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Abstract

Virtual machine consolidation describes the process of reallocation of
virtual machines (VMs) on a set of target servers. It can be for-
mulated as a mixed integer linear programming problem which is
proven to be an NP-hard problem. In this paper, we propose a
kernel search (KS) heuristic algorithm based on hard variable fix-
ing to quickly obtain a high-quality solution for large-scale virtual
machine consolidation problems (VMCPs). Since variable fixing strate-
gies in existing KS works may make VMCP infeasible, our proposed
KS algorithm employs a more efficient strategy to choose a set of
fixed variables according to the corresponding reduced cost. Numerical
results on VMCP instances demonstrate that our proposed KS algo-
rithm significantly outperforms the state-of-the-art mixed integer linear
programming solver in terms of CPU time, and our proposed strat-
egy of variable fixing significantly improves the efficiency of the KS
algorithm as well as the degradation of solution quality can be negligible.

Keywords: Kernel search, Heuristic algorithm, Mixed integer linear
programming, Virtual machine consolidation, Cloud computing
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1 Introduction

Nowadays, due to the extensibility and flexibility of cloud computing, more
and more internet services are provided by it. Indeed, internet services can be
instantiated inside virtual machines (VMs) and flexibly allocated to any servers
in the cloud data center. However, with the virtual machines dynamically
changing, the improper allocation of VMs and imbalanced load distribution
are becoming especially serious and consequently VM management in cloud
data centers is one of the most important challenges. In fact, for large data
centers, 15 to 20 percent resource utilization is common [1], and even if an
activated server is kept idle, it consumes up to 66 percent of the peak power [2].
To improve efficiency and reduce energy consumption, cloud service providers
employ VM migration technology to dynamically allocate VMs by migrating
old VMs among servers and mapping new incoming VMs into servers in data
centers. The above problem is called the virtual machine consolidation problem

in the literature.
In general, virtual machine consolidation can be formulated as a mixed

integer linear programming (MILP) problem which determines the activated
servers and the allocation of VMs in such a way that the sum of server
activation, VM allocation, and VM migration costs is minimized subject to
resource constraints of the servers and other practical constraints. The VMCP
is strongly NP-hard [3], so there is no polynomial time algorithm to solve the
VMCP to optimality unless P=NP. As a result, most existing works mainly
focus on heuristic [3–7] algorithms for solving the VMCP. Among heuristic
algorithms, the first-fit decreasing and best-fit decreasing are the popular algo-
rithms used to solve VMCPs [8, 9] and used in the comparison studies of most
works [3–6, 10, 11]. A heuristic algorithm based on dynamic programming and
convex optimization was proposed in reference [7]. Reference [3] proposed an
MILP formulation for the VMCP and then presented a linear programming
(LP) relaxation based heuristic algorithm. These heuristic algorithms can pro-
vide fast solutions but are problem-dependent [9, 12]. Moreover, there was still
a non-trivial gap in references[3, 4, 7], from 6% to 49% on average, between
the solutions found by the heuristics with the optimal solution. Various meta-
heuristic algorithms, problem-independent, were also used to solve the VMCP,
including colony optimization [11, 13], genetic algorithm [14, 15], and evolution
algorithm [16]. However, the computing performances of these metaheuristic
algorithms are not competitive and their solutions are not stable [8]. There-
fore, quickly obtaining a stable and high-quality solution for the large-scale
VMCP is highly needed.

Fortunately, the kernel search (KS) algorithm is problem-dependent and
can quickly obtain a stable and high-quality solution for MILP. The standard
KS, first proposed by reference [17], has been applied to the solution of the
multi-dimensional knapsack problem that is strongly NP-hard. Subsequently,
the KS based algorithms have been successfully applied to solve the portfolio
optimization problems [18], facility location problems [19–21], index track-
ing problems [22, 23], and general mixed integer programming problems [24].
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Moreover, the KS heuristic requires little implementation effort since the most
cumbersome part of the search is finished by a state-of-the-art MILP solver
[18]. Unfortunately, to the best of our knowledge, there is no research on using
KS for solving VMCP. Furthermore, our preliminary experiments show that
the standard KS for solving VMCP is time-consuming. Therefore, a variant
of kernel search based on hard variables fixing is presented to address VMCP.
A crucial issue in variable fixing is related to the strategy of variable fixing,
which significantly determines the efficiency of the KS algorithm. Reference
[20] proposed a variant of KS based on hard variable fixing that only fixes
some binary variables to their values in LP solution. However, our preliminary
experiments indicate that this strategy of variable fixing results in some VMCP
instances being infeasible. For this reason, our proposed variant adopts a more
sophisticated but efficient strategy of variable fixing that chooses the fixed
binary variables according to corresponding reduced costs to avoid infeasibil-
ity occurring. As integer variables dominate the MILP formulation of VMCP,
so we apply a similar strategy of variable fixing for them. For more details
introduction to hard variable fixing, we refer readers to references [25, 26].

The main contribution of this paper is that we propose a KS heuristic
algorithm based on hard variable fixing, and apply it to quickly obtain a high-
quality solution for the large-scale VMCPs. We provide a new strategy of
variable fixing to enhance the efficiency of the KS algorithm and avoid VMCP
infeasibility occurring. In addition to fixing binary variables, we also fixed
the integer variables which dominate the VMCP. Extensive computational
results show that our proposed KS algorithm significantly outperforms three
settings of the standard MILP solver that emphasizes the heuristics, and our
proposed strategy of variable fixing significantly improves the efficiency of the
KS algorithm as well as the degradation of solution quality can be negligible.

The paper is organized as follows. Section 2 presents the MILP formulation
of the VMCP. Section 3 describes the proposed kernel search algorithm to
solve VMCPs. Section 4 shows computational results. Finally, Section 5 draws
some concluding remarks.

2 Virtual machine consolidation problem

Virtual machine consolidation describes the process of combining several dif-
ferent virtual machines and assigning them to a set of target servers. It can
be used to optimize the allocation of VMs on servers for minimizing the allo-
cation costs of VMs, the activation cost of servers, and the migration costs of
VMs. In this section, we follow [27] to present a compact mixed integer linear
programming formulation for the VMCP.

Fig. 1 depicts an example of the virtual machine before and after consol-
idation. Let I be the set of types of VMs that need to be allocated to the
servers; J , the set of the servers; and R, the set of resources of the servers. As
shown in Fig. 1, we are concerned with a set of servers associated with a certain
capacity sj,r for each j ∈ J , r ∈ R, and a set of old and new incoming virtual
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Fig. 1: An example of the virtual machine consolidation problem

machines associated with the demand ui,r for each i ∈ I, r ∈ R. Before VM
consolidation, there are ni,j old VMs of type i (e.g., VMs 1-4 in Fig. 1) that are
currently allocated to server j and

∑

i∈I
dnewi new incoming VMs (e.g., VM 5

in Fig. 1) that are needed to be allocated to servers. For notation purposes, let
di be equal to

∑

j∈J
ni,j for all i ∈ I. After VM consolidation, define integer

variable xi,j to indicate the number of old VMs of type i allocated to server
j, binary variable yj to represent whether or not server j is activated, integer
variable zi,j to indicate the number of old VMs of type i migrated to server j,
and integer variable xnew

i,j to denote the number of new incoming VM of type i
allocated to server j. As discussed, the VMCP can be formulated as follows:

min
∑

i∈I

∑

j∈J

calloci,j ni,j +
∑

j∈J

crunj yj +
∑

i∈I

∑

j∈J

cmig
i,j zi,j +

∑

i∈I

∑

j∈J

cnewi,j xnew
i,j (1a)

s.t.
∑

i∈I

ui,rxi,j +
∑

i∈I

ui,rx
new
i,j ≤ sj,ryj , ∀ r ∈ R, ∀ j ∈ J , (1b)

xi,j − ni,j ≤ zi,j , ∀ i ∈ I, ∀ j ∈ J , (1c)
∑

k∈J

xi,j = di, ∀ i ∈ I, (1d)

∑

k∈J

xnew
i,j = dnewi , ∀ i ∈ I, (1e)

xi,j , zi,j , x
new
i,j ∈ Z+, xi,j ≤ vi,j , ∀ i ∈ I, ∀ j ∈ J , (1f)

yj ∈ {0, 1}, ∀ j ∈ J . (1g)
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The objective function (1a) minimizes the total cost of allocating old VMs to
servers, activating servers, migrating old VMs among servers, and assigning
all new incoming VMs to servers. Objective function coefficients crunj , calloci,j ,

cmig
i,j , and cnewi,j are greater or equal to zero, which represent the activation cost
of server j, the cost of allocating a old VM of type i to server j, the cost of
migrating a old VM of type i to server j, and the cost of assigning a new
incoming VM of type i to server j, respectively.

Constraint (1b) is the capacity constraint of allocating VMs to servers.
Constraint (1c) makes sure that if the number of VMs of type i allocated to
server j before the consolidation, ni,j , is less than that after the consolidation,
xi,j , then the number of VMs of type i migrated to server j, zi,j , must be equal

to xi,j − ni,j due to cmig
i,j ≥ 0; otherwise, zi,j is equal to zero due to zi,j ∈ Z+.

Constraints (1d) and (1e) guarantee that all old and new incoming VMs of
each type are assigned to servers, respectively. Finally, constraints (1f) and
(1g) restrict xi,j , zi,j , x

new
i,j , and yj to be integer/binary variables and trivial

upper bounds {xi,j} for variables {vi,j} where

vi,j = min







∑

j∈J

ni,j , min
r∈R

{⌊

sj,r
ui,r

⌋}







, ∀ i ∈ I, ∀ j ∈ J .

In the next section, we shall develop an efficient customized kernel search
algorithm based on formulation (1) for solving the large-scale VMCPs.

3 The kernel search algorithm

In this section, we shall first provide an intuitive and general description of
the standard kernel search algorithm and then develop a new kernel search
algorithm which is designed to quickly obtain a high-quality feasible solution
for the large-scale VMCPs. Most of the notation and definitions introduced in
this section will be used throughout the remainder of the paper.

3.1 The standard kernel search algorithm

Our description of the standard KS algorithmic framework mainly refers to
references [17, 18, 20, 24]. To simplicity the notation, let V and G denote the
set of binary variables and the set of general integer variables in VMCP (1),
respectively. We refer to the MILP problem including all variables in V ∪ G as
the original problem, and call the restricted problem where the binary variables
in V\U (U ⫋ V) are fixed to zero by MILP (U).

KS is essentially a heuristic framework with a general and flexible struc-
ture applicable to any MILP problem with binary variables. Fig. 2 describes an
iteration in the standard KS algorithmic framework. More specifically, using
the information provided by the optimal solution of the (root node) linear
programming (LP) relaxation of the original problem, the standard KS frame-
work generates possibly different orders for binary variables according to the
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(a) Initialization: Initial kernel and buckets. (b) Initialization: Solve problem MILP(K).

K B1 BN K

K B1 K B1 B2

(d) Repeatition: Solve problem MILP(K    B1   B2).(c) Improvement: Solve problem MILP(K    B1).

Fig. 2: An illustrative example of the operation of the standard KS algorithm.

design criterion in the initialization phase. According to common design crite-
rion, the more left the binary variable in Fig. 2(a) is ranked, the more likely
it is that the value of 1 is taken in the optimal solution of the original prob-
lem. We select the first |K| promising binary variables (see the circles in Fig.
2(a)) from the left to construct the initial kernel K ⊂ V. The remaining binary
variables in V\K (see the rhombus in Fig. 2(a)) are partitioned into N sub-
sets (called buckets) denoted as Bi, i = 1, · · · , N . Then we first solve the
restricted problem by only considering variables in K ∪ G (see problem MILP
(U) where U := K in Fig. 2(b)), denoted its solution by (vmin, gmin) and the
corresponding objective value by UBmin.

(i) If set K is too small, the optimal solution quality of MILP (U) where U := K
is poor or even infeasible (solution quality);

(ii) If set K is too large, we cannot find the optimal solution of MILP (U) where
U := K within a reasonable time (solution efficiency).

Neither (i) nor (ii) is our ideal situations. If total computational time after
solving the first restricted problem is still within the predefined time limit Tmax,
we solve other restricted problems (see Figs. 2(c) and 2(d)) in the sequence
considering the previous U plus the binary variables belonging to bucket Bi.
Two additional constraints

(1a) ≤ UBmin, (2)

and
∑

j∈Bi

vj ≥ 1. (3)

are introduced before solving restricted problem MILP (U) to reduce the
computational time required by the solver to find the optimal solution. The
above procedure is repeated until the number of buckets already analyzed in
U reaches the limit N̄ ≤ N . The details of standard KS are summarized in
Algorithm 1.

3.2 The proposed kernel search algorithm

The kernel search algorithm has been demonstrated to obtain high-quality
solutions for various MILP problems with binary variables [18–22, 24]. How-
ever, our preliminary experiments showed that due to the solution space of
the restriction problem for KS is still too large, the restricted problem is time-
consuming, leading to very poor performance of KS for VMCPs. Fortunately,
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Algorithm 1 The standard KS algorithm

Input: VMCP, N̄ , and Tmax.
Output: UBmin.
1: Initialize UBmin := +∞ and i := 1;
2: Solve the (root) LP relaxation of the original VMCP;
3: Sort the binary variables according to a predefined sorting criterion;
4: Construct an initial kernel K by selecting the first |K| binary variables;
5: Consider the binary variables belonging to V\K and construct a sequence

{Bi}i=1,··· ,N of buckets;
6: Set maximum time limit Ti := Tmax/(N + 1) of each bucket;
7: Solve problem MILP (U) where U := K;
8: while i ≤ N̄ do

9: Add the two following constraints in MILP (U ∪ Bi):
10: (i) (1a) ≤ UBmin;
11: (ii)

∑

j∈Bi

vj ≥ 1;

12: Solve problem MILP (U) where U := U ∪ Bi within time limit Ti and
denote its objective value by UBi;

13: if UBi < UBmin then

14: Update UBmin := UBi;
15: end if

16: Set i := i+ 1;
17: end while

the efficiency of the KS can be improved by means of variable fixing [20].
Therefore, we shall illustrate a variant of the KS based on a new strategy of
variable fixing and apply it to solve large-scale VMCPs.

(a) Initialization: Initial kernel and buckets. (b) Initialization: Solve problem MILP(K).

K B1 BN K

K B1 K B1 B2

(d) Repeatition: Solve problem MILP(K    B1   B2).(c) Improvement: Solve problem MILP(K    B1).

Fixed 

value 

to one

Fixed 

value 

to zero

Fixed

value 

to zero

Fixed

value 

to one

Fixed

value 

to one

Fixed

value 

to zero

Fixed

value 

to zero

Fixed 

value 

to one

Fig. 3: An illustrative example of the operation of the proposed KS algorithm.

Fig. 3 describes an iteration in the proposed KS algorithmic framework.
The key change of our proposed KS is to choose some binary and integer
variables to fix their values, as compared to the standard KS. The strategies of
fixed variables are crucial to the effectiveness and efficiency of our proposed KS
algorithm. Therefore, we now first discuss the strategy of binary variable fixing,
which reduces the number of binary variables in all restricted MILP problems.
The straightforward strategies for fixing binary variables are as follows:
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1) if v∗j = 0, then the associated binary variable is permanently fixed to zero;
2) if v∗j = 1, then the associated binary variable is permanently fixed to one;

where v∗, as stated, is the optimal solution for the linear relaxation of the orig-
inal problem. An existing variant of the KS algorithm using strategies 1) and
2) was proposed in reference [20], and its numerical results indicated that the
strategy improves the efficiency of the KS algorithm with minor deteriorations
of the solution quality. However, our preliminary experiments indicated that
strategies 1) and 2) result in some VMCP instances being infeasible. For this
reason, inspired by the basic linear programming theory [28], we use a more
sophisticated but efficient strategy to avoid infeasibility occurring. Each binary
variable vj has an associated reduced cost r∗j value, which can be obtained by
solving the LP relaxation of the original problem. The reduced cost is a lower
bound on the increase of the LP solution cost if the value of the variable is
increased by one unit. The strategies in our implementation are detailed as
follows

a) if r∗j ≥ ϵ, ∀ j ∈ V , then the associated binary variable vj is permanently
fixed to zero (see the squares in Fig. 3) and add it to set Z;

b) if r∗j ≤ −ϵ, ∀ j ∈ V, then the associated binary variable vj is permanently
fixed to one (see the triangles in Fig. 3) and add it to set O.

where ϵ > 0 that controls the number of fixed binary variables. In our imple-
mentation, we set ϵ = 10−4. Furthermore, since integer variables dominate the
variables of the VMCP, we apply the following similar strategy to fix integer
variables, which further significantly improves the efficiency of our proposed
KS algorithm.

c) if r∗j ≥ ϵ, ∀ j ∈ G , then the associated integer variable gj is permanently
fixed to zero;

Our proposed KS algorithm is summarized as in Algorithm 2. After per-
manently fixing the binary and integer variables according to strategies a), b),
and c), and sorting the remainder of unfixed binary variables, we construct
the initial kernel K and buckets sequence {Bi}i=1,··· ,N . Then we solve prob-
lem MILP (U) where U := K, but we find a few instances is infeasible due
to the initial kernel is too small. To handle this situation, the proposed KS
follow [24] to iteratively increase the size of the kernel until MILP (U) is fea-
sible. A new kernel and bucket sequence are created when problem MILP (U)
becomes feasible. The remainder steps are same to the standard KS algorithm
in Algorithm 1.

4 Numerical results

In this section, the effectiveness and efficiency of the proposed KS algorithm
for solving VMCPs are evaluated by simulation experiments. First, we perform
computational experiments to demonstrate the performance of the proposed
KS algorithm for solving the VMCPs, and compare it with the standard MILP
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Algorithm 2 The proposed KS algorithm

Input: VMCP, N̄ , Tmax, ϵ, and ω.
Output: UBmin.
1: Initialize UBmin := +∞, i := 1, O = ∅, and Z = ∅;
2: Using the root node LP relaxation of the original VMCP instead of the

LP relaxation;
3: Using the following strategy to permanently fix binary/integer variable

values:
4: (a) if reduced cost r∗j ≥ ϵ, ∀ j ∈ V, the associated binary variable vj is

permanently fixed to zero and Z := Z ∪ {vj};
5: (b) if reduced cost r∗j ≤ −ϵ, ∀ j ∈ V, the associated binary variable vj is

permanently fixed to one and O := O ∪ {vj};
6: (c) if reduced cost r∗j ≥ ϵ, ∀ j ∈ G, the associated integer variable gj is

permanently fixed to zero;
7: Sort the unfixed binary variables in V\ (O ∪ Z) according to a predefined

sorting criterion;
8: Construct an initial kernel K by selecting the first |K| binary variables in

V\ (O ∪ Z);
9: Consider the binary variables belonging to V\ (K ∪O ∪ Z) and construct

a sequence {Bi}i=1,··· ,N of buckets;
10: Set maximum time limit Ti := Tmax/(N + 1) of each bucket;
11: Solve problem MILP (U) where U := K;
12: if no feasible solution to problem MIP(U) is found then [24]
13: while MIP(U) is not feasible do

14: Add the first |K| × ω variables in the buckets sequence to set U .
15: Solve problem MILP (U).
16: end while

17: Redefine the kernel K := U and buckets sequence {Bi}i=1,··· ,N .
18: end if

19: while i ≤ N̄ do

20: Add the two following constraints in MILP (U ∪ Bi):
21: (i) (1a) ≤ UBmin;
22: (ii)

∑

j∈Bi

vj ≥ 1;

23: Solve problem MILP (U) where U := U ∪ Bi within time limit Ti and
denote its objective value by UBi;

24: if UBi < UBmin then

25: Update UBmin := UBi;
26: end if

27: Set i := i+ 1;
28: end while
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solver with three different settings. Then we evaluate the impact of the strategy
of variable fixing on the performance of the KS algorithm. All experiments were
conducted on a cluster of Intel(R) Xeon(R) Gold 6140 @ 2.30GHz computers,
with 192 GB RAM, running Linux (in 64 bit mode).

In our experiments, the proposed KS was implemented in C++ linked with
software IBM ILOG CPLEX optimizer 20.1.0 [29]. After preliminary experi-
ments, we set the following CPLEX parameters in our proposed KS. To save
computation time for obtaining root node LP information, we decide not to
apply the RINS heuristic (parameter RINSHeur) and MILP heuristic (parame-
ter HeurFreq), and turn off the feasiblility pump heuristic (parameter FPHeur)
and local branching heuristic (parameter LBHeur). For all restricted problem
MILP (U), we choose the pseudo costs to drive the selection of the variable to
branch on at a node (parameter VarSel), and generate mixed integer rounding
cut (parameter MIRCuts) moderately. All the other CPLEX parameters were
set to their default values. Following [20], the three settings for standard MILP
solver CPLEX for comparison with the proposed KS algorithm are as follows:

• CPX-A: CPLEX with all the parameters set to their default values with
the exception that parameter MIPEmphasis that is set to feasibility.

• CPX-B: CPLEX with all the parameters set to their default values with
the exception that parameter RINSHeurStrategy is applied every 20 nodes.

• CPX-C: CPLEX with all the parameters set to their default values with
the exception that parameter LBHeurStrategy is turned on.

To gain insight the effectiveness of the proposed strategy of variable fixing, we
consider three versions of the KS algorithm:

• KS(V, G): our proposed KS algorithm with variable fixing strategies a), b),
and c).

• KS(V): has the same settings of KS(V, G) with the exception that integer
variables are not fixed (strategy c) is not applied).

• KS’: standard kernel search algorithm without any strategy of variable
fixing.

Finally, the time limit and the number of threads were set to 7200 (seconds)
and 12. The optimal solutions for VMCP instances are not available in the
literature, so we use the best solution found by solver CPLEX within 5 hours
with the default setting, denoted as f∗, to validate the performance of three
CPLEX settings and three versions of the KS algorithm.

4.1 Testsets

All algorithms were tested on VMCP instances with 5 VM types and 10 server
types, as considered in [4]. Tables 1 and 2 present the VM types and server
types, respectively.

We generate four sizes of VMCP instances, each having number |K| ∈
{7000, 8000, 9000.10000} of servers. Each instance has the equal number of
servers of each type. In our test, the VMCP instances are constructed as the
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following procedure. First, we randomly select the element k ∈ K to subset
K̂, with a probability α = 50%. Then for each server k ∈ K̂, we iteratively
assign a random number ni,j of VMs of type i until the maximum usage of the
available resource load σk, defined by

σk = max

{
∑

i∈I
ui,rni,j

sj,r
: ∀ r ∈ R

}

, (4)

exceeds a predefined value β. Similarly, to obtain parameter dnewi for all i ∈

I, we iteratively assign a random number d̂newi of VMs of type i until the
maximum usage of the available resource load τ , defined by

τ = max

{
∑

i∈I
ui,rd

new
i

∑

j∈J
sj,r

: ∀ r ∈ R

}

, dnewi := dnewi + d̂newi (5)

exceeds a predefined value γ. In general, the larger β and γ, the more old VMs
and new incoming VMs will be constructed.

As shown in references [4, 14, 30], we consider the linear power consumption
model as follows:

Pk = Pidle,k + (Pmax,k − Pidle,k)Uk. (6)

Pidle,k is the idle power consumption of server k. Pmax,k is the maximum
power consumption of server k, and Uk (Uk ∈ [0, 1]) is the CPU utilization of
server k. Following [4], coefficient crunj is set to Pidle,k, coefficient calloci,j is set to

(Pmax,k − Pidle,k)
ui,CPU

sk,CPU
, and the idle power consumption Pidle,k is set to 60%

of maximum power consumption Pmax,k. As illustrated in Section 2, coefficient

cmig
i,j is set to calloci,j in our experiments.

For each |K| ∈ {7000, 8000, 9000, 10000}, α = 50%, β ∈ {20%, 40%}, and
γ = 50%, 50 VMCP instances are randomly generated, leading to an overall
400 VMCP instances.

Table 1: The five VM types.

Type CPU RAM (GB) Bandwidth (Mbps)

VM 1 1 1 10

VM 2 2 4 100

VM 3 4 8 300

VM 4 6 12 1000

VM 5 8 16 1200
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Table 2: The ten server types.

Type CPU RAM (GB) Bandwidth (Mbps) Max power (W)

Server 1 4 8 1000 180

Server 2 8 16 1000 200

Server 3 10 16 2000 250

Server 4 12 32 2000 250

Server 5 14 32 2000 280

Server 6 14 32 2000 300

Server 7 16 32 4000 300

Server 8 16 64 4000 350

Server 9 18 64 4000 380

Server 10 18 64 4000 410

4.2 Efficiency of the proposed KS algorithm

In this subsection, we present numerical results to illustrate the efficiency of
the proposed KS algorithm compared with the standard MILP solver with
three different settings.

Table 3: Comparison results of KS(V, G) and three CPLEX settings

(|K|, β) #VM KS(V, G) CPX-A CPX-B CPX-C

Gap % T Gap % T Gap % T Gap % T

(7000,20%) 24598 0.0001 117.72 0.0003 272.75 0.0002 195.57 0.0002 225.01

(7000,40%) 27504 0.0001 116.82 0.0005 226.81 0.0002 197.91 0.0002 219.55

(8000,20%) 28095 0.0002 164.97 0.0006 333.47 0.0002 252.85 0.0002 253.68

(8000,40%) 31381 0.0001 161.02 0.0005 298.13 0.0002 225.37 0.0003 285.85

(9000,20%) 31549 0.0003 199.82 0.0005 461.56 0.0002 328.04 0.0004 320.49

(9000,40%) 35288 0.0002 174.24 0.0008 392.13 0.0002 277.90 0.0003 349.02

(10000,20%) 35077 0.0002 217.79 0.0007 528.99 0.0003 402.74 0.0003 361.77

(10000,40%) 39130 0.0001 197.75 0.0007 449.78 0.0002 346.64 0.0002 408.90

All 31258 0.0002 164.94 0.0005 357.17 0.0002 269.79 0.0003 296.22

In Table 3, we provide a summary of the computational results for the pro-
posed KS algorithm and three CPLEX settings. For each data set, we report
the average error (Gap %) with respect to f∗ and the geometric mean of CPU
time (T) in seconds. The best solution values found by the proposed KS algo-
rithm or three CPLEX settings are denoted as fH . The error for each instance
is computed as 100

(

fH − f∗
)

/f∗, and then geometric averaged over all the
instances belonging to the same data set to obtain statistic Gap %. As observed
in Table 3, compared with CPLEX settings CPX-A, CPX-B, and CPX-C, the
CPU time of KS algorithm taken by solving VMCP is much smaller (169.94
seconds versus 357.17 seconds, 269.79 seconds, and 296.22 seconds). In partic-
ular, we observe that the quality of the solutions found by the KS(V, G) is not
worse than CPX-A, CPX-B, and CPX-C, even slightly better. From Table 3,
we can conclude that the performance of KS(V, G) is much better than three
CPLEX settings for all |K| ∈ {7000, 8000, 9000, 10000} and β ∈ {20%, 40%}.
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Table 4: Worst error comparison results of KS(V, G) and three CPLEX

settings

(|K|, β) KS(V, G) CPX-A CPX-B CPX-C

Worst Gap % Worst Gap % Worst Gap % Worst Gap %

(7000,20%) 0.0071 0.0071 0.0085 0.0082

(7000,40%) 0.0038 0.0065 0.0034 0.0095

(8000,20%) 0.0099 0.0085 0.0085 0.0088

(8000,40%) 0.0046 0.0089 0.0069 0.0092

(9000,20%) 0.0078 0.0084 0.0265 0.0100

(9000,40%) 0.0043 0.0083 0.0573 0.0075

(10000,20%) 0.0063 0.0163 0.0081 0.0067

(10000,40%) 0.0051 0.0080 0.0070 0.0070

All 0.0099 0.0163 0.0573 0.0100

To gain more insight into the error of KS(V, G) over threeCPLEX settings,
we compare the worst error (Worst Gap %) returned by KS(V, G) and three
CPLEX settings. Statistic Worst Gap % shows the worst error calculated from
all the instances that belong to the same data set. The worst error comparison
results of KS(V, G) and three CPLEX settings are summarized in Table 4.
From the table, we can conclude that the worst error returned by KS(V, G) is
less than that returned by three CPLEX settings, especially for largest case
(|K| = 10000).

From the above computational results, we can conclude that the proposed
KS(V, G) algorithm is more efficient in solution quality and CPU time than
the three CPLEX settings for large-scale VMCP instances.

4.3 Performance of the proposed strategy of variable

fixing

To address the advantage of applying the proposed strategy of variable fixing
to the KS algorithm, we compare KS(V, G) with KS(V) and KS’ to solve
VMCPs. The proposed KS(V, G) has more fixed variables than KS(V) and
KS’ does not have fixed variables.

Table 5 provides the computational results of the three versions of KS
algorithm. As expected, (i) the CPU time of KS(V, G) is the least of the three
versions of the KS algorithm; (ii) the CPU time of KS’ is the most of the three
versions of the KS algorithm. This is reasonable as the solution space for all
restricted problem decreases with the number of fixed variables. Furthermore,
the quality of the solutions generally deteriorates with the number of fixed
variables. However, we observe that the quality of the solutions found by KS(V,
G) is slightly worse than KS(V) and KS’, but the improvements in terms of
CPU time are remarkable. In some data sets, we observe that the average
error of KS(V, G) is even slightly less than that of KS(V) or KS’. This is due
to the fact that some instances of KS(V) or KS’ cannot be solved within the
time limit, resulting in their average error being larger. Next, we compare the
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Table 5: Comparison results of KS(V, G), KS(V), and KS’

(|K|, β) KS(V, G) KS(V) KS’

Gap % T Gap % T Gap % T

(7000,20%) 0.0001 117.72 0.0001 1143.62 0.0002 2006.19

(7000,40%) 0.0001 116.82 0.0001 781.32 0.0001 1232.41

(8000,20%) 0.0002 164.97 0.0001 1345.61 0.0001 1964.78

(8000,40%) 0.0001 161.02 0.0001 1111.64 0.0001 1403.97

(9000,20%) 0.0003 199.82 0.0002 1770.99 0.0002 2538.79

(9000,40%) 0.0002 174.24 0.0001 1408.76 0.0002 1732.06

(10000,20%) 0.0002 217.79 0.0003 2480.27 0.0002 3329.56

(10000,40%) 0.0001 197.75 0.0001 1555.65 0.0001 2449.14

All 0.0002 164.94 0.0001 1376.21 0.0001 1988.61

Table 6: Worst error comparison results of KS(V, G), KS(V), and KS’

(|K|, β) KS(V, G) KS(V) KS’

Worst Gap % Worst Gap % Worst Gap %

(7000,20%) 0.0071 0.0061 0.0049

(7000,40%) 0.0038 0.0025 0.0016

(8000,20%) 0.0099 0.0051 0.0061

(8000,40%) 0.0046 0.0033 0.0011

(9000,20%) 0.0078 0.0048 0.0078

(9000,40%) 0.0043 0.0070 0.0048

(10000,20%) 0.0063 0.0079 0.0059

(10000,40%) 0.0051 0.0046 0.0057

All 0.0099 0.0079 0.0078

worst error for KS(V, G), KS(V), and KS’, which is summarized in Table 6.
We observed that the worst error of the three versions of the KS algorithm
is greater with the decreasing value of β. Similar behavior can be observed
in the CPU time returned by Table 5. In summary, we can conclude that the
improvements of our proposed strategy of variable fixing in terms of CPU time
for the KS algorithm are significant as well as the impact on the quality of the
solutions can be negligible.

5 Conclusion

In this work, we have designed a new KS algorithm for the solution of the
large-scale VMCP. The proposed KS algorithm is based on a new strategy
of variable fixing, which is more efficient in terms of avoiding VMCP infeasi-
ble than the existing KS strategy, making it more suitable to solve large-scale
VMCPs. Extensive computational experiments on large VMCP instances show
that our proposed KS algorithm outperforms three different heuristic settings
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of the standard MILP solver, and our proposed strategy of variable fixing sig-
nificantly improves the efficiency of the KS algorithm as well as the degradation
of solution quality can be negligible.
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hood decomposition search for 0–1 mixed integer programs. Comput.
Oper. Res. 37(6), 1055–1067 (2010)

[27] Jiang-Yao Luo, W.-K.C.J.-H.Y. Liang Chen, Dai, Y.-H.: A cut-and-solve
algorithm for virtual machine consolidation problem. arXiv (2022) https:
//arxiv.org/abs/2212.12341 [cs.DS]

[28] Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Exten-
sions. Springer, New York (2003)

[29] CPLEX: User’s Manual for CPLEX. https://www.ibm.com/docs/en/
icos/20.1.0?topic=cplex-users-manual

[30] Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing. J.

{arXiv:2212.12341}
{arXiv:2212.12341}
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual


Springer Nature 2021 LATEX template

18 A Kernel Search Algorithm for Virtual Machine Consolidation Problem in Cloud Computing

Comput. Syst. Sci. 79(8), 1230–1242 (2013)



Figures

Figure 1

Figure 2

Figure 3

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Table1.png

Table2.png

Table3.png

Table4.png

Table5.png

Table6.png

https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/39be6dd3-98ff-49c0-aa1b-d9f0744236e0?response-content-disposition=attachment%3B%20filename%3D%22Table1.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=a056ac184006425a0393f6be0b73d56db5b404e7f69d42ea9c33bfecc6e70f74
https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/8c7353ac-7846-4ab2-acaf-8d44712c533a?response-content-disposition=attachment%3B%20filename%3D%22Table2.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=596b469dcff408f00775f46b6077f372edf1ce8b6ae06ef48f2b5e3380afdf82
https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/db122ac6-adc7-4231-865d-a2c9dc1fbb03?response-content-disposition=attachment%3B%20filename%3D%22Table3.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=53629bc26d35221dcc892f39abd9279e1fd9fa129f9cb3f00dd5a31ea0fc42e0
https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/63cfd7c9-c3e0-4667-aaea-c6fc1a868d1a?response-content-disposition=attachment%3B%20filename%3D%22Table4.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=b8416eb795e263e6274b6789e4176ee076f197f14ef9a2f0828d6bbd5f7bb619
https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/5ea98e49-2c61-4ebe-aa4a-d20f1d61992a?response-content-disposition=attachment%3B%20filename%3D%22Table5.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=aca405b819dac93011966e204c472b4db39d872bab5c60b9a63206b93888e9da
https://rand-preprints-stoaapi-production-stoafilesbucket-y6gnve7gfstz.s3.amazonaws.com/stoa/a30b1397-7bd1-4e65-9c8d-b59d6e4946bd/1.0/eabe5ae9-5722-4c15-b484-b87c209364b4?response-content-disposition=attachment%3B%20filename%3D%22Table6.png%22&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF0aCXVzLWVhc3QtMSJHMEUCICP2Lm5oMlfHupds2adO7dEKpScxQ14yt7nNKLdoo3KRAiEAjsr6vER1cs2NuDhDnaZtQyfKwSDaFTF%2FTZy6nRKKeXYq%2BwMI1f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw3OTg1MDI2MTc2ODMiDAkmmPnx6VafYF7C1SrPA72S3s3e6J5VytpdntDg8G%2FX3wTBQVYEC6lXgxM3C1AGktivSwsdbxY1CWZj%2BbOGI6luXKS7MvUlVKtkUztH57Q1CbkBtkqngOnoJHP4Hpe0JZBwr%2FhMlh2%2FLls7l0FMQrquPhNzKddCeTkotw3Pk%2BtfOVkNILoTHF3mPraR7ORZcgfJgbYaHAxCimTUdh0VmQZoi2gKdWj4RSW%2F9PmEJtSyTKQOFE1MXzLNih1OOvJHognVe8nTW39C9m7hOb5WRAbmPDjhjVRtT7vTMlLxo8ob0sBFt6aCTbTl8IMA2YabE4oNu9LXkboPyC7bFchrtwbS%2BpLwQClfeaWqcIrNozz6W%2BEZfKpufP%2FGG0m6NHBVctT6c95LsIcYtvcpbAlA4m2c9y3ReL4lyOLNFNa7bb3l2Sej3kamgcT56QQ04rJAnvXwsdjfrMtptJgFJj%2FjpsGX%2BycB3%2FRXPNh4SgHQeN5eDLTD9bv%2BDAZ6V6noJjrVXGQa7h%2BCs7RHWfYcPQ0XkGPWz8e1jj0wU3oKW6Kvn5J9DQ7hLPO%2FpLNL8h31V5nKL1uGvUH%2FMfZ9F8ypJ2T4RyUS9poMbVxmK9%2F4J3TVIj4mkL3carBNU6ZDOAUi7Ucw8c%2FungY6pQEB9tbuF3Yl0VGJQshzmKYZMJyVcxVvZHtKMtMdGYO2FEnByQFNCkcfEIkfxGeBcBaBaAKVBt6%2B2LuFYpLlJ%2FIFKguPDWO3JzUP99Jzp6zDUHuPdBqd8jwrDRIwtQwn98LJU%2BB1UiWMkVT%2F6nTZ5ji2E9pfE3azQj7OWaU4raTOQN1l9pbCKt67fPTWsn3Wes3%2FW5KqyG7BW2douI8s0Dr6VE2k9Zg%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIA3T2TXAJJ7DM6XBMA%2F20230202%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230202T143249Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Signature=8c9576b486d5686c146745a9d5eeaf2868af9aa7bf1141f028d1f7e1b9f9541d

	Introduction
	Virtual machine consolidation problem
	The kernel search algorithm
	The standard kernel search algorithm
	The proposed kernel search algorithm

	Numerical results
	Testsets
	Efficiency of the proposed KS algorithm
	Performance of the proposed strategy of variable fixing

	Conclusion
	Acknowledgments


