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Abstract

One of the challenges facing current Noisy-Intermediate-Scale-Quantum devices
(NISQ) is achieving efficient quantum circuit measurement or readout. The
process of extracting classical data from the quantum domain, termed in this
work as quantum-to-classical (Q2C) data decoding, generally incurs signifi-
cant overhead, since the quantum circuit needs to be sampled repeatedly to
obtain useful data readout. In this paper, we propose and evaluate time-efficient
and depth-optimized Q2C methods based on the multidimensional, multilevel-
decomposable, quantum wavelet transform (QWT) whose packet and pyramidal
forms are leveraged and optimized. We also propose a zero-depth technique that
uses selective placement of measurement gates to perform the QWT operation.
To demonstrate their efficiency, the proposed techniques are quantitatively eval-
uated in terms of execution time, circuit depth, and accuracy in comparison to
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existing Q2C techniques. Experimental evaluations of the proposed Q2C meth-
ods are performed using real high-resolution multispectral images on a 27-qubit
state-of-the-art quantum computing device from IBM Quantum.

Keywords: Quantum Computing, Quantum Algorithms, Quantum State Preparation
and Measurement

1 Introduction

Quantum computers can take advantage of unique quantum mechanical properties,
i.e., superposition and entanglement, to achieve speedup in computation [1] over classi-
cal computers for specific problems such as large integer factorization and unstructured
database search [2, 3]. Nevertheless, existing noisy intermediate-scale quantum (NISQ)
devices have limited practical applications [4] due to critical challenges [5], such as
decoding meaningful classical data from the quantum domain. For example, in applica-
tions like quantum image processing, where information is usually encoded as quantum
state amplitudes [6], repeated sampling of the quantum circuit is required to generate a
probability distribution from which the processed image data can be recovered [7]. The
process of obtaining data from the quantum domain, henceforth called quantum-to-
classical (Q2C) data decoding, introduces significant overhead in the circuit execution
time, necessitating further investigation of time-efficient data decoding methods.

In this paper, we propose and evaluate techniques for efficient Q2C data decoding
based on the multidimensional, multilevel-decomposable quantum wavelet transform
(QWT) [8, 9, 10, 11]. In our work, we investigate and optimize the quantum Haar
transform (QHT) for performing multidimensional and multilevel decomposition in
either packet or pyramidal form. When applying QHT to the output of a quantum cir-
cuit, we show that the resulting quantum state can be represented with fewer qubits
by reducing its dimensionality from a higher-dimensional space to a lower-dimensional
space. Multilevel-decomposable QHT has been proven to be effective for reducing the
dimensionality of high-resolution spatio-spectral data while maintaining spatial and
temporal locality [12]. It is also reported that sampling a lower-dimensional space
reduces execution time, thus improving the Q2C decoding process [8]. We also present
the quantum circuits and accompanying circuit depth analysis corresponding to the
proposed QHT-based approach, demonstrating its space and time efficiency. From
these circuits, we derived a highly depth-optimized technique that is capable of per-
forming the QHT operation without a supplementary quantum circuit, which we call
‘measurement-based’ QHT decomposition. In this approach, the measurement of select
qubits allows us to sample the representative output data in a lower-dimensional space.

The proposed quantum methods and circuits for Q2C are evaluated on the
Qiskit SDK from IBM Quantum [13] using their general-purpose Aer simulator and
ibmq toronto quantum device. By experimentally determining circuit depth, calculat-
ing data correlation, and measuring execution time, a quantitative comparison of the
proposed Q2C methods with state-of-the-art techniques is presented. Additionally, the
proposed Q2C methods are compared with a reported Q2C readout technique based
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on the quantum Fourier transform (QFT) [14]. The experimental results show that our
proposed methods are more time and space efficient compared to existing methods.

The rest of the paper is organized as follows. Section 2 discusses background
concepts and related work. Section 3 presents the proposed method and quantum cir-
cuits. Section 4 shows the experimental work and results with accompanying analysis.
Finally, Section 5 concludes our work and discusses potential future work.

2 Background and Related Work

In this section, we discuss basic quantum concepts in addition to the fundamental
quantum gates used for Q2C data decoding. Related work will also be discussed.

In this paper, we will utilize the following mathematical notation to describe lever-
aged quantum concepts. An n-qubit quantum state |ψn⟩ can be represented by a
normalized statevector of N = 2n complex state amplitudes/coefficients ci ∈ C where
0 ≤ i < N , as shown in (1).

|ψn⟩ =
N−1
∑

i=0

ci |i⟩ =

























c0
c1
...
ci
...

c
N−2

c
N−1

























, where ⟨ψn|ψn⟩ =
N−1
∑

i=0

|ci|2 = 1, and 0 ≤ i < N (1)

2.1 Quantum Gates

This subsection details the function, matrix representation, and gate representation
for the various quantum gates that are used in our proposed circuits.

Hadamard Gate

The Hadamard gate [14] is a single-qubit gate, as described by (2), that can be used
to create a superposition of the |0⟩ and |1⟩ basis states.

H ≡ 1√
2

[

1 1
1 −1

]

= (2)

SWAP Gate

The SWAP gate is a two-qubit quantum gate, as described by (3), that exchanges the
states of the two input qubits, e.g., applying the SWAP operation on the |q1q0⟩ state
would result in the state |q0q1⟩.
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SWAP ≡









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









= (3)

Quantum Rotate-Left (RoL) and Rotate-Right (RoR) Operations

We define the Rotate-Left (RoL) and Rotate-Right (RoR) gates as specialized per-
mutation operations that perform a cyclic rotation, i.e., perfect-shuffle, of the input
qubits, as shown in Fig. 1. Each gate can be constructed of SWAP gates, where a
perfect-shuffle operation over n qubits necessitates n − 1 SWAP gates in series, see
Fig. 1.

RoL(|qn−1qn−2 . . . q0⟩) = |qn−2 . . . q0qn−1⟩ RoR(|qn−1 . . . q1q0⟩) = |q0qn−1 . . . q1⟩

Fig. 1: Rotate-Left (RoL) and Rotate-Right (RoR) gates

Measurement Gate

Measuring (observing) qubits is a non-unitary (irreversible) operation. A measurement
(readout) gate is a single qubit operation that assigns the observed quantum state
|ψ1⟩ to a single value. In other words, a measurement gate projects the quantum state
to one of its basis states, i.e., |0⟩ or |1⟩ for a single-qubit state, with a probability
equal to the square of the magnitude of the basis state coefficient, i.e., p0 = |c0|2, and
p1 = |c1|2, see (4).

P (ψ1) =

[

p0
p1

]

=

[

|c0|2
|c1|2

]

= (4)

In general, when all qubits of a quantum state |ψn⟩ in an n-qubit quantum circuit
are fully measured, the probability of finding the qubits in a given state |i⟩ is given
by |ci|2, and the full-measurement probability distribution of finding the qubits in all
possible states can be expressed as P (ψn), see (5a) and Fig. 2a. When excluding a
partial subset m qubits of the n qubits from measurements, the partial-measurement
probability distribution can be expressed as a conditional probability P (ψn | qm...q1 =
×...×), where each unmeasured qubit qm could arbitrarily be in a ‘don’t care’ state,
i.e., × ≡ 0 or 1. Equation (5b) and Fig. 2b show an example of one qubit, i.e., the least-
significant qubit q0, being excluded from the partial-measurement of the remaining
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n − 1 qubits. It is worth mentioning that for every m qubits that are excluded from
the partial-measurements, the number of measured basis states and consequently the
size of the partial-measurement probability distribution is reduced by a factor of 2m,
i.e., being equal to N/2m = 2(n−m) = 2k where k = n−m is the number of measured
qubits, see (5b) and Fig. 2b.

P (ψn) =

























p0
p1
...
pi
...

p
N−2

p
N−1

























=



























|c0|2
|c1|2
...

|ci|2
...

∣
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∣

∣

2

∣

∣c
N−1

∣

∣

2



























, where P (ψn = i) = pi = |ci|2, and 0 ≤ i < N (5a)

P (ψn | q0 = ×) =

















p0|q0
...

pi|q0
...

p
N

2
−1

|q0

















=



















|c0|2 + |c1|2
...

|c2i|2 + |c2i+1|2
...

∣

∣c
N−2

∣

∣

2
+
∣

∣c
N−1

∣

∣

2



















, where

P (ψn = i | q0 = ×) = pi|q0 = |c2i|2 + |c2i+1|2, and 0 ≤ i <
N

2

(5b)

(a) Full-measurement of n qubits (b) Partial-measurement of n− 1 qubits

Fig. 2: Measurements of an n-qubit quantum state |ψn⟩
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2.2 Circuit Depth

The depth of a quantum circuit is calculated from the critical path that has the largest
propagation delay accumulated from cascaded gates through the circuit. Quantum
circuits also accumulate gate errors throughout their runtime [15] which compound
with deeper circuits. Therefore, circuit depth determines the total execution time of
the quantum circuit on a physical device and is often used as a metric for quanti-
tatively evaluating the speed and performance of quantum circuits. In addition, it
could be utilized as a useful indication for the quality of results (fidelity) of quantum
circuits. Therefore, minimizing/optimizing circuit depth would result in performance
and fidelity improvements [15]. However, the magnitude of gate delay and error vary
depending on the type of gate operation, e.g., H, SWAP, etc. Thus, without consider-
ing those differences, depth alone can only provide a speculative analysis of a circuit’s
execution time and result fidelity.

In a previous work [11], we described how to use circuit depth analysis to calculate
the expected execution time on a physical quantum device. In this work, we extend
our analysis to further optimize the depth of the proposed circuits where different
operations are executed in parallel on the same circuit layer.

2.3 Quantum Haar Transform

In the classical domain, a discrete wavelet transform (DWT) decomposes signals/data
into its spatio-temporal spectral components using non-sinusoidal functions called
mother wavelets [16]. DWT can be applied to perform dimension reduction, as shown in
Fig. 3, by separating multidimensional data into its low-frequency and high-frequency
components [16, 17]. The isolated low-frequency terms are usually used to represent a
compressed/decomposed output where the size of each dimension of the output data
is reduced by a factor of 2ℓ, where ℓ is the number of decomposition levels [17]. If the
high-frequency terms are preserved, a complete reconstruction of the original input
can be accomplished via the inverse operation, see Fig. 3. The Haar wavelet trans-
form is one of the fundamental wavelet transforms, utilizing a mother wavelet that
can be constructed using a basic unit step function u(t) [11]. The Haar transform can
be performed in either packet decomposition or pyramidal decomposition form, dif-
ferentiated by how multiple levels of decomposition are performed. After the initial
level of decomposition, packet decomposition performs subsequent levels of decom-
position on both the low-frequency and high-frequency components, while pyramidal
decomposition restricts further decomposition to only the low-frequency components
[16, 18].

|ψ⟩QHT =
1√
N

N−1
∑

i=0

N−1
∑

q=0

f(q ·∆t)ΨD

(

q − j

K

)

|i⟩ (6)

Similar to the classical DWT, quantum circuits can be developed to perform the
so-called quantum Haar transform (QHT) [9, 10, 11]. For QHT circuits, the input data
samples are generally encoded as the amplitudes of a superimposed input quantum
state |ψ⟩. The Haar function is then applied on the state amplitudes, resulting in the
state represented by (6), where ΨD is the discrete Haar mother wavelet [11], ∆t is the
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(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 3: Decomposition and reconstruction of a (4096× 4096× 3) image using the 2D
Haar wavelet transform

sampling period, K is the Haar window size in samples, and N is the number of data
samples. The specific quantum circuits are discussed in further detail in Section 3.2.

2.4 Related Work

Conventional quantum-to-classical (Q2C) data decoding for a given quantum circuit,
as shown in Fig. 4, obtains the complete quantum state of a circuit by perform-
ing repeated circuit sampling, also known as ‘shots’. The measurements are used to
construct a probability distribution of the possible discrete basis states, where the
normalized frequency of measurements represent the square of the magnitudes of the
output quantum state coefficients. The number of repeated measurements correlates
with the accuracy of the data relative to the expected output quantum state. Gener-
ally, a large number of repeated circuit sampling is required to improve the accuracy
of measurements and minimize the effects of statistical noise, which adds a significant
overhead to the total circuit execution time.

To minimize the overhead of repeated circuit sampling, algorithms can be appended
to a circuit immediately prior to measurement, which typically will attempt to decrease
either the number of measured qubits or the number of required shots to sample the
quantum state. In [14], the authors proposed a Q2C data decoding technique leverag-
ing the quantum Fourier transform (QFT) algorithm to sample the quantum circuit
output in the Fourier basis and extract a collective property of the amplitude data,
see Fig. 5. The QFT-based technique uses fewer circuit samples than the conven-
tional approach, since a comprehensive probability distribution is not reconstructed
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Fig. 4: Procedure for conventional Q2C data decoding

Fig. 5: Procedure for QFT-based Q2C data decoding

but only the Fourier basis states are measured. Data decoding using QFT is partic-
ularly relevant for image or audio processing applications, where spectral bandwidth,
as an example of a collective property, is useful for analyzing the output data [14].
However, a drawback of the technique is that it does not decode the actual data from
its quantum state and only reveals the sought collective property or feature of data.
Moreover, the complexity and poor parallelism of the QFT algorithm also results in
deep circuits and large overall timing overhead in the circuit.

In our previous work [8], we introduced packet and pyramidal decomposable quan-
tum Haar transform (QHT) circuits for performing quantum-to-classical (Q2C) data
decoding. By applying multilevel-decomposable QHT, data represented by n qubits
can be transformed to a form represented by a fewer number of qubits k = n− (ℓ · d),
where 0 ≤ k ≤ n, 0 ≤ ℓ ≤ (n/d) is the number of decomposition levels, and d ≥ 1 is the
dimensionality of the data. In this work, we extend and optimize the packet and pyra-
midal circuits and propose a new measurement-based decomposable QHT technique
of zero gate depth. We also present comprehensive experimental evaluations of all pro-
posed quantum circuits using real, high-resolution RGB images. In addition, we apply
multilevel inverse QHT to reconstruct the decomposed data and evaluate the result
fidelity of the Q2C methods in terms of similarity metrics such as data correlation.

3 Proposed Methodology and Circuits

This section outlines our proposed and optimized QHT-based methods and circuits for
data decoding in context of the general Q2C approach discussed previously. We first
describe the basic QHT circuit for single-level, d-dimensional decomposition. Following
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that, we present three methods that extend the single-level operation over multiple
decomposition levels and discuss their corresponding quantum circuits.

3.1 Methodology

The quantum Haar transform (QHT) provides a number of benefits for our quantum-
to-classical (Q2C) data decoding method. More specifically, QHT preserves the spatial
and temporal locality of data such that the decomposed data possesses a spatial and
temporal resemblance to the original data [16]. Additionally, QHT is generalizable
for multidimensional data, decomposable for multiple levels, and can be implemented
with relatively shallow and parallel circuits.

By leveraging multidimensional multilevel-decomposable QHT, we can inherently
perform dimension reduction (decompression) of data while preserving its general
spatial and temporal characteristics. In other words, QHT allows us to decode data at
a decreased qubit cost/count from n qubits to k = n− (ℓ · d) qubits, where 0 ≤ k ≤ n,
0 ≤ ℓ ≤ (n/d) is the number of decomposition levels, and d ≥ 1 is the dimensionality
of the data, e.g., d = 1 for 1-D data, d = 2 for 2-D data, d = 3 for 3-D data, etc.
Reducing the number of qubits used in data representation will subsequently reduce
the measurement and data decoding time. The proposed methodology for QHT-based
Q2C data decoding is shown in Fig. 6.

Fig. 6: Procedure for QHT-based Q2C data decoding

3.2 Proposed Quantum Circuits

The QHT algorithm can be represented by a generalized d-dimensional operation
denoted as Ud−D−QHT henceforth, as depicted in Fig. 7. When encoding multidi-
mensional data as the state amplitudes, a contiguous subset of ni qubits is used to
represent the ith dimension of data, where 0 ≤ i < d. As shown in Fig. 7, Ud−D−QHT

performs a single level of decomposition over all d dimensions in parallel. It applies a
Hadamard (H) gate at the least-significant qubit of every dimension to extract both the
low-frequency (slow-changing) and high-frequency (fast-changing) components of the
input data followed by a RoR (perfect-shuffle) operation to spatially separate the low-
frequency components from the high-frequency components [8]. It is worth mentioning
that the low-frequency components constitute a compressed and an approximate ver-
sion of the original data represented at a lower-resolution, i.e., using less number of
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data samples. To decode both the low-frequency and high-frequency components of
data, all n qubits must be fully-measured. However, the low-frequency components
are usually desired and it is sufficient to partially-measure only the ni − 1 least sig-
nificant qubits for each dimension, which now contain the low-frequency components
after the perfect-shuffle operation, see Fig. 7.

Fig. 7: Single-level decomposition of d-dimensional QHT

As shown in Fig. 7, every contiguous ni qubits, that are used for encoding the
ith data dimension, contain one H gate followed in series by ni − 1 SWAP gates that
perform the RoR gate. Therefore, the depth δ of the Ud−D−QHT operation can be
determined by the depth of the critical path across all dimensions, as shown in (7).
The execution time t of the Ud−D−QHT operation on a physical quantum hardware
can be estimated using the gate delays τH and τSWAP of the H and SWAP gates,
respectively, as expressed by (8).

δ ≡ max {1 + (ni − 1) : i ∈ Z, 0 ≤ i < d} = nmax (7)

t = τH + (δ − 1) · τSWAP (8)

It is useful to determine the maximum number of levels ℓmax of lossless decomposi-
tion. Assuming that decomposition is symmetrically performed on all data dimensions,
ℓmax is bound by the number of qubits nmin that are used to encode the data dimension
of the least amount of data samples, see (9).

ℓmax = nmin ≡ min {ni : i ∈ Z, 0 ≤ i < d} (9)
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3.2.1 Interleaved Packet Decomposition

The multilevel packet decomposition variant of QHT repeatedly applies the
Ud−D−QHT operation over all qubits for each level of decomposition, as shown in Fig.
8. Here, we leverage and extend our previous work [8, 11] where we presented equations
for deriving the circuit depth and the hardware execution time of the packet decom-
position circuit when the Ud−D−QHT are applied in series. However, the Ud−D−QHT

operations can be interleaved (overlapped) to further minimize the overall circuit
depth. The optimized circuit for packet decomposition incurs only two additional lay-
ers of SWAP gates for every additional interleaved level of decomposition, which is
reflected in the expressions of (10) and (11) for the circuit depth and execution time,
respectively.

δpkt = nmax + 2(ℓ− 1) (10)

tpkt = τH + (nmax + ℓ− 2) · τSWAP + (ℓ− 1) ·max (τH, τSWAP)

= τH + (δpkt − 1) · τSWAP

(11)

Fig. 8: ℓ-level, d-dimensional packet decomposition
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3.2.2 Interleaved Pyramidal Decomposition

In pyramidal decomposition, Ud−D−QHT is applied on d fewer data qubits (1 qubit per
each dimension) for every level of decomposition, as shown in Fig. 9a. While reducing
the size of Ud−D−QHT would present tangible benefits to overall circuit size and depth
compared to packet decomposition, additional interlevel permutations are required to
preserve data locality among the different levels of decomposition, see Fig. 9b.

Similar to packet decomposition as discussed in Section 3.2.1, we could interleave
(overlap) the operations of pyramidal decomposition. When interleaved, the second
level of decomposition, i.e., ℓ = 2, adds n− nmax − d+ 2 additional gate layers to the
depth of the first level of decomposition that is comprised of the Ud−D−QHT operation
and the first set of interlevel permutations. Each following level of decomposition, i.e.,
ℓ > 2, adds an additional d gate layers to the overall circuit depth. Accordingly, the
total depth of the interleaved pyramidal QHT decomposition, δpyr, could be expressed
by (12), and consequently the execution time is given by (13).

δpyr =

{

nmax, ℓ = 1

n+ d(ℓ− 1)− 2(d− 1), ℓ > 1
(12)

tpyr = τH + (δpyr − 1) · τSWAP (13)

(a) Structure of pyramidal decomposition (b) Interlevel permutations

Fig. 9: ℓ-level, d-dimensional pyramidal decomposition
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3.2.3 Measurement-based Decomposition

The packet and pyramidal circuits are well-optimized for performing a generalized
QHT operation: decomposing and spatially separating low-frequency and high-
frequency components of multidimensional data as an inherent quantum operation. In
the broader context of QHT-based Q2C data decoding, however, additional optimiza-
tions are also feasible, and hence we propose our measurement-based decomposition
technique.

(a) Single-gate depth with H gates (b) Zero-depth circuit

Fig. 10: ℓ-level, d-dimensional measurement-based decomposition

As discussed in Section 3.2, the RoR (perfect-shuffle) operation in Ud−D−QHT is
useful for spatially separating the low-frequency from high-frequency components in
the decomposed quantum state while preserving the data locality. After applying the
Hadamard (H) gate in the Ud−D−QHT operation, see Fig. 7, the state amplitudes alter-
nate between low-frequency (even indices) and high-frequency (odd indices) terms.
Right-rotating (RoR) the qubits for every dimension, i.e., moving the least-significant
qubit to the most-significant qubit as shown in Fig. 7, spatially combines/clusters
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similar frequency terms together during measurements. Therefore, optimizing out all
perfect-shuffle gates would not affect the overall data transformation. However, it
reduces the overall depth of the packet and pyramidal QHT circuits resulting in the
circuit shown in Fig. 10a. The resulting circuit is composed of ℓ · d parallel H gates
spanning the ℓ least-significant qubits in each dimension for an ℓ-level, d-dimensional
decomposition. The simplified circuit is noteworthy for having a constant circuit depth
of 1 H gate independent of the number of decomposition levels.

As shown in Fig. 11a, when an H gate is applied to the least-significant qubit of an
n-qubit state |ψn⟩ as described by (1), the the resultant state could be represented by
∣

∣ψH
n

〉

whose full-measurement probability distribution P (ψH
n ) is given in (14a). Fur-

thermore, (14b) and Fig. 11b display the partial-measurement conditional probability
distribution of

∣

∣ψH
n

〉

when the least-significant qubit q0 is excluded from measurements
after applying the H gate.

P
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(a) Full-measurement of n qubits (b) Partial-measurement of n− 1 qubits

Fig. 11: Measurements of the n-qubit quantum state
∣

∣ψH
n

〉

It could be concluded based on (14b) and (5b), that the circuits shown in Fig. 11b
and Fig. 2b are equivalent where the H gate is effectively non-existent. As such, when
performing QHT-based Q2C data decoding and only measuring the low-frequency
qubits, it is possible to ignore the H gates and create a circuit that can perform
decomposition using only measurement gates as shown in Fig. 10b. Therefore, such
a zero-depth circuit allows us to perform dimensionally-reduced Q2C data decoding
using ℓ-level, d-dimensional QHT by conducting partial-measurements while excluding
the ℓ least-significant qubits per every d dimension of the data, see Fig. 10b.

Note, however, that the zero-depth circuit is restricted only to decomposition, i.e.,
partially-measuring k qubits from an n-qubit state, where 0 ≤ k ≤ n. When performing
reconstruction via inverse-QHT, the Hadamard gates will be necessary to restore the
high-frequency components in accurate and full data reconstruction/recovery.

4 Experimental Results

The efficacy of our proposed QHT-based Q2C data decoding methods was verified
by encoding various sizes of 3D data (RGB images) on both quantum simulators and
actual quantum hardware followed by applying QHT for various levels of decomposi-
tion. The circuits ranged in size from 8 qubits to 26 qubits to encode multispectral,
high-resolution images of (8× 8× 3) to (4096× 4096× 3) pixels. The QHT operation
was restricted to two dimensions (length and width) to facilitate the maximum possi-
ble number of decomposition levels, see (9). In other words, QHT was performed only
on the spatial dimensions of the images, not the color bands. Note that with only three
color bands (red, green, blue), the statevector was padded with zeroes to comprise
a fourth color band, since 2 qubits were required to represent the color dimension,
i.e., n2 = ⌈log2 3⌉ = 2. The QHT-based Q2C methods were evaluated for their cir-
cuit depth and execution time as reported by the Qiskit SDK from IBM Quantum
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[13, 19]. Images were also reconstructed from the decomposed images then compared
to the original using the Pearson correlation coefficient [20].

In addition, experiments using conventional and QFT-based Q2C data decoding
were performed on the same dataset for comparison against the QHT-based techniques.
Conventional Q2C data decoding was implemented by measuring all qubits in each
circuit and was evaluated in terms of Pearson correlation and hardware execution
time, see Figs. 14 to 18. Using the QFT implementation built into Qiskit [21], we
were able to evaluate QFT-based Q2C in terms of circuit depth and execution time,
see Table 1 and Fig. 17, respectively.

All Q2C methods were implemented on Qiskit version 0.39.4 [13]. Simulation
results were collected using the Aer simulator on a dedicated node of a high-
performance computing (HPC) cluster at the University of Kansas (KU). The cluster
node used for our experiments is configured with two 12-core Intel Xeon E5-2680 v3
CPUs operating at a base clock of 2.50GHz, PCIe Gen 3.0 connectivity, and 503GB
of available memory configured as 8×64GB physical DDR4 DIMMs operating at
2,133MHz. Experiments on actual quantum hardware were performed on ibmq toronto,
an IBM Quantum Falcon r4 processor equipped with 27 qubits [22]. The quantum
device has a median CNOT error of 1.065×10−2, median readout error of 2.360×10−2,
median T1 of 105.97 µs, and median T2 of 101.9 µs [22].

4.1 Accuracy of Quantum Haar Transform

During decomposition, information degradation arises from the loss of high-frequency
components after each level of QHT, compounded by additional losses due to typical
gate noise and statistical errors of quantum circuits. Experimental correlation results
were gathered to quantify information loss for 32, 000 shots (the maximum available
on ibmq toronto) and 1, 000, 000 shots (the maximum available for simulation), see
Figs. 12 and 13, respectively. The decomposed images were reconstructed to calculate
their correlation with the original images at the same resolution. Reconstruction was
performed classically using a kernel-based method of inverse 2D-QHT to mitigate
the introduction of further errors. As such, execution times are not considered for
reconstruction.

Differences in correlation among the QHT-based techniques, i.e., packet, pyrami-
dal, and measurement-based, were negligible and therefore they were represented by
a single plot named ‘QHT-based Q2C’ in Figs. 14 and 15. Two additional plots were
included as points of comparison. First, we included the correlation from the conven-
tional circuit sampling behavior, see Fig. 4. Next, we repeated these experiments on a
classical computer using the classical Haar wavelet transform to isolate the informa-
tion loss native to the algorithm without the effects of gate errors, decoherence, and
sampling errors. Pearson correlation, as a metric for similarity, could not be calculated
for QFT-based Q2C data decoding due to the fact that QFT does not preserve the
spatial and/or temporal locality of the data.

The quantitative correlation improvement seen from increasing the number of shots
between Figs. 14b and 15b can be observed qualitatively from Figs. 12 and 13. When
the number of shots is insufficient to sample a quantum state, the measured image
appears black, which is seen at ℓ = 3 for 32, 000 shots but not for 1, 000, 000 shots.

16



(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 12: Simulated 2D-QHT decomposition and reconstruction of a (4096× 4096× 3)
image (32,000 shots)

(a) 1-level
decomposition
(scaled-up)

(b) 3-level
decomposition
(scaled-up)

(c) 5-level
decomposition
(scaled-up)

(d) 7-level
decomposition
(scaled-up)

(e) 1-level
reconstruction

(f) 3-level
reconstruction

(g) 5-level
reconstruction

(h) 7-level
reconstruction

Fig. 13: Simulated 2D-QHT decomposition and reconstruction of a (4096× 4096× 3)
image (1,000,000 shots)
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(a) 1-level decomposition (b) 26-qubit state

Fig. 14: Correlation of reconstructed 2D-QHT images on Aer simulator with 32,000
shots

(a) 1-level decomposition (b) 26-qubit state

Fig. 15: Correlation of reconstructed 2D-QHT images on Aer simulator with 1,000,000
shots

Taken together, Figs. 14 and 15 illustrate the interaction between information loss from
the QHT algorithm and information loss from sampling errors. The results for conven-
tional Q2C data decoding in Figs. 14a and 15a highlight a distinct logistic relationship
between the number of qubits and/or shots with the correlation of the measured quan-
tum state. Below a certain proportion of shots to image size, the correlation displays
a ‘saturation’ behavior, where increasing the number shots or decreasing the image
size has a negligible impact on the correlation. This is indicative that the number of
shots is already sufficient to characterize the expected quantum state. The classical
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Haar wavelet transform shows similar logistic behavior, although higher correlation
is observed for larger image sizes, where removing high-frequency terms presents a
smaller impact.

From Figs. 14a and 15a, as the image size increases for a fixed number of decompo-
sitions, we observe that the QHT correlation aligns strongly with the classical wavelet
plot, demonstrating how the algorithmic component of information loss dominates
within the saturation region. Outside of that region, the information loss from sampling
a larger image dramatically outweighs the relative gain in correlation from performing
the Haar transform on a larger image. Similar behavior extends to applying different
levels of decomposition to fixed-size images as shown in Figs. 14b and 15b. Beyond
a certain number of decomposition levels, only few qubits are being measured such
that we enter the saturation region for a given number of shots. Thus, the correlation
aligns with the expected behavior from the classical Haar transform. However, before
that point, the comparatively small information loss from the Haar transform helps
ameliorate the dramatic information loss from measuring such a large image.

Given a large enough image for a certain number of shots, the QHT-based Q2C
method can outperform conventional Q2C data decoding in terms of the quality of
results (fidelity) with the improvement increasing as fewer shots are performed, as
shown in Fig. 16. As the image sizes increase, the rate of correlation improvement
increases until all levels of decomposition outperform the conventional decoding tech-
nique once n ≥ 18 for 32, 000 shots and n ≥ 22 for 1, 000, 000 shots. The largest
improvement is seen when n = 26, ℓ = 7 for 32, 000 shots, where the 2D-QHT circuit
returned a 91.18% correlation coefficient compared to a 4.12% correlation coefficient
for conventional Q2C, see Figs. 15b and 16a.

(a) 32,000 shots (b) 1,000,000 shots

Fig. 16: Correlation improvement of 2D-QHT over conventional Q2C on Aer simulator
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4.2 Performance of Quantum Haar Transform on Hardware

On quantum simulators, quantum circuits are often preset to their initial state,
and accordingly the overhead associated with state synthesis (preparation) is usu-
ally ignored. However, on actual quantum hardware, state synthesis requires a deep
quantum operation to be applied to the ground |0⟩⊗n

state. IBM Qiskit uses the
Initialize API [23] to implement state synthesis leveraging a method of depth O(2n)
[24, 25]. Including state preparation in hardware execution would introduce significant
overhead to execution time, obfuscate performance differences between Q2C methods,
and restrict experiments to at most 14-qubit states, i.e., images of size (64 × 64 × 3)
pixels, due to constraints of the IBM Quantum platform. Therefore, Fig. 17 com-
pares the execution times for conventional Q2C, QFT-based Q2C, and QHT-based
Q2C methods, excluding state preparation overhead, on the 27-qubit ibmq toronto
processor from IBM Quantum [22].

(a) 1-level decomposition (b) 26-qubit state

Fig. 17: Execution times for 2D-QHT decomposition on the 27-qubit ibmq toronto
device

Taken together, our results demonstrate QHT-based Q2C data decoding, partic-
ularly the measurement-based technique, exhibits significant speedup compared to
contemporary Q2C techniques on hardware. Speedup is shown in Fig. 18, where it
is calculated as the ratio between the execution time of a contemporary Q2C tech-
nique for a given image size and the execution time of the corresponding ℓ-level
measurement-based decomposition.

Fig. 18 shows near-universal speedup of the measurement-based QHT technique
compared to conventional and QFT-based Q2C data decoding on hardware. In gen-
eral, we observe higher speedup for larger circuits and more decomposition levels as
expected, since the measurement-based QHT technique measures ℓ · d fewer qubits
than either the conventional or QFT-based Q2C techniques, without using any addi-
tional quantum gates. Moreover, these results include circuit-independent overhead
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(a) Speedup over conventional Q2C (b) Speedup over QFT-based Q2C

Fig. 18: Speedup of measurement-based 2D-QHT over contemporary Q2C methods
on the 27-qubit ibmq toronto device

from resetting qubits to the ground state between shots. If executions were per-
formed restlessly, we should expect to see even greater speedup from the proposed
measurement-based Q2C technique over QFT-based Q2C.

4.3 Comparison of Packet and Pyramidal Circuits

The depth analysis provided in [8, 11] for the packet and pyramidal circuits assumes
serial execution of each level of decomposition to provide a pessimistic prediction of
execution time. While the new analysis in (10) to (13) is more physically accurate,
quantum devices also possess unique qubit coupling restrictions requiring additional
SWAP operations which are not considered in our analysis. Table 1 presents the cir-
cuit depths of the packet and pyramidal decomposition techniques before and after
optimization in terms of H and SWAP gates. These values were collected from the
QuantumCircuit.depth() [19] API in Qiskit and align with theoretical expectations
from (10) and (12).

Both the packet and pyramidal variants of our proposed QHT-based Q2C tech-
niques have identical circuits at ℓ = 1 and only become distinct for higher levels of
decomposition, i.e., when ℓ > 1. For the circuits from [8, 11], the pyramidal circuit
depth increases quadratically with increasing levels of decomposition, while the packet
circuit depth increases linearly. As a result, the pyramidal circuit depth intersects with
the packet circuit depth at ℓmax, see (9), and would be expected to become shallower
if further decomposition levels were possible. By contrast, the proposed packet cir-
cuits for multilevel decomposition are strictly shallower than the proposed pyramidal
circuits. Overall, the overlapping optimization to the QHT circuits were critical to
achieve shallower circuits than QFT for any image size and level of decomposition.

The circuit execution times as modelled by (11) and (13) do not include the over-
head associated with the measurement operations (gates), resulting from repeated

21



Table 1: Depth optimizations for packet and pyramidal 2D-QHT circuits

(a) Packet theoretical circuit depth in terms of H, SWAP, and Controlled-Phase gates

(b) Pyramidal theoretical circuit depth in terms of H, SWAP, and Controlled-Phase gates

(a) Packet decomposition (b) Pyramidal decomposition

Fig. 19: Expected (theoretical) and measured per-shot execution times of 2D-QHT
for 26-qubit circuits

qubit resets among circuit samples (shots). Accordingly, we conducted experiments to
determine that overhead and accounted for it in our results by reporting the per-shot
execution times, as shown in Fig. 19. After accounting for measurement-gate overhead,
the per-shot execution time on hardware for both packet and pyramidal decomposi-
tion was upper-bounded by the execution time predictions of the pessimistic sequential
model from [8, 12] and lower-bounded by the interleaved/overlapped model presented
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in this work, see Fig. 19. Such behavior should be expected, since additional SWAP
gates from hardware transpilation were not considered.

The performance of the packet and pyramidal circuits in Figs. 17b and 19 reflect
expected behavior for ℓ < 10 from (11) and (13), due to how the interlevel permu-
tations in pyramidal decomposition undermine the parallelism seen from overlapping
levels of packet decomposition, in spite of reducing the size of the Ud−D−QHT operator
every level of decomposition. However, quantum devices have varying topologies and
usually are not fully connected, therefore additional SWAP gates are included dur-
ing hardware transpilation to compensate for the mismatch between the algorithmic
requirements and the target topology of the quantum device. As a result, at higher
levels of decomposition, the packet and pyramidal circuits on actual hardware were
close to following the reported model in [8, 11], as shown in Figs. 17b and 19.

5 Conclusions and Future Work

Contemporary methods of quantum-to-classical (Q2C) data decoding incur signifi-
cant time overhead from repeated sampling of the quantum state, making it difficult
to practically implement time-efficient quantum algorithms. This work proposed Q2C
data decoding methods based on the multidimensional, multilevel-decomposable quan-
tum Haar transform (QHT), including a ‘measurement-based’ method that requires no
additional quantum gates. All methods were implemented on IBM Quantum’s Qiskit
SDK, executed both on a simulator and actual quantum hardware. The experimen-
tal results reveal the efficacy of the proposed techniques to improve time efficiency
while simultaneously improving measurement accuracy. In our future work, we will
leverage our proposed QHT-based Q2C techniques for data-intensive applications such
as quantum machine learning (QML). We will also investigate the effect of different
topologies of quantum devices on the performance of quantum algorithms.
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