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Abstract 

 Convolution widely has been used as the main part of the improvement in digital image processing 

applications. In convolutional computations, a large number of memory accesses and a huge amount of 

computations challenge its performance. Many of the related proposed convolvers are based on exact 

computations. Although exact convolvers keep the accuracy of the convolution operation at the top level, 

sometimes by missing a negligible amount of accuracy, the performance can be improved. Approximate 

computing is a new technique for solving computation overhead problems. In this paper, approximate 2D 

convolvers are presented which minimize the memory access rate and computations by a special factor of 

Multiply-and-Accumulate (MAC) terms. On the other hand, to preserve the flexibility for supporting 

different required accuracy, the proposed approximate convolvers are combined with the exact designs 

with real-time pre-processing stages by exploiting innovative methods which manage the hardware 

overhead. In comparison to conventional convolvers, the proposed designs improve the number of active 

resources which causes a significant reduction in power consumption. For 3 × 3 kernel size, the evaluation 

results on the Xilinx Virtex-7 (XC7V2000t) FPGA device show 34% and 20% power optimization of the 

proposed approximate and combined convolvers respectively, in comparison to Exact Convolver (EC). 

Also, this improvement grows by increasing the kernel size. Finally, a comparison based on RMSE and 

PSNR for different sample images and filters reveals that the error rate and image quality reduction are 

acceptable for many real-time image processing applications. 
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1. INTRODUCTION 

 

Two-dimensional (2D) convolution is a widespread operator used in computer vision and digital 

image processing applications. As an example, convolution operators are widely exploited for edge 

detection in advanced mobile vision applications. Also, high-pass filtering (sharpening) and low-pass 

filtering (blurring) are performed by 2D convolution filters [1]. For another example, in image recognition 

with convolutional neural networks (CNNs), there are a large number of parallel convolutional 

computations to extract features from the input image [2]. Therefore, the implementation of a convolver 

working with a low pixel access rate and optimized performance is necessary. 

 It is well known that the computational complexity of 2D convolution challenges its performance. 

To compute the convolution result between an image and a filter with k × k kernel size, k2 − 1 addition 

and k2 multiplications must be performed. For another challenge, 2D convolution also requires high 

memory bandwidth. For k × k kernel size k2 image pixels must be read from memory for calculation of 

only one output [4]. These problems will be critical when the size of the kernel grows. Therefore, the 

performance of the convolver is significantly dependent on the design of computational units and memory 

bandwidth.  

In image processing applications, like edge detection, the focus is on developing the most effective 

convolutional computation with little attention to the computational complexity and the hardware 

requirement. Although the implementation on personal or supercomputer platforms may not challenge the 

performance, in embedded applications the hardware power consumption must be considered. Therefore, 

a heuristic high-performance computing paradigm with improved hardware utilization is mandatory. As 

one of the most energy-efficient computing strategies, approximate computing has drawn research 

attention in the past years. In [3] different approximate computing techniques are presented. By exploiting 

approximate techniques, the metrics such as power consumption, critical path delay, and computational 

complexity can be improved at the expense of reducing a negligible amount of accuracy.  

A large number of convolution-based applications are tolerant to degradation in accuracy. Many of 

the conventional convolvers are proposed based on the exact computation. Exact designs are suitable when 

the applications need high computation accuracy. But, it’s at the expense of missing a huge amount of 
performance. In this paper, new approximate convolvers are presented to address the aforementioned 

limitations. In the proposed designs, by conducting pre-processing on a sample image and exploiting a 

power-efficient approximate computing strategy, convolutional computations for repetitive or narrow-

range pixels are performed in a single time. Finally, the resource utilization of the intended hardware 

platform is improved significantly. 

Different applications may need various levels of accuracy. Therefore, the proposed approximate 

convolvers are combined with the exact designs to prepare more flexibility for supporting different 

required accuracy. The proposed design can switch between approximate and exact convolver based on 

the accuracy required by applications by setting a special threshold. The selection between two convolvers 

for processing current convolution computation is decided by a pre-processing stage. This stage can be 

designed by real-time processing. However, designing a real-time decision system for the pre-processing 

stage increases the resource utilization, power consumption, and critical path delay of the proposed 

combined convolvers. Thus, it is crucial to propose an optimized real-time decision system with less 

hardware overhead. In addition, the approximate convolver must be structured in such a way that 

compensates for the real-time pre-processing stage design cost. 

Convolution operation can be executed on different hardware platforms such as Application-Specific 

Integrated Circuit (ASIC), Graphical Processing Unit (GPU), and Field Programmable Gate Array 

(FPGA). Between these platforms, for hardware implementation of 2D convolution, the FPGA-based 

devices are suitable for three main reasons. First, it can be easily reconfigured for different architectures. 

Second, for exploiting parallel processing opportunities in 2D convolution, the FPGA-based platforms are 

the best option because of their fine-grained parallelism architecture. Finally, it can be developed faster 



than other hardware platforms [4, 12-13]. For these reasons, we have selected FPGA-based platforms to 

implement our proposed designs.   

In this paper, an innovative design for an approximate convolver is proposed that exploits narrow-range 
pixels to minimize the convolution computation complexity and pixel access rate. The proposed design 
offers five main advantages: 

 

1) In the proposed architecture, because the Multiply-and-Accumulate (MAC) operation for 
narrow-range pixels is performed by a special factor of reusable terms, the required multipliers 
are reduced to improve resource utilization and power consumption. 

2) The narrow-range pixels are considered to be in a window, row, and column of the input image 
for different kernel sizes to investigate various amount of error rates and performance. 

3) For managing the degradation in accuracy, the proposed approximate convolvers are combined 
with the exact design, and new dual-purpose convolver architectures are presented which 
provide power optimization with negligible on-chip overhead in resource utilization. 

4) New real-time pre-processing stages are designed with exploiting pipeline processing and an 
innovative decision system for combined convolvers with minimum hardware overhead. 

5) Since the convolutional calculation provides the reusable terms, the presented convolvers 
require a lower pixel access rate. 

 

The rest of the paper is organized as follows. In Section 2, the related works are mentioned. Motivation 
in image processing and computational analysis are presented in Section 3. The proposed 2D approximate 
and combined convolvers are explained in Section 4. The FPGA implementation and filtered image 
accuracy evaluation are provided in Section 5. Finally, Section 6 concludes the research. 

 

2. RELATED WORKS 
 

As mentioned earlier there are two main challenges for proposing an intended convolver which are 
computational complexity and memory bandwidth. Several approaches are considered to reduce the 
computational complexity of 2D convolution. In [4] a fine-grained 2D pipelined convolver is proposed. 
The basic idea is that in convolution computation there are some reusable computations; and, by using 
pipelining, the delay of computations will be decreased. At last, the critical path delay, pixel access rate, 
power consumption, and resource utilization of the proposed Reduced-Access Pipelined Convolver 
(RAPC) are compared by a conventional Non-Pipelined Convolver (NPC). Also, the authors of [5] have 
optimized the FPGA implementation of a convolution-based 2D filtering processor for image processing 
applications. The proposed filter swaps the multiplication unit with floating-point adders and also exploits 
a set of pre-computed coefficients to design a 32-bit multiplier module. 

The second part of the literature emphasizes the use of approximate methods to improve key design 
metrics. In [6] by using the approximate bit-width selection strategy in the fractional part, the FPGA 
implementation of a fixed-point 2D Gaussian filter for image processing is proposed. As floating-point 
computation needs a huge amount of power consumption, designing a new fixed-point 2D Gaussian filter 
is essential which causes performance improvement in the processing and decreases computational costs. 
In [7] a two-dimensional (2D) convolver is presented in which both approximate circuit- and algorithm-
level techniques are utilized. Truncation is exploited as a circuit technique while bit-width reduction is used 
at the algorithm level. Authors of [8] have implemented Reduced Precision Redundancy (RPR) Multiply-
and-Accumulate (MAC). RPR utilizes approximated reduced precision copies instead of replicating the 
whole circuit which highly reduces the hardware overhead while still the largest errors can be modified. 
The authors of [9] have presented an FPGA-based accelerator for the Gaussian Filter by exploiting 
approximate computing. In this paper, based on approximate techniques the hardware architecture of the 



2D convolver is modified to improve the on-chip resource utilization. For example, in the Gaussian filter, 
some coefficients exploited to multiply in the input pixels are repetitive. So, the input pixels multiplied by 
the repeated values will be added before multiplication. In [10], the authors have proposed a low-power 
hardware accelerator for Sobel edge detection by using an approximate gradient magnitude. Accordingly, 
separate gradient components are obtained for vertical and horizontal orientations in which approximate 
method will cause reducing the complexity of gradient computations. The authors of [11] also have applied 
new approximate techniques to compute gradient orientation and magnitude. 

The third part of the related papers focuses on dividing 2D convolution into several smaller sections to 
decrease the computational complexity. For example in [12], a multi-window partial buffering approach 
for 2D convolvers is proposed by using FPGA platforms. In this paper, the authors focus on balancing 
performance and cost in using FPGA resources. Finally, the new approach causes a suitable trade-off 
between resource utilization and on-chip memory bus bandwidth. Also, the authors of [13] have partitioned 
the 2D convolver into several one-dimensional convolution sections. Other approaches try to enhance the 
clock frequency as well as minimize the power consumption by exploiting multiplier-less constant 
multiplication units for fixed elements of the kernel [14-17]. In these methods, the performance is optimized 
and the power consumption is improved by proposing kernel-dependent convolvers. But, the proposed 
convolvers can just be exploited in specific applications because the kernel sizes are limited to a special 
amount. 

 In [18], by exploiting the recurrently decomposable (RD) filter, a 2D convolver is designed where the 
convolution mask will be separated into a set of smaller masks. In this paper, the resource utilization is 
improved; but, the critical path delay is increased. In the other methods, different pipelining techniques, are 
exploited to increase the throughput of the proposed design. For example in [15, 19-20] the convolution is 
expressed as the sum-of-products among the image’s pixels and the coefficients of the kernel while the 
ordinary pipelined convolver exploits separate pipeline stages for buffering, multiplication, and adder 
modules. Also, the proposed design works with high clock frequency, but it is at the expense of a huge 
computational overhead in each pipeline stage. 

In [22], the 2D convolvers are compared. The comparison of the convolvers is based on four methods. 

The methods are named Non-Pipelined, Reduced-Bandwidth Pipelined, Multiplier-Less Pipelined, and 

Time-Shared convolver. Finally, the critical path delay, memory bandwidth, and resource utilization are 

analyzed for various convolution kernel sizes. In this paper, different convolver types for executing 2D 

convolution are explained. In non-pipelined convolver besides huge resource utilization, the critical path 

delay is large. Also, in pipelined convolver, the critical path delay is highly reduced but this reduction 

results in a huge amount of FPGA resources. In the multiplier-less pipelined convolver, a special constant 

is prepared which could multiply by a constant multiplication module; so, the flexibility is reduced. 

Finally, in Time-Shared convolver, the FPGA resources are significantly reduced but the computation 

time grows unexpectedly.  

Authors of [23] have proposed an area-efficient FPGA-based reconfigurable 2D convolver for image 

processing. In this paper, the adjustment of logical block arrangement for the latest convolvers is analyzed. 

At last, the throughput and convolution computation time are compared with pre-proposed convolvers. 

However, this paper optimizes the computation time of different intended kernel sizes but this optimization 

is earned by utilizing a large number of FPGA resources. 

As mentioned in related works, different innovative methods are considered to minimize the 

computational complexity and memory access of convolutional computation. Approximate computing has 

a special place among these techniques. Using approximate computing in such a way that makes a trade-

off between accuracy and performance is essential. On the other hand,  proposing a particular architecture 

that supports various levels of accuracy with switching among approximate and exact convolvers seems 

necessary. In this paper, the required design is proposed with power optimization by minimizing the 

number of active hardware resources. 

 



3. MOTIVATION AND PRE-ANALYSIS  
 

In this section, to motivate our intended architecture in image processing applications an innovative 

scenario is considered. In addition, before presenting the design of approximate and combined 2D 

convolvers, a computational analysis is provided which investigates the proposed designs with theoretical 

analysis.  

 

3.1 Motivation In Image Processing 

 

Approximate computing is a novel opportunity for solving the computation overhead challenges in 

image processing. There are several options in this scope. As shown in Figure 1, there are places in an 

image where pixels are repetitive or in a narrow range. To decrease the memory access rate while reducing 

the computational overhead, one way will be averaging close-range input pixels in image processing and 

performing the computation in a single time. For example, spatial and temporal coding have been 

expressed in image processing applications. In the spatial coding example, instead of sending the same 

pixels, just the color value and the number of repeated pixels can be sent to the computation units. In 

addition, in the temporal coding example, only differences from frame (i)  can be sent instead of sending 

the whole frame at (i+1) [24]. Therefore, by conducting the computation of repetitive or close-range pixels 

at once, the computational overhead will highly decrease. These are our primitive conditions for proposing 

approximate and combined 2D convolvers for image processing applications. 
 

 

 
 

Figure 1. Spatial and temporal coding example. 

 

3.2 Computational Analysis 

In motivation, the existence of repetitive or close-range pixels is studied. To survey how the 

mentioned opportunity can be exploited in convolutional computations, the theoretical investigation helps 

for defining the problem. 2-D convolution with a k × k kernel can be shown as Equation (1): 

 𝑌(𝑚, 𝑛) = ∑ ∑ ℎ(𝑖, 𝑗)𝑋(𝑚 − ⌈𝑘2⌉ + 𝑖, 𝑛 − ⌈𝑘2⌉ + 𝑗)𝑘
𝑗=1

𝑘
𝑖=1                               (1) 

 



      In this Equation X, Y and h represent the input image, output image, and convolution kernel 

respectively. If the input pixels in a k × k window be fixed, the Equation with a k × k kernel will be as 

follows: 

 𝑌(𝑚, 𝑛) = 𝑋(𝑚, 𝑛) ∑ ∑ ℎ(𝑖, 𝑗)𝑘
𝑗=1

𝑘
𝑖=1                                                                (2) 

 

  As shown in Equation (2) if the input pixels in a k × k window be fixed, one access to the memory is 

required because all pixels are repetitive. Therefore, all coefficients in the k × k kernel are added, and the 

single input pixel is multiplied by the sum of coefficients. 

Considering all pixels in a window as one single value is an ideal assumption. Since it is common that 
these numbers are narrow-range [24], only their average is sent to the processing element from off-chip 
memory. As the result, the average of all close-range pixels will be shown as Equation (3) and finally, 
Equation (2) will be changed to Equation (4): 

𝐴𝑣𝑔(𝑋) = 1𝑘 × 𝑘 ∑ ∑ 𝑋(𝑚 − ⌈𝑘2⌉ + 𝑖, 𝑛 − ⌈𝑘2⌉ + 𝑗)𝑘
𝑗=1

𝑘
𝑖=1                              (3) 

 

𝑌(𝑚, 𝑛) = 𝐴𝑣𝑔(𝑋) ∑ ∑ ℎ(𝑖, 𝑗)𝑘
𝑗=1

𝑘
𝑖=1                                                                (4) 

 

Where  𝐴𝑣𝑔(𝑋) is the average of all input pixels in the current window. Since the computed average is 
in a window of pixels, Equation (4) is named Window-based convolution. 

In the aforementioned scenario, we have considered that all pixels in the selected input window are in a 
narrow range. Another scenario will be considering pixels in a row or column of input pixels in a narrow 
range. Let’s consider ‘i’ as the index of the row and ‘j’ as the index of the column. Therefore, if we suppose 
that pixels in a row are in a narrow range (not fixed) then Equation (3) will be modified to Equation (5):  

𝐴𝑣𝑔(𝑋𝑚) = 𝐴𝑣𝑔𝑚 = 1𝑘 ∑ 𝑋(𝑚, 𝑛 − ⌈𝑘2⌉ + 𝑗)𝑘
𝑗=1                                      (5) 

 

Where 𝑋𝑚 denotes the 𝑚𝑡ℎ row of 𝑋. For simplification, the average of 𝑋𝑚 has been shown by 𝐴𝑣𝑔𝑚. 
Then, based on Equations (4) and (5), Equation (6) will be as follows, which is named Row-based 
convolution. In other words, Equation (6) computes 𝑌(𝑚, 𝑛) by multiplying the average of each row of 𝑋 
by the coefficients of that row. 

𝑌(𝑚, 𝑛) = ∑ 𝐴𝑣𝑔𝑚(𝑚 − ⌈𝑘2⌉ + 𝑖, 𝑛) ∑ ℎ(𝑖, 𝑗)𝑘
𝑗=1

𝑘
𝑖=1                                 (6) 

 

For another scenario, consider that pixels in a column are in a narrow range (not fixed); then, Equations 
(5) and (6), will be changed to Equations (7) and (8): 

 



𝐴𝑣𝑔(𝑋𝑛) = 𝐴𝑣𝑔𝑛 = 1𝑘 ∑ 𝑋(𝑚 − ⌈𝑘2⌉ + 𝑖, 𝑛)𝑘
𝑖=1                                            (7) 

 

𝑌(𝑚, 𝑛) = ∑ 𝐴𝑣𝑔𝑛 (𝑚, 𝑛 − ⌈𝑘2⌉ + 𝑗) ∑ ℎ(𝑖, 𝑗)𝑘
𝑖=1

𝑘
𝑗=1                                       (8) 

 

Where 𝐴𝑣𝑔𝑛 is the average of all input pixels in 𝑛𝑡ℎ column of 𝑋 and Equation (8) is named Column-

based convolution.  

The main intuition behind the presented Window-, Row-, and Column-based methods is that in many 

real-world images close-range pixels exist, and the MAC operation can be performed by a simple factor of 

reusable terms. Finally, this approach leads to minimizing resource utilization by using fewer multipliers. 

More details will be discussed in section 4. 

 

4 . PROPOSED REAL-TIME APPROXIMATE AND COMBINED 2D CONVOLVERS 
 

In this section, the design of the proposed real-time approximate and combined 2D convolvers is 

explained. First, the architecture of the exact convolver is presented. Figure 2 shows the exact 2D 

convolver for a 3 × 3 kernel size based on Equation (1). In the exact design, nine input pixels are registered 

and multiplied by nine kernel coefficients. After that, the partial products are added with parallel adders. 

For a k × k kernel size, the Exact Convolver (EC) contains k2-1 adders, k2 multipliers, and k2 + 1 I/O 

registers (pixels/kernel coefficients/result). The critical path delay includes ⌈log2 𝑘2⌉ adders and one 

multiplier.  
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Figure 2.  Exact 2D convolver for a 3 × 3 kernel. 

 

 

4.1 Real-Time Approximate Convolver 

Figure 3 shows the general architecture of the proposed real-time approximate convolver. In this 

architecture, a row or column of the input pixels is registered. Then, based on Equations (3), (5), and (7) 

the average of all input pixels in a window, row, or column is computed respectively. To implement the 

pipeline processing, the average value is stored before sending it to the proposed approximate convolver. 

At last, the final convolution result is registered to transform to the output port. It’s worth noting, since in 



convolution computation in image processing the sliding window equals one (stride = 1), and after the 

pipeline’s fill-up, the approximate convolver in each cycle will produce one output result. The Binary 

Average (BA) is a new hardware-efficient averaging method. In this module, the operands are classified 

with equivalent binary values to perform the division only with the shift operator. The next sub-sections 

explain the BA and AWC/ARC modules in more detail.  
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Figure 3. The general architecture of the proposed real-time approximate convolver. 

 

 

4.1.1 Approximate Window-based Convolver (AWC)  
 

Based on Equation (4), when the closed-range input pixels are in a window, the exact convolver is 

changed as shown in Figure 4. First, the averaged pixel is registered. Then, instead of adding all of the 

partial products in EC, the kernel coefficients are added with parallel adders. Finally, the sum of the 

coefficients is multiplied by the average registered pixel. For a k × k kernel size, the AWC includes k2-1 

adders, one multiplier, and two I/O registers. The critical path delay is ⌈log2 𝑘2⌉ adders and one multiplier.   
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Figure 4. AWC for a 3 × 3 kernel. 

 

4.1.2 Approximate Row-based Convolver (ARC)  

 

The proposed Approximate Row-based Convolver (ARC) is presented for a 3 × 3 kernel in Figure 5. 

First, three input pixels are stored in three registers. As mentioned before, because three pixels in a row 

are narrow-range, based on Equation (5) the average pixel is transferred to the appropriate buffering 

module. Second, based on Equation (6), in the multiplication module, all coefficients for the equivalent 

row are added and the addition result is multiplied by the appropriate average term of the input pixels. 

Third, these product terms are added by a two-operand adder. Finally, based on the two-operand adder 

output, the final convolution result is computed. ARC includes k multipliers, k2 – 1 adder, and k + 1 

input/output registers for a k × k kernel while these amount for EC is k2, k2 – 1, and k2 +1, respectively. 

The Critical path of the proposed non-pipelined convolver includes ⌈log2 𝑘2⌉ adders and one multiplier 

for a k × k kernel.  
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Figure 5. ARC for a 3 × 3 kernel.  

 

4.1.3 Binary Average (BA) 

 

Figure 6 shows the Binary Average for ARC with a 3 × 3 kernel. As mentioned earlier, in this module, 

the operands are classified in a power-of-two method which is equivalent to the binary representation of 

the number of operands. For example, in Figure 6 three operands must be averaged. Therefore, instead of 

adding all three numbers and dividing by three, we have classified them into 2 + 1 operands which is 

equivalent to (11)b. For another example, when k =5, the binary representation of 5 is (101)b. So, the 

operands are classified in the 4 + 1 terms. The proposed method improves the hardware overhead since 

the division is performed by shift operators; in addition, the number of utilized shift operators is optimized. 

On the other hand, because we have supposed that the pixel values are close-range, the error rate for 

averaging will be negligible. Based on Figure 6, for averaging nine input pixels, three pixels in the first 

row are selected. After that, with add and shift operators, the average of these three pixels is computed 

and stored in a shift register. The same process will be performed for the second and third rows. Finally, 

with a Serial to Parallel Shift Register (STP_SHR), all averaged values are sent to the approximate 

convolver. For a k × k kernel size, the BA for ARC uses k-1 adders, ⌊log2 𝑘⌋ shifters, and k registers 

(serial to k parallel output shift register).  
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Figure 6. BA for ARC with 3 × 3 kernel size.  

 



Similar to the previous scenario, Figure 7 shows the BA for AWC with a 3 × 3 kernel. The only 

difference is that a new BA module is needed for averaging all three rows to compute the average value 

in a window. The BA for AWC exploits 2(k-1) adders, 2⌊log2 𝑘⌋ shifters, and k registers. 

 

 It’s worth mentioning, the Approximate Column-based Convolver (ACC) architecture is similar to the 

Row-based method in the hardware realization. In the evaluation section, two presented methods are 

named Real-time Approximate Window-based Convolver (RAWC) and Real-time Approximate Row-

based Convolver (RARC) for the general architecture as demonstrated in Figure 3. 
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Figure 7. The BA for AWC with 3 × 3 kernel size. 

 

4.2 Real-Time Combined Convolver 

In the previous section, real-time approximate convolvers with two Window-based and Row-based 

methods are proposed. As mentioned earlier, different applications need various amounts of accuracy. So, 

for managing the error rate of the proposed approximate convolvers, the real-time combined 2d convolvers 

are presented in this section. In the new method, the proposed approximate convolvers are combined with 

the exact one. The general architecture of the real-time combined convolver is shown in Figure 8. Similar 

to previous real-time approximate convolvers, a row or column of input pixels is registered and with the 

BA module, the required computation is performed. Next, a Decision module is prepared to decide for 

selecting approximate or exact convolver based on a special relation and threshold. Also, because of the 

pipeline architecture of the proposed combined convolver, the internal results are stored. Finally, the input 

pixels are sent to CWC/CRC with three STP_SHR (one serial row to a parallel window). Similar to real-

time approximate convolver, after the pipeline’s fill-up time, the convolution result will be generated in 

each cycle uninterruptedly. 
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Figure 8.  The general architecture of the real-time combined convolver. 



4.2.1 Combined Window-based Convolver (CWC) 
 

Figure 9 demonstrates the architecture of the proposed Combined Window-based Convolver (CWC) 

for 3 × 3 kernel size. In this convolver, the close-range pixels are considered in a window. In the exact 

convolver process, the select bit is equal to 1; so, the enable bit is set to 1, and nine input pixels in a 

window are registered. Also, the nine multiplication modules are enabled and the kernel coefficients are 

multiplied by the input pixels. Next, the multiplexer transforms the partial products into the output with a 

select bit equal to 1. The parallel adders compute the sum of partial products and guide the result to the 

next level of the multiplexer. In the approximate process, the nine input registers are turned off because 

the select and enable bits are equal to 0. So, the kernel coefficients are sent through path 0 of the 

multiplexer and the sum of coefficients is computed. Also, all nine multiplication units are turned off. 

Instead of that, one multiplier is enabled to multiply the sum of coefficients by the average of the input 

pixels. For a k × k kernel size, CWC uses k2 + 1 multipliers, k2 +1 multiplexers, k2 – 1 adders, and k2 + 2 

I/O registers. It’s worth mentioning that in the approximate process, only k2 +1 multiplexers, k2 – 1 adders, 

2 registers, and one multiplier are turned on. Finally, the critical path delay of CWC is similar to RAWC 

and EC designs in each process respectively plus two levels of the multiplexer.   
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Figure 9.  CWC for a 3 × 3 kernel. 

 

 

 



4.2.2 Combined Row-based Convolver (CRC) 
 

Figure 10 shows the architecture of the proposed Combined Row-based Convolver (CRC) for a 3 × 3 

kernel. First, nine input pixels are registered in the buffering modules. After that, the input pixels are 

multiplied by the kernel coefficients for the exact convolver. Because in approximate convolver, the sum 

of kernel coefficients in a row is required, by using multiplexers, the coefficients and partial product are 

guided to two-operand adders input. With two-level of parallel adders, based on the select bit of the 

multiplexers, the sum of coefficients or partial products is computed. In the next level, in the approximate 

convolver, the sum of coefficients is multiplied by the average of each row. Next, with the new levels of 

multiplexers and two-operand adders, it should be decided whether to add the sum of partial products of 

the previous level in the exact convolver or partial products of the current level of approximate convolver. 

It’s worth mentioning that in the proposed design we have exploited multipliers with enable pin in which 

the select bit decides to turn off the nine multipliers of exact computation or three multipliers of 

approximate convolver. For a k × k kernel size, CRC uses k2 + k multipliers, k2 + k multiplexers, k2 – 1 

adders, k2 + k + 1 I/O registers. But, in the approximate process, k2 + k multiplexers, k2 – 1 adders, k + 1 

I/O registers, and k multipliers are activated. At last, the critical path delay is similar to RARC and EC in 

each process respectively plus two levels of the multiplexer. 
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Figure 10. CRC for a 3 × 3 kernel. 



It’s worth noting, in sub-sections 4.2.1 and 4.2.2, CWC and CRC are demonstrated. In the evaluation 

section, two presented designs are named Real-time Combined Window-based Convolver (RCWC) and 

Real-time Combined Row-based Convolver (RCRC) for the general architecture shown in Figure 8. 
 

4.2.3 Decision (ApEx) 
 

To balance the accuracy of the filtered image and the performance of the proposed convolver, an 

innovative selection mechanism between approximate and exact processes is required. Therefore, a new 

sub-module named Decision is structured in Figure 8. Since the decision module works with real-time 

processing, it must be designed in such a way that not only prevents high hardware overhead but also 

make a reliable decision to manage the degradation in accuracy. On the other hand, since the workflow of 

Figure 8 is based on pipeline processing, the execution time of the Decision module must be less than the 

proposed combined convolver to ensure that the critical path delay will not increase. 

The selection strategy of the Decision module is based on Equation (11). This relation makes a 

comparison between the amount of Mean Absolute Error (MAE) and a special threshold value. If MAE is 

less than a threshold value; then, the error rate is acceptable and the approximate process is selected and 

vice versa. The Decision sub-module receives the input pixels, the average value (based on Figures 6 and 

7), and the threshold value as the inputs, and generates the select bit as output. It’s worth mentioning, in 
contrast to Mean Square Error (MSE) and Root Mean Square Error (RMSE), MAE doesn't consist of 

square root and power operations which minimize the pre-processing overhead. The MAE formula is 

shown in Equation (12), where 𝑥𝑖 is the input pixel, 𝑥𝑎𝑣𝑔 is the average of all input pixels, and 𝑛 is the 

number of input pixels. 

 MAE(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                        (11) 

 

       𝑀𝐴𝐸 =   ∑ |𝑥𝑖 −  𝑥𝑎𝑣𝑔|𝑛𝑖=1 𝑛                                                                                     (12) 

 

 

Figure 11 shows the architecture of the Decision module for CRC based on Equations (11) and (12). 

First, the input pixels are subtracted from the average of each row which was computed in Figure 6. After 

computing the average of absolute subtractions, with a Comparator module, the previous level result is 

compared with the threshold value. The output of the Comparator module specifies using approximate or 

exact convolver with 0 or 1 select bit respectively. Finally, with the STP_SHR module, all three prepared 

select bits are sent to the combined convolver. For k × k kernel size, the Decision module for CRC utilizes 

k subtractor, k absolute module, k-1 adders, ⌊log2 𝑘⌋ shifters, one comparator, and k registers (serial to k 

parallel output shift register).  

The architecture of the Decision module for CWC is demonstrated in Figure 12. In this module, 

because the decision is made based on a window of input pixels, all pixels are subtracted from the average 

of the whole window which was computed in Figure 7. After computing the average of the absolute 

subtraction results in each row, with the STP_SHR module, the partial results are sent to the BA module. 

Finally, with a Comparator module, the select bit for the whole window is prepared. Finally, for a k × k 

kernel size, the Decision module for CWC uses k subtractors, k absolute modules,  2(k-1) adders, 2⌊log2 𝑘⌋ shifters, one comparator, and k registers (serial to k parallel output shift register). 



x3

Su
b

Su
b

Su
b

Su
b

Su
b

A
d

d

Comparator

threshold

Abs

Abs

Su
b

Su
b

Su
b Abs

x1

x2

x4

x5

x6

x7

x8

x9

A
d

d

Se
l_

ro
w

1
Se

l_
ro

w
2

Se
l_

ro
w

3

SerialToParallel 

Shift Resgister

1>>

1>>

x1 x2 x3

x4 x5 x6

x7 x8 x9

AR1

Input Window Averaged Row

AR1 AR1

AR2 AR2 AR2

AR3 AR3 AR3

AR1AR2AR3

AR1AR2AR3

AR1AR2AR3

 
 

Figure 11. The architecture of the Decision module for CRC. 

 

x3

Su
b

Su
b

Su
b

Su
b

Su
b

A
d

d

Comparator

threshold

Abs

Abs

Su
b

Su
b

Su
b Abs

x1

x2

x4

x5

x6

x7

x8

x9
A

d
d

SerialToParallel 

Shift Resgister

1>>

1>>

x1 x2 x3

x4 x5 x6

x7 x8 x9

Avg

Input Window Averaged Window

Avg Avg

Avg Avg Avg

Avg Avg Avg

Avg

Avg

Avg

R
M

S
E

_
ro

w
1

R
M

S
E

_
ro

w
2

R
M

S
E

_
ro

w
3

A
d

d

A
d

d 1>>

1>>

Se
l_

W
in

d
o

w

 
 

Figure 12. The architecture of the Decision module for CWC. 

 

5 . EVALUATION RESULTS 
 

5.1 Hardware Evaluation 

All of the proposed approximate convolvers are coded in VHDL for various kernel sizes. We have 

synthesized the designs with Xilinx Virtex-7 (XC7V2000t) FPGA device by exploiting Xilinx Vivado 

(v2018.3) with 8-bits kernel coefficient and input pixels. To make a fair comparison, one of the related 

designs proposed in [4] is implemented to compare critical path delay, pixel access rate, power 

consumption, and resource utilization for the approximate and combined convolvers.  

 
5.1.1 Critical Path Delay 

 

In Figure 13, the critical path delay for the proposed approximate and combined convolvers is compared 

with EC and the proposed design in [4] which is named RAPC (Reduced Access Pipelined Convolver). 

As shown in this figure, RAWC has less critical path delay in comparison to EC since the 8-bit coefficients 

add before multiplication, and RARC’s delay is close to EC approximately. But, the combined convolvers 

have a negligible overhead because of using two levels of multiplexers in the critical path of the circuit. 

For combined designs, the critical path delays for both approximate and exact paths are shown in Figure 

13; but, the largest one will be selected as the critical path. Except for RAPC [4], the delay of all convolvers 

goes up by increasing the size of the kernel, since the number of operands for the multiply and 

accumulation operator will be increased. In RAPC, because it’s a pipelined design, only one multiplier is 

in the critical path of the circuit, and the slight growth respecting the kernel size is due to the more routing 



required in the FPGA device. It’s worth mentioning that for future work, the proposed AWC, ARC, CWC, 

and CRC can be pipelined to improve the critical path delay. 

 

 
 

Figure 13. Critical path delay comparison among various kernel sizes. 

5.1.2 Pixel Access Rate 

 

Figure 14 shows the pixel access rate of the proposed designs in comparison to EC and RAPC [4]. The 

pixel access rate of the RAWC, RARC, RCWC, and RCRC is equal to k and grows linearly. But, EC’s 
pixel access rate is equal to k2 and increases quadratically with kernel size. Also, in RAPC because of 

using pipeline convolver, this parameter goes up linearly respecting the kernel size. Therefore, the 

proposed design outperforms according to the low access to the memory in comparison to EC. As 

mentioned before, convolutional computation needs a huge amount of input data. On the other hand, 

memory accesses are one of the most significant challenges for designing convolvers since off-chip 

DRAM access consumes the main part of chip power. So, the proposed convolver could answer these 

problems by minimizing the off-chip pixel access. Finally, by decreasing the pixel access rate the 

computational complexity of MAC operation in convolution unit will also diminish.  

 

 
 

Figure 14. Pixel access rate comparison among various kernel sizes. 
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5.1.3 Power Consumption 

 

Figure 15 demonstrates the power consumption of the approximate and combined convolvers in 

comparison to EC and RAPC [4] among various kernel sizes which shows the proposed design optimizes 

the power consumption. For instance, when kernel size is 3, RAWC and RARC consume 17.52 and 23.05 

watts for on-chip power but this amount for EC grows to 26.55 watts which shows 34% and 13% 

improvement for mentioned designs respectively. In addition, by increasing the kernel size, the difference 

in power consumption goes up quadratically since the number of Look-up Tables (LUTs), Flip-Flops 

(FFs), and I/Os is decreased in approximate convolvers. On the other hand, in combined designs, using 

the approximate path (process) significantly improves the dynamic power consumption and the total on-

chip power. For example, when k is 3, RCWC (Ap) consumes 21.17 watts of on-chip power which 

indicates 20% improvement in comparison to EC since only one multiplier and input register are turned 

on instead of nine in the EC module. It’s worth mentioning that the reduction in power consumption goes 
up with increasing kernel size. Therefore, using a large number of approximate execution has a negligible 

effect on accuracy degradation; nevertheless, it will cause a significant reduction in dynamic power 

consumption. 

 

 
 

Figure 15. Power consumption comparison among various kernel sizes. 

5.1.4 Resource Utilization 

 

In Figure 16, the number of LUT slices is compared. By increasing the kernel size, the number of LUTs 

grows. The resource utilization of the proposed approximate convolver is significantly improved in 

comparison to EC. For instance, when the kernel size is 3, RAWC and RARC use 155 and 281 LUTs. But, 

this amount for EC and RAPC [4] are 767 and 771 respectively. It’s worth mentioning that the total number 

of utilized LUTs for RCWC and RCRC is more than EC since both approximate and exact designs have 

been implemented; but, extra resources in each process are turned off. For example, in RCWC (Ap), the 

number of active LUTs is 292 from 1160 total LUTs. For this reason, in combined designs, the number of 

active LUTs in the approximate and exact processes also is mentioned in Figure 16. 

 

Figure 17 shows the number of registers used for different convolvers in comparison to EC and other 

related works. For k = 5, RAWC and RARC use 98 and 126 FFs respectively while EC and RAPC exploit 

216 and 977 of them. In combined designs, the total number of registers is more than EC (NPC [4]); but, 

the active FFs are highly reduced. For instance, when k = 5, the RCRC total register is equal to 343 while 

RCRC uses 143 FFs in the approximate process. Also, the number of FFs will increase respecting the 

kernel size. As can be seen in this figure, RAPC [4] utilizes more registers since exploits pipeline 
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processing to hold temporary internal results which is a drawback for the proposed design; however, it 

happened with a significant reduction in critical path delay. In combined designs, the total and active 

number of FFs are mentioned in each scenario to show the superiority of the approximate path when a 

large number of registers are turned off. For example when k = 3, the total number of FFs in the RCWC 

method is equal to 186 while the approximate path will turn on 114 of them which shows up to 39% 

improvement. Finally, when the approximate path is selected, by reducing the resource utilization, the 

power consumption will be reduced.  
 

 
 

Figure 16. Number of LUTs among various kernel sizes. 

 

 
 

Figure 17. Number of FFs among various kernel sizes. 

To show the superiority of the proposed design, we have also compared it with other related 2D 

convolvers. As shown in Table 1, the pixel access rate, and resource utilization of the convolvers proposed 

in [5],[6], and [19] are compared with approximate and combined convolvers. In this discussion, the FPGA 

devices are altered to make a fair comparison with other designs. Based on this table, the resource 

utilization of the approximate convolvers is improved significantly as shown in the total resource 

utilization column of Table 1. In the proposed combined convolvers, the total number of LUTs, FFs, and 

DPSs is less than the convolvers proposed in [5]. Also, in Table 1, the number of active resources is 
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mentioned in the approximate and exact processes which shows a significant reduction in the approximate 

execution for RCWC and RCRC. In comparison to [6], the proposed approximate convolvers utilize fewer 

LUTs and FFs; but, the combined designs use more LUTs while the number of FFs is reduced in RCRC. 

Finally, the pixel access rate and resource utilization of the proposed approximate and combined designs 

outperform in comparison to the proposed convolver in [19]. It’s worth noting, the main characteristic of 
compared related works is that they conclude comparable key parameters in the same scenario; in addition, 

the proposed designs are implemented on FPGA-based hardware platforms. 
 

Table 1: Comparison of pixel access rate, and resource utilization of different convolution structures (N/R denotes “not 
reported” in the corresponding reference) 

 

 

Design 

 

 

Kernel 

size 

 

Device 

 

Pixel Access 

rate(Pixel/cycle) 

Total Resource 

Utilization 

(LUT+FF+DSP) 

Active Resource 

Utilization (Ap) 

(LUT+FF+DSP) 

Active Resource 

Utilization (Ex) 

(LUT+FF+DSP) 

[5] 

RAWC 

RARC 

RCWC 

RCRC 

3 

3 

3 

3 

3 

XC7V2000t 

XC7V2000t 

XC7V2000t 

XC7V2000t 

XC7V2000t 

9 

3 

3 

3 

3 

4750 + N/R + 0 

158 + 68 + 0 

281 + 82 + 0 

1030 + 186 + 0 

1160 + 167 + 0 

All Active 

All Active 

All Active 

292 + 114 + 0 

425 + 95 + 0 

All Active 

All Active 

All Active 

969 + 186 + 0 

974 + 146 + 0 

 [6] 

RAWC 

RARC 

RCWC 

RCRC 

3 

3 

3 

3 

3 

XC6SLX16 

XC6SLX16 

XC6SLX16 

XC6SLX16 

XC6SLX16 

9 

3 

3 

3 

3 

209 + 135 + N/R 

93 + 52 + 1 

63 + 38 + 3 

384 + 138 + 10 

404 + 105 + 12 

All Active 

All Active 

All Active 

310 + 117 + 1 

325 + 87 + 3 

All Active 

All Active 

All Active 

383 + 138 + 9 

402 + 98 + 9 

[19] 

RAWC 

RARC 

RCWC 

RCRC 

5 

5 

5 

5 

5 

XCV4LX25 

XCV4LX25 

XCV4LX25 

XCV4LX25 

XCV4LX25 

25 

5 

5 

5 

5 

4612 + 4978 + 20 

253 + 75 + 1 

179 + 47 + 6 

885 + 294 + 26 

847 + 228 + 30 

All Active 

All Active 

All Active 

532 + 176 + 1 

533 + 123 + 5 

All Active 

All Active 

All Active 

1048 + 295 + 25 

849 + 228 + 25 

 

5.2 Error Rate Evaluation 

The final part of the evaluation is conducting convolution operation on a sample image to compare the 

degradation in accuracy while using the proposed approximate and combined convolvers. All of the 

experimental analyses in this section are conducted in Matlab which is a popular mathematical and 

scientific software. In this evaluation, two popular benchmarks in image processing named Cameraman 

and Lena are selected. For the comparison of the error rate and filtered image quality of exact and 

approximate convolvers in computing convolution results, the parameters such as Root Mean Square Error 

(RMSE), Peak Signal to Noise Ratio (PSNR), and the number of approximate and exact convolvers in 

each scenario are measured. RMSE shows the error rate by checking the similarity of two images and 

when is closer to zero, the higher similarity is the result. On the other hand, PSNR compares the image 

quality between the reconstructed image and the original one. As it’s obvious, an increase in RMSE is 

equivalent to a decrease in PSNR [24]. 

 



In this section two filters, i.e. Sobel, and Gaussian are selected to evaluate the proposed convolvers. In 

image processing applications, the Sobel filter in directions x and y will be used for detecting a wide range 

of edges in a sample image while the Gaussian filter is a method for blurring images by decreasing the 

amount of intensity variation between neighboring pixels [1]. In convolution computation, we have used 

both exact and approximate convolvers for the trade-off between accuracy and performance. As mentioned 

earlier, a pre-determined threshold is considered to decide the amount of using approximate convolver 

which prevents high degradation in accuracy. In the evaluation scenarios, the threshold is set from 0 to 10. 

Based on Equations (11) and (12), when the threshold value grows, the number of approximate convolvers 

will be increased and vice versa.  

 
5.2.1 Error rate evaluation with Sobel filter 

 

Figure 18 shows the Sobel filter coefficients in directions x and y. To evaluate the proposed designs, 

two general scenarios are selected. First, the experimental analyses are conducted on the approximate 

convolver by using Window-, Row-, and Column-based convolutional computations. Second, the 

evaluation is performed on the combined convolvers under the same methods of the convolutional 

computations. 
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Figure 18. Sobel filter in directions x and y. 

 

Figures 19 and 20 demonstrate different filtered images with the Sobel in directions x and y kernel by 

using approximate convolver under the Cameraman benchmark. As shown in these figures, the Column- 

and Row-based strategies are superior for Sobel kernels in directions x and y respectively. Since the Sobel 

filter in direction x finds vertical edges and the Column-based method averages the column of input pixels, 

the error rate is bounded. In contrast to the Sobel filter in direction x, for y direction, the Row-based 

method is superior because the horizontal edges are found. Finally, since the Window-based method 

computes the average of input pixels in a window, the error rate for both filters is increased.  

 

The RMSE, PSNR, and the number of approximate and exact convolvers for the Sobel filter in direction 

x under different threshold values are demonstrated in Figure 21. When the threshold is set to 0, because 

all exploited convolvers are exact, the RMSE value is zero and PSNR is ∞ accordingly. As the threshold 

value goes up, in all approximate convolutional computation techniques, the number of approximate 

convolvers increases, and accordingly the number of exact convolvers decreases. Because in this scenario 

the Sobel filter in direction x is used, the Column-based method is superior among all other strategies 

which is proven by the PSNR and RMSE values. On the other hand, the Window-based method has 

negligible superiority in comparison to the Row-based strategy by using fewer approximate convolvers. 

In Figure 22, to compare two strategies in a fair situation, the number of approximate convolvers is 

equalized. After that, the PSNR value of the Row-based method is more than the Window-based strategy 

and the RMSE value is decreased accordingly. To show the effect of the proposed strategies on a sample 

image, Figures 23, 24, and 25 are depicted under 0, 5, and 10 threshold values respectively. As can be 

seen, by increasing the threshold value, the Column-based method has minimum degradation in accuracy 

in edge detection. But, the error rate of Row-based and Window-based strategies is increased due to 

decreasing the PSNR under 30 dB based on Figure 22.  



 
 

Figure 19. Different filtered images with the Sobel in direction x kernel by using approximate convolver under Cameraman 

Benchmark. 

 

 
 

Figure 20. Different filtered images with the Sobel in direction y kernel by using approximate convolver under Cameraman 

Benchmark. 

 

 
Figure 21. Comparison between RMSE PSNR, and the number of approximate and exact convolvers with the Sobel in 

direction x kernel by using combined approximate and exact convolvers under Lena Benchmark. 

 

 
 

Figure 22. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction x kernel using combined approximate and exact convolvers under Lena Benchmark. 



 
 
Figure 23. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction x kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 0. 

 

 
 

Figure 24. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction x kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 5. 

 

 
 

Figure 25. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction x kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 10. 

 

For the comparison of two convolvers under the Sobel filter in direction y, Figures 26 and 27 are shown. 

Based on the above-mentioned reasons, it’s predicted that the Row-based method outperforms in 

comparison to other strategies. In this scenario, the PSNR for the Row-based method is from 65 to 40 

under different threshold values. Also, the RMSE value is significantly less than other related methods. In 

this scenario, the Window-based method is superior in comparison to the Column-based method by using 

a fewer number of approximate convolvers. In Figure 27, we have also equalized the number of 

approximate convolvers among different strategies which the PSNR and RMSE for the Column-based 

method are improved. For the visual comparison of the proposed convolvers on a sample image, Figures 

28, 29, and 30 are drawn under 0, 5, and 10 threshold values respectively which show the Row-based 

method misses fewer edges in comparison to other methods.  
 



 
 

Figure 26. Comparison between RMSE, PSNR, and the number of approximate and exact convolvers with the Sobel in 

direction y kernel by using combined approximate and exact convolvers under Lena Benchmark. 

 

 
 

Figure 27. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction y kernel using combined approximate and exact convolvers under Lena Benchmark. 

 

 
 

Figure 28. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction y kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 0. 

 



 
 

Figure 29. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction y kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 5. 

 

 
 

Figure 30. Comparison between RMSE and PSNR with the same number of approximate and exact convolvers by the Sobel 

in direction y kernel using combined approximate and exact convolvers under Lena Benchmark with threshold = 10. 

 

5.2.2 Error rate evaluation with Gaussian filter 

 

To show the error rate of the proposed approximate and combined convolvers for various kernel sizes, 

the Gaussian filter is selected. Figure 31 shows the Gaussian filter coefficients for 3 × 3, 5 × 5, and 7 × 7 

kernel sizes. The Gaussian filter performs a blurring operation on a sample image. 

 

(a)

(b)

(c)

 
 

Figure 31. Gaussian filters with (a) 3 × 3 (b) 5 × 5 (c) 7 × 7 kernel sizes. 

 

In the Gaussian filter, as predicted, the error rate is less than the Sobel filter in the three methods 

generally. As can be seen in Figure 32, all three methods have PSNR more than 30 dB even with large 

usage of the approximate convolvers. Accordingly, the Window-based method has the largest error rate 

among others because of averaging in a window of pixels. In the Column- and Row-based methods, the 

error rate is dependent on the input image, and based on the selected benchmark one of them will be 

superior. To show the effect of increasing the kernel size on RMSE and PSNR value, Figures 33 and 34 

are drawn with 5 × 5 and 7 × 7 kernel sizes respectively. As evident from these figures, the error rate is 

increased; but, the PSNR value is more than 30 dB which is acceptable for many applications. To make a 

fair comparison, we have also equalized the number of approximate and exact convolvers in Figures 35, 

36, 37, and 38. In addition, because the top amount of error rate occurs when the number of exact 



convolvers is close the zero, the threshold value is increased to 100. Also, this scenario is for testing the 

error rate when the approximate convolver is used and the kernel sizes are similar to the previous scenario. 

As can be seen, the PSNR value for 3 × 3 and 5 × 5 for all three methods is still more than 30 dB; but, for 

7 × 7 kernel size is decreased to less than 30 dB. In Figure 36, the input image is changed to the Cameraman 

benchmark to show the superiority of the Row-based method in comparison to the Column-based strategy 

in a real example. As can be seen in this figure, by changing the input image the PSNR value for the Row-

based method is more than other related methods. 

 

 
 

Figure 32. Comparison between RMSE, PSNR, and the number of approximate and exact convolvers with the Gaussian 

kernel by using combined approximate and exact convolvers under Lena Benchmark for 3 × 3 kernel size. 

 

 
 

Figure 33. Comparison between RMSE, PSNR, and the number of approximate and exact convolvers with the Gaussian 

kernel by using combined approximate and exact convolvers under Lena Benchmark for 5 × 5 kernel size. 



 
 

Figure 34. Comparison between RMSE, PSNR, and the number of approximate and exact convolvers with the Gaussian 

kernel by using combined approximate and exact convolvers under Lena Benchmark for 7 × 7 kernel size. 

 

 
 

Figure 35. Comparison between RMSE, PSNR, and with the same number of approximate and exact convolvers with the 

Gaussian kernel by using combined approximate and exact convolvers under Lena Benchmark for 3 × 3 kernel size. 

 

 
 

Figure 36. Comparison between RMSE, PSNR, and with the same number of approximate and exact convolvers with the 

Gaussian kernel by using combined approximate and exact convolvers under Cameraman Benchmark for 3 × 3 kernel size. 



 
 

Figure 37. Comparison between RMSE, PSNR, and the same number of approximate and exact convolvers with the Gaussian 

kernel by using combined approximate and exact convolvers under Lena Benchmark for 5 × 5 kernel size. 

 

 
 

Figure 38. Comparison between RMSE, PSNR, and the same number of approximate and exact convolvers with the Gaussian 

kernel by using combined approximate and exact convolvers under Lena Benchmark for 7 × 7 kernel size. 

 

As a final note in this section, the convolved image evaluation shows that exploiting approximate 

convolver in special places of the image, not only didn’t reduce the filtered image accuracy significantly 
but also the resource utilization and power consumption can be improved. Also, we have evaluated our 

proposed combined convolver under different scenarios by using a special relation to decide whether exact 

or approximate convolver is suitable for current computation which can be extended to other related 

scenarios. Finally, it’s up to the requirement for the applications to decide between the accuracy and 

performance of the convolvers. 

 

6 . CONCLUSION 
 

In this paper, approximate and combined 2D convolvers with optimized power consumption and low 

pixel access rate are introduced. The presented designs can be exploited in real-time image processing 

applications.  In the approximate convolvers, the resource utilization and power consumption outperform 

their counterparts with a competitive critical path delay in comparison to EC. In the combined convolvers, 



the number of active resources in the approximate path is improved with a negligible reduction in clock 

frequency. In addition, we have taken the opportunity to the applications to choose different levels of 

accuracy. Different computational analyses and experimental evaluations are performed on the 

approximate and combined convolvers using various FPGA-based hardware platforms. The evaluated 

results on hardware and error rate reveal that with a negligible missing of accuracy, the power consumption 

is improved up to 34% and 20% in approximate and combined convolvers respectively for 3 × 3 kernel 

size. For future work, CNN needs a high-performance processing engine. The basic module of the CNNs 

is the convolution unit. By exploiting the proposed convolvers and developing a CNN accelerator the on-

chip power consumption can be reduced significantly.  
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