
Load Balancing Strategy for SDN Multi-controller
ClustersBased on Load Prediction
Junbi Xiao ( xiaojb@upc.edu.cn)

China University of Petroleum (East China)
Xingjian Pan

China University of Petroleum (East China)
Jianhang Liu

China University of Petroleum (East China)
Jian Wang

China University of Petroleum (East China)
Peiying Zhang

China University of Petroleum (East China)
Laith Abualigah

Al al-Bayt University

Research Article

Keywords: Software-de�ned networking, Deep Learning, SDN Multi-controller Cluster, Load Balancing,
Switch Migration

Posted Date: May 3rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2867519/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2867519/v1
mailto:xiaojb@upc.edu.cn
https://doi.org/10.21203/rs.3.rs-2867519/v1
https://creativecommons.org/licenses/by/4.0/

Load Balancing Strategy for SDN Multi-controller

Clusters Based on Load Prediction

Junbi Xiao1*, Xingjian Pan1, Jianhang Liu1, Jian Wang2,

Peiying Zhang1, Laith Abualigah3

1*Qingdao Institute of Software, College of Computer Science and
Technology, China University of Petroleum (East China), Qingdao,

266580, China.
2College of Science, China University of Petroleum (East China),

Qingdao, 266580, China.
3Computer Science Department, Al al-Bayt University, Jordan.

*Corresponding author(s). E-mail(s): xiaojb@upc.edu.cn;
Contributing authors: s21070007@s.upc.edu.cn; liujianhang@upc.edu.cn;

wangjiannl@upc.edu.cn; zhangpeiying@upc.edu.cn;
aligah@ammanu.edu.jo;

Abstract

Software-defined networking (SDN) separates the control layer from the data
layer, and decisions to manage the network are issued through a controller. The
distributed SDN architecture is an effective solution addressing modern WAN
SDN architectures and allows multiple controllers to manage different parts of
the network to ensure efficient and stable operation. To solve the problems of
high switch migration cost, load imbalance, and inefficient load balancing in
SDN multi-controller environments, we propose a deep learning-based controller
load prediction switch migration (LPSM) strategy that uses a migration switch
selection algorithm, target controller selection algorithm, and switch migration
decision algorithm. Then, we propose a load balancing algorithm based on this
decision algorithm. The final experimental results show that the LPSM reduces
the migration cost by 16% and 8%, respectively, compared with time-sharing
switch migration (TSSM) and distributed decision migration (DDM) strategies,
reduces load variance from 0.02 to 0.004 compared with the DDM strategy, and
improves load balancing efficiency by 27.6% compared with the TSSM strategy.

Keywords: Software-defined networking, Deep Learning, SDN Multi-controller
Cluster, Load Balancing, Switch Migration.

1

1 Introduction

SDN provides dynamic attributes and professional programmable configurations, sep-
arates the control plane from the data plane, and transfers the network forwarding
rules decision-making power to a centralized unit. This centralized unit is a controller,
and it ensures that the network device only has a forwarding function; moreover,
the controller makes corresponding flow rule forwarding actions according to the con-
trol plane [1]. The control plane acts as an intermediary between the data plane and
the application plane, processes traffic in the network, and issues corresponding flow
forwarding policies. The application plane is located above the control plane to imple-
ment customized application logic. The emergence of SDN reduces the operation and
maintenance cost of the network and increases the network scalability.

Starting with the OpenFlow1.2 protocol, SDN has supported the OpenFlow switch
to connect to multiple controllers at the same time. With the emergence of this fea-
ture and the increasing data requirements of SDN, SDN multi-controller clustering
technology has emerged and gradually become a popular research topic in the field
of SDN. It is proposed in [2] that the logical centralized control of SDN clusters can
be achieved using physically distributed multiple controllers to improve the scalabil-
ity and reliability of the control plane. However, in the traditional multi-controller
SDN architecture, the connection between controllers and switches is static, and the
load on the controllers rises as the number of switches managed by a particular con-
troller in the cluster increases. The controller is the core of the SDN, and a surge in
its load results in an elevation of the latency of the whole network, the severe waste
of resources, and a reduction in fault tolerance.

Fig. 1 Load calancer for SDN multi-controller cluster

SDN multi-controller load balancing technology shown in Figure 1 can be imple-
mented via switch migration. Switch migration technology migrates some switches
from overloaded controllers to other underloaded controllers to solve the problem of
an uneven controller load. However, traditional switch migration processes generate
a large amount of migration information flow, adding additional overhead to the sys-
tem and increasing the migration cost, which greatly burdens the SDN. In addition,

2

traditional switch migration algorithms randomly select switches for migration among
the set of switches managed by overloaded controllers, but they do not consider the
number of migrations between switches and source controllers or the migration cost
and distance, which increases the additional resource utilization and migration cost of
controller nodes, aggravates the instability of controller clusters, reduces the efficiency
of load balancing, and brings an additional burden to SDN. Therefore, it is extremely
important to design an efficient switch migration mechanism and controller cluster
load balancing strategy.

Our contributions are summarized below.

• We conducted extensive simulation training and found that the proposed LPSM
strategy can reduce the migration cost by 16% and 8%, respectively, compared with
the TSSM and DDM strategies.

• LPSM strategy reduces load variance from 0.02 to 0.004 compared with the DDM
strategy, thus enhancing the resource stability of multi-controller clusters.

• Compared with the TSSM and DDM strategies, LPSM has a 27.6% improvement
in load balancing efficiency.

The rest of the article is organized as follows: section 2 introduces prior research
on this subject, section 3 introduces the network model and data model of the pro-
posed algorithms, section 4 details the proposed algorithms, section 5 introduces the
experimental environment and results, and section 6 presents a summary of our work
and proposes future research directions.

2 Related Work

Previous studies considered the issue of controller load balancing from different
perspectives, and thus developed many different load balancing algorithms. These
approaches are described below.

Considering the load of the controllers themselves, Pang et al. [3] designed a net-
work load balancing strategy based on SDN data centers that uses SDN controllers
to centrally monitor the entire network and select paths to forward according to the
real-time load of the network, which can achieve load balancing of the controllers.
Singh et al. [4] designed the round robin algorithm to balance the load between SDN
controller servers. To obtain better results in terms of latency, network speed, fault
tolerance, and resource usage, Varalakshmi et al. [5] designed a mechanism using
round robin, randomized and weighted round robin, and minimum link algorithms to
reduce the throughput of SDN controllers. Thajeer et al. [6] used a hybrid algorithm
as a server load balancing technique with a minimum link load balancing algorithm
and weighted round robin load balancing algorithm, which flexibly balances the load
among distributed SDN controllers.

Additionally, some studies implemented cluster load balancing strategies from the
traffic and link perspectives. Wang et al. [7] combined SDN and link load algorithms
to schedule elephant flows by analyzing the traffic characteristics of SDN data cen-
ter networks, and used a scheduling algorithm to calculate re-routing to achieve load
balancing of link traffic. Dafda et al. [8] used a genetic algorithm (GA) and Ant

3

Colony Optimization (ACO) load balancing for energy-aware routing to achieve link
load balancing and minimize energy consumption. Given that traditional load bal-
ancing methods cannot effectively obtain statistics in network devices or consider the
impact of many single load balancing factors, Jun et al. [9] proposed a path-server
ant colony optimization (JPSACO) algorithm that considers the server level and cus-
tomizes the performance metric server busyness (SBD) to quantify the real-time status
of servers. Sun et al. [10] proposed the Yen-M model to address the challenges of load
balancing and traffic scheduling in traditional networks based on the SDN network
architecture and Yen algorithm, which optimizes the link bandwidth and effectively
improves the load balancing efficiency compared to traditional load balancing algo-
rithms. This model reduces the traffic scheduling delay and greatly improves the
network transmission efficiency.

Regarding switch migration, most previous studies have been conducted on the
dynamic deployment of switches. Liu et al. [11] proposed an efficient switch migration
(HESM) strategy to balance the controller load for static controller-switch deploy-
ment facing load imbalance. HESM defines multiple load metrics to measure the
controller load. The best target controller with the maximum remaining resources
and the switch with the minimum migration cost are selected for migration, which
improves the controller load balancing performance. Since flow table capacity is lim-
ited and unreasonable rule placement will lead to a flow table overflow problem, Yue
et al. [12] proposed a controller load balancing scheme (CAR) based on rule placement
and switch migration from the flow table perspective. The CAR algorithm reduces
and balances the controller load, achieves lower latency than FlowStats algorithms,
and reduces packet latency. Yao et al. [13] proposed a deep Q-learning (DQN)–based
switch migration scheme by combining the powerful sensing capability of deep learning
and the decision-making capability of Q-learning, and it outperformed the traditional
approach in terms of controller server resource utilization and load balancing capabil-
ity. Babbar et al. [14] proposed a dynamic QoS-aware load balancing switch migration
algorithm (LBSMT) in combination with a traffic-only system, which showed a large
improvement in CPU utilization, memory utilization, throughput, and response time
compared to traditional algorithms. Filali et al. [15] proposed a multi-step ARIMA
prediction model, that can be used to predict long-term controller load, and in which
switch migration operations are scheduled in advance based on the prediction results.

As can be seen, most previous studies considered only one or a few factors; however,
there are many aspects that need to be considered to make SDN controller clusters
achieve load balancing using switch migration techniques. For load balancing and
switch migration issues, existing research results are not satisfactory, and there are
many factors that have not been considered. Therefore, it is very important to design
sound and efficient load balancing and switch migration algorithms.

3 System Model

This section presents the network model. First, we abstract the network model into
a general data structure model and define some parameters in the network. Then, we
describe the controller load balancing problem and give a load balancing example.

4

Finally, we analyze the switch migration protocol. For ease of reading, we summarize
the variables used in this section in Table 1.

3.1 Network Model

3.1.1 Network Data Structure

SDN involves many nodes and links, and thus we use data structure graph G = (V,E)
to represent an SDN topology, where V denotes nodes and E denotes edges. Nodes are
composed of a set of switches S and a set of controllers C. For each controller Ci ∈ C
in the network, all of the switches in S are connected to one controller, which means
that each controller can act as the master controller for each switch in S. This is called
logically separated and physically centralized control. Each switch in S has a master
controller, and their master controller may change later in the migration strategy. We
also define SCi

j as switch Sj whose master controller is Ci. Each switch must have a

unique controller so that
∑

SCi

j = S, SCi

k

⋂

S
Cj

l = ∅ for any two controllers Ci and
Cj in C.

3.1.2 Protocol Introduction

In the OpenFlow protocol, the controller load primarily comes from communication
with the switch, which mainly includes Packet Inmessages and Packet Outmessages.
The purpose of the Packet In message is to send packets arriving at the OpenFlow
switch to the OpenFlow controller. Packet In messages can be sent in the following
two cases:

• if there is no item that matches the flow table entry (Table-miss),
OFPR NO MATCH;

• if the action recorded in the matching flow table entry is ”Send to OpenFlow
controller”, OFPR ACTION.

The Packet Out messages are sent from the OpenFlow controller to the OpenFlow
switch and contain packet delivery commands. When a controller wishes to send a
Packet Out message through the datapath, it uses the OFPT PACKET OUT message
through a specific port of a switch. Therefore, the main load on the controller comes
from the processing of Packet Inmessages [16, 17]. When a large number of Packet In
messages are sent to the controller, a corresponding number of Packet Out messages
need to be sent from the controller, which takes up significant controller resources.

We define αSi
as the number of Packet In messages received by the controller

from switch SCi

j in a period of time, and βi as the number of Packet Out messages
sent by controller Ci in a period of time. Within a certain threshold (which varies for
each controller and is defined as δ), the rate of Packet Out messages generated by
the controller increases linearly with the rate of received Packet In messages over a
period of time. After this threshold is exceeded, the rate of Packet Out messages no
longer trends linearly and the derivative of the rate decreases as the rate of Packet In
messages is boosted due to the limited processing power of the controller. Load LCi

t

5

Table 1 Summary of variables

Symbol Description

S,C Set of all switches and controllers

Si, Ci A switch or controller in a switch or controller
set

S
Ci
j Switch Sj whose master controller is Ci

αSi
Packet In messages received rate

βi Packet Out messages received rate

δ Controller’s Packet In process capacity

L
Ci
t Load of a controller Ci in a period of time t

Ctar Migration target controller

Cori Migration origin controller

Smir Switch to be migrated

T Average propagation delay between switch and
controller

µ Mean value of L
Ci
t (used in Equation (2))

σ L
Ci
t standard deviation (used in Equation (2))

λ Poisson distribution parameter (used in
Equation (2))

neti Network traffic size between switch and con-
troller

di Load balancing index of a controller

∆f Change in the number of flow request messages

costmir Consumption of migration message transmission

f(Si, Cj) Received rate of flows from switch SCi
to con-

troller Ci

ωrule Number of Flow mod messages sent by a con-
troller

hi,j Minimum number of hops from switch S
Cj

i to
controller Cj

Γi Switch migration cost

ξi, τi, ki Corresponding weights parameters (used in
Equation (6,8,9))

Ucpu CPU utilization

Umem Physical memory usage

Unet Network bandwidth usage

n Number of switches in network

r Mean link latency from switch to controller

Tout Network throughput

Lsw Switch mean load

Ures Average remaining resource utilization of a con-
troller

ηCi
Actual load factor of a controller Ci

WCi
Load weight of a controller, target controller
parameters

Wt Weight threshold

StateCi
Controller overload state

ρCi
Controller resource utilization

6

in a period of time t of controller Ci is the sum of LCi

t .

LCi

t =
∑

Si∈S

αSi
(1)

3.2 Controller Load Balancing

An SDN-based load balancer allows for the control of multiple devices. Therefore,
software-defined networks are more agile than traditional networks. Software-defined
network control can be programmed directly for more responsive and efficient appli-
cation services. Figure 2 shows an example of the SDN load balance problem. There
are three controllers and nine switches in the cluster: C = {C1, C2, C3}, and S =
{S1, S2, ..., S9}. Each of the four controllers manages a different sub-domain network.
Controller C1 is only responsible for processing Packet In messages sent by switches
S1 and S2; controller C2 is only responsible for processing Packet In messages sent
by switches S3, S4, S5, S6, andS7; and controller C3 is only responsible for processing
Packet Inmessages sent by switches S8, andS9. When a Packet Inmessage flows into
the controller, the controller will process the Packet In message and send the corre-
sponding Packet Out message. When there are excessive switches under a controller,
the number of Packet In messages will become larger. Then, due to the limited pro-
cessing capacity of the controller, the processing of Packet In messages will consume
a significant amount of the controller’s resources, making it unable to handle other
network services. This causes massive network packet congestion, which will affect the
efficiency of the controller and indirectly affect the network’s transmission quality.

Fig. 2 Imbalanced multi-controller cluster in SDN

Figure 3 shows the solution to the load balancing problem. Originally, C2 is an
overloaded controller. Switches S4 and S7 on C2 are migrated to the network by C1

and C3, respectively, thus reducing the load on C2 and rebalancing the load across all
of the cluster controller nodes. The load balancing strategy allows C2 to free up many
resources, the switches connected to C2 return to a normal communication level, and
the whole network returns to a stable state.

7

Fig. 3 Balanced SDN with a multi-controller cluster

In our model, to measure controller load, we define the network traffic size between
a switch and controller in Equation (2), where T denotes the average propagation delay
between the switch and controller, µ denotes the mean value of LCi

t , and σ denotes
its standard deviation. We assume that the flow density λ in our experiments obeys a
Poisson distribution.

neti = e[−(1−λ)σ
µ
T] (2)

We use the quotient of the controller’s load and controller capacity threshold δ to
determine the load balancing index of controller Ci. The quotient di can be calculated
by Equation (3).

di =
neti
netδ

(3)

In effective load balancing, the most important thing is to select the target
controller set Ctar and the switch to be migrated Smir.

Selection of migrating switches

In this paper, we select a proper set of migrating switches by minimizing the cost of
switch migration. The cost of switch migration is expressed in Definition 1.
Definition 1 The cost of switch migration: the cost of switch Si being migrated to the
sub-domain network controlled by controller Cj is defined as a linear combination of
three performance metrics: the change in the number of flow request messages ∆f , the
cost of migration message transmissions costmir, and controller load balancing index
di.

The change in the number of flow request messages ∆f can be calculated by

∆f =
∑

Si∈S
Ci
j

f(Si, Ci), (4)

where f(Si, Cj) represents the number of flows from switch SCi
to controller Ci over

a period of time.

8

The consumption of migration message transmissions costmir can be calculated by

costmir = ωrule · αSi
· hi,j . (5)

When a switch is migrated, its master controller needs to deploy the migration rule
message Flow mod to the switch. We use omegarule to represent the resources con-
sumed by the controller Ci to process Flow/mod messages. Meanwhile, hi,j represents

the minimum number of hops between switch S
Cj

i to controller Cj . When the switches
are migrated far away, the change in the number of flow request messages ∆f will be
larger after the switches are migrated. When the network size is large and a large num-
ber of switches need to be migrated, the controller needs to install a large number of
migration rules on the switches, which also results in a large migration message trans-
mission cost costmir. When the load imbalance between multiple controllers is severe,
the controller load balancing index di will be large after the switches are migrated.
Therefore, from the analysis mentioned above, it can be seen that multiple cost met-
rics need to be measured simultaneously during switch migration to obtain the total
migration cost. In a practical solution, the switch migration cost Γi is calculated by
Equation (6), where ξ1, ξ2, and ξ3 are the corresponding weights of parameters ∆f ,
costmir, and di, respectively.

Γi = ξ1 ·∆f + ξ2 · costmir + ξ3 · di

s.t.

{

0 < ξ1, ξ2, ξ3 < 1

ξ1 + ξ2 + ξ3 = 1

(6)

Selection of target controllers

The selection of the target controllers requires the consideration of not only the load
of the overloaded controller but also the CPU utilization Ucpu and network bandwidth
usage Unet of the controller. This is because on the physical machine running the
controller, the CPU, memory, and actual network bandwidth affect how efficiently
the controller can process network information. We assume that n is the number of
switches, r is the mean link latency from switch to controller, and Tout is the network
throughput. We define the switch mean load in Equation (7).

Lsw =
∑

Si∈S
Ci
j

r/n (7)

Controller resource utilization Ures is defined as

Ures = τ1 · Ucpu + τ2 · Unet + τ3 · Umem. (8)

The actual load factor η of a controller Ci is defined as

ηCi
= k1 · Lsw + k1 · Ures + k1 · Tout. (9)

9

During switch migration, the controller’s resource consumption mainly includes the
processing of flow request messages, migration consumption, and state synchronization
consumption between controllers. The formula for calculating the controller resource
utilization is

ρCi
=

1

ηCi
· |SCi

j |
·

∑

S
Ci
j ∈S

(ηCi
− LCi

t). (10)

According to parameters Ures, ηCi
, andρCi

, we define variable WCi
to represent the

weight of a controller. The higher the weight, the more likely controller Ci is to be
selected to be in Ctar:

WCi
=

LCi

t

ηCi

. (11)

In addition, the weight WCi
of controller Ci needs to be judged. If the judgment

standards are high, the controller may be in high load all the time without reach-
ing the overloaded threshold. If the judgment standards are low, the controller may
keep migrating switches, add migration consumption, and increase resource utiliza-
tion. Therefore, in this paper, we additionally set a weight threshold Wt; only if the
calculated weightWCi

is always above this threshold in time t, the migration operation
will be executed. Here, a value of 0 means controller Ci is overloaded, while a value
of 1 means controller Ci is not overloaded. We abstract this into the mathematical
model presented in Equation (12).

StateCi
=

{

0, WCi
< Wt

1, WCi
> Wt

(12)

3.3 Switch Migration Process Analysis

Switch migration is the process of selecting switch Si to be migrated from switch set
SCi

of the overloaded controller Ci and migrating it to the sub-domain network of the
underloaded controller Cj to achieve a load-balanced distribution cluster. The main
step is to use OpenFlow role messages between the source controller, migrating switch,
and target controller to change the controller’s control over the switch. Based on this
feature of OpenFlow protocol, we can improve the switch migration mechanism.

In this paper, we divide the switch migration process into four stages as shown in
Figure 4.

Stage 1: Change the target controller to the Equal controller of the

switch to be migrated.

The source controller Cori receives the start migration message and sends the
Role Request message to the switch to be migrated Smir, requesting to become its
Equal controller. The target controller Ctar receives the Role Request message and
sents a Role Reply message indicating to Cori that it is ready to migrate. At this
stage, Cori remains the only master controller of the switch to be migrated because
Ctar does not respond to asynchronous messages from Smir after it becomes the Equal
controller of Smir, thus ensuring both security and activation characteristics.

10

Stage 2: Determine precise migration times by inserting and deleting

flow table entries.

Cori inserts an empty flow table entry into Smir via the Flow Mod command,
determines that this Flow Mod message is completed, and then removes the flow
table entry using the Flow Mod command. The Packet In messages sent by Smir

before the Flow Remove messages are processed by Cori, and those sent afterward
are processed by Ctar, using the time of receipt of the Flow Removed messages as the
separation point. This ensures that all of the Packet In requests from the migrating
switch are processed.

Stage 3: Origin controller processes the switch legacy Pakcet In requests.

Cori asks Smir via a Barrier Request message if the previous Packet In message
has been processed, and after Smir sends a Barrier Reply message to Cori, Cori sends
an end-of-migration message to Ctar.

Stage 4: Make Ctar become the master controller of Smir.

After controller Ctar sends a Role Request message to Smir to become its master
controller, Smir sends a Role Reply message to controller Ctar so that controller Ctar

becomes the master controller of Smir and Cori becomes the slave controller of Smir.

Fig. 4 Switch Migration Process

Both the SDN multi-controller load balancing problem and the switch migration
problem have been proven to be NP-hard problems[18]. An NP-hard problem is dif-
ficult to solve in polynomial time. Therefore, we propose a target controller selection
algorithm, a migration switch selection algorithm, a switch migration algorithm, and
a load balance algorithm to solve these two problems.

4 Algorithm Design

We propose four algorithms to solve the SDN multi-controller cluster load balancing
problem. First, we propose a target controller selection algorithm, which selects suit-
able controllers as a migration target based on parameters such as switch load, CPU
utilization, network throughput, and controller processing power. Then we propose a

11

migration switch selection algorithm, which selects the switches to be migrated based
on parameters such as Poisson distribution variables, quotient variables, number of
flow requests, and migration costs. Next, we propose a switch migration algorithm to
achieve controller cluster load balance. Finally, we propose a load balance algorithm
to make the multi-controller cluster achieve a load-balanced state.

4.1 Selection of target controller

As we mentioned earlier, all of the algorithms and experiments need to be based on
the fact that all of the switches will be connected to every controller in the cluster, but
each switch has one and only one master controller while all of the other controllers are
slaves. This is the logical connectivity physical blocking that we mentioned earlier. The
purpose of this selection step is to facilitate our subsequent switch migration actions.

Algorithm 1: Selection of target controller algorithm

Input: S,C, Lsw, ηCi
, ωCi

Output: Cov, Ctar

1 initialize: the number of SCi

j (|SCi

j |← NS); the number of C (|C| ← NC);

underloaded controller set Cu ← 0; overloaded controller set Cov ← 0;
2 for 1 ≤ i ≤ NC do

3 for 1 ≤ j ≤ NS do

4 calculate StateCi
based on input parameters;

5 if StateCi
== 1 then

6 Cu.add(Ci);
7 else

8 Cov.add(Ci);
9 end

10 end

11 end

12 for Ci ∈ Cu do

13 calculate ρCi
;

14 end

15 sorted(max(ρCi
));

16 choose max(Ci)← Ctar;
17 sorted(min(ρCi

)) ;
18 choose min(Ci)← Cov;
19 return Cov, Ctar;

The target controller algorithm first needs to input the set of switches and set of
controllers into the network, and then initialize the number of switches controlled by
each controller. It also initializes the set of overloaded controllers and underloaded con-
trollers. Lines 2–11 of algorithm 1 iterate through the switches on each controller and
calculate the controller parameters based on Equations (7)(8)(9). StateCi

is derived
from these parameters, and controllers with a StateCi

of 1 are added to the set of

12

underloaded controllers; controllers with StateCi
of 0 are added to the set of over-

loaded controllers. Lines 12–14 of algorithm 1 calculate ρCi
for each controller in the

set of overloaded controllers, and finally sort Cov and Ctar by ρCi
from largest to

smallest and smallest to largest, respectively. The reason for sorting the sets by size
is that the controller with the largest ρCi

(i.e., the controller with the most remain-
ing resources) will be served first, and vice versa. Finally, the algorithm 1 returns the
source and destination controllers, and the target controller is calculated based on this
returned information.

4.2 Selection of migrating switch

The migrating switch selection algorithm first needs to input the result of algorithm 2
to obtain the overloaded controllers Cov and Ctar, and then must determine the min-
imum number of hops from switch SiCtar to controllers Ctar and costmir. Line 1
of algorithm 2 initializes the set of all of the switches controlled by the overloaded
controller Cov and the set of migration switches Smir.

Algorithm 2: Selection of migrating switch algorithm

Input: Cov, Ctar, hi,j , costmir

Output: Smir

1 initialize: The number of switches controlled by Cov |Sov| ← Nov, Smir ← 0;
2 for 1 ≤ i ≤ Nov do

3 calculate neti, di, and∆f ;
4 calculate Γi under the constraints in equation(6);

5 end

6 build migrating cost set Scost;
7 sort(min(Scost));
8 for 1 ≤ j ≤ Nov do

9 if StateCov
̸= 1 then

10 update ρCov
;

11 Smir.add(Scost);
12 Nov ← Nov − 1;

13 end

14 end

15 return Smir;

Lines 2–6 of algorithm 2 are a for loop that iterates through the parameters di,∆f,
and costmir of the switch controlled by the overloaded controller; these parameters
are then used to calculate the migration cost for each switch and finally employed to
construct the switch migration cost set Scost. Lines 7–14 of algorithm 2 start select-
ing migration switches. Specifically, line 7 sorts Scost according to migration cost
per switch from smallest to largest; then, the for loop from lines 8–14 determines
the current overloaded controller load based on the overload status. The switch with

13

the smallest migration cost in Scost is added to the set Smir, and then the remain-
ing resource utilization of the overloaded controller is updated until the overloaded
controller is no longer overloaded.

4.3 Switch migration

The switch migration algorithm requires an LSTM prediction model to predict the
load of the controllers in the cluster. For this purpose, we monitor the load variation
of all of the controllers in real time, preprocess the load data first, and then pass it
forward in batches into the model to derive the corresponding load prediction results.

Algorithm 3: Switch migration algorithm

Input: ξ1, ξ2, ξ3, Ucpu

Output: Migration Action(Cori, Ctar, Smir)
1 initialize: |Ctar| ← null, |Smir| ← null;
2 LSTMPrediction()← Scandi, Ccandi;
3 calculate the network traffic size neti between Scandi and Ccandi;
4 for 1 ≤ i ≤ |Ccandi| do
5 for 1 ≤ j ≤ |Scandi| do
6 Dijkstra(hopi,j)← hi,j ;
7 calculate migration cost ← costmir;
8 Algo2(Cov)← Smir;

9 end

10 calculate network throughput ← Tout;
11 calculate controller resource utilization ← Ures;
12 get WCcandi

and StateCcandi
;

13 Algo1(Scandi, Ccandi, Lsw, ηCi
, ωCi

)← Cov, Ctar;
14 record average remaining resource utilization of each controller in Ctar;

15 end

16 sort(max(Ctar));
17 for Si ∈ Smir do

18 match Smir and Ctar;
19 MigrationAction(Cori, Smir, Ctar);

20 end

21 return Cori, Smir, Ctar;

In line 2 of the switch migration algorithm, we first obtain the candidate migration
switches and candidate target controller in the cluster based on the LSTM prediction
result. Then, in line 3, we calculate the network traffic size neti between Scandi and
Ccandi. Lines 4–15 present a nested for loop. Specifically, in line 6, we use the Dijkstra
algorithm to calculate the minimum number of hops of the corresponding elements in
sets S and C, and then we calculate the migration cost in line 7 and use algorithm 2
to obtain the migrating switch set. Lines 10–12 calculate the network throughput and
controller resource utilization of each candidate controller; we use these two parameters

14

to get controller load weight WCcandi
and controller overload state StateCcandi

. Line
13 uses algorithm 1 to get origin target controller set Cov and target controller set
Ctar. Line 14 calculates the average remaining resource utilization of each controller
in Ctar and sorts controllers in Ctar in descending order so that the controller with
the most remaining resources will be served first. Lines 17–20 contain a for loop to
match each element in Smir and Ctar to facilitate Migration Action. The result of the
switch migration algorithm is a series of migration actions.

We created a thread pool specifically for the switch migration algorithm to perform
multiple switch migration actions in parallel and thus handle multiple overloaded
controllers. At each execution of a migration action, the algorithm creates a new thread
task in the thread pool. Parallel processing of multiple overloaded controllers reduces
the migration implementation time and improves migration efficiency.

4.4 Load balance algorithm

Since the load balance algorithm has to continuously detect the network state, it is
an infinite loop.

Algorithm 4: Load balance algorithm

1 while true do

2 if first deployment then

3 initialize network and calculate network parameters;
4 Algo1()← (Cov, Ctar);
5 Algo2()← Smir;

6 else

7 Algo1()← (Cov, Ctar);
8 Algo2()← Smir;

9 end

10 if Smir! = null&&(Cov, Ctar)! = null then
11 Algo3(Cori, Ctar, Smir);
12 end

13 end

Lines 2–9 of the algorithm present a condition. If the cluster is started for the first
time, then it is necessary to initialize the relevant network and calculate the network
parameters; these parameters are subsequently passed to Algorithms 1 and 2 for the
selection of the target controllers and migration switches. However, if the cluster has
already started, then Algorithms 1 and 2 are called directly. Lines 10–12 determine
whether the set returned by Algorithms 1 and 2 is empty. If it is not empty, then the
cluster load is not balanced and the switch migration algorithm needs to be called to
make the cluster load-balanced; if it is empty, then we continue monitoring the cluster.

15

5 Performance Evaluation

In this section, we describe the experimental environment and obtained results. In
subsection A, we describe the controller model and topology used in the system, the
network environment parameters, etc. In subsection B, we describe the experimental
results in detail.

5.1 Environment Settings

We choose open source controllers ONOS1.13.0 provided by the ONOS platform [19]
to build the cluster environment needed for the experiment. We use OpenFlow1.3 [20]
as the communications protocol. Since there are five controllers in each topology, the
controller set is C = {C1, C2, C3, C4, C5}; moreover, there are five controllers in five
virtual machines on one server. We use mininet [21] to build the network topology.
The details of our system are shown in Table 2.

Table 2 System details

System version Application deployment IP address

Ubuntu18.04

ONOS1, ofp sniffer 172.20.249.201
ONOS2, ofp sniffer 172.20.249.202
ONOS3, ofp sniffer 172.20.249.203
ONOS4, ofp sniffer 172.20.249.204
ONOS5, ofp sniffer 172.20.249.205
Mininet 172.20.249.206

5.1.1 Selection of topology

We use the widely adopted Internet2 OS3E [22] topology (Figure 5) to evaluate the
performance of the LPSM strategy. OS3E is a topology with a high degree of simula-
tion. It is the abstractions of actual backbone networks in the U.S., created jointly by
several universities, research institutes, and companies for the construction of the next-
generation Internet, and have a high degree of authority and recognition. The data
information of nodes, links, and distances in OS3E is set according to the parameters
of their referenced real networks. These specific parameters are given in Table 3. Before
starting the experiment, we use the kmeans++ algorithm to place the five controllers
in positions that make the cluster load-balanced.

Table 3 Topology details

Topology Number of nodes Number of links

OS3E 34 42

16

Fig. 5 OS3E topology

5.1.2 Controller performance

Figure 6 shows the Packet Out response latency test result of ONOS1.13.0 with
cbench [23], where the maximum, minimum, and average delays of the cluster con-
troller are kept at a stable level for Packet In rates below 1000 packets/s. After
exceeding 1000 packets/s, delays start to increase. By this token, we combine the
parameters mentioned in chapter 3 with Equation (3); here, we set δ = 1000.

Fig. 6 Packet Out response latency

In cluster mode, we test the controller CPU utilization percentage and physical
memory usage of five ONOS controllers with different numbers of switches connected.
We use the data set in [24]. From the test results, it can be concluded that as the
number of switches increases, the controller CPU utilization percentage and physical
memory usage increases as well, which is why we need to take these two factors into
account in Equation (8).

17

5.2 Experimental Results

5.2.1 Switch migration cost

In the switch migration consumption experiments, we add a distribution decision
mechanism (DDM) [25] and TSSM [18] for comparison since there is no migration
action in the native OpenFlow environment. The core idea of the TSSM strategy is to
share the load of the overloaded controller with the underloaded controller to achieve
load balancing. The DDM strategy uses migration decision fields to choose migrating
switches according to probability. The difference between DDM and TSSM is that
DDM uses a traditional switch migration method that aims to select the best migration
tuple (switch, controller). This tuple is single, i.e., performing only one migration
operation at a time and not taking other influencing factors into account. Meanwhile,
TSSM reduces the probability of a switch migrating back and forth between two
controllers.

We evaluate the migration consumption of the best-fit migration (BFM) strategy,
DDM strategy, TSSM strategy, and the LPSM strategy based on Equation (6). After
many trials and parameter settings, we find that costmir and ∆f have a larger effect on
parameter Γi compared with di. Therefore, we set ξ1, ξ2 = 0.4, and ξ3 = 0.2. We also
compare the average time

∑ Γi

n
resource consumption of all of the migration actions,

where n represents the number of migration actions to be executed. The higher the
output value, the higher the cost to perform the migration action.

Fig. 7 Switch migration cost

From Figure 7, we can see that the BFM strategy has the highest time consump-
tion for switch migration actions done to achieve load balancing. This is because this
strategy only performs switch migration based on the current point in time and the
operation between the migration actions is serial, which greatly increases the time con-
sumption. Although the migration cost footprint of DDM is somewhat smaller than

18

that of BFM, DDM needs to collect network information and build a migration deci-
sion field, and then perform a load balance decision, which takes up many system
resources. Meanwhile, TSSM reduces migration costs by approximately 8% compared
with DDM. TSSM allows up to two controllers to participate in the time-sharing
migration of a switch, which increases the flexibility of time-sharing migration but
can be significantly more costly. Lastly, LPSM has a target controller selection algo-
rithm, which relaxes migration restrictions. Multi-objective optimization is used for
the selection of migration switches and target controllers, which makes this strategy
better than TSSM.

5.2.2 Cluster load balancing resource efficiency

In experiments conducted to assess the average resource utilization in cluster load
balancing, we randomly simulate some controllers to become overloaded and use the
improved python script iperf command to push random bandwidth data streams into
the cluster network to record the changes in controller resource utilization across the
cluster over a period of time. Finally, we evaluate the controller resource utilization by
computing ρCi

. We calculate the load variance of each strategy based on the load bal-
ancing result. We conclude that the load variance of BFM is 0.05318, the load variance
of DDM is 0.02274, the load variance of TSSM is 0.000855, and the load variance of
LPSM is 0.00460. Since BFM does not consider the impact of CPU utilization, mem-
ory utilization, and network throughput, etc., and simply performs a best-fit strategy,
it has the worst resource utilization. DDM uses selection probabilities to select migrat-
ing switches and takes the controller resources occupied by the switch and the number
of hops between switch controllers into account. In the selection of controllers, DDM
only considers network aspects and does not consider memory and CPU utilization.

Fig. 8 Average resource utilization during load balancing

When the network traffic beccvomes larger, the memory and CPU utilization of the
cluster will gradually increase. This leads to DDM having better performance but also

19

a larger load variance compared with BFM. Thanks to time-sharing migration, TSSM
allows two controllers to work together to process OpenFlow messages from high-load
switches, thus further balancing their workloads. Although the migration consumption
of TSSM is higher than that of LPSM, its average resource usage is slightly lower.
LPSM requires parallel processing of migrating switch tuples and consumes more
system resources than TSSM. However, from Figure 8 we can see that the average
resource consumption of LSPM is similar to that of TSSM. Moreover, compared with
DDM, the resource usage of the five controllers in the LPSM strategy fluctuates less.
Therefore, we can conclude that LSPM greatly reduces the load variance of system
resource utilization compared with DDM.

5.2.3 Overload handling time

Since controller overload affects the entire multi-controller network, we compare LPSM
with the OpenFlow native strategy and TSSM strategy. The results of this comparison
are shown in Figure 9.

(a) OpenFlow strategy (b) TSSM strategy

(c) LPSM strategy

Fig. 9 Controller performance in different strategies

20

As can be seen from Figure 9(a), the native OpenFlow strategy does not have a load
balancing strategy or switch migration strategy. In our experiments, we simulate con-
troller 2 to become overloaded and ensure that the load on controller 2 remains above
threshold δ throughout the experiment. Compared with the native OpenFlow strategy,
the TSSM strategy has a load balancing strategy but does not handle the overloaded
controllers quickly. We successively send random traffic exceeding the threshold to
controller 2, controller 1, and controller 4 to test how long it would take the TSSM
strategy to handle the overloaded controllers and complete switch migration.

From Figure 9(b), we can see that the controller overload time in the cluster is
around 50 seconds. When the load balancing strategy is executed, the load of the over-
loaded controllers will reach a balanced state only after a period of slow decline of the
controller load of the whole cluster; this occurs slowly because of migration consump-
tion, network throughput, and other factors not being considered. The LPSM strategy
uses the LSTM load prediction algorithm, and after our tests on the ONOS cluster,
we conclude that the CPU utilization, memory consumption, and controller process-
ing time of other network events are not greatly affected within the first 10 seconds
of the controllers being overloaded. Therefore, we set the overload time in the LSTM
load prediction algorithm to 10 seconds. In our experiments, we make all five of the
controllers become overloaded to observe the performance of the LPSM strategy. As
we can see from Figure 9(c), the controller overload time hardly exceeds 10 seconds.
Moreover, when a controller is predicted to be overloaded, the LPSM strategy immedi-
ately executes the switch migration algorithm to avoid prolonged controller overload.
Thus, the controller load is quickly restored to normal after the load balancing strategy
is executed.

The following equation measures the improvement in load balancing efficiency
brought by this algorithm:

1− ol/total, (13)

According to Equation (13), the load balancing efficiency of native OpenFLow is 0%
because it has no load balancing strategy. Meanwhile, the efficiency of the TSSM
strategy is 60.33%, and that of the LPSM strategy is 87.93%. It is apparent that the
improvement in load balancing efficiency obtained by the LPSM strategy is huge.

6 Conclusion

In this paper, we study the SDN controller cluster load balancing problem and the
switch migration problem. To solve these two problems, we propose an LPSM strategy
based on a deep learning LSTM algorithm, which focuses on predicting the load of each
controller in a cluster and making an early decision on switch migration when controller
overload is predicted. We conduct extensive simulations and experiments on the LPSM
strategy, and the experimental results show that it reduces migration cost by 16%
and 8%, respectively, compared with the TSSM and DDM strategies. Furthermore, it
reduces load variance from 0.02 to 0.004 compared with the DDM strategy. Moreover,
compared with the TSSM strategy, LPSM has a 27.6% improvement in load balancing
efficiency.

21

However, compared with TSSM, LPSM does not have a lower average resource
utilization. The reason for this is that our algorithm is too complicated for the selection
of switches and controllers, and thus the algorithm requires more CPU processes and
memory space. In future work, we will try to add reinforcement learning models to
solve the problem of high time complexity of LPSM.

Acknowledgments. We thank LetPub (www.letpub.com) for its linguistic assis-
tance during the preparation of this manuscript.

Data Availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

Funding. This work is partially supported by China University Industry-Academia-
Research Innovation Fund under Grant 2021FNA02007,v partially supported by
the Natural Science Foundation of Shandong Province under Grant ZR2020MF005,
ZR2020MF006 and ZR2022LZH015, partially supported by the Industry-university
Research Innovation Foundation of Ministry of Education of China under Grant
2021FNA01001.

Declarations

Conflict of interest. Author declares that they have no conflict of interest.

Ethics approval. Not applicable.

Consent to participate. All authors agreed to participate.

Consent for publication. Not applicable.

References

[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM computer communication
review, 38(2):69–74, 2008.

[2] A TOOTOOCIAN. A distributed control plane for openflow. In Proc. NSDI
Internet Network Management Workshop/Workshop on Research on Enterprise
Networking (INM/WREN), 2010, 2010.

[3] Shuanglong Pang, Xiaodan Chen, and Desheng Zeng. Research on dynamic load
balancing of data center network based on sdn architecture. In 2021 Interna-
tional Conference on Networking, Communications and Information Technology
(NetCIT), pages 216–219, 2021.

[4] Irengbam Tilokchan Singh, Thounaojam Rupachandra Singh, and Tejmani
Sinam. Server load balancing with round robin technique in sdn. In 2022 Inter-
national Conference on Decision Aid Sciences and Applications (DASA), pages
503–505, 2022.

22

[5] P. Varalakshmi, Mithesh A, Niveditha B, Rubak Preyan G, and Yogeeswar S.
Intelligent load balancing in sdn. In 2022 8th International Conference on
Advanced Computing and Communication Systems (ICACCS), volume 1, pages
1146–1151, 2022.

[6] Thaeer Ghyadh Thajeel and Aladdin Abdulhassan. A hybrid load balancing
scheme for software defined networking. In 2021 2nd Information Technology To
Enhance e-learning and Other Application (IT-ELA), pages 106–112, 2021.

[7] Yang Wang, Ruichun Liu, Yutai Li, Zier Chen, Ning Zhang, and Bingyang
Han. Sdn controller network load balancing approach for cloud computing data
center. In 2022 14th International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), pages 242–246, 2022.

[8] Javesh Dafda and Mansi Subhedar. Dynamic load balancing in sdn using energy
aware routing and optimization algorithm. In 2022 IEEE Bombay Section
Signature Conference (IBSSC), pages 1–6, 2022.

[9] Wei Jun and Su Xiaowei. Research on sdn load balancing of ant colony opti-
mization algorithm based on computer big data technology. In 2022 IEEE
International Conference on Advances in Electrical Engineering and Computer
Applications (AEECA), pages 935–938, 2022.

[10] Xiaoyong Sun and Guiqin Yang. Research on load balancing strategy of data
center based on yen algorithm in sdn. In 2022 IEEE 5th Advanced Information
Management, Communicates, Electronic and Automation Control Conference
(IMCEC), volume 5, pages 1243–1247, 2022.

[11] Yong Liu, Huaxi Gu, Fulong Yan, and Nicola Calabretta. Highly-efficient switch
migration for controller load balancing in elastic optical inter-datacenter net-
works. IEEE Journal on Selected Areas in Communications, 39(9):2748–2761,
2021.

[12] Gengbiao Yue, Yumei Wang, and Yu Liu. Rule placement and switch migration-
based scheme for controller load balancing in sdn. In 2022 IEEE Symposium on
Computers and Communications (ISCC), pages 1–6, 2022.

[13] Lin Yao, Jia Li, Guowei Wu, and Bin Wu. New dynamic switch migration tech-
nique based on deep q-learning. In 2021 IEEE 19th International Conference on
Embedded and Ubiquitous Computing (EUC), pages 125–130, 2021.

[14] Himanshi Babbar, Shalli Rani, Ali Kashif Bashir, and Raheel Nawaz. Lbsmt:
Load balancing switch migration algorithm for cooperative communication intel-
ligent transportation systems. IEEE Transactions on Green Communications and
Networking, 6(3):1386–1395, 2022.

23

[15] Abderrahime Filali, Soumaya Cherkaoui, and Abdellatif Kobbane. Prediction-
based switch migration scheduling for sdn load balancing. In ICC 2019 - 2019
IEEE International Conference on Communications (ICC), pages 1–6, 2019.

[16] Jie Cui, Qinghe Lu, Hong Zhong, Miaomiao Tian, and Lu Liu. A load-
balancing mechanism for distributed sdn control plane using response time. IEEE
transactions on network and service management, 15(4):1197–1206, 2018.

[17] Kshira Sagar Sahoo, Deepak Puthal, Mayank Tiwary, Muhammad Usman, Bibhu-
datta Sahoo, Zhenyu Wen, Biswa PS Sahoo, and Rajiv Ranjan. Esmlb: Efficient
switch migration-based load balancing for multicontroller sdn in iot. IEEE
Internet of Things Journal, 7(7):5852–5860, 2019.

[18] Wei-Kuang Lai, You-Chiun Wang, Yi-Chien Chen, and Zong-Ting Tsai. Tssm:
Time-sharing switch migration to balance loads of distributed sdn controllers.
IEEE Transactions on Network and Service Management, 19(2):1585–1597, 2022.

[19] ONOS. Open operating network system. [OL]. https://opennetworking.org/onos/
Accessed 2022.

[20] OpenFlow. Openflow. [OL]. https://opennetworking.org/ Accessed 2022.

[21] mininet. Mininet. [OL]. http://mininet.org/.

[22] Internet 2. Internet 2. [OL]. http://www.internet2.edu/ Accessed 2022.

[23] Cbench. Controller bench mark. [OL]. git://gitosis.stanford.edu/oflops.git
Accessed 2022.

[24] sdntopo.org. Knowledge-defined networking training datasets. [OL]. https://
knowledgedefinednetworking.org/ Accessed 2022.

[25] Tao Hu, Peng Yi, Jianhui Zhang, and Julong Lan. A distributed decision mech-
anism for controller load balancing based on switch migration in sdn. China
Communications, 15(10):129–142, 2018.

24

https://opennetworking.org/onos/
https://opennetworking.org/
http://mininet.org/
http://www.internet2.edu/
git://gitosis.stanford.edu/oflops.git
https://knowledgedefinednetworking.org/
https://knowledgedefinednetworking.org/

	Introduction
	Related Work
	System Model
	Network Model
	Network Data Structure
	Protocol Introduction

	Controller Load Balancing
	Selection of migrating switches
	Selection of target controllers

	Switch Migration Process Analysis

	Algorithm Design
	Selection of target controller
	Selection of migrating switch
	Switch migration
	Load balance algorithm

	Performance Evaluation
	Environment Settings
	Selection of topology
	Controller performance

	Experimental Results
	Switch migration cost
	Cluster load balancing resource efficiency
	Overload handling time

	Conclusion
	Acknowledgments
	Data Availability
	Funding
	Conflict of interest
	Ethics approval
	Consent to participate
	Consent for publication

