.41} 

35 [0.065, 0.070] 0.84 0.30 {0.23,0.56,0.21} 

36 [0.070, 0.075] 0.69 0.87 {0.62,0.26,0.12} 

37 [0.075, 0.078] 0.21 0.36 {0.65,0.08,0.27} 

38 [0.078, 0.080] 0.57 0.09 {0.75,0.07,0.18} 

39 [0.080, 0.085] 0.68 0.18 {0.72,0.06,0.22} 

40 [0.085, 0.090] 0.81 0.33 {0.83,0.04,0.13} 

4.3 Analysis and comparison of experimental results of structural safety assessment 

model of a liquid launch vehicle based on IBRB-r 

(1) Curve comparison between the model output value and real value 

After modeling, reasoning and optimization of IBRB-r, the expected utility value output by 

IBRB-r model can be obtained. The comparison of the expected utility value and result label of 

IBRB-r-based liquid launch vehicle structure safety assessment model is shown in Figure 7. In this 

experiment, the IBRB-r model is also compared with the traditional BRB model by numerical fitting. 

The comparison between the output expected utility value and the real value of the BRB is shown 

in Figure 8. 



 

Figure 7 Comparison between the output value of IBRB-r and the real value 

 

 

Figure 8 Comparison between the output value of BRB and the real value 

In addition, this experiment also combines the IBRB-r model with a backpropagation neural 

network (BPNN)[22-[23]24], an extreme learning machine (ELM) [25-27]and a radial basis 

function neural network (RBF)[28], and the comparison between the obtained model output value 

and the real value is shown in Figures 9-11. 



 

Figure 9. Comparison between the output value of BPNN and the real value 

 

Figure 10. Comparison between the output value of ELM and the real value

 

Figure 11. Comparison between the RBF output value and real value 

As seen from Figures 7-11, the comparison curve fitting between the output value of the IBRB-

r model and the real value is obviously better than that of BRB, BPNN, ELM and RBF. This shows 

the superiority of IBRB-r model in terms of model accuracy. 

(2) Comparison of IBRB-r model before and after improvement 



The improved IBRB-r model is compared with the traditional BRB before improvement in the 

following dimensions, such as the number of parameters, the number of rules, and the complexity, 

and the experimental results are shown in Table 12. 

Table 12 Comparison before and after model improvement 

Method Parameter quantity Rule quantity Time Accuracy 

IBRB-r 200 40 6.2070 100% 

BRB 1766 441 23.8170 95.71% 

According to Table 12, IBRB-r model comprehensively outperforms the traditional BRB 

model in terms of the total number of parameters, number of rules, complexity and accuracy. The 

specific summary is as follows: 

1) In terms of the total number of parameters, the traditional BRB has 1766 parameters to be 

trained and optimized. However, the IBRB-r model only requires 400 parameters to train and 

optimize to surpass the performance of the traditional BRB. Compared with a conventional BRB, 

IBRB-r reduces the total number of parameters by 89%. 

2) In terms of the number of rules, the traditional BRB has 441 rules, while IBRB-r has only 

40 rules. Compared to the traditional BRB, the number of rules is reduced by nearly 91%. The 

complexity of the model is greatly reduced, the number of rules is greatly reduced, and the problem 

of combination rule explosion is completely solved. 

3) In terms of the time required to complete an experiment, IBRB-r takes 6.2070 seconds, while 

traditional BRB takes 23.8170 seconds. It can be seen that the traditional BRB has high complexity 

and high time cost. 

4) In terms of experimental accuracy, the new IBRB-r model is obviously superior to the 

traditional BRB. IBRB-r model achieves better results than the traditional BRB with fewer 

parameters, fewer rules and less time. This result fully proves the feasibility and superiority of the 

IBRB-r model. 

(3) Accuracy comparison of different methods 

In the structural safety assessment model of liquid launch vehicle structures, the accuracy of 

different methods under this dataset is compared in addition to the comparison before and after the 

model improvement. The experimental results are shown in Table 13. As seen from Table 13, the 

IBRB-r model is superior to the traditional BRB and data-driven BPNN, ELM and RBF methods in 

accuracy. 

Table 13 Comparison of different methods for structural safety assessment of liquid launch 

vehicles 



Method IBRB-r BRB BPNN ELM RBF 

Accuracy 100% 95.71% 81.43% 90% 95.71% 

4.4 Comparison of different methods in different data sets 

In addition to model comparison before and after improvement, this experiment also compares 

the methods in different data sets. The data set used is from the UCI platform, and the dataset 

information is shown in Table 14. A total of 5210 training samples and 90 test samples were set for 

the Banana dataset. In the Haberman dataset, 276 training samples and 30 test samples were set. 

There are 110 training samples and 40 test samples in the Iris dataset. The Thyroid dataset set 170 

training samples and 45 test samples. In the Bupa dataset, 310 training samples and 35 test samples 

were set. Appendicitis set 86 training samples and 20 test samples. 

Table 14 Dataset description 

Datasets Number of attributes Number of classes Total number of data 

Banana 2 2 5300 

Haberman 3 2 306 

Iris 4 3 150 

Thyroid 5 3 215 

Bupa 6 2 345 

Appendicitis 7 2 106 

The experiment compares the effect of the model before and after improvement in different 

data sets. Tables 15 shows the comparison of models in each dataset before and after improvement. 

Table 15 Comparison of the model before and after improvement under different datasets 

Dataset Method 
Parameter 

quantity 
Rule quantity Time Accuracy 

Banana 
IBRB-r 200 40 51.2500 85.23% 

BRB 1766 441 1170.1000 73.86% 

Haberman 
IBRB-r 140 28 5.3270 93% 

BRB 522 130 35.9240 80% 

Iris 
IBRB-r 400 80 21.5090 95% 

BRB 1766 441 124.4500 60% 

Thyroid 
IBRB-r 500 100 14.8560 97.67% 

BRB 1766 441 20.4170 74.42% 

Bupa 
IBRB-r 600 120 16.5220 91.43% 

BRB 1766 441 40.0660 88.57% 



Appendicitis 
IBRB-r 700 140 14.6450 85% 

BRB 1766 441 60.7180 80% 

Table 15 shows that the proposed IBRB-r model is universal. With multiple data sets, it 

outperforms the traditional BRB in many dimensions, such as the number of parameters, the number 

of rules, the complexity of the model and the accuracy. Compared with the traditional BRB, the 

number of rules and the number of parameters to be trained and optimized in the IBRB-r model are 

greatly reduced, which perfectly solves the problem of combination rule explosion in the traditional 

BRB. The IBRB-r model also achieves the same or even higher accuracy than the traditional BRB 

in a short time. All these results fully illustrate the universality, accuracy and superiority of the 

IBRB-r model. In addition, the experiment also compares the accuracy of different methods in 

different data sets, and the results are shown in Table 16. 

Table16 Comparison of different accuracies under different datasets 

Dataset 

Method 
Rocket Banana Haberman Iris Thyroid Bupa Appendicitis 

IBRB-r 100% 85.23% 93% 95% 97.67% 91.43% 85% 

BRB 95.71% 73.86% 80% 60% 74.42% 88.57% 80% 

BPNN 81.43% 63.33% 76.67% 82.50% 72.09% 71.43% 70% 

ELM 90% 76.67% 83.33% 85% 86.05% 71.43% 70% 

RBF 95.71% 71.11% 80% 77.50% 74.42% 80% 65% 

(4) Analysis and summary of experimental results 

As an improved model, the IBRB-r model is superior to the traditional BRB model in all 

aspects while retaining the advantages of the traditional BRB model. According to Tables 12-16, 

compared with the traditional BRB model based on rule modeling, IBRB-r has the following 

characteristics: 1) the IBRB-r model completely solves the problem of combination rule explosion. 

When the number of premise attributes and referential points is large, the number of rules in the 

traditional BRB increases exponentially. This easily leads to the explosion of combination rules. 

However, IBRB-r constructs confidence tables in the form of interval addition, which completely 

solves the problem of combination rule explosion. 2) IBRB-r introduces ER rules and considers the 

reliability of rules, which makes the model more complete. 3) The IBRB-r model uses simpler 

models to achieve higher model accuracy than the traditional BRB. According to Tables 15-16, the 

IBRB-r model with different data sets takes less time but has higher accuracy. This fully shows that 

IBRB-r can reduce the complexity of the model and have high precision. 4) The IBRB-r model has 

universality and is more suitable for engineering applications. Because the traditional BRB can only 



use a hierarchical method to deal with multi-attribute and multi-reference problems, the model 

network structure is large. As a result, it is difficult to apply it to engineering practice. However, 

IBRB-r can deal with the problem of multiple attributes and multiple referential points. As shown 

in Tables 15-16, IBRB-r has better performance on different datasets and is suitable for practical 

engineering applications. 

Compared with the data-driven BPNN, ELM and RBF, IBRB-r has the following 

characteristics: 1) IBRB-r has low dependency on samples and better processing ability for small 

sample data. It uses a hybrid data-knowledge driven approach and can obtain high-precision results 

even when the sample data size is small. However, the model accuracy of BPNN, ELM and RBF 

based on data-driven mode depends on data samples, and the model accuracy is low in the case of 

small samples. 2) The inference engine of the IBRB-r model is transparent, and the inference process 

can be traced. However, the internal structure of the data-driven BPNN, ELM and RBF models is 

not visible. 3) IBRB-r can better process qualitative and quantitative information. IBRB-r can make 

full use of expert knowledge for qualitative analysis and data for quantitative analysis. This semi-

quantitative modeling method can ensure the high accuracy of the experimental results. 

5. Conclusion 

The traditional BRB rule combination easily causes the combination rule explosion, and it is 

not suitable to deal with engineering application problems with multiple attributes and multiple 

referential points. To solve this problem, the IBRB-r model is improved on the traditional BRB. Its 

main contributions are as follows: (1) IBRB-r innovatively combines rules in the form of interval 

addition in the modeling process. This method greatly reduces the complexity of the model and 

completely solves the problem of combination rule explosion. (2) IBRB-r innovatively introduces 

ER rules in the reasoning process and considers the reliability of rules. 

The improved IBRB-r model can deal with multi-attribute and multi-reference problems well 

and is suitable for engineering applications. In the experimental part, the effectiveness and accuracy 

of the IBRB-r model are fully verified by analyzing the safety evaluation case of a liquid rocket 

body structure. At the same time, the experimental results of IBRB-r and other methods in different 

data sets are compared, which proves the universality of the IBRB-r model. 

In future research, more attention can be paid to the following aspects. (1) The application of 

the IBRB-r model in engineering practice. (2) The method of new reduction rules for BRB. (3) 

Combination of IBRB-R and fuzzy fault tree. 
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