
A Collaborative Ledger Storing Model for
Lightweight Blockchains based on Chord Ring
ZiXiang Nie ( niezixiang@bupt.edu.cn)

Beijing University of Posts and Telecommunications
Jin Li

Beijing University of Posts and Telecommunications
FengHui Duan

Beijing University of Posts and Telecommunications
Yueming Lu

Beijing University of Posts and Telecommunications

Research Article

Keywords: Lightweight Blockchains, Ledger Structure, Asynchronous Consensus, Distributed Hash Table

Posted Date: August 17th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3254799/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3254799/v1
mailto:niezixiang@bupt.edu.cn
https://doi.org/10.21203/rs.3.rs-3254799/v1
https://creativecommons.org/licenses/by/4.0/

A Collaborative Ledger Storing Model for

Lightweight Blockchains based on Chord Ring

ZiXiang Nie1*, Jin Li1†, FengHui Duan1†, Yueming Lu1†

1*Key Laboratory of Trustworthy Distributed Computing and Service
(BUPT), Ministry of Education, Beijing University of Posts and
Telecommunications, Xitucheng, Haidian, 100876, Beijing, China.

*Corresponding author(s). E-mail(s): niezixiang@bupt.edu.cn;
Contributing authors: li jin@bupt.edu.cn; duanfh@bupt.edu.cn;

ymlu@bupt.edu.cn;
†These authors contributed equally to this work.

Abstract

A Blockchain is one distributed ledger system, and keeps the high redundancy
of ledger copies to make the assurance of network security. However, the con-
tinuously duplicated full copies also impose a tremendous amount of demand on
some nodes for data storage. The development of blockchain technologies in the
IoT(Internet of Things) application scenario is hampered by the restricted stor-
age capacities of terminal devices used in the IoT edge computing scenario, which
makes it difficult to load the full copy with infinite growth. Our paper suggests
a collaborative ledger storing model based on Chord Ring to address the issues
with lightweight blockchains in data storage. On-chain blocks are split by Chord

Ring structure and stored in various node clusters in a decentralized manner, and
off-chain blocks at various levels are provided with PoW(Proof of Work) consen-
sus asynchronously and archived centrally to the cloud storage on a regular basis.
The theoretical and experimental analysis indicates that this model can reduce
the data storage redundancy of blockchains while ensuring the high availability
of data and the high decentralization of the network.

Keywords: Lightweight Blockchains, Ledger Structure, Asynchronous Consensus,
Distributed Hash Table

1

1 Introduction

A blockchain is a distributed ledger technology with consensus mechanism, cryptogra-
phy, peer-to-peer network, smart contracts, etc., maintains a complete and consistent
copy of data on each node of the system, in contrast to conventional distributed ledger
technology which splits data for storage. This serves to prevent the entire ledger from
being destroyed on the network, which means not possible to destroy blockchain ledger
as long as sufficient nodes contribute to the upkeep of the system. The more copies
of the whole ledger there are, the more redundant data there is, and the more secure,
stable, and tamper-resistant the blockchain becomes. Since the length of blockchain
ledgers are constantly increasing, new nodes require hundreds of gigabytes of storage
space in order to even participate in the maintenance of the blockchain. This strategy,
however, ignores the massive amount of duplicate data storage when network nodes
expand quickly.

Data volume of both Bitcoin[1] and Ethereum[2] surpassed 500GB by 2023 and
keep expanding quickly, meaning any additional node that wishes to join the two
blockchains would face a significant storage overhead as a result of this volume of data.
The idea of “edge computing” has been put forth with the miniaturization of hard-
ware and containerization of software development environments. In the age of the
IoT, end devices are no longer just sensors that can gather and upload information
and clients that request services from the central server, but also self-organizing nodes
with computational power that are capable of carrying out some computing activities,
such as data processing, caching, device management, privacy protection, etc. The
concept of decentralization, in which end devices become data consumers as well as
data providers, coincides with the idea of blockchains and has garnered a lot of inter-
est from both academic and industry. The current blockchain and IoT integration can
be separated into functional and application-oriented categories, with the functional
category concentrating mostly on Data Management[3], System Security[4], Identity
Verification[5], Privacy Protection[6], Access Control[7], etc. and the application-
oriented mainly focuses on Internet of Vehicles[8], Industry 4.0[9], Smart City[10] and
Supply Chain Management[11].

A Blockchain have a triadic paradox: it can only achieve two of decentralization,
security, and scalability. The IoT blockchain senario prioritizes scalability, transaction
performance, and throughput compare to the financial blockchain senario. However,
the unlimited growth of ledger data and highly redundant storage strategy will put
huge storage pressure on edge computing devices, and the storage scalability of
blockchains is a major issue that limits application implementations. The blockchain
lightweight ledger structure which can reduce the data storage pressure and improve
the scalability have been studied. The feasible research ideas are broadly divided into
two types: one is to realize the lightweight on-chain, such as reducing the storage pres-
sure of blockchain nodes with ledger slicing[12], light nodes[13], ledger coding[14], etc.,
and the other is to transfer part of block data to off-chain external storage, such as
combining IPFS(InterPlanetary File System)[15], DHT(Distributed Hash Table)[16],
and other cloud storage technology to store most blockchain data. However, both
methods have downsides and this study presents a collaborative ledger storing model

2

with both on-chain way and off-chain way, the innovative work in our paper are mainly
included in the following three aspects:

1.We propose an on-chain distributed storing model and a route addressing mech-
anism for on-chain blocks based on Chord Ring structure for lightweight blockchains.
Each node in the blockchain network only keeps a portion of the blocks and has flexible
control over the parameters that determine how redundant the data is, ensuring the
network’s decentralization and reduced node data storage stress. Furthermore, we de-
sign a multi-level node relationship. A node that has just joined the network can only
save ledger data and generate transactions, and according to its resource abundance
in the IoT, it may be responsible for managing a node cluster or the whole blockchain
network in the subsequent time, increasing the scalability of the blockchain.

2.We propose an off-chain blockchain ledger periodic uploading cloud strategy
based on asynchronous consensus to divide blocks into blocks of three different se-
curity levels: minute blocks, hour blocks, and day blocks. Asynchronous consensus
represents that the generation of blocks with different security levels is asynchronous,
which could reduce the transaction throughput pressure caused by node size growth.
In addition, the combination of asynchronous consensus and regular cloud upload
strategy ensures that blockchain data is highly available and high TPS(Transaction
Per Second) without sacrificing security and tamper resistance.

3.We combine the on-chain and the off-chain blockchain ledger data lightweight
methods and simulating a IoT edge computing scenario, and design the relevant ex-
periments. We make statistics on the distribution uniformity of nodes and blocks.
The experimental results show that nodes and blocks can be randomly and uniformly
distributed in the network topology according to the algorithm. Further more, the ex-
periments on the nodes of the blockchain in reducing data storage pressure are also
counted to prove the feasibility of this design.

2 Related Work and Background Knowledge

We divide this section into two parts. The first part introduces how to realize the
lightweight of blockchain ledgers in the previous work. Referring to the previous work,
we choose the DHT architecture as the basis of the blockchain network topology in
this article, so in the second part, we will introduce the background of DHT.

2.1 Lightweight and scalability of blockchain ledger

architecture

In recent years, research has focused on enhancing the scalability of blockchain, study-
ing the lightweight of its ledger, and lowering the redundancy of data storage across
the network. The primary categories from an on-chain perspective are ledger sharding,
light nodes, ledger splitting, ledger coding. From the off-chain perspective, it mainly
relies on external storage to realize blockchain data transfer.

Ledger sharding is one of the popular methods for scaling a blockchain that divides
the original blockchain network into numerous shards, with each shard’s transactions
being independently handled by a cluster of nodes using a parallel verification strat-
egy. For example, Elastico[12] interposes blockchain processes with the idea of “slice

3

epochs”, where each round of epochs ends with a random variable calculated for the
next round of random slicing. However, secondary slicing stops almost any node in
the entire blockchain network, significantly reducing blockchain performance in terms
of time and overhead. SSChain[17] adopts a market incentive policy where nodes can
freely migrate between different shards, thereby dynamically adjusting the degree of
computing power balance in each shard. The problem with lightweight solutions based
on ledger sharding is that most of the considerations are to improve the overall data
load capacity of the system without reducing the load on individual nodes. Regular re-
structuring of shards will bring corresponding data migration loads, and the interaction
between shards will bring additional system complexity and security issues.

The term “light node” refers to a node that only keeps the block header and can
send transactions but cannot independently verify them, and it originates from the
SPV(Simplified Payment Verification) protocol[1], a financial-oriented design concept.
When a light node needs to confirm a transaction, it must request data from a full node
(i.e., a node that houses the entire blockchain ledger and data with full functionality)
and use hash functions like Merkle Root to check the consistency of the data. Frey
D[13] suggests a more intricate consensus model with the goal of lessening the reliance
of light nodes on full nodes, and divides the full nodes into five categories of roles
that carry out the mining, storing, and verifying tasks. In addition to full nodes, light
nodes can also ask DHT nodes for data. For light nodes with limited resources, the
protocol does lessen the degree of dependence on the full node, but it only shifts the
dependency to the DHT node, which is actually still a design with a significant external
dependency. Kim[18] adopts a more compromise block compression method, which
uses a selective compression scheme to quickly validate data and prevent compressed
block stacking by updating partial checkpoints. Although lightweight solutions based
on lightweight nodes can reduce the storage load of a single node, they completely
store data in the entire node, resulting in low data independent verification ability,
low security, low throughput, and high degree of centralization.

By moving data from the chain to external cloud storage, it is also possible to in-
crease the scalability of the blockchain ledger storage while simultaneously easing the
load on blockchains and achieving the lightweight nature of block ledgers. It is common
practice to use the IPFS system, for instance, Zheng[19] stores validated transactions
in IPFS and uses its ability to distinguish between transactions that have been ver-
ified by the presence or absence of the file’s index hash in the block as evidence.
Mani[20] designs a Hyperldger combined with IPFS transaction verification model. In
this model, blockchain miners will first check whether there is a hash of the transac-
tion locally when verifying the transaction. If it does not exist, they will download the
transaction data uploaded from other nodes in IPFS to quickly filter verified transac-
tions and improve efficiency. Sarathchandra[21] constructs a social media application
that combines Ethereum and IPFS implementation, transferring large file data that
is difficult to load on the blockchain to IPFS for storage. Only user metadata infor-
mation is stored on the chain, reducing the storage load on Ethereum when creating
smart contracts. Ali[22] establishes a three-layer architecture consisting of blockchain,
DHT, and IPFS. Blockchain is responsible for permission management and access

4

control, DHT stores data reference information, and IPFS stores data entities, reduc-
ing the storage load of blockchain through a three-layer architecture. Hassanzadeh[23]
proposes a separated storage blockchain ledger that stores data entities in DHT and
saves data references in the blockchain.

In conclusion, the research on blockchain ledger storage lightweight can be sepa-
rated as on-chain and off-chain. Ledger sharding’s communication loss and resharding
problem, light nodes’ external dependency issue, and ledger coding’s computational
burden are some of the drawbacks of on-chain approaches. The off-chain external cloud
storage based solution will also result in additional security concerns due to the level
of trust with external cloud service providers. Another problem is that the users will
no longer be able to view data directly from the chain; instead, they must go through
a cloud download-verification procedure, which increases the system delay.

2.2 Distributed Hash Table and Route Addressing

Structured P2P(Peer-to-Peer) models are suggested as a solution to the issues of
blindness, inefficiency, low accuracy, and high information redundancy in traditional
unstructured resource discovery. The design concept is to use the compatibility hash
algorithm to map the index of resources to a structured overlay network, and then to
design routing tables and indexing algorithms between nodes to achieve accurate and
quick location of resources. The unidirectivity, anti-collision, and load balancing of the
hash algorithm, which ensures the uniqueness and balance criteria of the structured
P2P model for resource address distribution, are the foundation for the implementa-
tion of DHT technology. Pastry[24], Tapestry[25], and Chord[26] are typical designs
of DHT-based P2P models, with Chord being the most popular due to its design’s
simplicity, accuracy, and aesthetic appeal.

Chord assigns an m-bit identifier to each node and resource according to the SHA-
1 algorithm, called NodeID and ObjectID respectively. Each node and resource is
arranged clockwise according to its ID on a circular ring with address space 2m .
This ring is called Chord Ring, which is an overlay network built on top of the IP
network. Each node maintains its own routing table (called finger table) containing the
information of m nodes that are close to its neighbors. Usually, when a node receives
a resource index, it does not find the corresponding resource node directly from its
own routing table, but keeps narrowing down the storage range of the target resource
with a dichotomy like jumping search, and finally finds it by a successor node.

Because the concepts of DHT using hash value to locate data resources and
blockchains using hash value to determine the uniqueness of blocks are similar, there
is a chance to merge the two. The concept for this paper is inspired by the topol-
ogy of Chord Ring : blocks are distributedly stored in the corresponding nodes on the
Chord Ring according to their own hash values, and the IP address of a node in the
blockchain network is used to generate its location identification on the Chord Ring.
Our paper also suggests a two-layer cluster structure based on the Chord Ring to ad-
dress the issues of communication overhead and service delay brought on by nodes
frequently joining or leaving the network. The specific network topology design and
associated algorithms will be covered in more detail in the following chapters.

5

3 The Collaborative Storing Model Combining
On-Chain and Off-Chain

In this section, we take into account the two aforementioned research concepts and
propose an collaborative storing model combining the on-chain method and off-chain
method for lightweight blockchains. We also provide a flow chart that includes the
process from the establishment to the normal operation of the model.

On the chain, this model uses the Chord Ring to divide nodes into clusters. Nodes
within a same cluster no longer store full ledger data, but jointly maintain a portion
of the ledger data, which all the portions then combine to form the entire blockchain
data. In addition, the roles of the blockchain nodes are divided into four types including
emphleader nodes, vice-leader nodes, Successor nodes, and follower nodes, which helps
improve the efficiency of this model. Comparing to the light node model, this design
retains the ability of nodes to independently verify data, providing higher security, and
has the advantage of decreasing communication loss between nodes due to sharding
and relieving the full node of this responsibility that the ledger sharding paradigm
unpossessed.

Off the chain, an asynchronous consensus based upload cloud storage strategy is
employed. The asynchronous consensus represents that blocks are hierarchical with
different security levels, and different generation intervals are given according to dif-
ferent levels. The higher the level, the longer the generation interval, and the more
stable and secure the block. High level blocks include low-level blocks, and the high-
est level blocks are regularly uploaded to external cloud storage for persistence. Most
blockchain nodes will erase the low-level blocks after a predetermined amount of time
(usually seven days) and begin storing the freshly created blocks. Since data often
accessed by users is always freshly generated, this design of regularly clearing data en-
ables blockchain transactions to be maintained on the edge device for a week, ensuring
high accessibility of blockchain data and lessen the storage demand brought on by the
exponential expansion of blockchain data on edge devices. Furthermore, keeping data
for a week also help blockchain nodes to monitor the behavior of external cloud stor-
age, meaning that blockchain nodes can immediately stop uploading blockchain data
to cloud storage once it is found to be evil, which ensures the data sovereignty of edge
computing nodes within a certain period.

3.1 On-chain distribution of Blocks based on Chord Ring

3.1.1 Node network topology design

In this subsection, we propose a multi-layer architecture based on the Chord Ring

design to organize the chain’s nodes rather than a flat hierarchy. According to the hi-
erarchy from top to bottom, the roles of nodes are specified as leader nodes, vice-leader
nodes, Successor nodes, and follower nodes. The blockchain network’s topological ar-
chitecture is depicted in Fig. 1 along with the transformational relationship between
nodes, which includes the following concepts:

• Chord Ring : The key idea of topology design in this study. When nodes join the net-
work, they are all assigned to a cluster of nodes on the Chord Ring. The management,

6

interaction and work between nodes are based on this Chord Ring architecture. All
nodes work together to enable the efficient running of the blockchain system. Com-
pared with the traditional architecture[?], our paper improves its hierarchy design
and routing addressing.

• Chord cluster : A collection of nodes on the Chord Ring, each chord cluster corre-
sponds to a number, which is the result of modulo a fixed number after hashing
the IP information of the node (Fig. 1 shows the result of modulo 8, so there are a
total of 8 clusters on the whole network, with serial numbers from 0 to 7 arranged
clockwise on the Chord Ring). The blockchain ledger is stored in part by each chord

cluster, and the data between clusters is related in a non-intersecting way. The essen-
tial component of the chord cluster is changing the data storage from maintaining
one whole ledger per node to storing only a portion of the ledger per node, hence
minimizing the data redundancy rate over the entire blockchain network.

• Leader node : A leader node node is responsible for collecting the transaction infor-
mation sent by all the nodes in the network and packing transactions into blocks
containing PoW(Proof-of-Work) and has the most authority among the network
nodes. A leader node node is distinguished by its protracted online status, robust
computational power, and large storage capacity. Each node can only serve as the
leader node for one week continuously before stepping down and being replaced by
the vice-leader nodes in a specific order. This is known as the “term” concept for
the leader node. The transformation of a leader node into a follower node following
resignation is seen in Fig. 1.

• Vice-leader node : A vice-leader node is the successor of a leader node, elected
from follower nodes or succeeded by a successor node(each vice-leader node has a
successor node corresponding to it). A vice-leader node is responsible for receiving
blocks from a leader node and performing validation work, then broadcasting blocks
to the follower nodes it manages. It also in charge of obtaining the verification
signature data of a few blocks from follower nodes and sending it to a leader node.
Vice-leader nodes have no concept of term and will keep working until they transfer
to a leader node or drop out. Fig. 1 depicts the process by which a vice-leader node

replaces a leader node as the network’s new leader node. Theoretically, each vice-

leader node will act as a leader node once after n − 1 terms if the fixed number is
assumed to be n.

• Successor node : A successor node is the successor of a vice-leader node, and is
mainly responsible for listening to the mutual heartbeat with the vice-leader node.
A successor node will automatically become the new vice-leader node of the chord

cluster and begin a election process for a new successor node if the status of a
vice-leader node changes which includes taking over as the leader node, leaving the
network, or quiting. Fig. 1 depicts how the successor node replaces the previous
vice-leader node in the chord cluster 5 and takes over as the cluster’s new vice-leader

node.
• Follower node : Follower nodes are the lowest level nodes in blockchain network,
which are only in charge of producing transaction data and storing blockchain ledger
at regular intervals. Their storage capacity, computational power, and online time
are very random and heterogeneous. When a follower node joins the blockchain

7

Figure 1 Network topology design based on Chord Ring

network, it is given a chord cluster to belong to, and the nodes in a same cluster
will consistently store block data. Since follower nodes store the blocks’ underlying
transaction data, a leader node must use follower nodes to verify any special blocks
it generates (hour blocks or day blocks). As a consequence, a leader node’s ability
to tamper with the transactions in the resulting “enhanced block” is reduced, and
the network’s decentralization and data security are improved. In a chord cluster

election, some of the more inventive follower nodes may be elected as a successor

node and eventually have the chance to advance to leader node across the network.
The specific election method can be introduced in our previous work[27].

The network topology proposed in this subsection classifies nodes with different
levels responsible for different work. First, a leader node is responsible for collecting
transactions, generating blocks, and broadcasting blocks. Secondly, vice-leader nodes

are responsible for managing clusters, verifying and forwarding blocks, and acting as
the backup of the leader node. Thirdly, successor nodes are responsible for acting as the
backup of the vice header node. Finally, follower nodes are responsible for generating

8

transactions, storing blocks, and supervising the leader node. To sum up, this design
can achieve the scalability of the blockchain, and the low-level nodes as the backup of
high-level nodes can ensure that the blockchain network will not stop when some node
status changes. Algorithm 1 represents the building process of the whole blockchain
network based on Chord Ring, starting from the building of clusters, then follower

nodes are randomly allocated to clusters, and then vice-leader nodes, successor nodes,
and a leader node are generated in turn.

Algorithm 1 Blockchain Network Establishment.

1: ChordclusterGroup []← CreateChordRing(clusterNum)
2: for i = 0; i < clusterNum; i++{
3: if Hash(Node.IP)Mod(clusterNum) == i{
4: Node Join ChordclusterGroup[i]
5: break}
6: }else continue

7: for j = 0; j < clusterNum : j ++{
8: ChordclusterGroup[j].V iceLeader ← ElectViceLeader()
9: ChordclusterGroup[j].Successor ← ElectSuccessor()

10: }
11: Leader ← V iceLeader
12: NormalWork(7 Days)

3.1.2 Finger Tables and block distributed storage

In this subsection, we introduce the differences between the routing tables maintained
by four levels of nodes, and explain how a block is allocated to a specific chord cluster.
The role of a node may change, and when this happens, the role of other nodes in the
network will also change, and the routing information maintained by the nodes will
be modified. This process can be described by algorithm 2.

Fig. 2 depicts the Finger Tables that various kinds of network nodes maintain, along
with the way that each block is stored on the Chord Ring. Each vice-leader node in
the network has an IP address listed in the leader node’s Finger Table. That becauses
the leader node will send the block to the associated vice-leader node according the
result of moduloing a fixed number (8 in the illustration figure) by a block’s hash.
For example, if Block N − 2 has a BlockHashmod8 = 5, the block will be sent by
the leader node to the vice-leader node in chord cluster 5. The Fig. 2 shows that from
block N − 2 to block N + 2, they are assigned to different chord clusters, forming a
complete blockchain together.

A vice-leader node has a Finger Table in which it logs the IP addresses of the cur-
rent leader node in the network, the vice-leaders of other chord clusters, the successor

node, and a few follower nodes in the chord cluster it manages. The block’s verifi-
cation information, gathered from the chord cluster will be sent to the leader nodes.
A vice-leader node can forward blocks that do not belong to its own cluster to other

9

Figure 2 Finger tables of different kinds of nodes

vice-leader nodes when it receive blocks storing the IP information of other chord clus-

ters.The IP address of a associated vice-leader node as well as the IP addresses of a
few follower nodes in the same cluster are both recorded in a successor node’s Finger
Table. A successor node will listen to a vice-leader node to see if it is online all the
time and take over the role of the vice-leader when the vice-leader drops or becomes
a new leader node.

A follower node’s Finger Table stores IP addresses of the leader node, the vice-
leader information that supervises it, and a few nearby follower nodes that belong to
the same cluster. Each chord cluster ’s follower nodes submit transaction information
to the leader node, and these information serves as the foundation for constructing a
block. At the same time, a block from a vice-leader node is propagated in the cluster
in the form of flooding until all nodes have stored this block.

10

Algorithm 2 Node State and Role changes.

1: BlockchainNormalOperate()
2: ifTrue NodeTypeChange(){
3: if NodeType == Leader{
4: Leader = NextV iceLeader

5: NewV iceLeader = ElectViceLeader()
6: ChangeFingerTable()
7: }else if NodeType == V iceLeader{
8: NewV iceLeader = Successor

9: NewSuccessor = ElectSuccessor()
10: ChangeFingerTable()
11: }else if NodeType == Successor{
12: NewSuccessor = ElectSuccessor()
13: ChangeFingerTable()
14: }else if NodeType == Follower{
15: ChangeFingerTable()
16: }

By introducing the routing tables maintained by nodes at all levels, the interaction
logic between nodes can be represented. It can be seen that the communication between
the vice-leader node and all other level nodes is bidirectional, but the communication
between the leader node and follower nodes is unidirectional. Besides, this subsection
also shows how different blocks maintained by each cluster form a complete blockchain.

3.2 Off-chain Storage of Blockchain based on Asynchronous

Consensus

3.2.1 Hierarchical block architecture

In this subsection, we propose a hierarchical block architecture containing three types
of blocks, and describe the relationship between the three types of blocks, how nodes
at different levels handle different types of blocks, and why this design is adopted.

The hierarchical block architecture in this work includes three different sorts of
blocks: minute blocks, hour blocks, and day blocks. Blocks are named by the time
interval they are generated, i.e., minute blocks are generated every minute, hour blocks
are generated every hour, and day blocks are generated every day. Each hour block is
a collection of all minute blocks packaged in the previous hour, and each day block is
a collection of all hour blocks packaged in the previous day.

All three types of blocks are produced by the leader node, as seen in Fig. 3. When a
minute block is formed, the leader node broadcasts it to the relevant chord cluster for 7
days of permanent storage. A minute block contains all the transactions submitted by
follower nodes to the leader node within one minute. The robustness of the blockchain
network data is improved by this design, which makes sure that block data is not
solely held in a small number of “central nodes” in the network, and the key benefit
of keeping minute blocks on the follower nodes is that when a leader node creates an
hour or day block, follower nodes must verify it, which prevents a malevolent leader

11

Figure 3 Hierarchical block architecture and asynchronous consensus process

node from tampering with the blockchain. The algorithm 3 shows the pseudo code
how a leader node generates blocks of three types at different intervals.

Algorithm 3 Blocks Generated by Leader Node.
1:

2: while{
3: TxGroup []← Collect(Transactions)
4: MinBlock ← GenerateMinBlock(TxGroup[], ...)
5: TimeWait(1 Minute)
6: }
7: while {
8: PreHourBlock← GenerateHourBlock(MinBlockGroup[], ...)
9: ifTrue VerifyBlock(PreHourBlock){

10: HourBlock[] append PreHourBlock}
11: else RegenerateHourBlock()
12: TimeWait(1 Hour)
13: }
14: while {
15: PreDayBlock← GenerateDayBlock(HourBlockGroup[], ...)
16: ifTrue VerifyBlock(PreDayBlock){
17: DayBlock[] append PreDayBlock}
18: else RegenerateDayBlock()
19: TimeWait(1 Day)
20: }

Fig. 3 also shows that the leader node will transfer the day blocks or hour blocks
to the vice-leader node of each chord cluster for verification. When a vice-leader node

12

receives the block, it will first confirm its legality by checking information like whether
the block’s hash is accurate and carries the leader node’s signature information. Upon
successful completion of the verification, a vice-leader node then splits the block, lo-
cates the minute blocks associated with the chord cluster it maintains, and broadcasts
these minute blocks to follower nodes for validation. Theoretically, a follower node

stores the identical block information in the day blocks or hour blocks, and would com-
pares the received blocks with its own stored blocks. When the verification is passed,
follower nodes attache signatures to the verification information and send it to the
vice-leader node in the same cluster. When the leader node receives the verification
result, it confirms that the day/hour block can be stored persistently. Algorithm 4 de-
scribe the procedures of how hour blocks are verified and stored, and the procedures
of day blocks are close to hour blocks.

Every seven days, the leader node will upload a collection of day blocks, and
follower nodes will empty all of the minute blocks they stored. This is an off-chain
transfer of data storage from the on-chain. It should be noted that each leader node

synchronizes the block header data stored by the previous leader node with the block
body data in the distributed storage off the chain when it assumes control. Since users
are considered to be the most willing to access recently created data, the goal of this
approach is to ensure that no forking or transaction rollback takes place prior to the
data being persisted on the cloud storage by storing a batch of recently generated data
across numerous nodes to improve data availability.

Algorithm 4 Verification of Hour Blocks.
1:

2: Viceleader.BlockVerify(Block){
3: if BlockType == hourBlock{
4: ifTrue CheckSignature(Block){
5: blocks[] = Viceleader.SplitHourBlock(Block)
6: for block in blocks[]{
7: if block.clusterNum == V iceleader.clusterNum{
8: minBlocks[] = append block

9: }
10: ifPass←Viceleader.SendAndCollect(minBlocks[])
11: ifTrue ifPass{
12: Viceleader.BlockStorage()
13: }else Discard()
14: }
15: }else Discard()
16: }

In the general blockchain architecture, there is only one block type and the blocks
are generated serially, which limits the throughput of the system. By adopting a multi-
level block architecture and setting the generation interval of low-level blocks as fixed,
throughput of blockchain can be increased. At the same time, high-level blocks include
low-level blocks, and long-term PoW is used to ensure subsequent security. This is the
asynchronous consensus, which will be described in detail in the next subsection.

13

3.2.2 Asynchronous PoW Consensus

This part introduces the concept of PoW(Proof-of-Work) and the defects of traditional
PoW, and explains what asynchronous consensus is and the necessity of adopting it.
PoW is a technique that is frequently employed in blockchain systems to offer relia-
bility. After determining a blockchain system’s total network arithmetic strength, the
fundamental notion is to select an appropriate hash bit difficulty using the one-way
nature and collision resistance of hash functions, which usually means finding a suf-
ficiently small value (in the binary representation, the first x bits representing the
result of the calculation need to be 0). An attacker aiming for the blockchain network
would theoretically have to pay the same amount of computational resources in order
to tamper with a block because of the nature of the hash function (making it possi-
ble to try to locate the given computation result can only through traversal). More
crucially, while an attacker is working to alter a specific block, new valid blocks are
continuously created. As a result, if an attacker wishes to alter a entire blockchain,
its arithmetic resources must vastly outnumber those of the entire blockchain network
in use. However, PoW also has clear disadvantages: carrying out numerous hash cal-
culations can dramatically decrease a blockchain network’s throughput. For example,
Bitcoin’s block-generating time is in the range of ten minutes, and need to wait for an
average of six blocks before the transaction on the first block is actually confirmed,
which is not at all comparable to a centralized system with millisecond-level response.

In order to increase the accessibility of the block data and further boost the se-
curity and tamper-proofness of a blockchain without affecting its throughput. With
the intention of giving multiple security levels to hierarchical blocks, we suggest an
asynchronous PoW algorithm in conjunction with a hierarchical block structure. The
security level is the first x bits of the hash value calculated by a block is zero, the
larger the x, the more difficult the calculation, and the higher the security level. In the
three-layer architecture of minute blocks/hour blocks/day blocks, minute blocks have
the lowest security level and the day blocks have the highest security level. Minute
blocks are generated at minute intervals, and the transactions in them are accessible
to users for fast access. Hour blocks are equivalent to a reinforced authentication of
the security and consistency of the transactions in minute blocks, while day blocks
are equivalent to a reinforced authentication of the security of hour blocks. The PoW
of the three are asynchronous and can be processed by the leader node at the same
time. A day block with the highest security level is generated every day to ensure that
the attacker needs to pay the corresponding cost for tampering with a blockchain af-
terwards. Users can take advantage of the high throughput of minute blocks for fast
access to block data, while the security of blocks relies on hour blocks and day blocks
that are continuously enhanced over time.

3.3 Flowchart

This subsection provides a flow chart from the beginning to the normal operation of
the storing model(including the role replacement of different nodes) for better under-
standing. As Fig .4 shows, the overall process can be divided into three parts: network
establishment, normal operation and node status change.

14

Figure 4 Flowchart of lightweight blockchain.

In the network establishment part, first of all, each node will register its own IP
information when joining the network and calculate the position on Chord Ring and
join into the chord cluster it belongs to. Then, each node will generate a finger table
to record IP information of the chord cluster, and wait for new nodes to join in. When
the number of nodes in a cluster stops growing within ten seconds, the election in a
cluster will begin, which includes the vice-leader node election and the successor node

election. After elections of all clusters are over, the vice-leader node in the first place
on the Chord Ring in clockwise order transmits to the leader node of the Chord Ring

network. Once the leader node appears, it will broadcast to the whole network, start to

15

collect transactions, and generate blocks. Here, the network establishment part finish
and the normal operation of blockchain part start.

The normal operation part mainly includes the generation, verification and storage
procedures of different levels of blocks. Firstly, the leader node collects all the trans-
actions with in one minute and packs them into a minute block. Then the hash of the
minute block will be calculated by modulus to locate its position on Chord Ring. Af-
ter that, the generated minute block will be send to a chord cluster depends on the
number of modulus calculation. The vice-leader node of corresponding chord cluster

will receive it first and then verify the Block. If the verification pass, this minute block
will be broadcasted to the whole chord cluster, and all follower nodes in the cluster
will receive the minute block and store it. Sencondly, every hour an hour block will be
generated by the leader node which contains all minute blocks generated in the last
hour. The PoW of hour blocks is higher than minute blocks and the leader node send
hour blocks to all vice-leader nodes. As mentioned above, the minute blocks contained
in an hour block are separated and stored by all clusters. Therefore, once a vice-leader

node of a chord cluster receives an hour block, it unpacks the block and filter out the
minute blocks belong to its own chord cluster. Then the minute blocks filtered will
be send to all the follower nodes in the cluster to verify. After follower nodes receive
the minute blocks, then they compare the blocks to the minute blocks in their local
storage. If the blocks are same, the verification passes and the follower nodes send
their significations to the vice-leader node. Once a vice-leader node receives the sig-
nifications more than the two thirds of follower nodes, it confirms the hour block is
legal and correct. Then the vice-leader node send its signature to the leader node to
confirm the hour block. The verification process of day block is similar to that of hour
block, but the difference is that every seven days, only day blocks will be uploaded to
the cloud, and other type of blocks will be cleared by follower nodes.

The node status change part including role changes and status changes of various
nodes. Role changes refer to the conversion of nodes at different levels according to
the inherent design during the normal operation of the model. For example, from a
follower node to a successor node, from a successor node to a vice-leader node, and
from a vice-leader node to a leader node. The retirement of a leader node is also a kind
of role change, which happens every seven days. When the original leader node retires,
it will become a common follower node and continue to participate in the election of
a successor node in the subsequent work. On the other hand, status change refers to
some abnormal situations, such as a sudden disconnection or an exit of a node. When
this happens, a replacement node will start to work and the related IP information
will also be updated synchronously. As mentioned above, a successor node is the
replacement node of a vice-leader node, while a vice-leader node is the replacement
node of a leader node.

4 Theoretical Analysis

In this section, we analyze the performance of the storing model designed based on this
paper in reducing the network storage load, including the storage load of four types of
nodes under blockchain normal operation. Use BS for block size, BC for block count,

16

and CN for cluster number. Let N denote the number of all nodes, DS represent the
data size.

In a generic blockchain architecture, each node stores a complete copy of the
blockchain ledger, so the data size of the entire network can be expressed as (1):

DSGenericChain = BS ×BC ×N (1)

The leader node stores three types of blocks, namely minute blocks, hour blocks
and day blocks. Since high-level blocks are generated by packing blocks of lower levels
with different PoW, the overall size of these three types of blocks is the same, which
means that the leader node stores data equivalent to three times the size of a generic
blockchain node. And in the design of our paper, vice-leader nodes store minute blocks
and hour blocks, but due to the existence of clusters, the size of data stored by the
nodes within each cluster is divided by the number of clusters. Then, both successor

nodes and follower nodes store only minute blocks, so these two types of nodes have
the smallest data size. The data size of the leader node, a vice-leader node, a successor

node and a follower node are expressed as (2), (3), (4) respectively.

DSLeader = BS ×BC × 3 (2)

DSV ice−leader =
BS ×BC × 2

CN
(3)

DSSuccessor = DSFollower =
BS ×BC

CN
(4)

By adding up the data sizes of all types of nodes, we can get the data size of our
storing model for a whole blockchain in (5). Then, we use BDSR(Blockchain Data
Size Ratio) in (6) to denote the degree of reduction of blockchain storage load by the
model in our paper. The calculation results show that when N is much larger than the
CN , the BDSR is a number approximately equal to 1/CN , but greater than 1/CN .
This result demonstrates that by adjusting the parameter CN , the amount of data
redundancy across the network can be significantly reduced.

DSOurModel = DSLeader + CN × (DSV ice−leader+

DSSuccessor) + (N − 1− 2CN)×DSFollower

(5)

BDSR =
DSOurModel

DSGenericChain

=
N + 4CN − 1

N × CN
≈

1

CN
(6)

5 Experiment and analysis

In this section, we establish two blockchain systems to compare the data size, one is
based on our storing model, another is based on a normal blockchain architechture.
We let the two blockchain systems run for one day normally, and calculate the total
amount of data generated by both from the backend. According to our design, our

17

model would generate 1440 minute blocks, 24 hour blocks and 1 day block, sense
the normal blockchain architechture does not have multi layer blocks, let the normal
blockchain generate 1440 blocks. To prove the scalability of our model, we set the
number of nodes that make up the blockchain network to 100, 200, 300, 400 and 500.
At the same time, according to the design in the previous chapters, we have established
different numbers of clusters in the network, namely 4, 5, 6, 7 and 8. The software
enviroment is based on open source such as TDengine, Docker, Go, Jmeter and etc.,
the hardware environment of this experiment is shown in the table 1.

Table 1 Experiment Set Up of Hardware and Software

Experiment set up Description
CPU Phytium,FT-2000+/64
RAM 128GB
HDD 4TB
System KylinOS

Then, we counted three main indicators, which are respectively used to reflect
the average degree of assigning nodes to each cluster, the average degree of assigning
blocks to each cluster, and the reduction of the overall data storage capacity of the
blockchain in our paper design. All indicators are the average values calculated from
running the program ten times under the same conditions. The first indicator is defined
as “coefficient of variation of nodes(CV N)” in (7), calculated from the number of
nodes x in each cluster. The second indicator is defined as “coefficient of variation
of blocks(CV B)” in (8), calculated from the number of blocks β in each cluster and
number of clusters m(¯CV B is the average of CV B). The third indicator is BDSR
mentioned in the previous section.

CV N =

√

∑

(xi−x̄)2

n−1

x̄
(7)

¯CV B =

∑m

√

∑

(βj−β̄)2

n−1

β̄

m
(8)

Fig. 5 shows that when the number of clusters is the same, as the number of nodes
increases, the nodes will be more evenly distributed to the network, and the number
of nodes owned by each cluster will be closer. Under the condition of the same number
of network nodes, the more the number of clusters, the more uneven the distribution
of nodes will be, but when the number of nodes is large, the impact of the number of
clusters will be accordingly reduced. Generally speaking, both the number of clusters
and the number of nodes will affect the uniformity of node dispersion, the number
of clusters is inversely proportional to CV N , and the number of nodes is directly
proportional to CV N . CV N is generally within a small range, that is, less than 0.4,
which means that all nodes can be evenly distributed to each cluster according to the
design.

18

Figure 5 CV N statistics from 100 nodes to 500 nodes and from 4 clusters to 8 clusters

Figure 6 ¯CV B statistics from 100 nodes to 500 nodes(average of all clusters)

Fig. 6 shows the uniform distribution of blocks under different numbers of nodes.
Since the number of blocks is constant, here we no longer compare the differences
between each cluster, but average them. It can be seen that when increasing from 100

19

nodes to 500 nodes, there is almost no change in ¯CV B(around 0.15), which means
that after a day of normal operation of the blockchain designed based on our model,
blocks will be evenly distributed to each cluster. The measurement results of ¯CV B
show that the storage load of the blockchain is uniform, and there will be no obvious
difference in storage pressure for a specific cluster.

Figure 7 BDSR statistics from 100 nodes to 500 nodes and from 4 clusters to 8 clusters

Fig. 7 compares the total amount of data storage on all nodes under two blockchain
systems. It can be seen that when the total amount of data under the normal chain
architecture is 1, the BDSR on the blockchain nodes based on the our model is
always less than 1, and will further decrease as the number of clusters increases. As
the number of nodes increases, the total amount of data hardly changes, which means
that the only factor affecting the total amount of data is the number of clusters. This
is in line with the design of our paper, which is to split the data into disjoint sets and
assign them to different clusters. The more clusters there are, the more sets are split,
and the smaller the amount of data stored on each node is, which will reduce the total
data volume of the whole network.

6 Conclusion

This paper addresses the problem of excessive storage load of existing blockchains,
and describes the existing solutions of on-chain ledger and off-chain ledger lightweight-
ing methods and their shortcomings. For the resource-constrained end devices in the
IoT edge computing scenario, a collaborative ledger storing model is proposed, whicn
adopts the Chord Ring architechture to cluster the nodes and split the ledger on-chain,

20

and adopts a block data storage strategy of periodically clearing and uploading to the
cloud, combining a hierarchical block structure off-chain. The experiment proves that
the method can significantly reduce the storage load of blockchains, and this design
of distributed storage of blocks can also ensure the trustworthiness and availability
of blockchain data, which helps to realize the application of lightweight blockchain in
the IoT scenario.

Declarations

• Funding This research is founded by National Key Research and Development
Program of China(2022YFB3104900).

• Conflict of interest No conflicts of interest are disclosed by the authors.
• Ethics approval The research is compatible with ethical standards.
• Availability of data and materials The study’s data is available publicly and
can be easily accessed from the internet.

• Authors’ contributions Nie did the whole research and wrote the manuscript un-
der the supervision of Lu, the major supervisor, and Li and Duan, the co-supervisors.
All authors read and approved the final manuscript.

References

[1] Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin.–URL:
https://bitcoin. org/bitcoin. pdf 4(2), 15 (2008)

[2] Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

[3] Yaqoob, I., Salah, K., Jayaraman, R., Al-Hammadi, Y.: Blockchain for healthcare
data management: opportunities, challenges, and future recommendations. Neural
Computing and Applications, 1–16 (2021)

[4] Zhu, L., Liang, H., Wang, H., Ning, B., Tang, T.: Joint security and train control
design in blockchain-empowered cbtc system. IEEE Internet of Things Journal
9(11), 8119–8129 (2021)

[5] Chen, R., Shu, F., Huang, S., Huang, L., Liu, H., Liu, J., Lei, K.: Bidm:
A blockchain-enabled cross-domain identity management system. Journal of
Communications and Information Networks 6(1), 44–58 (2021)

[6] Liang, W., Yang, Y., Yang, C., Hu, Y., Xie, S., Li, K.-C., Cao, J.: Pdpchain: A
consortium blockchain-based privacy protection scheme for personal data. IEEE
Transactions on Reliability (2022)

[7] Han, D., Zhu, Y., Li, D., Liang, W., Souri, A., Li, K.-C.: A blockchain-based au-
ditable access control system for private data in service-centric iot environments.
IEEE Transactions on Industrial Informatics 18(5), 3530–3540 (2021)

21

[8] Gupta, M., Patel, R.B., Jain, S., Garg, H., Sharma, B.: Lightweight branched
blockchain security framework for internet of vehicles. Transactions on Emerging
Telecommunications Technologies, 4520 (2022)

[9] Javaid, M., Haleem, A., Singh, R.P., Khan, S., Suman, R.: Blockchain technology
applications for industry 4.0: A literature-based review. Blockchain: Research and
Applications 2(4), 100027 (2021)

[10] Ullah, F., Al-Turjman, F.: A conceptual framework for blockchain smart contract
adoption to manage real estate deals in smart cities. Neural Computing and
Applications 35(7), 5033–5054 (2023)

[11] Wang, Y., Chen, C.H., Zghari-Sales, A.: Designing a blockchain enabled supply
chain. International Journal of Production Research 59(5), 1450–1475 (2021)

[12] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30 (2016)

[13] Frey, D., Makkes, M.X., Roman, P.-L., Täıani, F., Voulgaris, S.: Bringing secure
bitcoin transactions to your smartphone. In: Proceedings of the 15th International
Workshop on Adaptive and Reflective Middleware, pp. 1–6 (2016)

[14] Jing, N., Liu, Q., Sugumaran, V.: A blockchain-based code copyright management
system. Information Processing & Management 58(3), 102518 (2021)

[15] Kumar, S., Bharti, A.K., Amin, R.: Decentralized secure storage of medical
records using blockchain and ipfs: A comparative analysis with future directions.
Security and Privacy 4(5), 162 (2021)

[16] Yu, B., Li, X., Zhao, H.: Virtual block group: A scalable blockchain model with
partial node storage and distributed hash table. The Computer Journal 63(10),
1524–1536 (2020)

[17] Wang, X., Wang, W., Zeng, Y., Yang, T., Zheng, C.: A state sharding model on
the blockchain. Cluster Computing 25(3), 1969–1979 (2022)

[18] Kim, T., Lee, S., Kwon, Y., Noh, J., Kim, S., Cho, S.: Selcom: Selective com-
pression scheme for lightweight nodes in blockchain system. IEEE Access 8,
225613–225626 (2020)

[19] Zheng, Q., Li, Y., Chen, P., Dong, X.: An innovative ipfs-based storage model
for blockchain. In: 2018 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), pp. 704–708 (2018). IEEE

[20] Mani, V., Manickam, P., Alotaibi, Y., Alghamdi, S., Khalaf, O.I.: Hyperledger
healthchain: patient-centric ipfs-based storage of health records. Electronics

22

10(23), 3003 (2021)

[21] Sarathchandra, T., Jayawikrama, D.: A decentralized social network architecture.
In: 2021 International Research Conference on Smart Computing and Systems
Engineering (SCSE), vol. 4, pp. 251–257 (2021). IEEE

[22] Ali, S., Wang, G., White, B., Cottrell, R.L.: A blockchain-based decentralized
data storage and access framework for pinger. In: 2018 17th IEEE International
Conference on Trust, Security and Privacy in Computing and Communica-
tions/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 1303–1308 (2018). IEEE

[23] Hassanzadeh-Nazarabadi, Y., Küpçü, A., Özkasap, Ö.: Lightchain: Scalable dht-
based blockchain. IEEE Transactions on Parallel and Distributed Systems 32(10),
2582–2593 (2021)

[24] Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware 2001: IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Germany,
November 12–16, 2001 Proceedings 2, pp. 329–350 (2001). Springer

[25] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on selected areas in communications 22(1), 41–53 (2004)

[26] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
computer communication review 31(4), 149–160 (2001)

[27] Nie, Z., Zhang, M., Lu, Y.: Hpoc: A lightweight blockchain consensus design for
the iot. Applied Sciences 12(24), 12866 (2022)

23

	Introduction
	Related Work and Background Knowledge
	Lightweight and scalability of blockchain ledger architecture
	Distributed Hash Table and Route Addressing

	The Collaborative Storing Model Combining On-Chain and Off-Chain
	On-chain distribution of Blocks based on Chord Ring
	Node network topology design
	Finger Tables and block distributed storage

	Off-chain Storage of Blockchain based on Asynchronous Consensus
	Hierarchical block architecture
	Asynchronous PoW Consensus

	Flowchart

	Theoretical Analysis
	Experiment and analysis
	Conclusion

