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Abstract
Internet of Things realizes the ubiquitous connection of all things, generating count-
less time-tagged data called time series. However, real-world time series are often 
plagued with missing values on account of noise or malfunctioning sensors. Exist-
ing methods for modeling such incomplete time series typically involve preproc-
essing steps, such as deletion or missing data imputation using statistical learning 
or machine learning methods. Unfortunately, these methods unavoidable destroy 
time information and bring error accumulation to the subsequent model. To this 
end, this paper introduces a novel continuous neural network architecture, named 
Time-aware Neural-Ordinary Differential Equations (TN-ODE), for incomplete time 
data modeling. The proposed method not only supports imputation missing val-
ues at arbitrary time points, but also enables multi-step prediction at desired time 
points. Specifically, TN-ODE employs a time-aware Long Short-Term Memory as 
an encoder, which effectively learns the posterior distribution from partial observed 
data. Additionally, the derivative of latent states is parameterized with a fully con-
nected network, thereby enabling continuous-time latent dynamics generation. The 
proposed TN-ODE model is evaluated on both real-world and synthetic incomplete 
time-series datasets by conducting data interpolation and extrapolation tasks as well 
as classification task. Extensive experiments show the TN-ODE model outperforms 
baseline methods in terms of Mean Square Error for imputation and prediction tasks, 
as well as accuracy in downstream classification task.
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1 Introduction

Internet of Things (IoT) technology has matured to enable a wide spectrum of 
applications, spanning from environmental monitoring, smart transportation, 
smart grids to health care, food traceability and so on [1]. IoT devices generate 
massive amounts of heterogeneous data with time tags, which are named time 
series data. However, missing data is one of the commonly encountered problems 
in IoT time series analysis due to different sampling rates or unexpected failures 
in sensors or transmissions [2]. The missing items unavoidably obstruct the com-
pleteness of data, causing subsequent analysis to make wrong deductions [3].

Researchers have proposed varieties of counter measures to address this chal-
lenge. The simplest approach is to delete the missing data and to make inference 
only based on the observed data. It may work when missing data accounts for less 
than 15%, but significant barriers still remain [3]. This approach discards histori-
cal data to acquire complete information, and ignores much information hidden in 
the data. Additionally, it will result in data deviations and inaccurate predictions 
when the missing rate is high, especially when missing data are not randomly 
distributed. This technical issue may be addressed by the perspective of preproc-
ess methods, namely missing data imputation, allowing full use of all available 
values. Generally, missing data can be estimated by statistical learning-based, 
machine learning-based and deep learning-based methods.

Some statistical methods have been adopted to impute missing data, such as 
mean value imputation, and zero value imputation [4]. Such methods are sim-
ple to implement, unfortunately, they do not consider the temporal relationship 
between variables, achieving unsatisfying imputation accuracy. Machine learn-
ing-based methods provide some useful insights on impute missing data. The 
K-nearest neighbor (KNN) [5], Autoregressive Integrated Moving Average mod-
els (ARIMA) [6], and the matrix factorization algorithm [7], representatives of 
machine learning methods, have been successfully used to impute missing data. 
However, they are trained in a manner, where models are trained using com-
plete data and tested with incomplete data. Nonmissing values in the incomplete 
samples are excluded from the training process, unavoidably leading a degraded 
imputation performance. Generally, deep learning-based methods assume that 
time steps of time series are regular. Regarding this, several works [8] extend 
RNN to irregular time series by dividing the timespan into uniform intervals, and 
filling the missing values with averages. Such time discretization method inev-
itably destroys the measurement timing information, which can be informative 
about latent variables [9, 10]. Such two-stage methodology is still criticized for 
the difficulty of obtaining the complete data. Besides, data imputation, an inde-
pendent step of data preprocessing, is separated from the training of data predic-
tion, which will cause suboptimal results.

To combat this, some works directly model incomplete time series data by 
modifying architectures of deep learning models to learn time interval. A simple 
trick is to concatenate time information to the input of an RNN [9, 11]. Steps 
have been taken to incorporate time interval information into the model. GRU-D 
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employs a simple exponential decay between observations to modify the hid-
den state until the next observation is made [10]. BRITS conducts missing value 
imputation and classification/regression simultaneously using a bidirectional 
decay modified RNN [12]. Unfortunately, these approaches cannot predict the 
missing values of desired time point.

Recently, the Neural Ordinary Differential Equation (ODE) model starts to gar-
ner its share of the spotlight. Neural ODEs describe the input to output variable 
transformation by a continuous representation of trajectory through a vector field 
defined by a neural network [13]. The trajectory is generated by numerical ODE 
solver schemes, such as Euler’s method or dopri5 method. As time of the trajec-
tory is intrinsically continuous, the Neural ODE is considered as an ideal option 
for modelling temporal dynamics. There has been recent interest in modelling irreg-
ularly-sampled time series using Neural ODEs. A variational autoencoder (VAE)-
based latent ODE is investigated for modeling irregularly-sampled time series by a 
continuous-time generation of latent trajectory, the underlying dynamics of which is 
determined by an initial latent state learned from partial observations using a RNN 
network. However, RNN models are not suitable for learning an approximated pos-
terior distribution of observations that are not temporally aligned and faced with 
vanishing and exploding gradients. Additionally, RNN-ODE is put forwards that the 
hidden state is modelled using a Neural ODE and updated by a RNN network [14]. 
The hidden states learned by the Neural ODE in ODE-RNN encoder will cause the 
error accumulation in the following generative model.

This paper introduces a novel continuous neural network model for modeling 
incomplete time series. It is designed based on a VAE framework that involves neu-
ral ODEs to learn continuous-time latent dynamics. A time-aware LSTM network 
serves as the encoder which employs an extra time interval to decay the impact 
of previous observation on the current observation and a mask vector to indicate 
whether the data is missing or not. Incomplete time series is directly encoded by 
a time-aware encoder, which can effectively learn the temporal and sequential fea-
tures and provide more adaptive input representations to the subsequent ODE net-
work. The ODE parametered by a fully connected network can learn the relationship 
between unknown systems and their derivatives, enabling to impute or predict latent 
states at arbitrary steps. The proposed model outperforms state-of-art methods, 
demonstrating its great potential of modeling incomplete time series in real-world 
application. Ablation studies illustrate the effectiveness of time-aware component in 
the encoder of the proposed TN-ODE model in learning posterior distribution.

To conclude, the contributions of this paper can be summarized as follows:

• Proposing a novel TN-ODE model that can effectively handle the different time 
gaps between adjacent elements of the sequence dispensing with the additional 
data preprocessing.

• A time-aware LSTM network is used as an encoder to generate a more adaptive 
input to the ODE network, which is proved to be an effective parameterization 
when data are sparse and irregular.

• The TN-ODE model is tested on a synthetic and a true irregularly-sampled time 
series dataset and a UCI time series dataset with different missing rates by con-
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ducting interpolation and extrapolation tasks, and evaluated on a real UCI irregu-
larly-sampled IoT data via the human activity classification task. Results demon-
strate that the proposed method shows substantially better performance.

The rest of this paper is organized as follows. Section 2 gives an overview of state-
of-the-art methods for incomplete time series modeling. Section 3 presents problem 
definition and some preliminaries. Section 4 details the proposed TN-ODE frame-
work. Section 5 elaborates on the proposed model. Finally, Sect. 6 concludes this 
paper.

2  Related work

This section lists the related research on incomplete time series data modeling, 
which can be roughly classified into two categories: two-stage methods and one-
stage methods.

2.1  Two‑stage methods

One approach for modeling incomplete time series is to use a two-stage method, 
whereby missing values are first imputed, followed by the application of existing 
classification or prediction methods to the completed data. Statistical methods, such 
as mean filling [4], fuzzy-rough nearest neighbors [15], have been used to fill in 
missing values. However, these methods are not suitable for missing data imputation 
in the context of IoT, which lack the usage of temporal information. Advancements 
in machine learning methods promote their applications of data filling techniques 
that concentrate on learning the distribution of original data and fitting a filling 
model. The KNN can be used to impute missing data by filling in the missing values 
with the average ofk neighbor nodes near the missing sample [5]. Matrix factoriza-
tion is another technique that can be applied to impute the missing values [7]. How-
ever, traditional machine learning methods do not consider the temporal relations 
between observations, making them unsuitable for IoT big data environments [16].

The advent of Generative Adversarial Networks (GANs) opens up a new approach 
to imputing missing data values, such as GAIN [17], E2GAN [18] and so on. An 
Inverse Mapping General Adversarial Network named IM-GAN is designed based 
on a GAN structure to handle missing indoor air quality data [19]. In IM-GAN, a 
denoising auto-encoder is used as a generator to learn robust representation, the 
encoder of which employs a Bi-directional Recurrent Neural Network (BRNN) cell 
to model bi-directional temporal correlations and across-sensor correlations.E2GAN 
is proposed to impute missing values of clinical and meteorologic data using a new 
complete sample generated by auto-encoder and GRUI [18]. These models have 
achieved a great success in imputation task; however, they are typically used as a 
data pre-processing step for classification and prediction tasks. Furthermore, they 
are not optimized in concert with training the following networks, which may result 
in suboptimal results [20].
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2.2  One‑stage methods

One-stage methods utilize irregular time information to directly model raw time 
series data using improved deep learning methods. Several approaches modify the 
inputs of RNNs by concatenating missing entries or timestamps with the input [21, 
22]. Other works aim to reconstruct RNN structures that incorporates time inter-
val to the hidden units to handle missing data in real-world clinical settings [10, 
23]. BRITS [24] is proposed for imputing missing values of multivariate time series 
with bidirectional recurrent dynamics, using delayed gradients for missing values 
in both forward and backward directions to improve imputation accuracy. A VAE-
based encoder-decoder model leveraging a Multi-Time Attention (mTAN) module 
is presented, which can conduct interpolation and classification tasks on sparse and 
irregularly sampled data [25]. Regretfully, these models are capable of inferring 
missing data and performing regression/classification tasks simultaneously but can-
not make prediction. A model named Time Encoding-Encoding Echo State Network 
(TE-ESN) is designed to support early prediction and one-step-ahead forecasting on 
irregularly sampled time series [26]. However, these models cannot predict multi-
step data values of any desired time.

Recently, a continuous version of neural networks called Neural ODEs, is pro-
posed by [13] to overcome the limitations imposed by discrete-time recurrent neural 
networks. The successful combination of Neural ODEs and a VAE paves a natu-
ral way to handle incomplete time series. It still remains a barrier that the discrete-
time RNN encoder is hard to learn the posterior distribution from sporadic data. To 
address this issue, a new VAE architecture is designed that uses Neural ODEs model 
for encoding the data and generating the latent states [14]. However, the ODE-RNN 
encoder generates new data, leading to error accumulation when inferring the pos-
terior distribution. Moreover, more extended Neural ODEs architectures are inves-
tigated to remedy the shortcomings of Neural ODEs. Augmented Neural ODEs are 
designed to mitigate the issue that Neural ODEs only learning features which are 
homeomorphic to the input space [27]. These methods are capable of forecasting the 
data at any desired time; however, encoders in these VAE-based ODE methods are 
unable to learn uneven time intervals. To reduce training time, the continuous recur-
rent units model is designed based on an encoder-decoder framework, hidden state 
of which evolve according to a linear stochastic differential equation [28].

Graphs data structures are widely used in various applications, such as social net-
works, recommendation systems, and traffic forecast systems. However, real-world 
graph data is often incomplete due to various factors, such as different sampling 
frequencies of different nodes and missing nodes. Great effort is put into develop-
ing effective techniques to model incomplete graph data. For instance, an adaptive 
graph recurrent network has been proposed, which combines graph and RNNs for 
air quality and traffic data imputation [29]. To model temporal session data in dis-
crete state spaces, a graph nested GRU ODE model is proposed to preserve the con-
tinuous nature of dynamic user preferences, where a graph gated neural network is 
employed to encode both temporal and structural patterns for inferring initial latent 
states and a time alignment algorithm is designed to align the updating time steps of 
temporal session graphs [30]. For irregularly sampled and multivariate time series, 
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RAINDROP represents every sample as a separate sensor graph and captures time-
varying dependencies between sensors with a novel message passing operator [31]. 
Additionally, to model a dynamical system like the COVID-19 pandemic, a coupled 
graph ODE model is established, which learns the coupled dynamics of nodes and 
edges with a graph neural network-based ODE in a continuous manner [32]. Moreo-
ver, a latent ODE generative model is presented to model multi-agent dynamic sys-
tem with a known graph structure, capable of learning high-dimensional trajectory 
embeddings and inferring continuous latent system dynamics simultaneously [33].

3  Problem statement and preliminaries

This section begins by defining the problem formulation and then provides some 
background information on LSTM, VAEs, and Neural ODEs and then presents some 
background knowledge of LSTM, VAEs and Neural ODEs.

3.1  Problem definition

Let X = {x1, x2,… , xN} ∈ ℝ
D×N be a D-dimensional time series consisting of 

N observations, where each observation xt ∈ ℝ
D is composed of D variables 

{x1
t
, x2

t
,… , xD

t
} and is sampled at timestamp st . It is important to note that time 

intervals between timestamps may vary in duration. In real-world scenarios, unfore-
seen events such as sensor failures or communication errors may result in missing 
data in xt . To identify the missing data in xt , this paper introduces a mask matrix 
M = {m1,m2,… ,mN} ∈ {1, 0} ⊂ ℝ

D×N , which indicates whether each observation 
is observed or missing, defined as follows:

�d
t
 is defined as the time gap between the current timestamp st and the previous 

observation st−1 , and is used to record this time gap.

3.2  Long short‑term memory

RNNs suffer from the issue of vanishing and exploding gradients, which hampers 
learning of long time series. The emergence of LSTMs can alleviate this problem. 
Given a sequence of inputs X = {x1, x2,… , xN} , LSTMs model their cell memory 
and hidden states as a pair (ct, ht) and update the pair of hidden states according to 
the following recurrent equations.

(1)md
t
=

{
1, if xd

t
is observed

0, otherwise

(2)𝛿d
t
=

⎧
⎪⎨⎪⎩

st − st−1 + 𝛿d
t−1

, if t > 1,md
t−1

= 0

st − st−1, if t > 1,md
t−1

= 1

0, t = 1
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where � is the sigmoid function �(x) = 1

1+e−x
 , the matrices vp , up , and vectors bp for 

∀p ∈ {f , i, o, c} are trainable parameters, ◦ means element-wise product. ct and ht are 
cell memory and hidden state, respectively. A LSTM cell employs four gates to 
manage its states over time aimed at alleviating the challenge of exploding/vanish-
ing gradients when dealing with long time series. LSTMs are capable of dealing 
with equidistant streams of data, however, they are still unable learning time series 
data with varying time intervals. In order to tackle this, Sect.  4 will introduce an 
improved LSTM that incorporates the elapsed time to adjust the memory state.

3.3  Variational auto‑encoder

The VAE is an important type of generative models, and this section will briefly 
summarize the principle of the VAE proposed by [34]. The original dataset 
X = {x1, x2,… , xN} consists of N continuous variable samples. It is assumed that 
the observations are depended on the unobserved random variable Z, which is con-
sidered to be a lower-dimensional latent space. A sample zi is generated from a prior 
distribution p�(z) and xi from a likelihood p�(x ∣ z) . The objective is to model or 
approximate the observations’ true distribution p�(x) by maximizing the marginal 
likelihood p�(x) = ∫ p�(x ∣ z)p�(z)dz = �[p�(x ∣ z)] . However, when calculating 
the posterior distribution, since z is unknown, the posterior distribution cannot be 
obtained directly. To handle this, the application of variational inference (VI) is 
introduced. Suppose that there exists a probability distribution q�(z ∣ x) that is suffi-
ciently close to p�(x ∣ z) and can be calculated. The issue of calculating the posterior 
distribution is converted to solving � and � that make q�(z ∣ x) and p�(x ∣ z) suffi-
ciently approximated.

Closeness of the two distributions is quantified based on the Kullback-Leibler 
(KL) divergence DKL , which is utilized as a measure for information when utilizing 
a distribution to represent another intractable distribution [35]. For the KL diver-
gence of q�(z ∣ x) and p�(x ∣ z) we have that

(3)ft = �(vf x
t
i
+ uf h

t−1
i

+ bf )

(4)it = �(vix
t
i
+ uih

t−1
i

+ bi)

(5)ot = �(vox
t
i
+ uoh

t−1
i

+ bo)

(6)c̃t = tanh(vcx
t
i
+ uch

t−1
i

+ bc)

(7)ct = ft◦ct−1 + it◦c̃t

(8)
ht = ot◦tanh(ct)

∀t ∈ {1, 2,… ,N}
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where � is the expectation operator. Rearrangement yields

The left-hand side of equation Eq. (10) is what we desire to maximize. The log-like-
lihood of generating true data logp�(x) supposes to be higher and the difference 
between estimated and true posterior distributions DKL(q�(z ∣ x) ∣∣ p�(z ∣ x)) should 
be as low as possible. Considering the non-negative property of 
DKL(q�(z ∣ x) ∣∣ p�(z ∣ x)) , it can be asserted that 
logp�(x) ≥ �z∼q�(z∣x)

[logp�(x ∣ z)] − DKL(q�(z ∣ x) ∣∣ p�(z)) , and the right-hand side of 
Eq. (10) is named the Evidence Lower Bound (ELBO) for logp�(x).

The loss function LVAE(�,�) consists of two parts, one is the reconstruction error 
�z∼q�(z∣x)

[logp�(x ∣ z)] , and the other part is the KL penalty DKL(q�(z ∣ x) ∣∣ p�(z)) , 
which is used to constrain the encoder to approximate the prior distribution p(z). 
The total loss can be expressed as follows.

Figure  1 presents a graphical representation of the VAE, which consists of an 
encoder and decoder. q�(z ∣ x) is the encoder model, which is used to mean and 
variance of sampled data, obtain the corresponding normal distribution and extract 
features of low-dimensional latent states z. p�(x ∣ z) is the decoder model, which is 
responsible for generating a reconstructed data.

3.4  Neural ordinary differential equations

Neural ODEs, proposed by [13], are interpreted as a continuous version of the resid-
ual neural networks (ResNets) modelled by differential equations, which can break 

(9)

DKL(q�(z ∣ x) ∣∣ p�(z ∣ x)) = ∫ q�(z ∣ x)log
q�(z ∣ x)

p�(z ∣ x)
dz

= ∫ q�(z ∣ x)log
q�(z ∣ x)p�(x)

p�(z, x)
dz

= ∫ q�(z ∣ x)(logp�(x) + log
q�(z ∣ x)

p�(z, x)
)dz

= logp�(x) + ∫ q�(z ∣ x)log
q�(z ∣ x)

p�(z, x)
dz

= logp�(x) + ∫ q�(z ∣ x)log
q�(z ∣ x)

p�(x ∣ z)p�(z)
dz

= logp�(x) + �z∼q�(z∣x)
[log

q�(z ∣ x)

p�(z)
− logp�(x ∣ z)]

= logp�(x) + DKL(q�(z ∣ x) ∣∣ p�(z)) − �z∼q�(z∣x)
[logp�(x ∣ z)]

(10)
logp�(x) − DKL(q�(z ∣ x) ∣∣ p�(z ∣ x))

= �z∼q�(z∣x)
(logp�(x ∣ z)) − DKL(q�(z ∣ x) ∣∣ p�(z))

(11)LVAE(�,�) = −�z∼q�(z∣x)
[logp�(x ∣ z)] + DKL(q�(z ∣ x) ∣∣ p�(z))
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through the bottlenecks imposed by discrete-time RNNs. The residual layer updates 
its hidden state at time i based on a transformation f over the previous state, writ-
ten as hi = hi−1 + f (hi−1) . Unlike this discrete update, the equation describing Neural 
ODEs is denoted as follows.

where the derivative of the hidden state h(t)
dt

 is approximated using a neural network 
parameterized by f� . In this way, the hidden state h(t) is defined as a solution to 
ODE initial-value problem. The hidden states at any desired time can be obtained by 
solving the integral problem via various numerical ODE solvers (such as Euler 
method, Dormand-Prince method and so on), simplified as.

It is worth mentioning that Eq. (12) can be regarded as the residual connection when 
the explicit Euler method is chosen to solve an ODE. Inversely, Neural ODEs gener-
alize ResNets with a continuous time variable t. Additionally, the adjoint sensitivity 
method [36] is employed to compute memory efficient gradients w.r.t. � for training 
Neural ODE-based models using black-box ODE solvers in [13].

4  Proposed methods

In this section, the proposed TN-ODE algorithm will be introduced in detail. Sec-
tion 4.1 gives an overview of the framework, which consists of three components, 
namely the time-LSTM encoder, the generative model of latent states and the 
decoder. The time-aware LSTM encoder will be described in Sect. 4.2. In Sect. 4.3, 
the generative model of latent states will be discussed. Additionally, Sect. 4.4 will 
present the decoder. Finally, loss functions are envisioned for effectively training the 
proposed TN-ODE algorithm and the variants of RNN.

(12)h(�) = h(0) + ∫
�

0

f�(h(t), t;�f )dt

(13)h0,… , hn = ODESolve(f� , h0, (t0,… , tn))

Fig. 1  The structure of the VAE model
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4.1  Overview of the TN‑ODE algorithm

As illustrated in Fig.  2, the TN-ODE algorithm is based on the VAE model, 
which includes a time-aware LSTM encoder, a generative model and a decoder. 
The encoder learns the latent initial state from observed data, however, the 
observed data are usually confronted with missing values or uniform time inter-
vals, which are an ill fit for traditional deep learning model. Thus, a time-aware 
LSTM encoder is employed to directly infer the latent initial state z0 from par-
tially-observed trajectories. The latent dynamics zti are inferred by a generative 
model defined by an ODE function based on the sampled initial states. A fully 
connected network serves as the decoder which can recover the trajectory accord-
ing to decoding likelihood p(oti ∣ zti ) . The time-aware LSTM encoder receives 
the IoT time series data X = {x1, x2,… , xN} in a chronological order and obtain 
the hidden states {h1, h2,… , hN} . The local initial state z0 is learned based on the 
finally hidden state hN . Given the desired times and the initial state z0 , the latent 
ODE generates a latent trajectory, which represents the latent states at each time 
step. The value of any desired time can be inferred by decoding the latent states. 
In the following, the three components will be described in detail.

Fig. 2  The proposed TN-ODE framework
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4.2  The time‑aware LSTM encoder

Real-world time series data often suffer from issues of missing values and irregular 
time intervals, which has a disastrous influence on deep learning models. Time-
aware LSTM is proposed by [23] to address the nonuniform time lapse between suc-
cessive elements. Thus, in this paper, a time aware LSTM encoder is introduced to 
infer latent initial states from partially-observed data. Time-aware LSTM incorpo-
rates the elapsed time between consecutive observations into basic LSTM by a time 
decay function �(�t

i
) =

1

log(e+�t
i
)
 , which is validated by previous works [23, 37] using 

irregularly sampled clinical time series. The time-aware LSTM performs a subspace 
decomposition of the previous memory cell Ct−1 , forming a short-term memory CS

t−1
 

and a long-term memory CL
t−1

 . The short-term memory is obtained via a network and 
is discounted via a decay function of elapsed time to capture the irregular temporal 
dynamics, yielding the discounted short-term memory ĈS

t−1
 . After that, the long-

term memory (CL
t−1

= Ct−1 − CS
t−1

) is calculated. Finally, an adjusted previous mem-
ory C�

t−1
 is established by adding the long-term memory and the discounted short-

term memory. The adjusted previous memory along with ht−1 and x are further 
calculated as in LSTM by substituting Ct−1 with C�

t−1
 . Detailed mathematical compu-

tations of time-aware LSTM are summarized below:

(14)CS
t−1

= tanh(�sCt−1 + bs)

(15)ĈS
t−1

= CS
t−1

× �(�t
i
)

(16)CL
t−1

= Ct−1 − CS
t−1
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where the matrices vp , up , and vectors bp for p ∈ {f , i, o, c} are the parameters to 
be trained for constructing the time-aware LSTM network. Time-aware LSTM is 
used for probabilistic encoder q�(z ∣ x) , which is set to be a multivariate Normal 
distribution

where �z is the mean and �2
z
 is the covariance matrix.

4.3  The generative model of neural ODE

The last hidden state of the time-aware LSTM encoder is converted to (�z, �
2
z
) by a sim-

ple neural network. z is obtained by sampling from q�(z ∣ x)

However, the stochastic sampling is a non-differentiable operation that do not sup-
port backpropagating the gradient during training. The reparameterization trick is 
employed to modify Eq. (25), where z can be represented as the sum of a determinis-
tic variable and an auxiliary independent random variable �.

where ◦ defines the element-wise product and � ∼ N(0, I).
To construct continuous-time latent dynamics, a Neural ODE is adopted, the 

dynamics of which is entirely determined by the initial state z0 sampled from the 
above encoding process. According to the initial state z0 , an ODE solver produces 
a series of latent states zti of arbitrary desired time steps ti on a continuous timeline.

(17)C
�

t−1
= CL

t−1
+ ĈS

t−1

(18)ft = �(vf x
t
i
+ uf h

t−1
i

+ bf )

(19)it = �(vix
t
i
+ uih

t−1
i

+ bi)

(20)ot = �(vox
t
i
+ uoh

t−1
i

+ bo)

(21)C̃ = tanh(vcx
t
i
+ uch

t−1
i

+ bc)

(22)Ct = ft ∗ C
�

t−1
+ it ∗ C̃

(23)ht = ot◦tanh(Ct)

(24)logq�(z ∣ x) = logN(z;�z, �
2
z
)

(25)z ∼ q�(z ∣ x)

(26)z = �z + �z◦�

(27)z1, z2,… , zT = ODESolve(z0, f� , {t0, t1∶T})
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where f� is a time-invariant function that defines the gradient �z(t)∕�t , which is par-
ametrized by a fully connected neural network.

4.4  The fully connected network and softmax decoder

The decoder p𝜃(x̃ ∣ z) targets to reconstruct X using the series of latent states Z gener-
ated by the Neural ODE. This paper utilizes two different decoders according to the 
regression and classification tasks. A linear network is employed as the decoder to per-
form interpolation and extrapolation tasks, which finally outputs X̃ based on the latent 
trajectory. For the task of classification, a softmax activation layer is utilized to estimate 
the probability distribution Ỹ of activity at each time point.

4.5  Training the TN‑ODE model

Unsuperivsed learning To learn the parameters of the TN-ODE model using a dataset 
of incomplete time series, this paper follows a VAE method. The learning objective is 
defined as follows, where all the formulas are defined in previous section. Two losses 
are introduced in the regression tasks. The first loss is reconstruction error, which 
sums the square error between the input X and output X̃ . The reconstruction error loss 
lossError is calculated by summing the error over both the feature (D features) and the 
time dimension (N time points), presented below.

The second loss is KL divergence between prior distribution p�(z) and posterior dis-
tribution q�(z ∣ x) , aimed at making them closer in latent space:

where DKL is defined in Eq. (9). Therefore, the total loss for regression is defined as 
follows. And the adjoint backpropagation method is used to save more memory and 
computing resources.

Supervised learning The TN-ODE model is also trained by a supervised learn-
ing approach. The time series classification task can be viewed as an illustrative 
supervised learning problem. The latent states are followed by a softmax mod-
ule to conduct the classification model p𝜃(ỹ ∣ zt) . The standard cross-entropy loss 
lossClassification is used with latent state vector zt , followed by a classification layer as 
follows:

(28)lossError =

N−1∑
t=0

D−1∑
i=0

(xt
i
− x̃t

i
)2

(29)lossKL =
1

M

M∑
i=1

DKL(q�(z ∣ x) ∣∣ p�(z))

(30)lossRegression = lossError + lossKL

(31)ỹ = softmax(w ⋅ zt + b)
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where N and M denote the number of data points and labels and yi,j represents that 
the true label of the ith data point is k and ỹi,j is the softmax probability for the ith data 
point.

5  Experimental details

In this section, experiments have been carried out to evaluate the performance of 
the TN-ODE model on two public benchmark datasets along with a sine wave simu-
lation. Several well-established models are run as the baseline methods, including 
GRU, GRU-D, T-LSTM, BRITS, AJ-RNN, models based on VAE coupled with 
Neural ODEs and different encoder variants, such as RNN, GRU and ODE-RNN 
encoder.

5.1  Experiment settings

The experiment setting including dataset description and evaluation metrics are first 
introduced.

5.1.1  Dataset description

Sine wave simulation The sine wave simulation of 1000 periodic trajectories with 
the same frequency and amplitude is synthesized according to the research [13]. All 
the initial points are sampled from a standard Gaussian, and the Gaussian noise are 
injected into the observations. 100 time points are selected at random in each trajec-
tory. For training, a full set are constructed based on the 100 time points.

PhysioNet challenge 2012 dataset The healthcare dataset consists of 8000 clini-
cal time series with measurements from the first 48 h of each individual’s admission 
to intensive care unit (ICU) [38]. The measurements are sampled at irregular times, 
and of varying sparse subsets of 37 possible features.

Electricity The raw dataset of electricity is downloaded from the web [39]. The 
electricity consumption in kWh is collected every 15 min during the year from 2012 
to 2014 for 321 clients. The data is converted to represent hourly consumption.

Human activity dataset The classifier model is trained on the human activity data-
set from the UCI repository [40], which aimed to recognize the seven types of activ-
ities (walking, sitting, etc.) of five individuals based on data sensed by sensors worn 
on the person’s belt, chest and ankles (12 features in total). The data is recorded at 
a fixed period of 211 ms, however, the random phase-shifts between them makes an 
irregularly sampled time-series.

(32)lossClassification = −
1

N

N−1∑
i=0

M−1∑
j=0

yi,jlnỹi,j
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5.1.2  Evaluation metrics

In this paper, Mean Square Error (MSE), Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) are used as the evaluation metrics for interpola-
tion and extrapolation tasks, which are formulated with Eqs. (33), (34) and (35), 
respectively.

Accuracy is the most intuitive evaluation metric and reflects the ratio of correctly 
predicted observation to the total observations. It is used to evaluate the perfor-
mance of the classification task, as defined below:

where TP, TN, FP and FN refer to the numbers of true positives, true negatives, 
false positives, and false negatives, respectively.

5.1.3  Setting of this experiment

The TN-ODE model and baseline models are all developed using the Pytorch 1.0. 
The ODE generative model is implemented with a standard ODE solver torch-
diffeq in Python. The Adamax optimization method is employed to train all the 
models and learning rate of all the models is set to 0.001. Experiments are per-
formed on a regular workstation equipped with a single NVIDIA Quadro P6000 
graphics card of 24 GB memory and Ubuntu 18.04 system. To ensure a fair com-
parison, all the training parameters are tuned for best performance.

5.2  Baselines

The TN-ODE model is compared with the following baselines.
GRU [41]: Gated Recurrent Unit. It is an advancement of the standard RNN 

that can capture long-term temporal dependencies.

(33)MSE =
1

m

m∑
i=1

(yi − ỹi)2

(34)RMSE =

√√√√ 1

m

m∑
i=1

(yi − ỹi)2

(35)MAE =
1

m

m∑
i=1

∣ yi − ỹi ∣

(36)Accuracy =
TP + TN

TP + TN + FP + FN
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GRU-D [10]: It is a GRU-based model that introduces data and correspond-
ing time steps into standard GRU to deal with multivariate time series prediction 
with missing values/irregular samplings.

T-LSTM [23]: Time-aware LSTM (T-LSTM) incorporates the irregular time 
intervals into the standard LSTM architecture to adjust the hidden status in the 
memory cell, aimed at handling sequential data with time irregularities.

BRITS [12]: A novel method directly learns the missing values in a bidirectional 
recurrent dynamical system, without any specific assumption over the data.

AJ-RNN [20]: This end-to-end model is trained in an adversarial and joint learn-
ing manner where the generator imputes the missing values and the discriminator to 
improve the imputation, which makes imputation more accurate.

Latent ODE [13]: It is a generative model based on VAE, where the Neural ODE 
generates the latent states at desired times according to initial state learned from the 
RNN encoder and a linear layer decodes the latent trajectory to impute the missing 
values.

GRU-VAE: It is an enhanced Latent ODE model which employs an GRU model 
as encoder to avoid the exploding gradients.

ODERNN-VAE [14]: It is an improved version of Latent ODE, where ODE-RNN 
serves as an encoder to provide a better approximate posterior than RNN on sparse 
data.

5.3  Imputation and prediction performance

A number of experiments are carried out to evaluate the performance of variants of 
both RNN and proposed approaches on the imputation and prediction tasks.

5.3.1  Imputation and prediction performance of irregular time series

The Sine Wave Simulation is generated by a sine function of the form 
A sin(�t) + G(d) , where the amplitude A is set to 1 and the frequency � is set to � . 
Here, G(d) denotes Gaussian random noises. To generate irregular time stamps of 
a sequence, 100 time steps are randomly selected from a range of 0 to 5. And 1000 
sequences with different time points are created, among which 800 sequences are 
used for validation and 200 for testing.

To demonstrate the ability of the TN-ODE model of inferring data values for any 
desired time steps, the autoregressive task is conducted on the irregular sine wave 
simulation with 1D sequential data. To verify its effectiveness, the TN-ODE model 
is conditioned on the subset of irregular data points from 0 to 5 and reconstruct the 
full trajectory in the same time range, which can be view as an interpolation task. 
As shown in Fig.  3, the red dot represents the observed irregular time series and 
the blue line represents the recovery trajectory. Additionally, the model is trained 
to condition on 50 points ranging from 0 to 2.5 (yellow dot in Fig. 3) and predict 
trajectory from 2.5 to 5 (green line in Fig. 3), which is considered as an extrapola-
tion task. Despite being conditioned on irregular data, the TN-ODE model is able to 
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reasonably reconstruct trajectories and provide an estimate of uncertainty for pre-
dicted observations.

To quantitatively analyze the performance of the TN-ODE model on the inter-
polation task, MSE, RMSE and MAE are reported on 100 time points that are used 
for training. These metrics are also compared with various comparison methods. 
RNNs cannot handle the long-distance dependency issue and suffer from a gradi-
ent vanishing problem, thus this paper selects an improved version of RNN, such as 
GRU, as baseline algorithms. The Latent ODE model has two defects: the encoder 
cannot learn irregular time intervals effectively, and RNNs have a vanishing gradi-
ent problem. To address the shortcomings, this paper employs a time-aware LSTM. 
Table 1 presents performance of the TN-ODE model and baseline algorithms. As 
can be seen, the TN-ODE model outperforms traditional methods including GRU, 
GRU-D, T-LSTM, BRITS, AJ-RNN and recent VAE-based ODE methods with 
different encoders (i.e. RNN encoder, GRU encoder and ODE-RNN encoder). It 

Fig. 3  Interpolation and extrap-
olation of sine wave simulation 
with irregular time steps by the 
TN-ODE model

Table 1  Interpolation results on 
the Sine Wave Simulation

Method Inter

MSE RMSE MAE

GRU 0.0264 0.1625 0.1175
GRU-D 0.0263 0.1622 0.1186
T-LSTM 0.0327 0.1809 0.1224
BRITS 0.0119 0.1090 0.0578
AJ-RNN 0.0173 0.1314 0.0930
Latent ODE 0.0550 0.2346 0.1654
GRU-VAE 0.1156 0.3400 0.2390
ODERNN-VAE 0.0110 0.1050 0.0747
TN-ODE (ours) 0.0106 0.1027 0.0729



18716 Z. Chang et al.

1 3

is obviously observed that the proposed TN-ODE significantly outperforms all 
baselines by achieving the lowest MSE, MAE and RMSE. The Neural ODE-based 
model performs better in the interpolation task than RNN-based models, possibly 
due to the fact that RNN-based models require explicit memory of historical infor-
mation when processing long sequences, which makes them vulnerable to factors 
such as noise and missing data and face long-term dependency issues. Neural ODE-
based models utilize a differential equation model to infer the relationship between 
time steps, allowing them to infer the dependency relationship between time steps 
without explicitly memorizing historical information. Thus, they have better repre-
sentation learning ability, making them more robust to missing data and noise and 
easier to adapt to new data. Among the ODE-based method, the TN-ODE model 
has better results due to the ability of time-aware encoder to learn the time interval 
of time series and effectively infer the posterior distribution of irregularly-sampled 
time series data.

To further demonstrate the effectiveness of the proposed model in handling 
irregular time series, TN-ODE is evaluated on the Physionet Dataset by performing 
the interpolation task. Following the approach described in [14], observation times 
are rounded to the nearest minute to reduce the number of measurements by only 
twofold, leaving 2880 (60*48) possible measurement times per time series. Table 2 
shows the comparative results of the imputation accuracy between TN-ODE method 
and other baseline methods. The proposed method outperforms the other imputation 
methods. Additionally, the Latent ODE also demonstrates good performance. Com-
pared with GRU-D and T-LSTM, ODE-based methods adopt stronger differential 
equations to describe the dynamic behavior of the system, which enables them to 
learn more dynamic behaviors and better handle complex time series data. Moreo-
ver, the random sampling method used in ODE-based methods can sample the latent 
states of the system and generate continuous time dynamics, which helps to handle 
irregular time series data more effectively.

Table 3 presents the performance of TN-ODE model and baseline algorithms on 
the extrapolation task. The TN-ODE model outperforms the baseline algorithms in 
terms of predictive MSE, RMSE, and MAE. This is mainly because the TN-ODE 

Table 2  Imputation 
performance of all methods on 
the Physionet Dataset in terms 
of MSE, RMSE and MAE

Method Inter

MSE RMSE MAE

GRU 0.0079 0.0538 0.0467
GRU-D 0.0073 0.0511 0.0446
T-LSTM 0.0104 0.0627 0.0576
BRITS 0.1325 0.3640 0.2511
AJ-RNN 0.0109 0.0652 0.0600
Latent ODE 0.0070 0.0494 0.0448
GRU-VAE 0.0134 0.0693 0.0645
ODERNN-VAE 0.0081 0.0558 0.0509
TN-ODE (ours) 0.0059 0.0459 0.0412
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model can effectively perceive the time interval changes of irregularly-sampled 
data and better learn the posterior distribution, resulting in a better ability to model 
the system dynamics. Therefore, this clearly illustrates that the time-aware LSTM 
encoder in the TN-ODE model overcomes the limitations of the RNN encoder used 
in Latent ODE.

The prediction task is also evaluated on the Physionet Dataset, and the experi-
mental results are shown in Table 4. Consistent with the test results on Sine Wave 
Simulation, TN-ODE demonstrates the highest prediction accuracy by showing the 
lowest MSE. There is no doubt that the ODE module can better learn the system 
dynamics according to the posterior distribution learned by the time-aware encoder.

5.3.2  Imputation and prediction performance of time series with different missing 
rates

The Electricity Dataset is a widely-used public dataset from UCI, collected from 
321 clients. For this experiment, data is selected from the period of 2012/01/01 to 
2014/12/31, which has no missing data. Time-series samples for the interpolation 
and extrapolation tasks are chosen every 100 consecutive steps. The training and 
testing data are divided into 80% and 20% sets, respectively. To simulate missing 
values, various missing rates ranging from 10 to 70% are adopted to artificially drop 
observations in the training set and test set. And the observed values to eliminate are 
selected completely at random setting and independently for each time series. Aver-
age performance on the interpolation and extrapolation tasks under different missing 
rates is presented in Tables 5 and 6, respectively. The interpolation and extrapolation 
performance of 0–70% missing values are illustrated in Figs. 4 and 5.

As the MSE metric is shown in Fig. 4a, the traditional GRU, GRU-D, T-LSTM 
and BRITS demonstrate better data interpolation ability when the missing rate is less 

Table 3  Extrapolation 
prediction performance on the 
Sine Wave Simulation

Method Extrap

MSE RMSE MAE

Latent ODE 0.1521 0.3900 0.2772
GRU-VAE 0.4637 0.6801 0.6040
ODERNN-VAE 0.0227 0.1506 0.0930
TN-ODE (ours) 0.0021 0.0457 0.0317

Table 4  MSE, RMSE and MAE 
results of the TN-ODE and 
other extrapolation methods on 
the Physionet Dataset

Method Extrap

MSE RMSE MAE

Latent ODE 0.0043 0.0316 0.0296
GRU-VAE 0.0062 0.0413 0.0362
ODERNN-VAE 0.0051 0.0366 0.0330
TN-ODE (ours) 0.0041 0.0308 0.0288
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than 15%. For missing data between 15 and 40%, only the BRITS algorithm outper-
forms TN-ODE. When the missing rate exceeds 50%, the TN-ODE model performs 
better than all baseline algorithms. Obviously, the interpolation performance of the 
RNN-based algorithms gradually declines as the data missing rate increases. This 
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Fig. 4  a MSE, b RMSE and c MAE results of the Electricity Dataset under different missing rates in the 
interpolation task

Table 5  Average performance 
on the interpolation task using 
electricity test set under all 
missing rates

Method Interp

MSE RMSE MAE

GRU 0.2569 0.4900 0.3475
GRU-D 0.2819 0.5166 0.3740
T-LSTM 0.4286 0.6299 0.4380
BRITS 0.1600 0.3980 0.2733
AJ-RNN 0.2998 0.4604 0.4200
Latent ODE 0.3593 0.5833 0.4273
GRU-VAE 0.2076 0.4545 0.3210
ODERNN-VAE 0.2686 0.5170 0.3655
TN-ODE (ours) 0.1694 0.4114 0.2865
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decline primarily results from the RNN-based models’ inability to capture complete 
contextual information as the missing rates increase, making it challenging to pre-
dict the next data point accurately. However, BRITS can learn the sequence from 
both directions, effectively alleviating the problem of data missing. The model train-
ing data decreases with the increase of the missing rate, and there is a higher likeli-
hood of underfitting or overfitting.

Moreover, the interpolation ability of ODE-based models remains stable, primar-
ily because they can leverage existing data points to interpolate missing ones, and 
the interpolation error can be optimized by adaptively adjusting the step size and 
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Fig. 5  a MSE, b RMSE and c MAE performance of the extrapolation task on the Electricity Dataset with 
various missing rates

Table 6  Forecasting average 
performance on the Electricity 
test set under all missing rates

Method Extrap

MSE RMSE MAE

Latent ODE 0.2935 0.5353 0.3815
GRU-VAE 0.2038 0.4482 0.3149
ODERNN-VAE 0.2136 0.4620 0.3183
TN-ODE (ours) 0.1704 0.4128 0.2859
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accuracy through the ODE solver. Among these models, the TN-ODE model has 
the lowest MSE values, which can be attributed to the time-aware encoder’s superior 
ability to learn the posterior distribution from sparse data. The AJ-RNN model also 
has a stable imputation ability, the performances of which is much poorer than that 
of the proposed model. As the RMSE, and MAE metrics shown in Fig. 4b, c, these 
metrics consistent with the trend of the MSE results.

For the average performance across different missing rates (presented in Table 5), 
our TN-ODE model is only inferior to the BRITS model, as the BRITS model per-
forms well when the missing rate is low, while our model performs even better when 
missing rates are high.

The extrapolation task is still verified on the datasets with missing rates vary-
ing from 0 to 70%. Figure 5 describes the extrapolation performance of ODE-based 
methods on electricity dataset with missing rates ranging from 0 to 70% in terms of 
MSE, RMSE, and MAE. The TN-ODE model consistently outperforms the other 
encoder methods including the RNN, GRU, ODE-RNN encoders in most cases. 
Table 6 shows the average forecasting results on electricity test set of all missing 
rates, demonstrating that the TN-ODE model achieves the best result of extrapola-
tion. The time-aware LSTM encoder can effectively learn the posterior distribution.

5.4  Performance comparison for the downstream application

The classification task is trained on the human activity dataset using the TN-ODE 
model and baseline models. The data are collected from five individuals by four 
inertial measurement sensors attached to their belt, chest and ankles (12 features 
in total). The data is processed as the paper [13] does, which has 6554 sequences 
of 211 time points. The objective of this task is to classify the current activity of 
each individual into one of seven types of activities (walking, sitting, etc.). For per-
formance evaluation of the proposed model, a series of comparative experiments 
are carried out. Figure 6 presents the detailed test classification accuracy using the 

Fig. 6  The detailed test clas-
sification accuracy of UCI real 
incomplete Human Activity 
Dataset
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proposed model and corresponding comparative algorithms on UCI real incomplete 
human activity dataset. The TN-ODE classifier has higher accuracy than classifi-
ers of RNN variants, AJ-RNN and ODE-based classifiers with other encoders on 
this task. The TN-ODE model can effectively generate continuous-time latent states 
according to the posterior that inferred from irregularly-sampled time series dataset. 
The time-aware LSTM encoder can decrease error accumulation and avoid the issue 
of vanishing gradient. While the significance of the classification test on a single 
dataset is limited, it still shows great potential of generalization ability of the TN-
ODE model.

5.5  Ablation study

This paper also evaluates the contributions of the time-aware encoder and the Neu-
ral ODE model by ablation study on the Sine Wave Simulation, PhysioNet Dataset, 
Electricity Dataset and Human Activity Dataset. Tables 5, 6, 7, 8 and 11 present the 
results of the ablated proposed models. This paper compares the following ablated 
models:

Ours: the proposed model
T-LSTM: the model without Neural ODEs
LSTM-VAE: the model employs an LSTM as an encoder without the function of 

time perception
Table  7 shows the imputation and prediction performances of ablated models 

on the Sine Wave Simulation (measured by MSE, RMSE and MAE). The first row 
only shows the imputation results of T-LSTM due to the T-LSTM model does not 
support long-time prediction. The second row presents the performances of LSTM-
VAE, and the last row is the proposed model. As can be seen, the proposed model 
outperforms ablated models. The Neural ODE model can help to forecast the future 
system dynastics. And the time-aware encoder can effectively learn the posterior 
distribution from irregularly-sampled time series.

Table 7  Imputation and 
prediction results of ablated 
models on the Sine Wave 
Simulation

Model Interp Extrap

MSE RMSE MAE MSE RMSE MAE

T-LSTM 0.0327 0.1809 0.1224 – – –
LSTM-VAE 0.0214 0.1462 0.1058 0.0043 0.0659 0.0465
TN-ODE (ours) 0.0106 0.1027 0.0729 0.0021 0.0457 0.0317

Table 8  Imputation and 
prediction results of ablated 
models on the PhysioNet 
Dataset

Model Interp Extrap

MSE RMSE MAE MSE RMSE MAE

T-LSTM 0.0104 0.0627 0.0576 – – –
LSTM-VAE 0.0071 0.0496 0.0450 0.0046 0.0339 0.0312
TN-ODE (ours) 0.0059 0.0459 0.0412 0.0041 0.0308 0.0288
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Table 8 shows the ablation experiments of TN-ODE on the PhysioNet Dataset. 
Experimental results illustrate that TN-ODE exhibits the best accuracy in both inter-
polation and prediction tasks. The experimental results are closely related to each 
component of the proposed model. The time-aware encoder helps to learn an accu-
racy posterior distribution. The Neural ODE module can learn the system dynamics 
and forecast continuous-time latent states.

Tables 9 and 10 display the imputation and forecasting results on the electricity 
dataset,respectively. The experimental results are consistent with the sine wave sim-
ulation. The proposed model outperforms ablated models, indicating that the time-
aware encoder has an important role to effectively perceive the time interval and the 
Neural ODE model is capable of learning system dynamics.

Table 11 exhibits the classification results of ablated models on human activity 
dataset. Results demonstrate that TN-ODE achieves the best performance among 
ablated models. As can be observed, the function of time perception and Neural 
ODEs are both helpful. The classification accuracy decreases 2.51% without the 
function of time perception and 2.1% without Neural ODEs.

Table 9  Imputation results of ablated models on the Electricity Dataset with different missing rates

Method Index Missing rate (%)

0 10 20 30 40 50 60 70

T-LSTM MSE 0.0835 0.1936 0.2955 0.3946 0.4886 0.5729 0.6571 0.7431
RMSE 0.2890 0.4399 0.5436 0.6382 0.6990 0.7569 0.8106 0.8620
MAE 0.2043 0.2791 0.3471 0.4129 0.4766 0.5359 0.5947 0.6540

LSTM-VAE MSE 0.1639 0.1693 0.1918 0.1692 0.1900 0.1951 0.1758 0.2227
RMSE 0.4039 0.4115 0.4380 0.4113 0.4359 0.4418 0.4193 0.4719
MAE 0.2806 0.2870 0.3051 0.2871 0.3063 0.3073 0.2933 0.3232

TN-ODE MSE 0.1607 0.1692 0.1711 0.1632 0.1651 0.1714 0.1728 0.1821
RMSE 0.4009 0.4113 0.4137 0.4040 0.4046 0.4140 0.4157 0.4267
MAE 0.2779 0.2869 0.2890 0.2815 0.2836 0.2874 0.2887 0.2972

Table 10  Forecasting prediction results of ablated models on the Electricity Dataset with a variety of 
missing rates

Method Index Missing rate (%)

0 10 20 30 40 50 60 70

LSTM-VAE MSE 0.1910 0.1782 0.1779 0.1786 0.1712 0.1729 0.1763 0.1796
RMSE 0.4370 0.4221 0.4218 0.4227 0.4158 0.4116 0.4187 0.4238
MAE 0.3001 0.2910 0.2894 0.2934 0.2871 0.2844 0.2891 0.2920

TN-ODE MSE 0.1753 0.1645 0.1699 0.1670 0.1711 0.1683 0.1691 0.1779
RMSE 0.4187 0.4055 0.4122 0.4086 0.4138 0.4102 0.4112 0.4218
MAE 0.2918 0.2813 0.2866 0.2818 0.2868 0.2842 0.2841 0.2902
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5.6  Runtime analysis

Table  12 describes the time consumption of the TN-ODE model and comparison 
algorithms for the interpolation task. The results show that ODE-based models 
take more time than RNN-based models. This is because RNN-based models only 
predict one-step-ahead, whereas ODE-based models with a VAE structure need 
to reconstruct the whole trajectories given the vector summary z0. Among ODE-
based methods, the RNN encoder has the shortest training time, and our time-aware 
encoder requires more time than the RNN encoder and less time than the ODE-RNN 
encoder. These findings indicate the additional use of ODEs inevitable increases 
training time.

6  Conclusion

In this article, a novel TN-ODE is proposed for modeling incomplete time series. 
TN-ODE not only provides imputation for missing values as well as multi-step 
data prediction via an ODE network, but also supports classification tasks. In TN-
ODE, a time-aware LSTM is adopted to learn temporal and sequential features of 
incomplete time series without the need for data preprocessing. The ODE network is 
responsible for generating continuous-time latent dynamics by learning the relation-
ship between unknown systems and their derivatives. Results demonstrate the TN-
ODE model outperforms baseline algorithms, which is attributed to the time-aware 
LSTM being able to learn an approximate posterior and providing more adaptive 
input representations for the ODE network. Future work will explore modifications 
of the encoder in this continuous model by using bidirectional recurrent networks. 

Table 11  Classification results 
of ablated models on Human 
Activity Dataset

Model Accuracy

T-LSTM 0.7585
LSTM-VAE 0.7544
TN-ODE (ours) 0.7795

Table 12  Time consumption 
of eight approaches on the 
interpolation task

Method dataset Sine wave 
simulation

PhysioNet Electricity

GRU 0.0184 1.6902 0.02913
GRU-D 0.0453 21.5342 6.2668
T-LSTM 0.0431 4.7324 0.2783
BRITS 0.0492 0.2545 0.0527
AJ-RNN 0.0208 2.1539 0.0586
Latent ODE 0.0420 3.6128 0.2479
ODERNN-VAE 0.1266 7.7247 0.3754
TN-ODE (ours) 0.0727 6.2943 0.3357
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Additionally, attention mechanisms will be used to learn temporal information of 
time series. Lastly, combination Neural ODEs with generative adversarial networks 
to model incomplete time series remains to be investigated in future work.
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