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Abstract

As research in Lithium-ion batteries field has extended, the need for bet-
ter management systems also increases. An important part of them is
the proper estimation of battery status over time with indirect metrics
such as State-of-Charge (SoC). In the machine learning environment,
different simple techniques have been tested showing good performance
and being surpassed by hybrid systems. In this study, a static selection
model is proposed to choose the best non-linear predictor to work with
and ARIMA model and combination function for a specific database con-
sidering how the perform in a validation set. This architecture allows to
consider linear and non-linear components of the time series using resid-
ual forecasting and a selection step to reduce the chances of choosing the
wrong combination in each specific database. SoC values for five different
databases where forecasted, allowing to compare the results of six models
relevant in literature to the proposed one. The results showed a superior
performance for the proposed model in four out of the five databases,
with gains of 5.27%, 13.51%, 56.67%, and 38.71%. There was only one
database where the proposed model scored in second place. To determine
whether the obtained results were statistically significant enough to make
a conclusion, a Nemenyi test was conducted using MSE and MAE values
to rank the performance of all models in all databases. The critical dis-
tance and rank achieved by the proposed model allowed to conclude that
this, in fact, delivered the best performance amongst all models tested.

Keywords: State-of-charge, Lithium-ion battery, Machine learning; Time
series forecasting; Hybrid systems
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1 Introduction

Lithium-ion (Li-ion) batteries currently stand as one of the most vital energy
storage strategies, given their applicability as power sources for mobiles, lap-
tops, everyday electronics, power backups, and electric vehicles (EVs), [1–4]
among others. Furthermore, storage-focused systems use battery packs made of
numerous lithium-ion batteries, which require close monitoring of the battery
states to maintain safe and efficient operation [5]. Thus, battery management
requires estimating the battery’s states, such as the state-of-charge (SoC),
state-of-health (SoH), state-of-power (SoP), and state-of-life (SoL).

The State-of-Charge is known as the remaining usable percentage of the
capacity of a battery. Therefore, a 100% SoC indicates the availability of use
for the maximum capacity, while a 0% SoC suggests the opposite. Furthermore,
SoC also provides information on a system’s reliability, efficiency, and safety
[6]. Accurate SoC estimations can help battery management systems with cell
balancing in packs, avoiding cell over-charging and over-discharging, which
can result in battery damage [7]. However, the State-of-Charge is not directly
measurable since it depends on other factors within the battery and requires
separate calculation. The development of data-driven algorithms has taken a
significant step in recent years to enhance SoC measurements by improving
the generalization performance, learning capabilities for high accuracy, and
convergence [8]. In addition, recent work’s conventional standalone machine
learning techniques suffer from an accuracy standpoint and thus have been
replaced by high-fidelity hybrid machine learning techniques [9].

Furthermore, SoC time series are often composed of linear and nonlinear
patterns, which may not be dealt with equally well by a single forecasting
method [10]. In this sense, traditional forecasting methods such as the ARIMA
have been explored in SoC forecasting [9, 11] due to their well-established Box-
Jenkins [12] methodology for model selection. However, despite the forecasting
capabilities of the ARIMA model for nonstationary time series, the presence
of nonlinear patterns can reduce its accuracy. On the other hand, nonlinear
models such as artificial neural networks (ANNs) can learn nonlinear patterns.
However, their accuracy is dependent on the selected hyperparameters, which
lead to overfitted or under-fitted models when misspecified [10].

The ability to learn the data is often referred to as model bias, whereas the
stability of the model when forecasting new samples is referred to as variance.
Therefore, Data-driven models such as ANNs may learn well from data and
present a slight bias. However, it may excessively rely on some samples, pro-
ducing high variance [13]. Thus, a suitable trade-off between model bias and
variance is desirable in forecasting systems since low-bias models could reflect
high variance.

Considering the limitations of stand-alone models in forecasting tasks, sev-
eral hybrid systems that decompose the time series into its linear and nonlinear
components have been proposed to overcome the limitations of linear and
nonlinear models and improve forecasting accuracy by mitigating the risk of
selecting an inappropriate model. In general, the architecture of such hybrid
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systems is composed of three main steps: I) Time series forecasting, II) Resid-
ual Forecasting, and III) Combination. Usually, in the first step, a linear model
such as ARIMA is employed to perform time series forecasts. In the second
step, the residual from the ARIMA forecasts is calculated and used as input for
a nonlinear model. Residual forecasting is a challenging task due to the pres-
ence of heteroscedastic patterns and may be affected by noise. The third and
last step combines the forecasts obtained by the linear and nonlinear models.

Traditional studies in the literature assume a linear relation between linear
and nonlinear forecasts; however, in several scenarios, this relation is better
represented by nonlinear functions [14, 15]. Furthermore, other architectures
have been proposed to improve prediction stability, reduce variance, and find
the best model combinations. For example, Cruz and Oliveira[16] proposed a
model with a weighted average combination of an ARIMA+SVR and a LSTM
using R2 as a base metric to compute static weights to predict current and volt-
age time series. Models like this have been shown to perform adequately in SoC
prediction. Nonetheless, introducing a selection process to adapt models and
combinations to the architecture would greatly benefit overall performance, as
this ensures the best adaptation to the characteristics of each time series.

This research proposes a novel hybrid system architecture to improve the
forecasting accuracy of the hybrid systems presented in the SoC forecasting
literature. The proposed hybrid system improvements can be achieved by the
employment of two levels of selection. The first level is performed by selecting
the non-linear model to be combined with linear forecasts according to the
best-performing option in the validation set. The second level selects the best
combination function for the outputs obtained from linear and selected non-
linear forecasts. As a result, the proposed system has the following advantages:

• Reduces the risk of selecting an inappropriate model by combining different
forecasting systems.

• Increases model performance for each predicted dataset as the combination
function also adapts to specific time series characteristics.

• Its versatility allows different models to be used in each step.

The remainder of this work is organized as follows: Section 2 presents the
related studies and state of the art in the literature. In section 3, the proposed
method is described. Then, the results are given in section 5. Finally, section 6
presents the conclusion and future studies.

2 Related Work

A relevant approach used to overcome the limitations of linear and nonlinear
models is to decompose the time series into their linear and nonlinear compo-
nents through a hybrid system. Zhang’s [13] considered a time series Zt to be a
linear relation between its linear Lt and nonlinear Nt components as described
in eq. 1

Zt = Lt +Nt. (1)
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The first stage in the model proposed in [13] is to predict the forecasts of the
linear component L̂t using an ARIMA model. The residual (error) series is
computed as the difference between the time series Zt and linear forecasts L̂t

as presented in eq. 2.
Et = Zt − L̂t (2)

Second, the residual series generated in last step is introduced nonlinear func-
tion f which considers k past residuals in order to perform nonlinear forecasts
N̂t as demonstrated in eq. 3.

N̂t = f(et−1, et−2, ..., et−k). (3)

In the nonlinear function f , the number past information k represents the
length of the time window. In the work of Zhang [13] a Multilayer Percep-
tron (MLP) neural network was considered as nonlinear model to perform the
residual forecasts. The last step performs the combination of the linear and
nonlinear forecasts, producing the final forecast Ẑt, as described in eq. 4.

Ẑt = L̂t + N̂t (4)

For the sake of simplicity the architecture described previously, will be hence-
forward referred to as ARIMA+MLP, representing the summation of forecasts
achieved by the ARIMA and MLP as linear and nonlinear models respectively.

Subsequent to Zhang’s contribution, several models proposed in literature
have follow the same architecture. Panigrahi and Behera [17] proposed an
Exponential smoothing (ETS) to forecast the time series and a MLP to forecast
residuals and a summation operator for the combination (ETS+MLP). Pai and
Lin [18] proposed an ARIMA and Support Vector regression (ARIMA + SVR)
to forecast stock pricing, Holanda and de Oliveira [19] employed a combination
of models in the residuals using an ARIMA+PSO-SVR hybrid system. De
Oliveira [20] proposed an alternative to Zhang’s model using dynamic residual
forecasting (DReF) aiming to reduce the uncertainty of model selection and
avoiding deterioration of the time series forecast by finding the most suitable
machine learning model from a pool to predict a specific pattern of the residual
series and deciding whether it is a fitted option to increase the accuracy of
the linear combination stage. The model is proved to perform satisfactory in
several databases, which opens the opportunity for it to be implemented in an
application-specific approach.

Despite the importance of such architecture to time series forecasting tasks,
the assumption of linearity between linear and nonlinear forecasts can reduce
the accuracy of the system, since the real combination function is unknown. In
this sense, several other studies in the literature have investigated the nonlin-
ear combination of linear L̂t and nonlinear N̂t forecasts. Lucena [21] proposed
an ARIMA model to perform time series forecasting, a SVR model to perform
residual forecasting, and the combination between them being performed by
either an SVR or a MLP. In this sense, to simplify the notation, this archi-
tecture will be referred to as MLP(ARIMA,SVR) and SVR(ARIMA, SVR)
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representing the combination of ARIMA and SVR forecasts by a MLP ensem-
ble. Moreover, Santos et al. [15] used a similar architecture, but incorporating
past forecasting values as input for the combination function.

In the specific application of SoC forecasting, some models also follow a
similar idea, as is the case of Khalid [9], combining a Minimized Akaike Infor-
mation Criterion tuned ARIMA, and a unified Multilayer Perceptron (MLP)
and then with Nonlinear Autoregressive Neural Network with external input
(NARX). Cruz and Oliveira[16] with a weighted average combination of an
ARIMA+SVR and a LSTM using R2 as a base metric to compute both static
weights. In this model, current and voltage time series are first predicted and
then coulomb counting technique is used to compute SoC values through time
by integration. Moreover, the coulombs counting method could be implemented
in a more sophisticated form as it is presented as the simple integration of
current values in eq. 5.

SoC(t) = SoCto +

∫ to+∆t

to

αIc + (α− 1)Iddt

Cp

, (5)

where Cp is the capacity of the battery, Ic is the charging current, and Id is
the discharging current. Also, this definition considers that each cycle of the
battery registered is formed by two semi-cycles: charge (where only Ic exists)
and discharge (where only Id exists). The existence of each type of current in
a given semi-cycle is determined in (8) as α, a coefficient equal to:

α =

{

0 in discharge semi− cycle

1 in charge semi− cycle
, (6)

using α, the integral is simplified in both charge and discharge semi-cycles.
An alternative to improve eq. 5 is proposed by Mohammadi[22] with an

improved coulomb counting algorithm (refered to as iCC) for lithium-ion
batteries. Here, uncertainties from current measurement and integration are
considered to shape eq. 7 for a one-hour analysis:

SoC(t) = SoCto +
∆t

3600C
[i(t) + ϵM (t) + ϵI(t)], (7)

Where some new variables appear in comparison to eq. 5, being ∆t the
period of observation to be computed, i(t) representing current values without
uncertainties, ϵM (t) representing the measurement uncertainty over time, and
ϵI(t) the integration uncertainty over time. Typical values for ϵM (t) and ϵI(t)
are also presented in [22] as functions of the battery capacity value with eqs.
and :

ϵM (t) ≈ 0.018C (8)

ϵI(t) ≈ 0.092C (9)
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The proposed model differs significantly from previous approaches proposed
in the literature through the employment of two forecasting steps and intro-
ducing a selection approach to the non-linear model and combination function
between linear and nonlinear forecasts. This step is important to mitigate
problems related to uncertainty in model selection.

3 Proposed model

The proposed method follows the architecture of the proposed studies in the
literature, and it is composed of three main stages:

• Linear modelling stage
• Nonlinear modelling stage
• Combination stage.

The stages are required to perform modelling of the time series, residual
series and the combination of forecasts. The architecture of training process
for the proposed model is presented in figure 1 whereas for the testing process
is given in figure 2.

The main objective is to select an appropriate model for the forecast of
residuals and for the combination of forecasts, which are fixed in several stud-
ies in the literature. Moreover, for each dataset under study, a new selection
process is carried, resulting in a different forecasting system.

Time 

Series

ARIMA

Pool of Nonlinear 

Models
Model 

Selection

Pool of Combination 

Models

Model 

Selection

Final 

Forecast 

Linear Modelling Stage

Nonlinear Modelling 

Stage

Combination Modelling 

Stage

Fig. 1 Training process for the proposed model
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3.1 Linear modelling stage

The first step in the pipeline of the architecture is to implement a linear model
(LM) to perform a forecast L̂t of the series. In this stage, an ARIMA model
is employed to perform linear predictions in the time series, the training of
the model is performed through a stepwise procedure [23] to select its most
suitable parameters.

The residual calculation is then performed as presented in eq. 2 to be used
as input in the next stage.

3.2 Nonlinear modelling stage

The residual forecasting process presented in eq.3 uses a single non-linear
model to perform a forecast N̂t of the residuals of the linear stage Et. However,
a single model may not be the best in every situation [24] and a proper selec-
tion procedure could be employed to enhance the forecasting accuracy of the
system. In the proposed model, this step is expanded using a pool of non-linear
models: Multi-Layer Perceptron (MLP), Decision Tree Regressor (DTR), and
Support Vector Regressor (SVR). The training process of each models is per-
formed individually, with the parameter selection performed through a grid
search process.

The most suitable non-linear model (NM) for each time series prediction
is then selected by evaluating all models in pool using a validation set, as this
data is not contained in training nor testing sets.

3.3 Combination stage

The last stage performs the combinations of forecasts of linear (L̂t) and non-
linear N̂t modeling stages. It is important to highlight that this stage performs
a regression task in order to perform the nonlinear combination, that is, there
are two inputs (linear and nonlinear forecasts) and one output which is the
target value at time t. Therefore, we can consider that the combination model
will represent a function CM as described in eq. 10.

Ẑt = CM(L̂t, N̂t). (10)

Unlike other work in the literature [14, 15, 20], the proposed model selects
the most suitable model to perform the combination of forecasts for a given
data set. Furthermore, the pool of models in this stage is composed by the sum-
mation operator representing a linear combination function and three machine
learning models SVR, DTR, and MLP to perform nonlinear combinations. It is
important to mention that the selection process is performed on the validation
set, which enables to select models with better generalization capacity.

3.4 Testing process

After training the ARIMA model LM and selecting appropriate models to fore-
cast the residuals and perform the combination (NM and CM, respectively),
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they are used to perform the forecasting and combination of new patterns.
Thus, the same stages performed in the training process are also required in
the testing.

Time 

Series

Final 

Forecast

Testing process

Fig. 2 Testing process for proposed model

Linear forecasting stage is performed through the employment of the linear
model LM, which produces linear forecasts L̂t and then calculates the residual
Et = Zt−L̂t. In the nonlinear forecasting stage, the residual series Et is used by
the nonlinear model NM to produce nonlinear forecasts N̂t. The combination
stage employed the combination model CM taking into consideration previous
forecasts L̂t and N̂t to perform the final forecast Ẑt.

The testing procedure described in fig. 2 shows the employment of the
selected models. It is important to mention that the CM model in the
combination can be represented by linear nor nonlinear functions.

4 Experiments

To perform comparisons of different algorithms presented in the literature,
different data sets concerning SoC of batteries with different characteristics are
employed. The models are compared using several error metrics, and finally a
hypothesis testing is employed to perform the final analysis.
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4.1 Data sets

In order to test performance of the proposed model, tests were conducted on
four time series representing charge and discharge cycles of Lithium-ion batter-
ies with different characteristics. The data was all accessed through the Battery
Archive repository [25], which allows to visualize, download, compare and fil-
ter battery data shared by five different institutions. The specific databases
used in these experiments are:

1. Underwriters Laboratories Inc. – Purdue University (UL-PUR) [26].
2. Center for Advanced Life Cycle Engineering (CALCE) set.
3. Hawaii Natural Energy Institute (HNEI) [27].
4. Oxford University (OX) set.
5. Sandia National Laboratories (SNL) [28].

From each of these sets, one time series was selected to test the ability of
the proposed model to forecast the state of charge of Lithium-ion batteries
with graphite anode and different characteristics as summarized in Table 1,
where C is the capacity of the battery in ampere hours, T is the temperature in
Celsius degrees, Ch C-Rate is the speed at which the battery is fully charged,
and Dis C-Rate is the speed at which the battery is fully discharged.

Table 1 Database characteristics

Dataset Cycles Cathode C [Ah] Type T[C] Ch C-Rate Dis C-Rate
UL-PUR 301 NCA 3.40 18650 23 0.50 0.50
CALCE 2016 LCO 1.35 prismatic 25 0.50 0.50
HNEI 1113 NMC-LCO 2.80 18650 25 0.50 1.50
OX 8200 LCO 0.74 pouch 40 2.00 1.84
SNL 3038 LFP 1.10 18650 25 0.50 1.00

Cathode chemistry is specified for each battery recorded. Their abbrevia-
tions correspond to:

1. NCA: Lithium nickel cobalt aluminum oxide, used to enhance battery
effectiveness and efficiency, enabling high energy density batteries.

2. LCO: Lithium cobalt oxide, is one of the first used in Lithium-ion batteries
and one the most common.

3. NMC: Lithium Nickel Cobalt Manganese Oxide, strong overall performance
and the most used in automotive applications.

4. LFP: Lithium Iron Phosphate, enviromentally safer option with low cost
and good performance.

While chemistry is a battery characteristic to be taken into consideration
when analyzing the prediction of each time series, given that the proposed
model is of data-driven nature (and not chemical/electrical modeling), in this
research work the most important values in Table 1 along with the number of
cycles are the Charging C-Rate and Discharging C-Rate, which represent the
time steps necessary to repeat each recorded cycle.
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Table 2 Database segmenting

Segment CALCE OX UL-PUR SNL HNEI
Training 1210 1200 2389 1500 3256
Validation 403 400 796 500 1085
Testing 403 400 797 500 1085
Total 2016 2000 3982 2500 5426

4.2 Preprocessing

Data normalization was applied to the input features. All of them are trans-
formed into the range [0,1] according to eq. 11, where ZNorm is the normalized
series and the maximum and minimum values of the series are represented by
min(Zt) and max(Zt) respectively.

ZNorm
t =

Zt −min(Zt)

max(Zt)−min(Zt)
(11)

Each time series was split into three subsets: training (60%), validation
(20%), and testing (20%). This is specified for all databases in Table 2. The
training set is destined for linear and non-linear models training processes, the
validation set is used for best parameters, non-linear model and combination
function of the model, and testing set is used for evaluation stage.

4.3 Parameter selection

ARIMA has three parameters to be adjusted, where p represent the autorre-
gressive order, d is the number of differences in the series in order to make
it stationary, and q represents the order of the moving average. The ARIMA
model was generated using ”forecast” package in R language [29], through the
auto.arima function which searches automatically the best parameter accord-
ing to either AIC (Akaike Information Criterion), AICc (second order AIC) or
BIC (Bayesian Information Criterion).

For the rest of the models (non-linear forecasting and combination), param-
eter selection process was based on a grid search over a set of possible
configurations as described in Table N. For the SVR, hyperparameters were
tuned under the definitions:

1. ε: The sparsity can be induced through the employment of a ε-insensitive
loss function which creates a ε-tube.

2. C represents the regularization factor, which will perform the trade-off
between complexity and generalization capacity of the model.

3. Kernels perform nonlinear mappings of the datasets into higher dimensional
space.

4. γ defines the influence of each training example.

Next, for MLP:

1. Hidden layer sizes as the amount of neurons in each given hidden layer.
2. Activation function for the hidden layers.
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3. Solver for weight optimization.
4. Learning rate for weight update.
5. α representing the strength of the L2 regularization term.

And, lastly, for DTR:

1. Splitter as the strategy selected to split the tree in each node.
2. Maximum depth of the tree.
3. Minimum amount of samples at each leaf node.
4. Minimum weighted fraction of the sum total of weights at each leaf node.
5. Maximum number of features to look for when splitting.
6. Maximum leaf nodes to grow the tree.

Table 3 Parameters search space per model

Model Search space

MLP

Hidden layer sizes: {(50,50,50), (50,100,50), (100,100)}
Activation: {relu, tanh}
Solver: {adam, sgd}

Learning rate: {constant, adaptive}
Alpha: {0.001, 0.01, 0.05}

DTR

Splitter:{best, random}
Max depth: {1,3,5,7,9,11,12}

Min samples leaf: {1,2,3,4,5,6,7,8,9,10}
Min weight fraction leaf: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

Max feature: {auto, log2, sqrt,None}
Max leaf nodes: {None,10,20,30,40,50,60,70,80,90}

SVR

Kernel: {rbf, sigmoid}
C: {0.1, 1, 10, 100, 1000, 10000}

ε: {0.1, 0.01, 0.001}
γ: {1, 0.1, 0.01, 0.001}

ARIMA
p: {1, 2, 3, 4, 5}

d: {1, 2}
q: {1, 2, 3, 4, 5}

4.3.1 Evaluation Metrics

All methods were evaluated using mean squared error (MSE) and mean abso-
lute error (MAE), both described in equations 12 and 13 respectively. The
MSE performs a quadratic evaluation of errors which applies heavier penal-
ties to higher forecasting errors, it is a scale dependent metric, thus its not
advisable to perform comparisons over multiple datasets. The MAE metric
calculates the average error as output, using the same scale as the time series
being evaluated.

MSE =
1

n

n
∑

i=1

(Zti − Ẑti)
2 (12)

MAE =
1

n

n
∑

i=1

|Zti − Ẑti | (13)
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[30] These measures, besides allowing to make some conclusions on the model
performance, also allow to conduct Friedman and Nemenyi tests as a mean to
determine whether or not there is a statistically significant difference in perfor-
mance of all evaluated models across all datasets. This would bring conclusive
evidence to backup the idea of the proposed model performing better than
other models.

5 Results

Following the grid search process mentioned in section 4 for each model in all
databases, the experiments were conducted on the 5 aforementioned data sets.
In the proposed model, different models and architectures may be selected
for each dataset, as presented in table 4. In CALCE data set a hybrid sys-
tem based on a summation between ARIMA and DTR models was selected
(ARIMA+DTR) whereas in the other datasets nonlinear combinations were
the ones with the lowest validation errors.

Table 4 Hybrid model selected per database.

Database Selected model
CALCE ARIMA+DTR

OX MLP(ARIMA,SVR)
UL-PUR SVR(ARIMA,MLP)

SNL DTR(ARIMA,MLP)
HNEI DTR(ARIMA,SVR)

Table 5 Results of SoC forecasting based on the MSE metric.

Model CALCE OX UL-PUR SNL HNEI
ARIMA 0.002676 0.008333 0.102552 0.014669 0.091894
MLP 0.003618 0.007771 0.088216 0.013377 0.082900
SVR 0.002638 0.009180 0.455908 0.013576 0.104277
DTR 0.004723 0.009212 0.121527 0.013881 0.089333

ARIMA+MLP 0.002581 0.007838 0.091630 0.012553 0.088479
ARIMA+SVR 0.002630 0.007946 0.142413 0.009227 0.101341

SVR(ARIMA, SVR) 0.002574 0.007291 0.081474 0.013638 0.095487
Proposed model 0.002535 0.007207 0.085143 0.006356 0.056319

For evaluation and comparison purposes, seven relevant methods found in
related literature were implemented using the five datasets discussed in subsec-
tion 4.1. Mentioned models were: ARIMA, MLP, SVR, DTR, ARIMA+MLP,
ARIMA+SVR, SVR(ARIMA, SVR). Model performance was evaluated first
through MSE and MAE values presented in Tables 5 and 6, respectively.

In Table 5 for MSE, the worst performances across datasets were not all
attributed to a unique model. In some cases DTR delivered the highest errors
(as in CALCE), in others it was ARIMA (as in SNL), and in others it was
SVR (as in UL-PUR). This points to the fact that datasets have different
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Table 6 Results of SoC forecasting based on the MAE metric.

Model CALCE OX UL-PUR SNL HNEI
ARIMA 0.025707 0.032881 0.242681 0.100858 0.212315
MLP 0.032743 0.026559 0.185550 0.054275 0.209012
SVR 0.020768 0.019573 0.423436 0.051230 0.225515
DTR 0.040050 0.041265 0.272541 0.0564085 0.209250

ARIMA+MLP 0.024822 0.019712 0.193115 0.061284 0.209460
ARIMA+SVR 0.023663 0.030410 0.254781 0.048978 0.220599

SVR(ARIMA, SVR) 0.023365 0.037330 0.164220 0.060612 0.214669
Proposed model 0.020488 0.019461 0.172206 0.047297 0.199115

Table 7 Performance gain per model with ARIMA as reference.

Model CALCE OX UL-PUR SNL HNEI
ARIMA 0.00 0.00 0.00 0.00 0.00
MLP -35.20 6.74 13.98 8.81 9.79
SVR 1.42 -10.16 -344.56 7.45 -13.48
DTR -76.49 -10.55 -18.50 5.37 2.79

ARIMA+MLP 3.55 5.94 10.65 14.42 3.72
ARIMA+SVR 1.72 4.64 -38.87 37.10 -10.28

SVR(ARIMA,MLP) 3.81 12.50 20.55 7.03 -3.91
Proposed model 5.27 13.51 16.98 56.67 38.71

characteristics that are not always perfectly predicted by a specific type of
model, in some of them even ARIMA might perform better than a multi-layer
perceptron (the series could have a strong influence of linear patterns and
not so much non-linear ones). This only adds to the idea of combination and
model selections allowing to improve overall performance. Thus, in CALCE
dataset, the DTR model achieved lowest performance, however, when used in
a hybrid way (ARIMA+DTR), the proposed model was able to outperform
both methods when used individually.

MSE and MAE results also support the statement of the proposed model
being better than the ones found in literature for datasets CALCE, OX, SNL,
and HNEI by achieving the lowest error values in both metrics against simple
and complex models. This is best represented in Table7, where performance
gain reached 5.27%, 13.51%, 56.67%, and 38.71% respectively. For UL-PUR
this was not the case as SVR(ARIMA, SVR) performed better (20.55% perfor-
mance gain), leaving the proposed model to the second place in performance
(16.98% gain). Still, this does not discard the proposed model as the best
option among all options compared as it was confirmed by Nemenyi test later
on.

In error analysis, the proposed model showed evidence of being probably
the best method to predict the datasets. However, it is important to determine
if the values obtain allow to make the conclusion that the model is statisti-
cally better than the others. To achieve such certainty, the post-hoc Nemenyi
test [31] was implemented to reject the hypothesis of model performances being
similar. This allows to examine the ranking of several methods over several
datasets determining a minimal critical distance at which any performance
would be considered to be different than the other.
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Fig. 4 Nemenyi test critical distance representation.

Using error values, model average ranks were approximated corresponding
the highest one (rank 1.2) to the proposed model, and the lowest one (rank 6.6)
to DTR. All of the others are placed in between these values, as represented in
4. The test was conducted with a significance level (α) of 0.05, meaning that
the probability of the test failing on giving the correct inference is 95%. Also,
calculated critical distance for available models and datasets was 2.189250
meaning that if two models find themselves separated by a greater distance,
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they would be considered to be different. This is specially important for the
proposed model case, as it is important to discover if performance observed in
error metrics allows to make favorable conclusions. The result of Nemenyi test
is represented in Figure 4, with models ordered in average ranks and bold hor-
izontal lines represent models that find themselves within a smaller range than
the critical distance. ARIMA, DTR, and SVR are placed in the lowest ranks,
as it was to be expected by observing their error values. MLP, ARIMA+MLP,
and SVR(ARIMA, SVR) are found in the middle range being statistically sim-
ilar but different from the proposed model, as there is no horizontal line joining
them. This confirms the idea of the proposed model being the best performing
one in the dataset group as it is the one with highest score and all of the other
models are ranked farther than the critical distance from it.

6 Conclusions

In this study, a hybrid system with model selection in the residual forecasting
stage and combination selection is presented in order to approximate future
values of SoC in Lithium-ion batteries. The proposed model is formed by an
ARIMA model and a nonlinear predictor, which is selected from a pool of
nonlinear models according to its performance on validation set. It also selects
the best combination function over a pool of options to combine the forecasts
of the linear and non-linear models. The experiments were conducted on five
univariate time series containing Lithium-ion batteries records were computed
to predict their State-of-Charge values.

The results of the experiments highlight that the models with lowest per-
formance were ARIMA, SVR, and DTR. This is supported by error values and
Nemenyi test ranks. However, none of the three models mentioned was the
worst performer on all datasets. This suggest the variety of linear and non-
linear components in all time series, which would not allow for a single model
to predict efficiently all of them.

The ARIMA+SVR and MLP models performed in the middle ranks for all
datasets, implying that neural network-based and hybrid models would ensure
performance improvement. ARIMA+MLP and SVR(ARIMA, SVR) also help
to support this idea and add to the conclusion that combination functions
other than aggregation can help predictions to adapt best to a specific time
series characteristics and, therefore, achieve the best predictions.

The proposed model achieved the lowest error values for both MSE and
MAE in four of the five datasets used. In the case in which it did not get the
lowest value, it was only displaced to second best rank by SVR(ARIMA,SVR)
model. To determine if error values were statistically significant enough to con-
clude that the proposed model performs better than the other seven methods,
a Nemenyi test was conducted. The results of such process demonstrated that
the proposed model can be declared the best performing model amongst all as
the rank space between them is greater than the critical distance given by the
analysis (2.189250). This affirmation is made with 95% confidence level.
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The accuracy gain of the proposed model is due to the ability it has to
select the best non-linear model to be combined with the linear model and the
combination function to do so. This allows to reduce greatly the chances of
the model designer choosing the wrong options in either one.

This study is limited to static selection of non-linear model and combina-
tion function, as both are picked over performance in validation set and no
longer updated over the testing stage. Future work may consider exploration
of dynamic selection analyzing specific data features over time.
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