Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Blockchain as a service environment: a
dependability evaluation

Leonel Correia (% leonelfeitosa@ufpi.edu.br)
Federal University of Piaui

Jamilson Ramalho (% jrd@cin.ufpe.br)
Federal University of Pernambuco

Francisco Airton Silva (& faps@ufpi.edu.br)
Federal University of Piaui

Research Article
Keywords:
DOI: https://doi.org/

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.


https://doi.org/
mailto:leonelfeitosa@ufpi.edu.br
mailto:jrd@cin.ufpe.br
mailto:faps@ufpi.edu.br
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

J. of Supercomputing manuscript No.
(will be inserted by the editor)

Blockchain as a service environment: a dependability
evaluation

Leonel Feitosa Correia = - Jamilson Ramalho
Dantas * - Francisco Airton Silva +

Received: DD Month YEAR / Accepted: DD Month YEAR

Abstract Blockchain has become an important processing paradigm in recent
years. The blockchain supports financial transactions and validates contracts,
documents and data. However, the evolution of blockchain has become viable
for many applications. The servers’ availability and reliability (dependence)
are required in the data processing. The contract will only be signed if there
are enough components to form the blockchain blocks. This paper analyses
the dependency between project components that use blockchain. We present a
model based on stochastic Petri net (SPN) for evaluating the dependency of the
blockchain architecture. The Design of Experiments (DoE) method was used to
analyze this model’s factors, seeking to know which ones had the higher impact
on the system. The sensitivity analysis showed that the MongoDB component
has a greater impact on the system dependency and the need to upgrade
such a component. Also, for reliability, making component improvements is
unnecessary if the system has fewer than 36,000 hours of runtime.

Keywords smart city, dependability, fault tree, Markov chain, resource
redundancy

Leonel Feitosa Correia (L. C.) and Francisco Airton Silva(F.A.S.) (corresponding author)
are with

Laboratory of Applied Research to Distributed Systems (PASID), Federal University of
Piau{ (UFPI), Picos, Piauf, Brazil; R. Cicero Duarte, n°® 905 - Junco, 64607-670 E-mail:
leonelfeitosa,faps@ufpi.edu.br

Jamilson Ramalho (J.R.) is with
Centro de Informatica, Universidade Federal de Pernambuco, Piaui, Brazil E-mail:
jrd@cin.ufpe.br



2 Leonel Feitosa Correia + et al.

1 Introduction

The monetary system has evolved through various forms of payment. All the
payment methods aim to protect buyers and sellers, including various types
of fraud such as malware proliferation, spam and theft [1, 2]. Blockchain al-
lows you to store your money safely without paying high maintenance fees to
the bank and with a less bureaucratic system [3]. However, this implementa-
tion process is complex, and this transformation poses considerable challenges,
such as financial stability, supervision and regulation. In the context of finan-
cial technologies, blockchain has been adopted in several countries. Japan has
adopted blockchain since 2017 for bidding processes to unify all property and
land records in urban areas.

Usually, blockchain technology needs to use a cloud computing environ-
ment to host and manage data distribution services. However, this environ-
ment can present flaws and difficulties in providing services that can take a
longer time to perform transactions [4]. However, the availability and reliabil-
ity of cloud computing systems are of great importance to those planning to
contract, deliver or share through these distributed system environments [5].
Thus, evaluating the availability and reliability of blockchain architectures is
a complex task. This paper mainly aims to evaluate reliability and availability
through the simulation of a blockchain network as a data distribution service
through stochastic Petri net models with dependency.

Petri Nets [6] are a family of formalisms very well suited for modelling sev-
eral system types since concurrency, synchronization, communication mech-
anisms, and deterministic and probabilistic delays are naturally represented.
This work adopts a particular extension, namely, Stochastic Petri Nets [7],
which allows the association of stochastic delays to timed transitions, and the
respective state space can be converted into CTMC [8]. SPN models present
a strong mathematical foundation and are suitable for representing and an-
alyzing parallel systems with heterogeneous components that exhibit concur-
rency and synchronization aspects. In SPNs, Places are represented by circles,
whereas transitions are depicted as filled rectangles (immediate transitions) or
hollow rectangles (timed transitions). Therefore, this formalism represents a
superior choice to model cloud computing systems.

We have evaluated the Hyperledger Cello, one popular project hosted by
Hyperledger and managed by the Linux Foundation. Our behavioural models
describe the entire infrastructure’s components, relationships, and dependen-
cies. The research contributions are relevant to project managers and organi-
zations planning to offer a blockchain network for data distribution. However,
knowing the limits of availability and reliability allows service providers to
apply techniques to increase system availability and reliability, such as redun-
dancy and preventive maintenance. Therefore, the main contribution of this
paper is to present a proposal with analytical models to evaluate the avail-
ability and sensitivity analysis for a Hyperledger Cello platform based on the
existing components in the proposed architecture.



Blockchain as a service environment: a dependability evaluation 3

The remaining of this paper is divided as follows: Section 2 describes the
related works. Section 3 presents the architecture of the analyzed system.
Section 4 shows the adopted methodology. Section 5 presents the extended
SPN models. Section 6 presents the results obtained in the simulations. Finally,
Section 7 concludes the work and presents future work.

2 Related Work

This section presents a state of art survey related to this work’s proposal. Table
1 summarizes a comparison between the works that are close to this research,
highlighting the main differences of our proposal. Ten works were raised, the
oldest being from 2016. We looked for related work that would be related
to the Blockchain field. Second, the criterion of analytical model usage was
included. Finally, in a deeper way, we sought to select works that focused on
architectural issues specifically linked to computational aspects (mainly data
processing).

Regarding context, few works have explored the theme related to blockchain
associated with analytical models. Therefore, works were selected that use
stochastic Petri nets, generalized SPN and DRBD to evaluate computational
communication systems that use reliability and performability metrics. Melo et
al., [9] in their research conducted a feasibility assessment for a blockchain in-
frastructure as a service and helps those planning to deploy or sell blockchains.
A modelling methodology based on Dynamic Reliability Block Diagrams (DRBD)
is adopted to assess two reliability attributes: system reliability and availabil-
ity. Rodrigues et al. [10] present an approach based on generalized stochastic
Petri nets (GSPN) to evaluate the performance of private cloud computing
environments that adopt NoSQL DBMS as a storage system. Models are pre-
sented to jointly estimate throughput and availability, which are prominent
indicators of QoS. Liu et al. [11] present a new model of a generalized coloured
stochastic Petri net (CGSPN) based on IT infrastructures, which reflects the
dynamic behaviour and procedure processing service requests under the ad-
vanced active-active mechanism.

Jammal et al. [12] propose a cloud scoring system with the SPN model.
In contrast, the Petri Net model assesses the availability of cloud applica-
tion implementations. So illustrating the approach with a use case that shows
how you can use the various deployment options to satisfy tenant and cloud
provider needs. Zabala et al. [13] present the modelling of a virtual firewall
based on SPN to analyze the performance in terms of throughput and de-
lay. Mendonga et al. [14] present an integrated experience-model approach to
evaluating cloud-based disaster recovery solutions. They have used SPNs and
fault injection experiments to assess availability-related metrics. To demon-
strate the approach’s feasibility, distinct real-world cloud-based DR solutions
(e.g. active/active and active/standby) were modelled and analyzed. Silva et
al. [15] propose an SPN modelling strategy to represent method call executions
of mobile cloud systems. This approach allows a designer to plan and optimize



4 Leonel Feitosa Correia + et al.

MCC environments where SPNs represent system behaviour and drive paral-
lelizable application execution time.

Pinheiro et al. [16] propose a formal framework based on SPN to represent
application partitioning at the method call level. The framework considers the
network bandwidth available to send and receive tasks to the cloud. Jammal
et al. [17] propose a stochastic Petri Net model that captures the stochastic
characteristics of cloud services. The model assesses the availability of cloud
services and their deployments in geographically distributed data centres. Fé
et al. [18] propose a stochastic model to assist cloud planning. The model
was validated for a set of significant scenarios by comparing the results of the
respective model with those obtained from real system measurements. This
model takes as input the auto-scaling configuration parameters and the time
between user requests. The proposed model calculates the throughput, the
mean response time and the cost of configuring the cloud computing infras-
tructure. A sensitivity analysis was also performed to identify the impact of
parameters on system performance.

Table 1: Related Work Comparison

Work Model Metrics Sensitivity = Contribution
Analysis
9] DRBD  Reliability Yes Reliability assessment of a
Blockchain-as-a-Service
Environment
[11] CGSPN MRT, Yes SPN for cloud service
utilization reliability assessment
[10] GSPN MRT, No Evaluation of NoSQL DBMS
utilization, in a private cloud environment
drop rate
[17] SPN MRT, Yes Availability analysis of
reliability, cloud-deployed applications
service charge
[18] SPN MRT, Yes Stochastic performance and
escalation cost model for planning
policy,
utilization
[12] SPN MRT, No High Availability Aware
utilization Deployments in the Cloud
Context
[13] SPN MRT, Yes Model of an SPN-Based
utilization Virtual Firewall
[14] SPN MRT, Yes Availability analysis of a
utilization recovery solution
[15] SPN MRT, Yes Mobile cloud benchmarking
utilization
[16] SPN MRT Yes Analysis of performance and
data traffic of mobile cloud
environments
This work SPN Reliability, Yes Availability and reliability

availability assessment




Blockchain as a service environment: a dependability evaluation 5

3 Architecture and Base Models

This section presents the reference architecture for the blockchain system and
the SPN model, with details on the execution flow and its base components.
The SPN model was proposed to apply a simulation that integrates the formal
description, proof of correction, and performance evaluation of the proposed
context [15, 19, 20, 21, 22, 23, 24, 257 ].

Figure 1 illustrates the reference architecture representing the Hyperledger
Cello. The environment used to host Hyperledger Cello consists of two nodes,
the master node and the worker node, each responsible for running a series
of services. The flow starts with the Watchdog, responsible for monitoring
the blockchain network service and the system’s status. RestServer performs
environment provisioning, orchestration and task management. The dashboard
provides environment management for system administrators. Docker manages
containers and provides the tools needed to run and virtualize applications.
Nodes run Docker as a host for Hyperledger Cello. Python also runs on the
host by supporting the Watchdog, RestServer, and Dashboard on the Master
Nodes. We are considering using a service like Nginx, a reverse proxy used
by Hyperledger Cello, to improve web performance. NodeJS is a JavaScript
runtime used by Cello to improve provisioning. MongoDB is an open-source
distributed database that allows you to query and index data. The Hardware
used to run Hyperledger Cello can be a desktop or a virtual machine. The
fundamental prerequisite is that the operating system is Linux.

Figure 2 presents two models of a Master and Worker architecture that
represent a series of components in a blockchain network. This model deals
with an architecture with the minimum requirements to provide a blockchain
network on top of the Hyperledger Cello platform. If any of the components
fail, the system will not be available, and the service running on the worker will
not be accessible from the external infrastructure of the blockchain network.

Master Node The master node is the machine responsible for providing ac-
cess management to the blockchain network. Through the master node, it is
possible to create, delete and define who can share information or see what is
coming from one user to another, representing some dependencies. The mas-
ter contains the hardware, an operating system, MongoDB, Python, node.js,
nginx, Docker, Dashboard, RestServer and Watchdog. The hardware compo-
nent (HW) is the foundation of the entire blockchain architecture containing
a direct dependency on the HW. If the HW fail, all software components will
fail. To repair a machine that has had a hardware failure, the blockchain ar-
chitecture repair routine starts with repairing it. After repairing the HW, the
operating system (OS) becomes the next component to be repaired. Next, all
other software is repaired. Docker should be repaired first, followed by Dash-
board, RestServer and Watchdog. The model’s focus is to help professionals
choose the best architecture configuration for their blockchain system. Table
2 presents the adopted guard expressions.



6 Leonel Feitosa Correia + et al.

Master
| Wathchdog |
%O | Rest Server |
@[ Doder | HYPERLEDGER
@ | Sashboard | GENERAL MEMBER
@ | Python |
N] Ngnix | Worker
¥ | NodelS | Blockchain |
S | MongoDB | Docker |
', Operating System \ ', Operating System ‘
= Hardware L= Hardware |

Fig. 1: Illustration of the architecture of a system that uses Hyperledger Cello.

Table 2: Condicoes de guarda.

Transition Index Expression Description

PYTH_R [C-01] (#0S_U>0) Enabled when OS is active.

NG_R [C-02] (#NOD_U>0) Enabled when NodeJSesta is active.

DOC_R [C-03] (#0S_U>0) AND Enables when OS and MongoDB are
(#MONG_U>0) active.

DAS R [C-04] (#NOD_U>0) AND Enables when the NodeJS, MongoDB
(#MONG_U>0) AND and Ngnix are active.
(#NG_U>0)

REST_R [C-05] (#PYTH_U>0) AND Enables when Python, NodeJS, Ngnix
(#NOD_U>0) AND and Docker are active.
(#NGN_U>0) AND
(#DOC_U>0)

WAT_R [C-06] (#PYTH_U>0) AND Enables when Python and Docker are
(#DOC_U>0) active.

Worker Node Another SPN model is proposed for the Worker Node and pre-
sented in Figure 2. This model has fewer components, containing only three
elements: the hardware (HW), operating system (OS) and Docker. All system
elements have dependency characteristics with the previous component. If the
hardware fails, all software components will fail. The failure and recovery times
used in the Worker Node were the same used in the Master Node. A blockchain



Blockchain as a service environment: a dependability evaluation 7

Blockchain Architecture

Hardware Operating System MongoDB Python NodelJS

HW_U HW_0s Oos_U NOD _U

(o)

OS_MONGODB  MONG_U MONG_PYTH PYTH _U PYTH_NOD

HW_R A | | _| _ NOD _F

NOD _D

Ngnix Docker Dashboard Rest Server Wathchdog
NG _U NG _DOC pDoC_U DOC_DAS DAS _U DAS_REST REST _U REST_WAT WAT _U

Worker
P T T T TS TS T TS )
1 . 1
1 Hardware Operating System Docker 1
1 1
1 1
: HW_U HW_0S os_u DOC _U 1
1
: [ /;\ [} 1
1
1 1
1 1
1 1
1 1
I HW_R HW_F OS_R 0S_F | DOC_R 1
1 1
1 1
1 1
1 HW D 0S_D DOC_D 1
1 1

Fig. 2: Base SPN that is composed of the Master and Worker nodes.

system has the characteristics of a P2P system, where the client can also be a
server [26].

4 Modeling Methodology

Figure 3 presents a flowchart that summarizes the strategy used in this work
as a research methodology composed of eight steps.



8 Leonel Feitosa Correia + et al.

System
Description

7

Application |_J_‘> Data flow
Understanding

Definition of Metrics |>( Reliabilty )y Availability

Definition of o
e Parameters '::> ':>

X

Analytical Model
Yes Generation CD SPN Model

L Adjustment?

No

¥

Sensitivity Analysis l___>

)

Conducting Scenario |:>
Assessment

Fig. 3: Modeling Methodology.

Understanding the Application: It is important to understand how the ap-
plication works, define how many components are involved, and the system’s
data flow, for example, where the data will be sent after passing through com-
ponent ’'x’. Metric Definition: The metrics of interest must be identified, con-
sidering the model information to diagnose the system performance. In this
work, the selected metrics (reliability and availability) can be important in
the end user’s perception and useful for the system administrators. Parameter



Blockchain as a service environment: a dependability evaluation 9

Definition: The parameters that will be inserted in the model are defined here.
These parameters define the behaviour and capability of each component’s fea-
tures. Analytical Model Generation: A performance model using a Petri net is
developed. In this part, it is built considering the defined metrics and param-
eters and the expected results. The choice of the Petri model is given because
the scenario has several components needing a specific level of abstraction.
Sensitivity Analysis: Using DoE, the analysis presents impacts considering
predefined factors and levels. DoE enables us to identify the most relevant fac-
tors for the results of the chosen metrics and how the interaction between the
factors and variations in their levels impact performance. Scenario Selection:
Some scenarios are created for performance analysis. This step defines which
scenarios can represent the reality of a blockchain system. Scenarios will be
chosen to analyze the most important factors considering the sensitivity analy-
sis results. Performing the Scenario Evaluation: The constructed scenarios are
evaluated using the Petri net model through simulation. In each scenario, the
factors are varied, and the metrics will be analyzed, allowing observe which
configurations the system performs satisfactorily.

4.1 Sensitivity Analysis

In this work, the Design of Experiments (DoE) was carried out, corresponding
to a collection of statistical techniques that deepen the knowledge about the
product or process under study [27]. The DoE can be defined by a series of tests
in which the researcher changes the variables or input factors to observe output
responses. The parameters to be changed are defined using an experiment
plan. The objective is to generate the most significant amount of information
with the fewest experiments possible. System behaviour based on parameter
changes can be observed using output sets. Table 3 presents the factors used in
constructing the DoE. The execution of the DoE seeks to identify the factors
that most influence the system. In this analysis, MTTF and MTTR were
chosen as the dependent variable because it is the most perceptive aspect for
the end user.

Table 4 presents the MTTFs and MTTRs for the current case study. Equa-
tion 1 shows the expression to calculate the availability. P represents the prob-
ability of containing a token in WAT_U and W_DOC_U. DoE was applied
considering twenty factors: HW-MTTF, HW-MTTR, OS-MMTF, OS-MMTR,
MongoDB-MTTF, MongoDB-MTTR, Python-MTTF, Python-MTTR, NodeJS
-MTTF, NodeJS-MTTR, Nginx-MTTF, Nginx-MTTR, Dashboard-MTTF, Dashboard-
MTTR, RestServer-MTTF, RestServer-MTTR, Watchdog-MTTF, Watchdog-
MTTR, Docker-MTTF, Docker-MTTR. The factors have two levels of varia-
tion, with 50% higher and lower.

A= P{(#WATU > 0) AND (#W_DOCU > 0)) } (1)

Figure 4 presents the Pareto chart for the factors related to the availability
metric. When a factor has a high impact on tests, very different values are



10 Leonel Feitosa Correia + et al.

Table 3: Factors and Levels.

Reference  Factors Levels

A HW-MTTF 50% -50%
B HW-MTTR 50% -50%
C OS-MMTF 50% -50%
D OS-MMTR 50% -50%
E MongoDB-MTTF  50% -50%
F MongoDB-MTTR  50% -50%
G Python-MTTF 50% -50%
H Python-MTTR 50% -50%
J NodeJS-MTTF 50% -50%
K NodeJS-MTTR 50% -50%
L Nginx-MTTF 50% -50%
M Nginx-MTTR 50% -50%
N Dashboard-MTTF  50% -50%
O Dashboard-MTTR  50% -50%
P RestServer-MTTF  50%  -50%
Q RestServer-MTTR  50%  -50%
R Watchdog-MTTF 50%  -50%
S Watchdog-MTTR 50% -50%
T Docker-MTTF 50% -50%
U Docker-MTTR 50%  -50%

Table 4: Input Values for Blockchain Architecture Components.

Component MTTF MTTR
HW 8760 h 100 min
oS 2893 h 15 min
MongoDB 1440 h 20 min
Python, NodeJS, nginx 788.4 h 1h
Dashboard, RestServer,
Watchdog
Docker 2990 h 1h

obtained when changing its level. According to the p-values found, the effects
of the MongoDB-MTTF factor have the greatest impact among the factors
in this study, followed by Docker-MTTR and OS-MMTF. Therefore, choosing
the database with the shortest failure time to use is important for the impact
of system availability. Watchdog-MTTF and MongoDB-MTTR have the least
impact on the system.

Figure 5 shows the main effects graph for availability. The graph represents
the availability to carry out the tests at each level. In this graph, the more
horizontal the line, the less influence the factor has, as it means that the
different levels of the factor influence the final result similarly. The MongoDB-
MTTF, Docker-MTTR, OS-MTTF, Dashboard-MTTR and Python-MTTR
factors had the greatest impact.

Figure 6 presents the interaction graph. An interaction occurs when a dif-
ference in another factor changes the influence of a certain component on the
result. If the lines of the graphs are parallel, there is no interaction between the
factors. In general, there was little interaction between the factors. However,



Blockchain as a service environment: a dependability evaluation 11

Factor 3,18
[

) 7
1 Z.
1 Z,

i A Factor Name
A HW-MTTF
B HW-MTTR
C OS-MMTF
D 0OS-MMTR
E MongoDB-MTTF
F MongoDB-MTTR
G Python-MTTF
H Python-MTTR
J NodeJS-MTTF
K NodeJS-MTTR
L Nginx-MTTF
M
N
(0]
[
Q
R
S
T
u

N

Nginx-MTTR
Dashboard-MTTF
Dashboard-MTTR
RestServer-MTTF
RestServer-MTTR
Watchdog-MTTF
Watchdog-MTTR
Docker-MTTF
Docker-MTTR

P MmO w9 r-r OxZ>» = WO A4AITO0ONCMT
L

0 2 4 6 8 10
Standardized Effect

Fig. 4: Influence of MTTR and MTTF Factors

we can highlight the interaction between the MongoDB-MTTF and Python-
MTTR factors, characterizing itself with greater interaction, reaching the level
of -50%, even if in a minimal way. However, this demonstrates that if the evalu-
ator opts for the MongoDB database, taking into account the MTTF, the best
choice is the MTTF of the database with more than 50%. The interaction be-
tween MongoDB-MTTF and Docker-MTTR was similar to the one mentioned
above. The same choice criterion applies if the database choice is MongoDB.
For the interaction between Docker-MTTR and OS-MMTF, if the evaluator
considers Docker MTTR, the best choice falls within the +50%.

5 Extended Models

This section presents the structure of the extended model applying Cold, Warm
and Hot Standby redundancies [28, 29, 30]. The MTTF and MTTR values for
the extended models are the same as in Table 4 presented earlier. The time
that triggered the redundant server in the SWITCH_TIME transition was
0.0833333 hours, extracted from [31]. The characteristic of redundant models
is presented in Table 5.



12 Leonel Feitosa Correia + et al.

HW-MTTF HW-MTTR 0S-MMTF 0S-MMTR MongoDB-MTTF MongoDB-MTTR Python-MTTF

0,984 /

0,982 / k\\. \‘ // / T .///.

0,980 J
50%  50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%
Python-MTTR NodeJS-MTTF NodeJS-MTTR Nginx-MTTF Nginx-MTTR Dashboard-MTTF Dashboard-MTTR
>
=
= 0984
Q
© '\'
= 0982
©
z
0,980
50%  50%  -50%  50%  -50% 50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%
RestServer-MTTF RestServer-MTTR Watchdog-MTTF Watchdog-MTTR Docker-MTTF Docker-MTTR
0,984
~ .
0,982 e
0,980
50%  50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%  -50%  50%
Fig. 5: Main Effects for Availability
Table 5: Features of Redundant Models.
Redundancy Description

Cold Standby The Cold Standby redundancy applied to MongoDB provides
increased availability because a component with the same
characteristics is activated if the database fails. However, after
failure, all components are disconnected until the redundant
component is triggered.

Warm Standby ~ Warm Standby works with similar availability as Cold Standby, but
both components work simultaneously. If the main component fails,
another machine is activated to ensure more availability for the
system.

Hot Standby Hot Standby feature a feature of doubling the component’s capacity,
resulting in a reduction in component failure.

Model Two - Cold Standby A major limitation of the base proposal is that
if one of the two servers fails, the entire system will stop working. We have
only considered the redundancy of the MongoDB component to assess whether
there is an improvement in the availability. MongoDB_01 and MongoDB_02 are
always connected; however, MongoDB_02 is instantiated only if MongoDB_01
fails. Therefore, the cold standby redundancy mechanism is applied when the
main component fails, providing system operation after a component fails.
Figure 7 presents an overview of the model in cold standby. Given the DoE
analysis, it was identified that MongoDB has the greatest impact, so MongoDB
was the component chosen to do the redundancy. When the component fails,



Blockchain as a service environment: a dependability evaluation 13
-50% 50% -50% 50% -50% 50% -50% 50%
P ]
- e S~ " osss
-
MongoDB-MTTF / \ 0,980
0,975
.
~ — 0,985
b ﬁ \\. T
/ [ & = -
Docker-MTTR / - ~ 0,980
/ . ~u
MongoDB-MTTF "l
—— -50% 0,975
— = — 50% " - 0,985
~ . - -
Docker-MTTR ~—
-50% 0S-MMTF ~ \ 0,980
— = — 50%
0,975
OS-MMTF 0,985
— e -50%
10, | .
— = - 50% Dashboard-MTTR T~ 0,980
Dashboard-MTTR
. 50% 0,975
— = — 50%
Python-MTTR

Fig. 6: Influence of factors in relation to availability

the redundant MongoDB will be triggered so that the system continues to be
fed with the database and can carry out storing data normally. When the first
MongoDB is repaired, the redundancy will be disabled as it is only needed in
case the main component fails. Only if both groups fail will the system become
unavailable. Table 6 presents the guard expressions of the extended model.

Table 6: Extended model guard expressions using Cold Standby

Transition Index Expressao Description

SWITCH_TIME [C-09] (#MONGODB_U=0) Enables when MongoDB
is disabled

T1 [C-08] (#MONGODB_U>0) Enabled when MongoDB
is enabled

T2 [C-08] (#MONGODB_U>0) Enabled when MongoDB

is enabled

Model Three - Warm Standby Here, the unique redundancy of MongoDB
was considered to evaluate availability. We have MongoDB_01, W_MongoDB
and W_MongoDB_01. Both components are always connected. However, when



14 Leonel Feitosa Correia + et al.

R_MONG_F SWITCH_TIME R_MONG_U

[C-07]

11[C-09]
R_MONG_ MONG_F

Fig. 7: SPN Model with Cold Standby Redundancy

W_MongoDB crashes, nothing happens. The system continues to be fed with
the data present in MongoDB_01. However, if MongoDB_01 goes down, W_MongoDB_01
is automatically activated. Thus, the system is fed with the data provided by
the redundancy of the database. However, if W_MongoDB_01 fails, the system
becomes idle.

Figure 8 presents an overview of the SPN model with the proposed ex-
tension of the base model. However, when MongoDB fails, redundancy will
be triggered so that the system continues to feed the database. When group
1 MongoDB is repaired, the opposite component (group 2) will be disabled.
If both MongoDB fails, the system will become unavailable. Table 7 presents
the guard conditions used for system operation in the extended model. In this
case, using guard conditions was of great help in avoiding visual pollution of
the model since several connections had to be made.

Table 7: Extended model guard conditions using Warm Standby

Transition Index Expressao Description
MONGODB_PYTHON [C-010] (#W_MONGODB_U1=0) Enables when MongoDB
is disabled

T4 [C-11] (#MONGODB_U>0) Enabled if MongoDB is
enabled

T5 [C-12] (#MONGODB_U=0) Enabled if MongoDB is
disabled

Model Four - Hot Standby In the model based on Hot standby, it is necessary
to double the number of tokens of that component to become redundant. In
Hot Standby redundancy, the faulty module is replaced without significant
delay, as the resilient modules are also powered. Figure 9 shows the model



Blockchain as a service environment: a dependability evaluation 15

[C-OlO] W_P1 [c_011]
SWITCH_TIME

W_MONG_U1

T4
W_MONG_R _MONG_F1 [C-012] X _MONG_F

Fig. 8: SPN Model with Warm Standby Redundancy

with Hot Standby of the MongoDB component with increased capacity, where
MONG_U works with double capacity.

Model Five - Reliability Figure 10 presents the SPN reliability model for the
blockchain architecture of the baseline scenario. This model is composed of
thirteen system components present in the system. The MTTF transitions
trigger each component’s change from active to inactive status. Each com-
ponent can operate independently if the number of tokens in UP equals the
markup value. This model is a variation of the base SPN model by removing
MTTR transitions from all components. Once components fail, they cannot be
repaired. All input parameters are the same as in the base model. This model
aims to show the system’s confidence level to continue working as a function
of time. Equation R=1— (WH_D > 0)OR(OS_D > 0)
OR(MONGODB_D > 0)OR(PYTHON_D > 0)
OR(NODEJS_D > 0)OR(NGNIX_D > 0)
OR(DOCKER_D > 0)OR(DASHBOARD_D > 0)
OR(RESTSERVER_D > 0)OR(WATCHDOG_D > 0)
OR(W_WH_D > 0)OR(W_OS_D > 0)
OR(W_DOCKER_D > 0) defines the reliability (R) of the model.
Reliability was also assessed using DoE. Figure 4 shows the Pareto chart.
The HW, OS, MongoDB, NodeJS, Docker and Dashboard components impact
the reliability the most. Figure 11 shows the reliability by varying the MTTF
of those components with the greatest impact. The MTTF of the components
was varied between base value, base value plus 25%, base value plus 50% and
base value plus 75%. The increase in execution time is directly proportional
to reliability. The longer the execution time, the lower the system’s reliability.
In both configurations, reliability started at 0, but the highest angle of fall
occurred until Time = 50000 hs. Reliability starts to decrease and tends to
stabilize towards the end of the experiment. We can also observe that the



16 Leonel Feitosa Correia + et al.

0S_MONGODB  MONG_U
(00)

Fig. 9: SPN Model with Hot Standby Redundancy

points where the reliability tends to a value smaller than 0.099 are: (i) base
configuration = 45000 hs; (ii) base configuration plus 25% = 52500 hs; (iii)
base configuration plus 50% = 61500 hs; and (iV) base value configuration
plus 75 % = 73500 hrs. For the starting point, the entire system started its
execution with reliability at 100%. Therefore, the longer the failure time, the
greater the reliability, as the system will operate longer.

Figure 12 presents the bar graph for reliability. Four cuts (time window) are
performed at runtime for better visualisation, so we can evaluate the behaviour
over time. T1 goes from Oh to 36000hs, T2 goes from 36001hs to 73500hs, T3
goes from 73501hs to 111000hs, and T4 goes from 111001hs to 150000hs. The
base model has the highest reliability because the system has little execution
time, and thus the probability of system failure is much lower. However, the
longer the system remains active, the base model shows itself as inefficient in
terms of reliability. However, improvements in HW, OS, MongoDB, NodeJS,
Docker and Dashboard components are not relevant for a time lower than
36000hs. In order to consider the need for improvements in the components,
a run greater than 36000hs must be taken into account. It was also observed
that as the running time of the system increases, the reliability values are



Blockchain as a service environment: a dependability evaluation 17

Blockchain Architecture

Hardware Operating System MongoDB Python NodelS

OS U 0S_MONGODB MONG u MONG_PYTH PVTH _u PYTH_NOD NOD _U

(o)
?I ONG_F PYTH _F NOD _F
NOD_D

Ngnix Docker Dashboard Rest Server Wathchdog
NG_U NG _DOC DoC _U DOC_DAS DAS _U DAS_REST REST _U REST_WAT WAT _U

(o) (o) (o) o o
_F DOC _F DAS _F REST _F AT _F
NG_D DOC_D DAS _D REST _D WAT _D
L o oo oo om o omm o mm o e e e mm e o e mm e e e e R M e R R R R e R e R R R M e R R R R R R M R R R M R R e M M R R R M e R e R R e R e e e e
Worker
F T T T T TS S S SSmmmmmmmmm s f
! . 1
1 Hardware Operating System Docker 1
1 1
1 1
: HW_U HW_0S os_u DoC _U 1
1
: [ ] f;\ [} 1
1
1 1
] 1
1 1
1 1
1 HW_F OS_F DOC_F1
] 1
1 1
1 1
1 HW D 0oS_D DOC_D 1
1 - 1

Fig. 10: Reliability model.

inverted. Therefore, the base model at the beginning of the execution showed
the highest reliability at the end of the experiment with the lowest reliability.

6 Model Comparison

This section presents the availability analysis of the four models presented in
the paper. The variation in the availability of each model was observed, as well



18 Leonel Feitosa Correia + et al.

—

o

o
J

— Base + 75%
— Base + 50%

Base + 25%
— Base

(0]
o

N
o
1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1

Reliability(%)
3

N
o

o

0 50,000 100,00 150,000
Time(h)

Fig. 11: Reliability levels varying the MTTF of HW, OS, MongoDB, NodeJS,
Docker and Dashboard components, ranging from 25%, 50% and 75%.

as the impact of each component on the architecture. The proposed model was
evaluated using the Mercury Script Language [32] tool. In this study, the test
was performed to assess the reliability and availability of the presented models.
During the simulation, the Hot Standby redundancy proved superior to the
other models in terms of availability.

The base architecture had 141 hours of unavailability, equivalent to 98.3%
of stationary availability. With Cold redundancy, it is possible to observe a
result with a longer availability time, totalling 126,775 hours of unavailability.
Cold redundancy presented an availability of 98.4%. The Warm redundancy
presented a better result than the Cold redundancy and the base model, having
an unavailability time of approximately five days, with 98.5% of availability.
However, the Hot one presented the highest performance, with only 77 hours
of unavailability, and availability = 99%.

6.1 Factors Impact Evaluation

In the previous scenarios, the MongoDB failure time factor was analyzed indi-
vidually, creating redundancies and testing system performance and availabil-
ity. Such analyses allowed us to observe the factor with the greatest impact
that interferes with all metrics in a very detailed way. However, in addition
to having an isolated impact on the behaviour of the system, the DoE anal-
ysis showed that there is a strong interaction between the two factors in the
average response time, as shown in the Pareto chart (Figure 4) and graph of



Blockchain as a service environment: a dependability evaluation 19

100 -

b Il Base + 75%

] Il Base + 50%

80 [ Base + 25%

~N ] Il Base

4_1 -
V 60
- ]
V -
— 40 5
Rl ]
o ]
20—
0

T1 T2 T3 T4

T1=0h < T < 36000hs

T2 =36000hs < T < 73500hs
T3 =73500hs < T < 111000hs
T4 =111000hs < T < 150000hs

Fig. 12: Variation of Reliability levels varying the MTTF of the HW, OS,
MongoDB, NodelJS, Docker and Dashboard components, variation of 25%,
50% and 75%.

interaction (Figure 6). These graphs only indicate the existence and magni-
tude of the interaction. Therefore, this section shows the variation between the
two factors. Table 8 presents the combinations between the factors analyzed
in this scenario.

Figure 14 presents a 3D surface graph to show the system behaviour con-
sidering system availability, varying two factors with a high impact on perfor-
mance. Colours are related to the result of availability. The bar on the right
indicates the magnitude of the results. The upper part indicates the highest
availability, and the lower indicates the lowest availability. Therefore, purple
represents the lowest availability, and red represents the highest availability.
In the graph, it is worth highlighting the presence of a projection at the top
that facilitates the interaction of factors.

Changing the MongoDB MTTF has a greater impact than changing the
Docker MTTR. The red colour is present in most of the projections, indicating
a high availability of the system. The purple colour corresponds to availabilities
at the bottom of the chart. If a MongoDB failure time and a higher Docker
recovery time are adopted, the system availability drops, showing that the
Docker recovery factor is relevant to the system availability. Therefore, the
result indicates that it is often more beneficial to invest in Docker recovery
time and thus improve availability.



20 Leonel Feitosa Correia + et al.

Base Cold Warm Hot
Scenarios

Fig. 13: Availability of the four models varying redundancy in the MongoDB
component.

7 Conclusion

This paper proposed stochastic Petri net models for a blockchain architecture
to help system administrators plan computer system architectures. The mod-
els consider several factors that influence the total availability of the system.
Among the factors presented in the sensitivity analysis, it was noted that the
MongoDB component has a greater impact on the availability and reliability
of the system. There were significant components in the sensitivity analysis:
HW, OS, NodeJS, Docker and Dashboard. Significant improvements in these
components will increase the availability and reliability of the blockchain net-
work. Modifications include using more powerful hardware or components with
greater processing power. It was also noted that regarding reliability, making
improvements to the components is unnecessary if the system has a runtime
of fewer than 36,000 hours.

The models provide accurate availability and reliability metrics. The mod-
els were demonstrated by carrying out four case studies. The case studies
provide a practical guide that shows how a system administrator can apply
the model to perform assessments of various configurations for a blockchain
architecture.



Blockchain as a service environment: a dependability evaluation 21

Combination MongoDB MTTF Docker MTTR (Time) Availability (%)
(Time)
#1 129600 90 0,98634
#2 129600 75 0,98693
#3 129600 60 0,98753
#4 129600 45 0,98813
#5 129600 30 0,98873
#6 108000 90 0,98562
#7 108000 75 0,98624
#8 108000 60 0,98686
#9 108000 45 0,98749
#10 108000 30 0,98811
#11 86400 90 0,98455
#12 86400 75 0,98521
#13 86400 60 0,98586
#14 86400 45 0,98652
#15 86400 30 0,98717
#16 64800 90 0,98277
#17 64800 75 0,98348
#18 64800 60 0,98419
#19 64800 45 0,9849
#20 64800 30 0,98562
#21 43200 90 0,97922
#22 43200 75 0,98004
#23 43200 60 0,98086
#24 43200 45 0,98169
#25 43200 30 0,98251

Table 8: Interaction between MongoDB-MTTF and Docker-MTTR.

8 Declarations

FEthical Approval Not applicable

Competing interests The authors have no relevant financial or non-financial
interests to disclose.

Authors’ contributions L.F. wrote the paper. F.A.S and J.R. reviewed the
manuscript.

Funding No funding was received for conducting this study.

Avwailability of data and materials Data sharing not applicable.

References

1. Pedro W Abreu, Manuela Aparicio, and Carlos J Costa. Blockchain tech-
nology in the auditing environment. In 2018 13th Iberian Conference on
Information Systems and Technologies (CISTI), pages 1-6. IEEE, 2018.

2. Tiana Laurence. Blockchain for dummies. John Wiley & Sons, 2019.



22

Leonel Feitosa Correia + et al.

Availability

0,9888

0,9878

“©
xR
>

0,9868
0,9859
0,9849

0,9840

(N ‘\\\,\\%23\\?.[\\1
° %
X ®

0,9830

0,9821

©
[S)
~

0,9811

0,9802

‘ 0,9792

Fig. 14: Analysis of the average response time of MTTF-MongoDB and
MTTR-Docker simultaneously.

3.

4.

10.

Melanie Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

William Mougayar. Blockchain para negécios: promessa, pratica e apli-
cacdo da nova tecnologia da internet. Alta Books Editora, 2018.

. Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck.

Blockchain. Business & Information Systems Engineering, 59(3):183-187,
2017.

. T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEFE,

77(4):541-580, April 1989.

. A. Marsan. Modelling with generalized stochastic Petri nets. Wiley series

in parallel computing. Wiley, 1995.

. K Trivedi. Probability and Statistics with Reliability, Queueing, and Com-

puter Science Applications. Wiley Interscience Publication, 2 edition, 2002.

. Carlos Melo, Jamilson Dantas, Danilo Oliveira, Iure Fé, Rubens Matos,

Renata Dantas, Ronierison Maciel, and Paulo Maciel. Dependability evalu-
ation of a blockchain-as-a-service environment. In 2018 IEEE Symposium
on Computers and Communications (ISCC), pages 00909-00914. IEEE,
2018.

Matheus Rodrigues, Breno Vasconcelos, Carlos Gomes, and Eduardo
Tavares. Evaluation of nosql dbms in private cloud environment: An ap-
proach based on stochastic modeling. In 2019 IEEE International Systems



Blockchain as a service environment: a dependability evaluation 23

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Conference (SysCon), pages 1-7. IEEE, 2019.

Yue Liu, Xiaoyang Li, Yanhui Lin, Rui Kang, and Lianghua Xiao. A col-
ored generalized stochastic petri net simulation model for service reliability
evaluation of active-active cloud data center based on it infrastructure. In
2017 2nd International Conference on System Reliability and Safety (I1C-
SRS), pages 51-56. IEEE, 2017.

Manar Jammal, Ali Kanso, Parisa Heidari, and Abdallah Shami. Evaluat-
ing high availability-aware deployments using stochastic petri net model
and cloud scoring selection tool. IEEE Transactions on Services Comput-
ing, 2017.

Luis Zabala, Ruben Solozabal, Armando Ferro, and Bego Blanco. Model
of a virtual firewall based on stochastic petri nets. In 2018 IEEE 17th In-
ternational Symposium on Network Computing and Applications (NCA),
pages 1-4. IEEE, 2018.

Julio Mendonga, Ricardo Lima, Rubens Matos, Joao Ferreira, and Erme-
son Andrade. Availability analysis of a disaster recovery solution through
stochastic models and fault injection experiments. In 2018 IFEE 32nd
International Conference on Advanced Information Networking and Ap-
plications (AINA), pages 135-142. IEEE, 2018.

Francisco Airton Silva, Sokol Kosta, Matheus Rodrigues, Danilo Oliveira,
Teresa Maciel, Alessandro Mei, and Paulo Maciel. Mobile cloud perfor-
mance evaluation using stochastic models. IEEFE Transactions on Mobile
Computing, 17(5):1134-1147, 2017.

Thiago Pinheiro, Francisco Airton Silva, Iure Fe, Sokol Kosta, and Paulo
Maciel. Performance and data traffic analysis of mobile cloud environ-
ments. In 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 4100-4105. IEEE, 2018.

Manar Jammal, Ali Kanso, Parisa Heidari, and Abdallah Shami. Avail-
ability analysis of cloud deployed applications. In 2016 IEEE International
Conference on Cloud Engineering (IC2E), pages 234-235. IEEE, 2016.
Ture Fe, Rubens Matos, Jamilson Dantas, Carlos Melo, and Paulo Maciel.
Stochastic model of performance and cost for auto-scaling planning in
public cloud. In 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 2081-2086. IEEE, 2017.

Laécio Rodrigues, Patricia Takako Endo, and Francisco Airton Silva.
Stochastic model for evaluating smart hospitals performance. In 2019
IEEE Latin-American Conference on Communications (LATINCOM),
pages 1-6. IEEE, 2019.

Leylane Ferreira, Elisson da Silva Rocha, Kayo Henrique C Monteiro,
Guto Leoni Santos, Francisco Airton Silva, Judith Kelner, Djamel Sadok,
Carmelo JA Bastos Filho, Pierangelo Rosati, Theo Lynn, et al. Opti-
mizing resource availability in composable data center infrastructures. In
2019 9th Latin-American Symposium on Dependable Computing (LADC),
pages 1-10. IEEE, 2019.

Guto Leoni Santos, Demis Gomes, Judith Kelner, Djamel Sadok, Fran-
cisco Airton Silva, Patricia Takako Endo, and Theo Lynn. The internet of



24

Leonel Feitosa Correia + et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

things for healthcare: optimising e-health system availability in the fog and
cloud. International Journal of Computational Science and Engineering,
21(4):615-628, 2020.

Francisco Airton Silva, Ture Fé, and Glauber Gongalves. Stochastic models
for performance and cost analysis of a hybrid cloud and fog architecture.
JOURNAL OF SUPERCOMPUTING, 2020.

Daniel Carvalho, Laécio Rodrigues, Patricia Takako Endo, Sokol Kosta,
and Francisco Airton Silva. Mobile edge computing performance evalua-
tion using stochastic petri nets. In 2020 IEEE Symposium on Computers
and Communications (ISCC), pages 1-6. IEEE, 2020.

Francisco Airton Silva, Sokol Kosta, Matheus Rodrigues, Danilo Oliveira,
Teresa Maciel, Alessandro Mei, and Paulo Maciel. Mobile cloud perfor-
mance evaluation using stochastic models. IEEFE Transactions on Mobile
Computing, 17(5):1134-1147, 2018.

Thiago Felipe da Silva Pinheiro, Francisco Airton Silva, Ture Fé, Sokol
Kosta, and Paulo Maciel. Performance prediction for supporting mobile
applications’ offloading. The Journal of Supercomputing, 74(8):4060-4103,
2018.

James F Kurose and Keith W Ross. Redes de computadores e a internet.
Sao Paulo: Person, 28, 2006.

Leonel Feitosa, Glauber Gongalves, Tuan Anh Nguyen, Jae Woo Lee, and
Francisco Airton Silva. Performance evaluation of message routing strate-
gies in the internet of robotic things using the d/m/c/k/fcfs queuing net-
work. FElectronics, 10(21):2626, 2021.

Lucas Santos, Benedito Cunha, Iure Fé, Marco Vieira, and Francisco Air-
ton Silva. Data processing on edge and cloud: a performability evaluation
and sensitivity analysis. Journal of Network and Systems Management,
29(3):1-24, 2021.

Francisco Airton Silva, Iure Fé, Carlos Brito, Gabriel Aratjo, Leonel
Feitosa, Eunmi Choi, Dugki Min, and Tuan Anh Nguyen. Supporting
availability evaluation of a smart building monitoring system aided by fog
computing. Electronics Letters, 58(12):471-473, 2022.

Gabriel Aratjo, Laécio Rodrigues, Kelly Oliveira, Iure Fé, Razib Khan,
and Francisco Airton Silva. Vehicular cloud computing networks: availabil-
ity modelling and sensitivity analysis. Int. J. Sens. Networks, 36(3):125—
138, 2021.

Eltton Araujo, Jamilson Dantas, Rubens Matos, Paulo Pereira, and Paulo
Maciel. Dependability evaluation of an iot system: A hierarchical mod-
elling approach. In 2019 IEEFE International Conference on Systems, Man
and Cybernetics (SMC), pages 2121-2126. IEEE, 2019.

Danilo Oliveira, Rubens Matos, Jamilson Dantas, Jodo Ferreira, Bruno
Silva, Gustavo Callou, Paulo Maciel, and André Brinkmann. Advanced
stochastic petri net modeling with the mercury scripting language. In Pro-
ceedings of the 11th EAI International Conference on Performance Eval-
uation Methodologies and Tools, pages 192-197, 2017.



