
1

Novel Area-Efficient and Flexible Architectures for
Optimal Ate Pairing on FPGA

Oussama Azzouzi∗, Mohamed Anane†, Mouloud Koudil†, Mohamed Issad‡, Yassine Himeur§,
∗ Ecole Nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Système, BP 68M,

16309, Oued-Smar, Alger, Algérie (o_azzouzi@esi.dz)
†Centre Universitaire El Cherif Bouchoucha d’Aflou, Laghouat, Algérie

‡Department of System and Multimedia Architecture, Centre de Développement des Technologies Avancées
(CDTA), Algiers, Algeria

§College of Engineering and Information Technology, University of Dubai, Dubai, UAE (yhimeur@ud.ac.ae)

Abstract—While FPGA is a suitable platform for implementing
cryptographic algorithms, there are several challenges associated
with implementing Optimal Ate pairing on FPGA, such as security,
limited computing resources, and high power consumption. To
overcome these issues, this study introduces three approaches
that can execute the optimal Ate pairing on Barreto-Naehrig
curves using Jacobean coordinates with the goal of reaching
128-bit security on the Genesys board. The first approach
is a pure software implementation utilizing the MicroBlaze
processor. The second involves a combination of software and
hardware, with key operations in Fp and Fp2 being transformed
into IP cores for the MicroBlaze. The third approach builds
on the second by incorporating parallelism to improve the
pairing process. The utilization of multiple MicroBlaze processors
within a single system offers both versatility and parallelism
to speed up pairing calculations. A variety of methods and
parameters are used to optimize the pairing computation,
including Montgomery modular multiplication, the Karatsuba
method, Jacobean coordinates, the Complex squaring method,
sparse multiplication, squaring in Gϕ6Fp12 , and the addition
chain method. The proposed systems are designed to efficiently
utilize limited resources in restricted environments, while still
completing tasks in a timely manner.

Index Terms—Optimal Ate pairing,d Flexible architecture,
Virtex-5, MicroBlaze, Montgomery modular multiplication, Karat-
suba method.

I. INTRODUCTION

Cryptography is a crucial technology for ensuring the
security and privacy of data in today’s digital world [1], [2].
Cryptography is the practice of converting plain text into
a coded message to protect it from unauthorized access or
tampering. It plays a crucial role in securing communication
channels and protecting sensitive information, such as financial
transactions, personal information, and state secrets [3], [4].
Cryptography is widely used in various applications, including
online banking, e-commerce, secure communication between
individuals and organizations, and in the protection of critical
infrastructure systems [5], [6]. Without cryptography, sensitive
information would be vulnerable to cyber-attacks and malicious
activities, leading to severe consequences such as data breaches,
identity theft, and financial loss [7], [8]. Therefore, cryptogra-
phy is essential for ensuring the confidentiality, integrity, and
availability of data and maintaining trust in the digital world
[9], [7]. On the other hand, field-programmable gate arrays
(FPGAs) are increasingly being utilized in edge computing
environments due to their versatility, configurability, and
performance advantages [10], [11]. In edge computing, FPGAs

play a crucial role in accelerating data processing, enabling
real-time analytics, and enhancing overall system performance
[12].

The concept of pairing functions was introduced by André
Weil in 1948, and later it was utilized in cryptography with
the employment of elliptic curve bilinear pairings. The bilinear
property enables the transformation of the discrete logarithm
issue from an elliptic curve to the finite field Fp. This brought
about the emergence of the MOV attack [13] and Frey-
Rück attack [14]. The widespread use of pairing functions in
cryptography emerged in the early 2000s after Joux introduced
the tripartite key exchange scheme for Diffie-Hellman [15].
Since then, pairing functions have been implemented in a
variety of advanced cryptosystems including identity-based
signatures [16], searchable encryption [17], and functional
encryption [18]. One of the most prominent applications of
pairing functions is the Identity-Based Encryption (IBE) [19]
proposed by Boneh and Franklin.

Pairing functions, which are used in cryptography, are
typically constructed using a combination of the Miller Loop
and Final Exponentiation. The performance of these functions
is dependent on the arithmetic used in the primary field
Fp and its extensions Fpk . To improve the efficiency of
pairings, various curves have been discovered that offer
improved computation and enhanced security. Freeman and
colleagues provide a comprehensive categorization of such
"pairing-friendly" curves in their work [20]. Currently, one
of the most favorable options for computational efficiency
and security is the use of Barreto-Naehrig (BN) curves [21].
Many articles have been published that propose protocols
utilizing pairings [15], [19], while others focus on improving
the computation of pairings [22], [23]. A smaller number
of articles propose FPGA implementations for computing
pairing functions [24], [25], [26], [27]. Recently, there has
been a growing interest in implementing cryptographic pairings,
with hardware implementations being considered a superior
approach compared to software developments. Examples of
advancements in pairing function implementations in cryp-
tography include the following studies: In 2010, Ghosh et
al. were the first to implement pairing functions on BN-
curves, offering 128-bit security [28]. Moving on, Cheung et
al. [29] improved execution time in their solution for optimal
Ate pairing with 126-bit security by adopting the Residue
Number System. Fan et al. provided a hardware implementation
for pairing [30] in 2012 utilizing Fp-arithmetic. Then, using

ar
X

iv
:2

30
8.

04
26

1v
2

 [
cs

.C
R

]
 2

5
A

ug
 2

02
3

2

Fpk -arithmetic in hardware, Ghosh et al. created a complete
hardware implementation of Ate and optimal Ate pairing [26].
A method for computing the challenging portion of the final
exponentiation with the least amount of resource consumption
was introduced in 2015 by Duquesne et al [31]. A high-speed
and effective optimal Ate pairing processor implementation
over BN and BLS12 curves on FPGA was lastly proposed by
Sghaier et al. in 2018 [32].

On the other hand, the emergence of post-quantum cryptogra-
phy (PQC) and the utilization of alternative schemes like Kyber
and Dilithium as replacements for RSA/ECC have generated
significant interest due to their ability to withstand quantum
attacks [33]. An ideal choice for low-resource applications
is the ECC since it offers the same level of security with
smaller key sizes compared to other existing public key
encryption schemes. An effective platform for an embedded
co-processor is achieved by designing efficient functional units
for elliptic curve computations over binary fields, making
it suitable for low-resource applications. [34] presents an
efficient co-processor for elliptic curve cryptography (ECC)
over binary Edwards curves, designed for area-constrained
devices. By utilizing state-of-the-art binary Edwards curve
equations, it achieves a secure yet fast implementation of
point multiplication. The co-processor offers the same level
of security as other public key encryption schemes but with
smaller key sizes, making it ideal for low-resource applications.
Synthesis results show that it requires about 50% fewer clock
cycles for point multiplication and occupies a similar silicon
area compared to recent literature.

Although ECC is widely implemented and efficient, its
security is reliant on the complexity of the elliptic curve
discrete logarithm problem, which can be solved by quantum
computers employing Shor’s algorithm. To ensure long-term
security, researchers have actively explored and developed PQC
schemes that offer robust protection against the threats posed
by quantum computing [7]. Kyber, focusing on key exchange
protocols, and Dilithium, specializing in digital signatures,
exemplify such schemes. The adoption of post-quantum
algorithms such as Kyber and Dilithium represents a proactive
approach in guaranteeing the ongoing security of cryptographic
systems in anticipation of forthcoming advancements in
quantum computing [35]. For instance, the authors in [36]
demonstrate the practicality and efficiency of the Supersingular
Isogeny Diffie-Hellman (SIDH) key exchange on 64-bit ARM
architectures. SIDH is a cryptographic key exchange protocol
that relies on supersingular isogenies, a concept derived from
elliptic curve theory. Moving on, Anastasova et al. [37] explore
the fast strategies for the implementation of Supersingular
Isogeny Key Encapsulation (SIKE) Round 3 on ARM Cortex-
M4, showcasing optimized techniques. Additionally, [38]
discusses error detection architectures for Ring Polynomial
Multiplication and Modular Reduction of Ring-LWE, providing
valuable insights into ASIC implementations. These works
collectively contribute to the advancement of cryptographic
implementations on resource-constrained platforms and are
crucial in the context of secure and reliable systems. Besides,
[39] investigates hardware accelerators that are specifically
designed to improve the efficiency of digital signature opera-
tions utilizing the Ed25519 algorithm. Ed25519 is a widely
employed digital signature algorithm that relies on the elliptic
curve Curve25519.

Moving on, to acknowledge the significance of lightweight
cryptography (LWC) and building blocks in low-energy and
low-power implementations, many studies have been proposed
in the literature. For instance, [40] presents low-complexity
superserial architectures for dual basis (DB) multiplication over
GF(2m) to achieve lightweight cryptographic algorithms. It is
the first time such a multiplier is proposed in open literature.
Moving forward, [41] explores cryptographic architectures’
reliability in providing security properties to sensitive usage
models. It considers two underlying block ciphers suitable for
authenticated encryption algorithms: the Advanced Encryption
Standard type and Feistel network structure. In the same direc-
tion, [42] discusses augmenting block ciphers’ confidentiality
with authentication using the standardized Galois Counter
Mode (GCM). Existing GCM error detection methods are
either limited to specific architectures or ineffective against
biased faults.

While FPGA is a suitable platform for implementing cryp-
tographic algorithms, there are several challenges associated
with implementing optimal Ate pairing on FPGA. Some of
these challenges include (i) high computational complexity
due to the fact that optimal Ate pairing involves complex
mathematical operations; (ii) lightweight cryptography [40]
poses resource constraints on FPGAs, necessitating the opti-
mization of optimal Ate pairing to efficiently utilize logic gates,
memory, and power. Techniques like algorithmic optimization,
parallelization, and hardware-specific optimization can enable
faster and more efficient FPGA implementations [43]; (iii)
high power consumption as optimal Ate pairing requires a
large number of clock cycles to execute, which increases
the power consumption of the FPGA [44]; and (iv) design
complexity which is due to the requirement of a thorough
understanding of the mathematical operations involved, as well
as the hardware design and implementation [45]. (v) FPGA
implementations are vulnerable to physical attacks due to the
hardware’s inherent properties. Techniques such as resistance
to power analysis, and secure key storage must be employed
to mitigate vulnerabilities related to side-channel attacks
[46]. The assessment of combined attacks requires a deep
understanding of potential vulnerabilities in FPGA designs, the
detection mechanisms employed by attackers, and techniques
for analyzing power consumption. Implementation of specific
countermeasures is possible, including the utilization of error
detection and correction techniques to identify and mitigate
injected faults. Furthermore, reducing information leakage
through masking techniques and continuously monitoring
power consumption to detect anomalies can be employed.

In this paper, we propose three different methods for
implementing optimal Ate pairing on BN-curves with 128-bit
security using the Virtex-5 circuit. Our first method is a full
software implementation on an FPGA with a MicroBlaze
processor, offering high flexibility. Our second approach
integrates an intellectual property (IP) core written in VHDL
into the MicroBlaze, offering a balance of flexibility, area, and
speed. The third method builds upon the second by utilizing
parallelism for enhanced computation speed. Our work adds
to the existing literature on FPGA-based pairing implemen-
tations by providing flexible solutions that support various
pairing methods and parameters, such as Montgomery modular
multiplication, the Karatsuba method, and the addition chain
method. The goal is to minimize resource consumption while

3

maintaining reasonable execution times by combining a mixed
software and hardware approach and utilizing parallelism.
Overall the main contributios of this paper are summarized as
follows:

• Proposing three methods for implementing optimal Ate
pairing on BN-curves with 128-bit security using Virtex-5
circuit by (i) using full software implementation on FPGA
with MicroBlaze processor, offering high flexibility; (ii)
introducing IP core written in VHDL integrated into
MicroBlaze, offering balance of flexibility, area, and
speed; and (iii) building on second method by utilizing
parallelism for enhanced computation speed.

• Adding to existing literature on FPGA-based pairing
implementations.

• Providing flexible solutions that support various pairing
methods and parameters (Montgomery modular multipli-
cation, Karatsuba method, addition chain method)

• Helping minimizing resource consumption while maintain-
ing reasonable execution times through a mixed software
and hardware approach and utilization of parallelism

The reminder of this paper is organized as follows. Section 2
presents an overview of optimal Ate pairing on BN curves and
the relevant parameters. Section 3 covers the IP cores made
using VHDL. Section 4 details three methods for embedding
optimal Ate pairing on FPGA. In Section 5, our implementation
results are evaluated and compared to previous studies. Finally,
Section 6 concludes the research findings.

II. OPTIMAL ATE PAIRING OVER BN-CURVES

A pairing function, denoted as e(P,Q), maps two points, P
and Q, on an elliptic curve E to an element in an extension
field Fp12 for two cyclic additive groups G1 and G2 and a
multiplicative group G3. It is required to possess the properties
of bilinearity and non-degeneracy. One of the most useful
properties derived from bilinearity is : for P ∈ G1, Q ∈ G2,
we have:

∀j ∈ N : e([j]P,Q) = e(P,Q)
j
= e(P, [j]Q) (1)

As stated in [21], Barreto-Naehrig introduced a technique
for creating pairing-friendly elliptic curves that are defined
over a prime field Fp. These curves, known as ordinary elliptic
curves, are crucial for achieving a 128-bit level of security
and for efficient pairing computation. They are defined by the
following equation:

E : y2 = x3 + b where b ̸= 0 (2)

The embedding degree for BN-curves is 12. Additionally,
the prime field characteristic, p, the group order, r, and the
trace of Frobenius, tr of these curves are determined by the
following:

p(t) = 36t4 + 36t3 + 24t2 + 6t+ 1
r(t) = 36t4 + 36t3 + 18t2 + 6t+ 1

tr(t) = 6t2 + 1, where t ∈ Z
(3)

The choice of parameters plays a crucial role in the security
and efficiency of the pairing function. The variable t is chosen
so that both p and r are prime numbers. Furthermore, it is
important to select a large enough value of t in order to attain
a higher level of security. According to the recommendations

of National Institute of Standards and Technology (NIST)
[47], for a security level similar to AES 128 bits, t should be
such that log2(r(t)) ≥ 256 and 3000 ≤ k.log2(p(t)) ≤ 5000
, which leads to t having roughly 64 bits.

The notation E[r] represents the r-torsion subgroup of E,
and πp is the Frobenius endomorphism that maps E to E,
defined as πp(x, y) = (xp, yp). We define G1 as E(Fp), G2

as a subset of E(Fp12), and G3 as µr which is part of F ∗
p12 .

The optimal Ate pairing on BN-curves can be represented by
the following mapping:

eopt : G2 ×G1 → G3

(Q,P) 7→ (fs,Q(P) . f[s]Q,πp(Q)(P) . f[s]Q+πp(Q),

−π2
p(Q)(P))

p12−1
r

(4)

The optimal Ate pairing algorithm, as described in [22],
is outlined in Algorithm 1. Using the non-adjacent form
(NAF representation), the algorithm has three main steps. The
Miller Loop, computed in lines 3-11, generates the value of
fs,Q(P). Point additions with the Frobenius map of point Q
are calculated in lines 12-14, and the final exponentiation is
performed in line 15. Note that in this algorithm, s is defined
as 6t+ 2.

Algorithm 1: Optimal Ate pairing over BN-curves
Data: P ∈ G1 and Q ∈ G2

Result: aopt(Q,P)
write s = 6t+ 2 as s =

∑L−1
i=0 si2

i ,where
si ∈ {−1, 0, 1}; L = bitlength(s)
T ← Q; f ← 1;
for i← L− 2 to 0 do

f ← f2.lT,T (P); T ← 2T ;
if si = −1 then

f ← f.lT,−Q(P); T ← T −Q;
end
if si = 1 then

f ← f.lT,Q(P); T ← T +Q;
end

end
Q1 ← πp(Q); Q2 ← πp2(Q);
f ← f.lT,Q1(P); T ← T +Q1;
f ← f.lT,−Q2(P); T ← T −Q2;

f ← f
p12−1

r ;
return f ;

The key operations utilized in the optimal Ate pairing algo-
rithm, as detailed in [22], include: Doubling and Addition steps
(occurring on lines 4, 6, 9, 13 and 14), Sparse multiplication
as outlined in [48] (on lines 4, 6, 9, 13 and 14) which is a
multiplication in Fp12 where the second operand has half of
the coefficients equal to zero, the Frobenius operation (on line
12), Squaring in the cyclotomic subgroup Gϕ6(Fp12) (on line
15), and the Final Exponentiation (on line 15). The doubling
and addition steps are executed in Fp2 , while most of the other
operations are performed in Fp12 .

In order to efficiently perform extended field operations
in Fp12 , advanced techniques can be used to construct the
arithmetic step by step in smaller extensions fields, such as the
polynomial irreducible Xk − β, and a tower of extensions of
degree 2 and 3 can be utilized, similar to the method presented
in [49].

4

Fp2 =
Fp[µ]
µ2−β , where β = −5

Fp6 =
Fp2 [ν]

ν3−ξ , where ξ = µ

Fp12 =
Fp6 [ω]

(ω2−ν)

(5)

A technique for representing elements of the field Fp12 using
a combination of smaller extensions can be used to improve
the speed of pairing. This method, called a "towering scheme,"
expresses an element f as f = g+hω, where g, h ∈ Fp6 . The
element g can be further broken down into g0+g1ν+g2ν

2, and
the same is done for h, where gi, hi ∈ Fp2 for i = 0, 1, 2. This
approach, as outlined in [49], allows for a faster computation
of pairing.

A. Miller Loop

The Miller algorithm, as found in popular pairings such
as Weil, Tate, Ate and optimal Ate pairing [50], is used to
construct a rational function fr,P associated with a point P
on an elliptic curve E, which is evaluated at another point Q.
This is achieved through an iterative process using the double
and addition method, and the function fr,P is defined by its
divisor.

Div(fr,P) = r(P)− ([r]P)− (r − 1)(P∞) (6)

where r is an integer and P∞ denotes the point at infinity.
The function is calculated by utilizing Miller’s equality.

f[i+j],P = f[i]P .f[j]P .
l[i]P,[j]P

v[i+j]P
(7)

where l[i]P,[j]P is the line passing through [i]P and [j]P ,
and v[i+j]P is the vertical to E at [i+ j]P . The performance
of the Miller Loop is affected by the number of bits in the
exponent, as well as its Hamming weight.

1) Doubling and tangent equations: The formulas for T =
2Q = (XT , YT , ZT) in Jacobian coordinates are defined as
follows:

XR = 9X4
T − 8YTY

2
T

YR = 3X2
T (4XTYT −XR)− 8Y 4

T

ZR = 4XTYT

(8)

To find the tangent line equation at T when a point P =
(xp, yp) in E(Fp) is given in affine coordinates, the following
calculation can be performed:

lT,T (P) = (4ZRZ
2
T yP)−(6X2

TZ
2
Txp)ω+(6X3

T−4Y 2
T)ω

2 ∈ Fp12

(9)
2) Addition and line equations: The formulas for addition

R = T +Q = (XR, YR, ZR) are defined as follows:

XR = (2YQZ
3
T − 2YT)

2 − 4(XQZ
2
T −XT)

3

−8(XQZ
2
TXT)

2XT

YR = (2YQZ
3
T − 2YT) (4(XQZ

2
T −XT)

2XT −XR)
−8YT (XQZ

2
T −XT)

ZR = 2ZT (XQZ
2
T −XT)

(10)
The equation of the line passing through T and Q when

evaluated at point P is:

lT,Q(P) = (4ZT (XQZ
2
T −XT)yp)− (4xp(YQZ

3
T + YT))ω+

(4XQ(YQZ
2
TXQ − YT)− 4YQZT (XQZ

2
T −XT))ω

2 ∈ Fp12

(11)
After the Miller Loop has been completed, an additional

step known as the Final Exponentiation must be performed.
This step involves raising the result of the Miller Loop to the
power pk−1

r .

B. Final Exponentiation

Several techniques can be employed to perform the Final
Exponentiation step in algorithm 1. The traditional approach is
to use the square and multiply method, however, this method
can be time-consuming as the exponent e = p12−1

r is large. To
reduce computation time, the exponent can be broken down
into smaller components.

e =
p12 − 1

r
= (p6 − 1).(p2 + 1).

p4 − p2 + 1

r
(12)

To calculate the first part f (p6−1)(p2+1) ∈ Fp12 , which is
the easy part, we can use simple conjugation and Frobenius
operations to raise f to the power p6 and p2, respectively. This
results in an element of the cyclotomic subgroup Gϕ6(Fp2).
There are various methods available in the literature for
calculating the hard part of the Final Exponentiation. One
such method is the approach proposed by Scott et al. in 2009
[23], which is based on addition chain. This method simplifies
computations by keeping all elements involved within the
cyclotomic subgroup Gϕ6(Fp2), reducing the number of
required operations for f2 computations [51], and allowing
for inversions to be performed as a simple conjugation [48].

The addition chain method utilizes the polynomial represen-
tation of p and r in t to effectively decompose the hard part
of the Final Exponentiation. This method involves a clever
procedure that involves the computation of ten intermediate
values, as follows:

f t, f t2 , f t3 , fp, fp2

, fp3

, f (tp), f (t2p), f (t3p), f (t2p2) (13)

These crucial components are employed to build a chain
of multiplications, the evaluation of which results in the
Final Exponentiation fe, through the implementation of the
following equation:

[fp.fp2

.fp3

].[1f]
2
.[(f t2)p

2

]
6
.[1
(ft)p]

6
.[1
(ft.ft2)

p]
18

.[1
ft2

]
30
.[1
(ft2 .ft3)p

]
36 (14)

To raise an element to the power p, we can compute it by
applying the Frobenius operation. Additionally, to raise an
element to the power t, which can be time-consuming, we
can use the square and multiply method. Lastly, we can use
Fermat’s little theorem to perform modular inversion in Fp by
using this equation:

A−1 ≡ Ap−2modp (15)

5

III. IP CORES ON FPGA
The costs of each operation required to compute the optimal

Ate pairing, as presented in this work, are outlined in Table
I. The table includes notations such as {a,m, s, i : Fp} and
{a2,m2, s2, i2 : Fp2} for operations such as modular addition,
subtraction, multiplication, squaring and inversion, as well
as mβ for multiplication by a constant in Fp. Many pairing
functions rely on the Miller Loop and Final Exponentiation,
which necessitate arithmetic operations in Fpk .

In this work, we have proposed a technique to perform
mathematical operations in the fields Fp6 and Fp12 using
arithmetic in the fields Fp and Fp2 as outlined in Table I. This
method enables us to avoid the challenge of routing where
operations in Fp6 and Fp12 are implemented in hardware.
Our approach is intended to minimize resource consumption
and to increase system flexibility by working in Fp and Fp2 .
Additionally, we have developed modular operations in both
fields, Fp and Fp2 as VHDL IP cores, which are controlled by
MicoBlaze(s). Furthermore, any curves that require arithmetic
in Fp and Fp2 can utilize these IP cores by configuring only
the software aspect.

A. MMM Core

The multiplication operation in the base field Fp is a crucial
step in computing a cryptographic pairing. There are various
methods that can be used to perform this operation. In this
paper, we utilize the Montgomery modular multiplication
(MMM) algorithm, which is an efficient technique for perform-
ing modular multiplication. This algorithm eliminates the need
for division by converting modulus reduction into a series of
additions and right shifts. The MMM algorithm based on High
Radix-r (r = 2n) is defined by the following expression:

Se = Mont(A,B) = (A×B ×R−1) mod p

R is the Montgomery constant. Algorithm 2 illustrates the
Montgomery modular multiplication in Radix-232 as presented
in [52]. It is composed of two nested loops (i) and (j). The
outer loop (i) is used to calculate the qi digits. The inner
loop (j) incorporates the digits B[j] and p[j] to compute the
digits of the intermediate result S[j − 1]. The final output Se

is obtained when i = j = e.
For practical use, each operand must be converted to its

Montgomery form, adding an extra modular multiplication
step due to the R−1 factor needed for each multiplication. But
in pairing computation, where multiple multiplications occur,
the operands only need to be converted once at the start and
then back at the end.

Our hardware implementation of the Montgomery modular
multiplication (MMM) is shown in Figure 1. It follows the
operations defined in algorithm 2. The architecture features
two 32-by-32 bit multipliers (Mul1 and Mul2), four carry-
propagate adders (Add1, Add2, Add3 and Add4), four registers
(Reg1, Reg2, Reg3, Reg4), four D Flip-flops, two multiplexers
(Mux1, Mux2), and one block register. The inputs A, B, and
p are stored in memory, and the algorithm’s intermediate
results S[j]i are stored in the block register as a queue. The
MMM core is controlled by four signals: Ctr_Mux, Ctr_qi,
Ctr_c1_c2, and Ctr_c3_c4.

In our implementation of the Montgomery modular mul-
tiplication (MMM), we employ the steps in Algorithm 2

Algorithm 2: Radix-232 Montgomery modular multi-
plication

Data: A =
∑e

i=0 A[i]× 2i×32, B =∑e
i=0 B[i]× 2i×32, p =

∑e
i=0 p[i]× 2i×32,

Varaibles: Hi =
∑e

j=0 H[j]i × 2j×32, H1i =∑e
j=0 H1[j]i × 2j×32, H2i =

∑e
j=0 H2[j]i × 2j×32,

C1i =
∑e

j=0 C1[j]i × 2j×32, C2i =∑e
j=0 C2[j]i × 2j×32, c1j = c2j = c3j = c4j ,

Pre-computed: p′ = −p[0]−1mod232

Result: Se =
∑e

j=0 S[j]e × 2j×32 =

(A×B ×R−1) mod p
S0 =

∑e
j=0 S[j]0 × 2j×32 = 0

for i← 0 to e do
C1[−1]i = 0; C2[−1]i = 0
c1−1 = c2−1 = c3−1 = c4−1 = 0
H[0]i = S[0]i +A[i]×B[0]
qi = (H[0]i × p′) mod 232

for j ← 0 to e do
(C1[j]i2

32, H1[j]i) = A[i]×B[j]
(c2j2

32, c1j2
32, H[j]i) =

H1[j]i + C1[j − 1]i + S[j]ic1j−1 + c2j−1

(C2[j]i2
32, H2[j]i) = qi × p[i]

(c4j2
32, c3j2

32, S[j − 1]i) =
H[j]i +H2[j]i + C2[j − 1]i + c3j−1 + c4j−1

end
S[e]i = c1e + c2e + c3e + c4e + c1[e]i + c2[e]i

end
return Se

and the hardware architecture depicted in Figure 1. This
architecture encompasses components like multipliers (Mul1
and Mul2), adders, registers, D Flip-flops, multiplexers, and a
block register. The execution of the MMM involves storing
the operands A, B, and p in memory, and the intermediate
results S[j]i are temporarily stored in the block register as a
queue. The MMM process occurs in three stages: First, the
digit qi is computed and kept in Reg3, which is managed
by the signal Ctr_qi. Then, the multiplications outlined in
lines 8, 9 and 10, 11 of Algorithm 2 are performed, enabling
the computation of the digits H[j]i and S[j]i. Note that the
multiplier Mul2 is shared between the multiplications of lines
6 and 10 in Algorithm 2.

B. KARATSUBA Core

The arithmetic operations in Fp2 , including modular addi-
tion, subtraction, multiplication, squaring, multiplication by
a constant, reduction and inversion, are represented by two
numbers in Fp. The traditional method of performing modular
multiplication in Fp2 , as outlined in algorithm 3, requires a
minimum of four multiplications and five additions/subtractions
in Fp. However, it can be optimized through parallel computa-
tion, which reduces the number of required operations to two
multiplications and two additions/subtractions in Fp. However,
this optimization comes at the cost of duplicating the area
required.

In this work, the KARATSUBA IP core is introduced,
which facilitates the performance of various modular oper-
ations in Fp2 , including multiplication, squaring, constant
multiplication, and reduction. Furthermore, it can be employed

6

TABLE I: The cost of computing optimal Ate pairing operations

Optimal Ate Add/sub Multiplication Squaring Inversion

Fp a m s i

Fp2 a2 = 2a m2 = 3m+mβ + 5a s2 = 2m+ 2mβ + 5a i2 = 4m+mβ + 2a+ i

Fp6 3a2 6m2 + 2mβ + 15a2 2m2 + 3s2 + 2mβ + 10a2 9m2 + 3s2 + 4mβ + 5a2 + i2

Fp12 6a2 18m2 + 7mβ + 60a2 12m2 + 6mβ + 45a2 25m2 + 9s2 + 13mβ + 61a2 + i2

Gϕ6
(Fp2) 6a2 18m2 + 7mβ + 60a2 6m2 + 6mβ + 39a2 Conjugation

Sparse multiplication 13m2 + 3mβ + 28a2
Doubling and tangent line step 3m2 + 8s2 + 25a2 + 4m

Addition and line step 7m2 + 8s2 + 25a2 + 4m

8

Fig. 1. Hardware architecture of MMM on FPGA

 The hardware architecture of our MMM is shown in figure 1. It performs the arithmetic operations of

algorithm 2. It contains two 32 × 32 bits multipliers (Mul1 and Mul2), four carry propagate adders (Add1,

Add2, Add3 and Add4), four registers (Reg1, Reg2, Reg3, Reg4), four D Flip-flops, two multiplexers (Mux1,

Mux2) and one bloc registers. The execution of the MMM core requires the storage of the operands 𝐴, 𝐵 and 𝑝

in memories. The intermediate results digits 𝑆[𝑗]𝑖 of algorithm 2 are stored in the block register as queue. MMM

receives four control signals, namely 𝐶𝑡𝑟_𝑀𝑢𝑥, 𝐶𝑡𝑟_𝑞𝑖, 𝐶𝑡𝑟_𝑐1_𝑐2 and 𝐶𝑡𝑟_𝑐1_𝑐2.

 Our MMM performs each iteration (𝑖) of algorithm 2 in three steps. In the first step, the process begins by the

execution of lines 5 and 6 for computing the digit 𝑞𝑖. Its value is stored in Reg3 which is controlled by 𝐶𝑡𝑟_𝑞𝑖.

Reg3 holds the value of 𝑞𝑖 constant during the execution of the iterations (𝑗) of algorithm 2. The second and the

third steps consist of performing the computations of the multiplications of lines (8, 9) and (10, 11) of algorithm

2, respectively. They allows the computations of the digits 𝐻[𝑗]𝑖 and 𝑆[𝑗]𝑖. The multiplier Mul2 is shared

between the execution of the multiplications of lines 6 and 10 of algorithm 2.

3.2 KARATSUBA IP Core

Arithmetic in 𝐹𝑝2 contains modular addition, subtraction, multiplication, squaring, multiplication by a constant,

reduction and inversion, where all operators are presented by two numbers in 𝐹𝑝. Using traditional method,

modular multiplication in 𝐹𝑝2 costs at least four multiplications and five additions/subtractions in 𝐹𝑝. It can be

optimized by parallel computation. For that, we proposed the algorithm 3. This later costs only two

multiplications plus two additions/subtractions in 𝐹𝑝.

Algorithm 3. Parallel Karatsuba method in 𝐹𝑝2

Inputs : 𝐴 = 𝑎0 + 𝑎1𝑢, 𝐵 = 𝑏0 + 𝑏1𝑢
Output : 𝐶 = 𝑐0 + 𝑐1𝑢

Begin
1. 𝑡0 ← 𝑎0 ∗ 𝑏0, 𝑡1 ← 𝑎1 ∗ 𝑏1, 𝑡𝑚𝑝 ← 𝑏0 + 𝑏1, 𝑐1 ← 𝑎0 + 𝑎1
2. 𝑐1 ← 𝑐1 ∗ 𝑡𝑚𝑝, 𝑐0 ← 𝑡1 ∗ 𝑟𝑒𝑑𝐹𝑝
3. 𝑐0 ← 𝑐0 − 𝑡0, 𝑐1 ← 𝑐1 − 𝑡0
4. 𝑐1 ← 𝑐1 − 𝑡1
End

Mul1

B[j]

32

A[i]

32

clk

R
eg

 1

clk

C1[j](i)

A
dd1

H1[j](i)

D

clk

32

32

c1

32

A
dd2

D

clk

c2

32 R
eg

 1

clk

Ctr_c1_c2

M
ux2

p[j]

32

32

p'

Mul2

M
ux2

Ctr_Mux

clk

R
eg

 4

clk

C2[j](i)

32

A
dd3

32

H2[j](i)

D

A
dd4

D

c3

c4

clk

clk

32

Ctr_c3_c4

32

R
eg

 3

Ctr_qi

clk

q(i)

32

32

B
lo

c

re
gi

st
er

s

Out put

Si computation

Hi computation

H[j](i)

S[j](i)

Fig. 1: Design of Montgomery Modular Multiplication on an FPGA

Algorithm 3: Karatsuba multiplication method in Fp2

Data: A = a0 + a1µ, B = b0 + b1µ
Result: C = c0 + c1µ
t0 ← a0 ∗ b0, tmp← b0 + b1
t1 ← a1 ∗ b1, c1 ← a0 + a1
c0 ← t1 ∗ redFp
c1 ← c1 ∗ tmp
c0 ← c0 − t0

to execute Montgomery modular multiplication in Fp. The
design of KARATSUBA is shown in Figure 2 and involves

five stages, controlled by a control circuit that selects the
appropriate IPs for each stage. The core includes the MMM
and ADD/SUB IP VHDL cores. This later is used for modular
addition/subtraction in Fp.

The KARATSUBA IP enhances the efficiency of modular
operations in Fp2 . All of these operations can be executed
by a single IP, resulting in reduced computational resources.
The KARATSUBA IP leverages the Karatsuba algorithm,
a fast multiplication technique, to minimize the number of
elementary multiplications compared to traditional methods.
Moreover, it improves the execution time compared to purely
software implementations. In particular, the computation cost
of modular multiplication in Fp2 was initially 53942 cycles

7

Fig. 2: Hardware architecture of KARATSUBA on FPGA

with pure Software implementation in MicroBlaze, but it
reduced significantly to only 1240 cycles with the use of
KARATSUBA IP. Table II presents the FPGA-based hardware
outcomes of the KARATSUBA IP.

TABLE II: The hardware results of KARATSUBA

IP Core Slices DSP BRAM cycles
ADD/SUB 487 6 7 10

MMM 495 8 3 130
KARATSUBA 982 14 10 550

IV. PROPOSED ARCHITECTURES FOR OPTIMAL ATE
PAIRING

In this research, we propose three different designs for im-
plementing the optimal Ate pairing algorithm as an embedded
system on an FPGA. We will now describe these hardware
architectures in detail.

A. Signal MicroBlaze-based software implementation

In this approach, a fully software-based implementation of
optimal Ate on a Genesys board is presented as a pioneering
solution. The method involves storing all the required functions
and operations for computing Optimal Ate in memory (BRAM)
and executing them sequentially using a MicroBlaze processor.

The MicroBlaze is a 32-bit RISC soft processor designed
by Xilinx for embedded systems, and can be implemented on
various development boards from Xilinx or their partners. It
offers fundamental operations like addition, subtraction, and
multiplication. To achieve optimal performance in Ate pairing,
all operands are represented in 32-bit packets.

The optimal Ate pairing is executed through a C program on
the MicroBlaze using SDK tools. The software architecture is
structured into four levels as depicted in Figure 3. The top level
encompasses the pairing function, followed by the second level
that focuses on the Miller algorithm and Final Exponentiation.
The third level consists of the Doubling step, Addition step, and
the Frobenius function. Finally, the fourth level encompasses
the Frobenius operations, arithmetic operations in finite fields
(such as addition, subtraction, multiplication, and division),
and exponentiation in fields Fp, Fp2 , Fp6 , and Fp12 .

Most operations are performed in the extended fields of
quadratic (Fp2) and cubic (Fp3) within the towering scheme
F(((p2)2)3). According to [53], there are several techniques
available for multiplication and squaring in such extended
fields. In particular, the Karatsuba approach is utilized for
multiplication and the complex method is implemented for
squaring in Fp2 . Additionally, the Karatsuba method is applied
for both multiplication and squaring in Fp3 .

The hardware architecture for executing the optimal Ate
pairing on a Virtex-5 circuit with a MicroBlaze processor is
illustrated in Figure 4. The design encompasses a MicroBlaze
processor, Block Random Access Memory (BRAM), Local
Memory Buses (ILMB, DLMB) to organize the BRAM, a
Timer for timing the execution, and a Universal Asynchronous
Receiver Transmitter (UART) to communicate input and output
data with the serial port.

B. Single MicroBlaze-based SW/HW implementation

The second approach in this work involves a combination
of software and hardware design for optimal Ate pairing on
BN-curves using a Virtex-5 circuit. To enhance performance,
an accelerator IP core was integrated into the design and

8

Fig. 3: Optimal Ate pairing implementation hierarchy

Fig. 4: Hardware architecture of Mb software approach

implemented in conjunction with the MicroBlaze processor.
This approach aims to improve the overall execution time
compared to the initial one. In particular, the computation cost
of modular multiplication in Fp was initially 12968 cycles with
pure software implementation in MicroBlaze, but it reduced
significantly to only 475 cycles with the use of MMM IP.

The first design based on this approach use our MMM core
to perform all the necessary modular multiplication operations,
which can be significant for pairing defined on 256-bit BN-
curves, as shown in reference [54]. The hardware architecture
for this approach is illustrated in Figure 5.

In the second design of the hardware/software approach
for optimal Ate pairing on BN-curves, a KARATSUBA core
is utilized in conjunction with the MicroBlaze processor to
perform all necessary operations in the fields Fp and Fp2 . The
architecture of this embedded system is depicted in Figure 6.

Fig. 5: Hardware architecture of Mb/MMM approach

The partitioning method suggested in this work combines
both software and hardware elements, resulting in improved
execution speed and increased flexibility in the design of the
embedded system. The higher level functions are implemented
in software, while the lower level functions are executed by
specialized IP cores. However, it is important to note that
the transfer time of data between the MicroBlaze and the IP
core also plays a significant role in determining the overall
execution time.

The overall structure of how our IP cores are integrated
with the MicroBlaze processor is depicted in Figure 7. The IP
cores are connected to the MicroBlaze through the use of the
Xilinx PLB Bus, which facilitates the exchange of data and
instructions between the two components. The design includes
the Xilinx Intellectual Property InterFace (IPIF) and User
Logic blocks, which communicate with each other through a

9

Fig. 6: Hardware architecture of Mb/KARATSUBA approach

standard interface called IP InterConnect (IPIC).

Fig. 7: The design of the hardware components for our IP
cores.

The IP cores’ integration with the MicroBlaze processor is
shown in Figure 7. The cores are linked to the MicroBlaze
through the PLB Bus from Xilinx, which manages data
and instruction transfer. The architecture consists of Xilinx’s
Intellectual Property Interface (IPIF) and User_Logic blocks,
communicating via the standard IP InterConnect (IPIC) back-
end interface. The IPIF interface decodes the PLB system
bus communication protocol and has three registers: Ins_reg,
DataIn_reg, and DataOut_reg. MicroBlaze sends instruction
codes via the Ins_reg instruction register. The User_Logic
block implements the circuit logic and includes three units:
the Memory Unit (MU), the Control Unit (CU), and the IP core.
The CU retrieves instructions from the Ins_reg and manages
the MU and IP core.

C. Dual MicroBlaze-based SW/HW implementation

Optimal Ate pairing demonstrates parallelism at various
levels, ranging from functions in Fp to higher levels in Fp12

.
As we move from lower to higher levels, a significant level
of parallelism becomes evident, providing the impetus for
exploring and developing diverse architecture configurations.
These configurations involve variations in hardware compo-
nents, including the number of MicroBlaze processors and
KARATSUBA IPs employed.

In our study, we have investigated multiple
software/hardware architecture configurations for the
implementation of optimal Ate pairing. This analysis enables
us to evaluate the performance and hardware resources

utilized in each configuration, aiding in the identification
of the most resource-efficient option while maintaining
reasonable execution time. Several architectures can be
explored and developed, such as: 1MB/2KARATSUBA,
1MB/3KARATSUBA, 2MB/1KARATSUBA,
2MB/2KARATSUBA, 3MB/1KARATSUBA,
3MB/2KARATSUBA, 3MB/3KARATSUBA, and more.

The third approach, in this work, focuses on utilizing the
inherent parallelism of key operations, which include modular
multiplication in Fp6 and Fp12 , sparse multiplication, squaring
in the cyclotomic subgroup Gϕ6(Fp2), as well as doubling and
addition steps. Moreover, parallelism becomes crucial when
executing frequently repeated key operations for calculating
optimal Ate. For example, algorithm 4 shows the multiplication
function in Fp6 .

Algorithm 4: Multiplication in Fp6

Data: A = a0 + a1x+ a2x
2, B = b0 + b1x+ b2x

2

Result: C = c0 + c1x+ c2x
2

t0 ← a0 ∗ b0
t1 ← a1 ∗ b1
t2 ← a2 ∗ b2
c0 ← [((a1 + a2) ∗ (b1 + b2))− t1 − t2].ξ + t0
c1 ← [((a0 + a1) ∗ (b0 + b1))− t0 − t1] + t2.ξ
c2 ← [((a0 + a2) ∗ (b0 + b2))− t0 − t2] + t1

The cost of algorithm 4 is : 6 Karatsuba + 15 add Fp2 + 2
red Fp2

After developing and testing the various operations/functions
on the Virtex5 board, We have obtained the following signifi-
cant result.

2 add soft Fp2 (1272 cycles) >≈ Karatsuba Fp2 (1240 cycles)

add soft Fp2 (636 cycles) ≈ red Fp2 (590 cycles)

We have the execution time of a single multiplication in Fp2 ,
which is almost the same as that of two addition operations in
software on MicroBlaze. Additionally, the execution time of a
reduction operation in Fp2 using KARATSUBA is almost the
same as that of a software addition operation on MicroBlaze.
Based on these results, the algorithm 4 is executed on the two
processors, as it shown in table III.

{.ξ} respresnts modular reduction in Fp2 . {t and r} represent
the transfer time by FSL.

Now, the cost of algorithm 4 is : Karatsuba + 14 add soft
Fp2 + 21 transfert FSL.

We can clearly observe a significant improvement in
execution time for the multiplication function in Fp6 .

The same principle is applied to the key operations/functions
in optimal Ate, such as functions in Fp6 , Fp12 , Doubling and
Addition steps, Sparse multiplication, exponentiation, and so
on.

In order to implement optimal Ate pairing in an efficient
manner, a specific architecture was chosen that meets the
criteria of minimal memory usage while maintaining an
acceptable execution time. As shown in Figure 8, a parallel
and flexible approach is proposed, utilizing two MicroBlaze
processors and an IP KARATSUBA core. The processors,
labeled as MB0 and MB1, are connected through a high-
speed FSL bus. The MB0 processor acts as the master and

10

TABLE III: Multiplication in Fp6 (2Mb/KARATSUBA)

MB0 (master) Transfer FSL MB1 (slave) Cost
- {a0, b0} - 2t

ta01 ← a0 + a1 - t0 ← a0 ∗ b0 2 add Fp2tb01 ← b0 + b1
- {a1, b1} - 2t

ta02 ← a0 + a2 - t1 ← a1 ∗ b1 2 add Fp2tb01 ← b0 + b1
- {a2, b2} - 2t

ta12 ← a1 + a2 - t2 ← a2 ∗ b2 2 add Fp2tb12 ← b1 + b2
- {ta12, tb12} - 2t
- - ta12 ← ta12 ∗ tb12 karatsuba
- {ta01, tb01, ta12, t1, t2} - 2t+3r

ta12 ← ta12 − t1 - ta01 ← ta01 ∗ tb01 2 add Fp2ta12 ← ta12 − t2
- {ta02, tb02, ta01, t0} - 2t+2r

ta01 ← ta01 − t0 - ta02 ← ta02 ∗ tb02 2 add Fp2ta01 ← ta01 − t1
- {ta12, ta02} - 1t+1r

ta02 ← ta02 − t0 - ta12 ← ta12.ξ 2 add Fp2ta02 ← ta02 − t2 tb01 ← t2.ξ
- {tb01} - 1r

c1 ← ta01 + tb01 - c0 ← ta12 + t0 2 add Fp2c2 ← ta02 + t1
- {c0} - 1r

90, 01% - 76, 82% Percentage

MB1 acts as the slave, responsible for performing operations
in Fp and Fp2 in conjunction with the KARATSUBA core,
which is connected through a PLB bus.

The first idea involves adding KARATSUBA IPs around
a single MicroBlaze processor. However, this approach has
a major drawback, which is the transfer time between the
MicroBlaze processor and the different IPs. To illustrate,
conducting a multiplication operation in Fp2 demands a total
of 1240 cycles, with 550 cycles allocated for processing
and an additional 690 cycles dedicated to data transfer.
Notably, the processing time nearly matches the transfer time,
underscoring the crucial role of transfer time in the overall
system performance. Additionally, the MicroBlaze and the IP
cannot work at the same time. The MicroBlaze always waits
for the results sent by the IP. Consequently, architectures with
parallel processors have emerged as a more favored alternative.

To determine the percentage of task between the MicroB-
laze and the IP core, we can achieve this by thoroughly
examining the algorithms involved in key operations, such
as multiplication in Fp6 and Fp12 , squaring in Gϕ6Fp2 ,
sparse multiplication, doubling step, and others. Through this
analysis, we can determine the specific tasks or operations
allocated to each component and evaluate their respective
contributions.For instance, the multiplication in Fp6 is executed
with a percentage of 90.01% on the first processor and 76.82%
on the second, as shown in Table III.

V. IMPLEMENTATION RESULTS AND DISCUSSION

A. Implementation Results

The design of an embedded system for computing optimal
Ate pairings was created using the Xilinx Platform Studio
environment and a Virtex-5 Genesys development board. The
MMM and KARATSUBA components were written in VHDL
and tested with Modelsim SE before being synthesized with
the ISE Design Suite. The DSP48E and RAM blocks were
created with the Core Generator tool, while the high-level

Fig. 8: Hardware architecture of 2Mb/KARATSUBA approach

arithmetic was developed with C programming language in
the SDK.

In order to ensure that the proposed design offers a 128-bit
security level, we selected the parameter t = 262 − 254 + 244,
as stated in [48], and the BN-curve E : y2 = x3 + 5. This
choice results in the exponent number t and the parameter
s = 6t+ 2 in the Miller Loop having a signed bit length of
63 and 65, respectively.

A comparison of the results obtained from our implemen-
tation of optimal Ate pairing with those of recent imple-
mentations based on BN-curves is presented in Table IV.
The comparison takes into account execution time, hardware
requirements, and design efficiency, which is computed using
a this expression:

efficiency =
datapath(bit)

occupiedarea(slice)× executiontime(s)
(16)

The area of the design is determined by taking into
consideration the following information: it is assumed that the
height of a DSP48E is equivalent to that of five configurable
logic blocks (CLBs) and is also equivalent to the height of
one block RAM. Each CLB is made up of four slices.

The number of BRAMs is configurable on Xilinx FPGA

11

boards. By default, when working on a new project, the number
of BRAMs is set to 18. However, our initial implementation
(purely software-based) required us to increase this number to
32. However, with the task separation and the utilization of
two MicroBlaze processors, this number increased to 42.

The implementation of optimal Ate pairing through software
running on MicroBlaze has a slower speed in comparison to
other approaches. While the SW/HW design aims to optimize
the execution time, it also results in an increased consumption
of hardware area. The transfer time between the MicroBlaze
processor and IP cores can also affect the global execution
time. Taking advantage of the parallel elements in optimal Ate
pairing holds potential for improving the global execution time
while keeping hardware usage minimal. Table IV summarizes
the evaluation of the cost associated with key functions in
Optimal Ate utilizing 2Mb/KARATSUBA.

B. Discussion

The research presented in the paper contributes to advancing
the state-of-the-art in optimal Ate pairing algorithms by
offering area-efficient and flexible architectures. These archi-
tectures enhance the efficiency, performance, and practicality
of cryptographic pairings, opening up possibilities for secure
and efficient implementations in various applications such as
identity-based cryptography, attribute-based encryption, and
cryptographic protocols involving pairings. The research’s key
implications and contributions encompass three aspects: (i)
The proposal of novel architectures targeting area efficiency in
FPGA implementations of optimal Ate pairing, which holds
particular relevance for resource-constrained environments
necessitating effective FPGA resource utilization. (ii) Empha-
sizing flexibility, the architectures can be easily tailored and
adapted to suit diverse parameters and security requirements
of the optimal Ate pairing implementation. (iii) Providing
practical insights and experimental findings by conducting
FPGA-based implementations and tests, delivering valuable
guidance for real-world applications.
In the context of this study, the outcomes achieved through the
implementation of optimal Ate pairing on FPGA are discussed,
and the results are presented in Table V.

Typically, in [28], the first implementation of pairing
functions for 128-bit security level using BN-curves was
reported. The authors utilized Blakley’s algorithm for modular
multiplication, leading to a high area consumption without
using DSP or RAM cores. Our SW/HW designs, on the
other hand, show improved slice consumption and efficiency.
In [26], a fully hardware-based implementation of Ate and
optimal Ate pairing was presented, where all Fpk -arithmetic
was implemented in hardware. This design utilized 23k logic
slices, but had a faster time performance compared to the
2Mb/KARATSUBA design. However, it also consumed more
slices, being 5.6 times higher. Moving on, the authors in
[27] proposed a hardware cryptoprocessor for optimal Ate
pairing which utilizes two processing engines to perform
parallel computation of Fp-arithmetic using the Montgomery
algorithm. This design has a reasonable increase in area with a
higher number of DSP blocks, making it limited to integration
on high-resource FPGA boards, unlike our designs which
can be implemented on large FPGA circuits. In [55], a high-
performance processor for optimal Ate pairing on BN-curves

is proposed, exploiting parallelism and pipeline at various
levels of the algorithm. However, this design has a higher area
occupation with a higher number of DSP blocks and is not
suitable for restricted environments. In [32], a high-speed and
efficient design for optimal Ate pairing over BN and BLS12
curves on FPGA was presented. The design boasts the highest
reported speed and the best reported area-time performance.
Although the design offers improved efficiency compared to
our implementations, it has a reasonable increase in area and
is less flexible.

All in all, these findings open avenues for further research
and optimization in implementing efficient and secure crypto-
graphic systems.

VI. CONCLUSION

In this paper, we proposed three different approaches
for implementing optimal Ate pairing based on Jacobean
coordinates over BN-curves with 128-bit security as an
embedded system on FPGA devices. Our first approach utilized
a pure software design executed by MicroBlaze processors,
while the second approach combined software and hardware
to perform essential operations in Fp and Fp2 . Our third
approach employed parallelism at critical operation levels to
further improve execution time and minimize area consumption.
Our designs are suitable for restricted environments and offer
reasonable execution times.

To further improve the implementation of optimal Ate
pairing and address potential limitations, the following as-
pects can be considered in future works: (i) investigating
and implementing algorithmic optimizations to enhance the
efficiency of the Ate pairing computation. Research on new
techniques or adaptations specific to the BN-curve can lead
to significant improvements in execution time and resource
utilization; (ii) exploring the use of more advanced FPGA
platforms or application-specific integrated circuits (ASICs)
to increase computational capabilities and achieve higher
performance. Utilizing modern FPGA families with improved
hardware resources and higher clock frequencies can result
in faster computations; (iii) investigating and incorporating
parallelization and pipelining techniques to exploit parallel
hardware resources effectively. By distributing tasks across
multiple processing units and overlapping computations, the
overall execution time can be reduced; (iv) designing and
implementing custom hardware accelerators tailored to the
specific requirements of the optimal Ate pairing computation.
This can lead to dedicated hardware units optimized for
the BN-curve operations, further improving efficiency; (v)
focusing on optimizing power consumption and resource
utilization without compromising security. This is especially
important for embedded systems and IoT devices where
energy efficiency is a critical consideration; (vi) exploring
opportunities for further software-level optimization, such as
using advanced compiler techniques or employing custom
assembly code to fine-tune critical arithmetic operations; (vii)
Conducting a thorough security analysis of the proposed design
against potential side-channel attacks and fault injections.
Implement countermeasures to mitigate these vulnerabilities
and ensure robustness against various security threats; and (viii)
evaluating the implementation in real-world applications, such
as secure communication protocols or cryptographic schemes,

12

TABLE IV: Evaluating the cost of key functions in Optimal Ate with 2Mb/KARATSUBA

Functions Design The cost Percentage of task
MB0 MB1

Mult Fp6
Mb/KARATSUBA 6 Karatsuba + 15 add soft Fp2 + 2 red Fp2 100%

2Mb/KARATSUBA Karatsuba + 14 add soft Fp2 + 21 transfert FSL 90.01% 76.82%

Mult Fp12
Mb/KARATSUBA 18 Karatsuba + 60 add soft Fp2 + 7 red Fp2 100%

2Mb/KARATSUBA Karatsuba + 51 add soft Fp2 + 68 transfert FSL 97,04% 75.46%

Squaring in Gϕ6Fp2
Mb/KARATSUBA 6 Karatsuba + 39 add soft Fp2 + 6 red Fp2 100%

2Mb/KARATSUBA Karatsuba + 27 add soft Fp2 + 27 transfert FSL 93.16% 82.98%

Sparce multiplication Mb/KARATSUBA 14 Karatsuba + 28 add soft Fp2 + 3 red Fp2 100%
2Mb/KARATSUBA 8 Karatsuba + 20 add soft Fp2 + 34 transfert FSL 84.23% 78.78%

Doubling step Mb/KARATSUBA 13 Karatsuba + 24 add soft Fp2 100%
2Mb/KARATSUBA Karatsuba + 24 add soft Fp2 + 25 transfert FSL 93.92% 79.01%

TABLE V: Comparison of results from implementation of Optimal Ate pairing

Ref. Platform Freq. Design Area Cycles Times efficiencyMHz Slices DSP RAM (ms)

Our Virtex-5

125 SW 1063 3 32 262445486 2099.56 0.07Mb

100 SW/HW 1558 11 35 26551593 265.51 0.42Mb/MMM

100 SW/HW 2045 17 38 1122817 112.28 0.77Mb/KARATSUBA

100 SW/HW 3108 20 42 264668 26.4 2.352Mb/KARATSUBA
[28] Virtex-4 50 HW 52000 - - 821000 16.42 0.29
[26] Viretx-6 145 HW 23000 - - 821000 5.66 1.96
[27] Virtex-5 125 HW 10592 51 - 283111 2.26 9.92
[55] Viretx-6 72 HW 25000 240 - 37271 0.52 17.07
[32] Viretx-6 225 HW 5570 30 - 80000 0.35 120

to assess its practical viability and gather feedback for further
improvements.

ETHICAL APPROVAL

Not Applicable

COMPETING INTERESTS

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization, O. Azzouzi - Methodology, O. Azzouzi,
M. Anane - Validation, O. Azzouzi, M. Anane, M. Koudil -
Writing—original draft preparation, O. Azzouzi, M. Issad, Y.
Himeur - Proofreading, M. Anane, Y. Himeur - Formal analysis,
M. Anane, M. Koudil, M. Issad, Y. Himeur - Supervision, M.
Anane, M. Koudil- Project administration, M. Anane.

FUNDING

This research received no external funding

AVAILABILITY OF DATA AND MATERIALS

Data will be shared upon request

REFERENCES

[1] M. S. Rathore, M. Poongodi, P. Saurabh, U. K. Lilhore, S. Bourouis,
W. Alhakami, J. Osamor, and M. Hamdi, “A novel trust-based security
and privacy model for internet of vehicles using encryption and
steganography,” Computers and Electrical Engineering, vol. 102, p.
108205, 2022.

[2] Y. Himeur and A. Boukabou, “A robust and secure key-frames based
video watermarking system using chaotic encryption,” Multimedia Tools
and Applications, vol. 77, pp. 8603–8627, 2018.

[3] O. Can, F. Thabit, A. O. Aljahdali, S. Al-Homdy, and H. A. Alkhzaimi,
“A comprehensive literature of genetics cryptographic algorithms for
data security in cloud computing,” Cybernetics and Systems, pp. 1–35,
2023.

[4] Y. Himeur, A. Boukabou, and A. Senouci, “Performance of turbo-coded
chaotic interleaving and frequency-domain equalization scheme for high
speed ofdm-based plc systems,” Journal of the Franklin Institute, vol.
353, no. 15, pp. 3799–3817, 2016.

[5] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and
Z. Zhang, “Fpga hls today: Successes, challenges, and opportunities,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 4, pp. 1–42, 2022.

[6] Y. Himeur, S. S. Sohail, F. Bensaali, A. Amira, and M. Alazab, “Latest
trends of security and privacy in recommender systems: a comprehensive
review and future perspectives,” Computers & Security, vol. 118, p.
102746, 2022.

[7] S. Ullah, J. Zheng, N. Din, M. T. Hussain, F. Ullah, and M. Yousaf,
“Elliptic curve cryptography; applications, challenges, recent advances,
and future trends: A comprehensive survey,” Computer Science Review,
vol. 47, p. 100530, 2023.

[8] A. Sayed, Y. Himeur, A. Alsalemi, F. Bensaali, and A. Amira, “Intelligent
edge-based recommender system for internet of energy applications,”
IEEE Systems Journal, vol. 16, no. 3, pp. 5001–5010, 2021.

[9] M. A. C. Dizon, “The value of trust in encryption: Impact and
implications on technology law and policy,” IEEE Transactions on
Technology and Society, 2023.

[10] J. Faj, T. Kenter, S. Faghih-Naini, C. Plessl, and V. Aizinger, “Scalable
multi-fpga design of a discontinuous galerkin shallow-water model on
unstructured meshes,” in Proceedings of the Platform for Advanced
Scientific Computing Conference, 2023, pp. 1–12.

[11] A. Alsalemi, Y. Himeur, F. Bensaali, and A. Amira, “Smart sensing and
end-users’ behavioral change in residential buildings: An edge-based
internet of energy perspective,” IEEE Sensors Journal, vol. 21, no. 24,
pp. 27 623–27 631, 2021.

[12] P. Haghi, W. Krska, C. Tan, T. Geng, P. H. Chen, C. Greenwood, A. Guo,
T. Hines, C. Wu, A. Li et al., “Flash: Fpga-accelerated smart switches
with gcn case study,” in Proceedings of the 37th International Conference
on Supercomputing, 2023, pp. 450–462.

[13] A. Menezes, S. Vanstone, and T. Okamoto, “Reducing elliptic curve
logarithms to logarithms in a finite field,” in Proceedings of the twenty-
third annual ACM symposium on Theory of computing, 1991, pp. 80–89.

[14] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the

13

discrete logarithm in the divisor class group of curves,” Mathematics of
computation, vol. 62, no. 206, pp. 865–874, 1994.

[15] A. Joux, “A one round protocol for tripartite diffie–hellman,” in
International algorithmic number theory symposium. Springer, 2000,
pp. 385–393.

[16] Z. Zhou, B. B. Gupta, A. Gaurav, Y. Li, M. D. Lytras, and N. Nedjah,
“An efficient and secure identity-based signature system for underwater
green transport system,” IEEE Transactions on Intelligent Transportation
Systems, 2022.

[17] N. Andola, R. Gahlot, V. K. Yadav, S. Venkatesan, and S. Verma, “Search-
able encryption on the cloud: a survey,” The Journal of Supercomputing,
vol. 78, no. 7, pp. 9952–9984, 2022.

[18] J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian, “Efficient
lattice-based inner-product functional encryption,” in IACR International
Conference on Public-Key Cryptography. Springer, 2022, pp. 163–193.

[19] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Annual international cryptology conference. Springer, 2001,
pp. 213–229.

[20] D. Freeman, M. Scott, and E. Teske, “A taxonomy of pairing-friendly
elliptic curves,” Journal of cryptology, vol. 23, no. 2, pp. 224–280, 2010.

[21] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime
order,” in International workshop on selected areas in cryptography.
Springer, 2005, pp. 319–331.

[22] F. Vercauteren, “Optimal pairings,” IEEE transactions on information
theory, vol. 56, no. 1, pp. 455–461, 2009.

[23] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and
E. J. Kachisa, “On the final exponentiation for calculating pairings on
ordinary elliptic curves,” in International conference on pairing-based
cryptography. Springer, 2009, pp. 78–88.

[24] M. Bahadori and K. Järvinen, “Compact and programmable yet high-
performance soc architecture for cryptographic pairings,” in 2020 30th
International Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 2020, pp. 176–184.

[25] A. Oussama, A. Mohamed, and H. Nassim, “Software implementation of
pairing based cryptography on fpga,” in Advances in Computing Systems
and Applications: Proceedings of the 3rd Conference on Computing
Systems and Applications 3. Springer, 2019, pp. 102–112.

[26] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Secure dual-
core cryptoprocessor for pairings over barreto-naehrig curves on fpga
platform,” IEEE transactions on very large scale integration (VLSI)
systems, vol. 21, no. 3, pp. 434–442, 2012.

[27] Z. Hao, W. Guo, J. Wei, and D. Sun, “Dual processing engine architecture
to speed up optimal ate pairing on fpga platform,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 584–589.

[28] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “High speed
flexible pairing cryptoprocessor on fpga platform,” in International
Conference on Pairing-Based Cryptography. Springer, 2010, pp. 450–
466.

[29] R. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede,
and G. X. Yao, “Fpga implementation of pairings using residue
number system and lazy reduction,” in Cryptographic Hardware and
Embedded Systems–CHES 2011: 13th International Workshop, Nara,
Japan, September 28–October 1, 2011. Proceedings 13. Springer, 2011,
pp. 421–441.

[30] J. Fan, F. Vercauteren, and I. Verbauwhede, “Efficient hardware
implementation of fp-arithmetic for pairing-friendly curves,” IEEE
Transactions on Computers, vol. 61, no. 5, pp. 676–685, 2011.

[31] S. Duquesne and L. Ghammam, “Memory-saving computation of
the pairing final exponentiation on bn curves,” Groups Complexity
Cryptology, vol. 8, no. 1, pp. 75–90, 2016.

[32] A. Sghaier, M. Zeghid, L. Ghammam, S. Duquesne, M. Machhout, and
H. Y. Ahmed, “High speed and efficient area optimal ate pairing processor
implementation over bn and bls12 curves on fpga,” Microprocessors
and Microsystems, vol. 61, pp. 227–241, 2018.

[33] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol.
549, no. 7671, pp. 188–194, 2017.

[34] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Low-resource
and fast binary edwards curves cryptography,” in Progress in Cryptology–
INDOCRYPT 2015: 16th International Conference on Cryptology in
India, Bangalore, India, December 6-9, 2015, Proceedings 16. Springer,
2015, pp. 347–369.

[35] M. Imran, A. Aikata, S. S. Roy, and S. Pagliarini, “High-speed design of
post quantum cryptography with optimized hashing and multiplication,”
IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.

[36] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Supersingular
isogeny diffie-hellman key exchange on 64-bit arm,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 5, pp. 902–912,
2017.

[37] M. Anastasova, R. Azarderakhsh, and M. M. Kermani, “Fast strategies
for the implementation of sike round 3 on arm cortex-m4,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 10,
pp. 4129–4141, 2021.

[38] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Error detection
architectures for ring polynomial multiplication and modular reduction
of ring-lwe in benchmarked on asic,” IEEE Transactions on Reliability,
vol. 70, no. 1, pp. 362–370, 2020.

[39] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Cryp-
tographic accelerators for digital signature based on ed25519,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29,
no. 7, pp. 1297–1305, 2021.

[40] S. Bayat-Sarmadi, M. M. Kermani, R. Azarderakhsh, and C.-Y. Lee,
“Dual-basis superserial multipliers for secure applications and lightweight
cryptographic architectures,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 61, no. 2, pp. 125–129, 2013.

[41] S. Subramanian, M. Mozaffari-Kermani, R. Azarderakhsh, and M. No-
joumian, “Reliable hardware architectures for cryptographic block
ciphers led and hight,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 10, pp. 1750–1758, 2017.

[42] M. M. Kermani and R. Azarderakhsh, “Reliable architecture-oblivious
error detection schemes for secure cryptographic gcm structures,” IEEE
Transactions on Reliability, vol. 68, no. 4, pp. 1347–1355, 2018.

[43] A. C. Canto, J. Kaur, M. M. Kermani, and R. Azarderakhsh, “Algorithmic
security is insufficient: A comprehensive survey on implementation at-
tacks haunting post-quantum security,” arXiv preprint arXiv:2305.13544,
2023.

[44] Y. Liu and X. Wu, “An fpga-based general-purpose feature detection
algorithm for space applications,” IEEE Transactions on Aerospace and
Electronic Systems, 2022.

[45] S. Liu, H. Fan, and W. Luk, “Design of fully spectral cnns for efficient
fpga-based acceleration,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[46] J. Kaur, A. C. Canto, M. M. Kermani, and R. Azarderakhsh, “A com-
prehensive survey on the implementations, attacks, and countermeasures
of the current nist lightweight cryptography standard,” arXiv preprint
arXiv:2304.06222, 2023.

[47] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Nist special
publication 800-57,” NIST Special publication, vol. 800, no. 57, pp.
1–142, 2007.

[48] J.-L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto,
F. Rodríguez-Henríquez, and T. Teruya, “High-speed software imple-
mentation of the optimal ate pairing over barreto–naehrig curves,” in
International conference on pairing-based cryptography. Springer,
2010, pp. 21–39.

[49] M. Joye and G. Neven, “Software implementation of pairings,” Identity-
Based Cryptography, vol. 2, p. 188, 2009.

[50] V. S. Miller, “The weil pairing, and its efficient calculation,” Journal of
cryptology, vol. 17, no. 4, pp. 235–261, 2004.

[51] R. Granger and M. Scott, “Faster squaring in the cyclotomic subgroup
of sixth degree extensions,” in International Workshop on Public Key
Cryptography. Springer, 2010, pp. 209–223.

[52] M. Issad, B. Boudraa, M. Anane, and N. Anane, “Software/hardware co-
design of modular exponentiation for efficient rsa cryptosystem,” Journal
of Circuits, Systems, and Computers, vol. 23, no. 03, p. 1450032, 2014.

[53] A. J. Devegili, M. Scott, R. Dahab et al., “Multiplication and squaring
on pairing-friendly fields,” Cryptology ePrint Archive, 2006.

[54] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,
“Faster explicit formulas for computing pairings over ordinary curves,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2011, pp. 48–68.

[55] Y. Xie, B. Wang, L. Zhang, X. Zheng, X. Lin, X. Xiong, and Y. Liu,
“A high-performance processor for optimal ate pairing computation over
barreto–naehrig curves,” IET Circuits, Devices & Systems, 2022.

http://arxiv.org/abs/2305.13544
http://arxiv.org/abs/2304.06222

	Introduction
	Optimal Ate Pairing over BN-Curves
	Miller Loop
	Doubling and tangent equations
	Addition and line equations

	Final Exponentiation

	IP Cores on FPGA
	 MMM Core
	 KARATSUBA Core

	 Proposed architectures for optimal Ate pairing
	Signal MicroBlaze-based software implementation
	Single MicroBlaze-based SW/HW implementation
	Dual MicroBlaze-based SW/HW implementation

	Implementation Results and Discussion
	Implementation Results
	Discussion

	Conclusion
	References

