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Density Peaks Clustering Algorithm with Connected Local Density and 

Punished Relative Distance 

Jingwen Xiong 1 · Wenke Zang 1 * · Yuzhen Zhao 1 · Xiyu Liu 1 

Abstract 
Density peaks clustering (DPC) algorithm has been widely applied in many fields due to its innovation 
and efficiency. However, the original DPC algorithm and many of its variants choose Euclidean distance 
as local density and relative distance estimations, which affects the clustering performance on some 
specific shaped datasets, such as manifold datasets. To address the above-mentioned issue, we propose a 
density peak clustering algorithm with connected local density and punished relative distance (DPC-
CLD-PRD). Specifically, the proposed approach computes the distance matrix between data pairs using 
the flexible connectivity distance metric. Then, it calculates the connected local density of each data point 
via combining the flexible connectivity distance measure and k-nearest neighbor method. Finally, the 
punished relative distance of each data point is obtained by introducing a connectivity estimation strategy 
into the distance optimization process. Experiments on synthetic, real-world, and image datasets have 
demonstrated the effectiveness of the algorithm in this paper. 

Keywords Density peaks clustering method · Flexible connectivity distance · Connected k-nearest 
neighbor · Punished relative distance 

1 Introduction 

With the development of Artificial Intelligence, Big Data, the Internet of Things, and other Internet 
technologies, a large amount of data is produced and further collected from various walks of life [1]. 
Taking this into account, data mining is further developed and improved to identify and seek valuable, 
novel, and valid information from various types of data [2, 3]. 

Clustering analysis, one of the most active unsupervised learning approaches in the field of data 
mining, aims at classifying data points in one cluster into several sub clusters so that similar data points 
are divided into the same group while dissimilar data points are divided into different groups [4-7]. Over 
the past decades, clustering analysis has been serving many applications in the field of machine learning 
[8-10], pattern segmentation [11-14], and recommendation [15-17]. Up to now, different kinds of 
clustering schemes have been developed, density-based clustering methods [18, 19], partition-based 
clustering methods [20-22], hierarchical-based clustering methods [23, 24], grid-based clustering 
methods [25, 26], model-based clustering methods [27-29], graph-based clustering methods [30, 31]and 
others. 

K-means, the most classic and well-known partition-based clustering algorithm, has emerged as a 
flexible and efficient approach for its simplicity in procedure and efficiency in clustering [32, 33]. K-
means clustering algorithm first finds specific numbers of initial cluster centers and then minimizes the 
sum of squared distances between data points and their nearest centers [34]. However, K-means 
algorithm suffers two obvious shortcomings that its clustering performance is easily affected by the 
original cluster centers and it fails to identify arbitrary shapes of clusters [35]. Hierarchical-based 
clustering algorithm, an important way to construct embedded classification schemes, has been widely 
applied since its publication and has been generalized in a variety of forms [36, 37]. Hierarchical-based 
methods perform clustering by producing a nested hierarchy of clusters. Sequence steps of them can be 
implemented as either a bottom-up (agglomerative) approach or a top-down (divisive) method [38]. 
Classic CHAMELEON [39] and CURE [40] are agglomerative and divisive hierarchical clustering 
algorithms respectively. Grid-based clustering algorithms enjoy extremely high attention due to their low 
complexity in computation and high efficiency in processing spatial datasets [41, 42]. STING [43], one 
of the most classic grid-based clustering algorithms, generates statistical information of several 
individual grid units by dividing the original spatial data instead of scanning all individual points to 
reduce the time complexity further. Despite its simplicity in computation, current grid-based clustering 
algorithms still suffer some problems that it is incapable to handle high-dimensional and arbitrary shapes 
of datasets [44]. Model-based clustering algorithm, popular for its probabilistic foundations and 
flexibility in implementation, is gaining global significance and has shown promising performance 
during past decades [45]. Classic model-based EM [46] approach maximizes the conditional expectation 



of the complete log-likelihood iteratively to estimate parameters. With the development of clustering 
analysis, a fast model-based Newton EM [47] algorithm is proposed and is combined with the coordinate 
descent EM method to reintroduce GMMs pattern recognition community. However, there still exist 
several obvious deficiencies like the uncertainty of parameters, models, and distribution in grid-based 
clustering algorithms [48]. Spectral clustering algorithm [49] and multi-view subspace clustering [50] 
algorithms enjoy the highest attention among a variety of graph-based clustering algorithms in past 
decades. Graph-based clustering algorithms learn a common affinity matrix firstly based on the original 
data and further apply the procedure of k-means method to perform the clustering process [51]. Many 
existing graph-based clustering algorithms utilize the two-step strategy we discussed above and are able 
to obtain satisfactory clustering results on some specific datasets such as manifold datasets [52]. However, 
existing graph-based clustering algorithms still have some deficiencies such as inadequate mining of 
potential information in multi-view data [53]. Density-based clustering algorithms have enjoyed a high 
profile and have been widely used in various fields, able to recognize non-spherical and irregularly 
shaped clusters [54]. A density-based algorithm for discovering clusters in large spatial databases with 
noise (DBSCAN) is the earliest and the most classic density-based algorithm, but it suffers high 
parameter sensitivity and complexity [18]. 

Clustering by fast search and find of density peaks (DPC) algorithm, another classic density-based 
method, was published by Alex Rodriguez and Alessandro Laio in Science in 2014 [19]. In contrast to 
DBSCAN, DPC applies only one parameter to calculations of local density and relative distance of each 
data point, which leads to lower parameter sensitivity. Compared with K-means, DPC, according to 
Euclidean distance, assigns remaining points to their nearest cluster centers without iteration, which leads 
to a simpler process [55]. In addition, DPC can get satisfactory performance on non-spherical datasets, 
overcoming the weakness of some partition-based clustering methods. However, there still exists great 
room for improvement in calculations of local density and relative distance, the allocation strategy, and 
the selection of cluster centers automatically. 

First of all, a variety of DPC variants are proposed to innovate estimations of local density and relative 
distance of each data point. Zhang et al. [56] improved the original DPC using balance density and 
connectivity and further proposed the BC-DPC algorithm. BC-DPC creates balance density to eliminate 
the density difference of different clusters to identify the cluster centers precisely. Zhao et al. [48] 
innovated the local density estimation based on the nearest neighbor fuzzy kernel function and further 
proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven 
density datasets (DPC-FWSN). DPC-FWSN defines the density weights of data points in dense and 
sparse regions to better adapt to uneven-density datasets. Ding et al. [57] redefined the relative distance 
estimation based on a sampling method and further proposed a novel sampling-based density peaks 
clustering algorithm for large-scale data (SDPC). SDPC reduces the time complexity of relative distance 
calculation and performs more satisfactorily than the original DPC algorithm. Rasool et al. [58] created 
a novel data-dependent similarity measure according to Probability Mass (MP-Similarity) and further 
proposed MP-DPC, a data-dependent variant of the original DPC, by applying MP-Similarity to the DPC 
algorithm. MP-DPC utilizes MP-Similarity as a similarity metric, able to get more satisfactory 
performance than using the Euclidean distance. 

Secondly, the creation of the allocation strategy of DPC has been gaining greater significance in the 
past decades. Ding et al. [59] proposed an improved density peaks clustering algorithm based on natural 
neighbor with a merging strategy (IDPC-NNMS). IDPC-NNMS recognizes as many centers as possible 
to form the initial sub-clusters, and then merge the sub-clusters based on an innovative allocation strategy 
to complete the clustering process. Lin et al. [60] improved the original DPC by automatic peak selection 
and single linkage methods and proposed “improving density peak clustering by automatic peak selection 
and single linkage clustering”. It firstly identifies potential cluster centers automatically based on the 
radius of the neighborhood and then eliminated the domino effect in the original DPC algorithm by 
introducing a single-linkage approach.  

Thirdly, in the area of selecting cluster centers, researchers have been devoted to identifying cluster 
centers more accurately and simply. Guan et al. [61] used a novel center assumption idea and further 
proposed clustering by fast detection of main density peaks within a peak digraph (MDPC+). MDPC+ 
considers clustering as a graph cut problem, able to identify the true centers of multi-peak clusters easily. 
Li et al. [62] introduced a relative semantic distance that concerns the distance between fuzzy semantic 
cells and further proposed an approach of fuzzy semantic cells to density peaks clustering (DPC-FSC). 
DPC-FSC applies the relative semantic distance, able to recognize the cluster centers in the decision 
graph in an informative manner. Tong et al. [63] proposed a density-peak-based clustering algorithm of 
automatically determining the number of clusters by introducing an automatic approach to determine the 



true number of clusters. Although domestic and foreign scholars have made innovations to the original 
DPC from a variety of perspectives, it still does not work well in clustering some specific shapes of 
datasets, such as manifold datasets. 

In this paper, a novel density peaks clustering algorithm with connected local density and punished 
relative distance (DPC-CLD-PRD) is introduced to address the above deficiencies. DPC-CLD-PRD first 
calculates the flexible connectivity distance between data pairs. Next, the flexible connectivity distance 
is selected as a similarity measure to calculate the connected k-nearest neighbor of data points and the 
connected density of data points is further calculated. At last, a connectivity estimation strategy is applied 
to improve the relative distance estimation. The key contributions of this paper are summarized as 
follows: 

1. We use the flexible connectivity distance metric instead of Euclidean distance to calculate the 
distance matrix of data pairs. 

2. We calculate the connected local density of each data point by combining flexible connectivity 
distance measure and k-nearest neighbor method.  

3. We utilize a connectivity estimation strategy to perform distance punishment and further calculate 
the punished relative distance. 

4. Extensive experiments on synthetic datasets, real-world datasets from UCI repository and Olivetti 
Face image dataset demonstrate that DPC-CLD-PRD outperforms the original DPC and its variants. 

The remainder of this paper is organized as follows. In section 2, the idea and the flow of the original 
DPC are discussed in detail. In section 3, details of the proposed DPC-CLD-PRD algorithm are provided. 
In section 4, extensive experiments are carried out to verify the effectiveness and feasibility of the 
proposed algorithm. In section 5, we summarize this paper overall. 

2 Related works 

In this section, some relevant contents about the original DPC algorithm and the flexible connectivity 
distance are introduced in detail. 

2.1 DPC algorithm 

As stated in the introduction section, the original DPC algorithm has enjoyed a great profile during the 
past decade. The high efficiency and the feasibility of the original DPC approach are supported by two 
basic assumptions: a) cluster centers hold a comparatively larger local density; b) different cluster centers 
are located relatively far away from each other. 

The basic workflow of the original DPC method is both efficient and understandable. From a holistic 
view, there are two variables to be calculated for each data point, including local density   and relative 
distance  . 

In the first place, the original DPC applies either a cut-off kernel or a Gaussian kernel for local density 
estimation. The local density    using cut-off kernel of data point i   is defined by the following 
formula: 

                   ( )
i ij cj

d d = − ,  (1)  

where 
ij

d  indicates the Euclidean distance between data point i  and data point j  in a dataset and 
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d  means the cut-off distance predefined. Note that ( )x  represents the indicator function defined by 
the following formula: 

          
    1,

( )
  

 
    0,

ij c

otherwi

if d d

e
x

s



=




.  (2) 

The local density can also be calculated by the Gaussian kernel, which is demonstrated by the following 
formula: 
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With the local density of each data point obtained, the original DPC algorithm further gives the 
definition of the formula for calculating another variable, the relative distance, for each data point. The 
estimation of the relative distance   is provided by the following formula: 
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Then, a two-dimensional decision graph is further produced with local density   of all points in a 
dataset as horizontal coordinate and relative distance    as vertical coordinate. After generating the 
decision graph, points with both the most prominent local density and relative distance, lying in the top-
right position of the decision diagram, are identified as cluster centers. For instance, the ground-truth of 
Four-lines dataset and its decision graph with recognized cluster centers 1 4c c−  in the rectangular box 
are displayed in Fig. 1(a) and Fig. 1(b) respectively.  

 

(a)                                            (b) 

Fig. 1 (a) The ground-truth of Four-lines dataset (b) The decision graph with 4 selected cluster centers of Four-lines dataset 

Finally, after cluster centers have been obtained, the original DPC algorithm performs a single-step 
assignment strategy. All remaining points are allocated to the same clusters as their nearest neighbors 
with higher density. 

2.2 Flexible connectivity distance 

Recall that the original DPC algorithm applies the Euclidean distance to calculate the local density and 
the relative distance, which is likely to bring various problems such as chain reaction. To overcome the 
above deficiencies, a novel graph-based flexible distance measure with connectivity information is 
proposed currently [64]. Considering the connectivity information of the dataset, the flexible distance 
connectivity distance achieves more satisfactory clustering performance than the Euclidean distance on 
certain specially shaped datasets, such as manifold datasets. By adding the connectivity information into 
the distance measure, the relative distance between data points in the same cluster is decreased while the 
distance between data points in different clusters is enlarged, thus better satisfying the global consistency 
of distance. 

Take Two-moons dataset as an example, as is shown in Fig. 2(a), data points A and B in the same 
cluster should have higher similarity than points A and C in two different clusters. After calculation, the 
Euclidean distance between A and B, C is 0.5928 and 0.3139 respectively, indicating a higher similarity 
between A and C. In contrast, the flexible connectivity distance between A and B is 0.3220, smaller than 
that between A and C. As we can conclude, the Euclidean distance in some datasets like Jain can ignore 
global consistency between data points and result in allocation errors. On the contrary, the flexible 
connectivity distance enjoys higher efficiency and feasibility due to its global consistency. 



 

(a)                                             (b) 

Fig. 2 (a) Euclidean distance among A, B and C (b) Flexible connectivity distance among A, B and C 

3 DPC-CLD-PRD: density peaks clustering algorithm with connected local density and 
punished relative distance 

In this section, we describe the workflow of the proposed density peaks clustering algorithm with 
connected local density and punished relative distance (DPC-CLD-PRD) in detail. In the first place, the 
distance matrix is obtained by applying the flexible connectivity distance metric instead of the Euclidean 
distance. Secondly, we define a novel density estimation method, combining flexible connectivity 
distance and k-nearest neighbor, for the connected local density calculation. Next, we introduce a special 
connectivity estimation strategy to optimize the flexible connectivity distance. At last, cluster centers are 
identified in the decision graph and connectivity distance is also used to allocate remaining data points 
in the same way as the original DPC. 

3.1 Calculation of distance matrix 

Recall that DPC fails to obtain satisfactory clustering performance on some specific-shaped datasets 
when using the Euclidean distance measure. Therefore, a flexible distance measure [32] which contains 
more connectivity information of data pairs, named flexible connectivity distance in this paper, is utilized 
to produce the distance matrix between data pairs. It is calculated by the following definition. 

Definition 1 (Flexible Connectivity Distance (FCD)) Define 
ij

P  as the set that connects data points 
i  and j , | |p  denotes the length of the whole path, and 1( , )

k k
d p p +  represents the Euclidean distance 

between two adjacent data points 
k

p  and 1k
p +  . Then the flexible connectivity distance of data points 

i  and j  is defined as follows: 
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where   controls the scaling ratio of the distance between data pairs in the same cluster to the distance 
between data pairs in different groups. In this way, an improved distance matrix can be generated based 
on the above definition. 

3.2 Estimation of local density 

Inspired by the k-nearest neighbor approach and the flexible connectivity distance metric, we apply the 
flexible connectivity distance to the k-nearest neighbor approach and design a novel connected k-nearest 
neighbor approach. Besides, we further propose a new connected density estimation method. Firstly, the 
definition of k-nearest neighbor is provided by the following definition. 

Definition 2 (K-Nearest Neighbor (KNN)) Given a dataset X , the k-nearest neighbor of data point i  
is defined as follows: 

 ( ) { | ( , ) ( , )}KNN i j X d i j d i k=   ,  (6) 



where ( , )d i j   represents the Euclidean distance between i   and j   in X  , ( , )d i k   represents the 
Euclidean distance between point i  and the kth closest point to it. 

It is obvious that the k-nearest neighbor method takes the Euclidean distance as a similarity metric to 
calculate nearest neighbors of data points. In the proposed DPC-CLD-PRD method, we apply the above 
flexible connectivity distance metric to the k-nearest neighbor method and further design the connected 
k-nearest neighbor approach. The flexible connectivity distance instead of the Euclidean distance of data 
pairs is selected as the similarity measure between them.  

Definition 3 (Connected K-Nearest Neighbor (CKNN)) Given a dataset X , the connected k-nearest 
neighbor of data point i  is defined as follows: 

 , ,( ) { | }
i j i k

CKNN i j X FCD FCD=   ,  (7) 

where ,i j
FCD   is the flexible connectivity distance between i   and j   in X  , and ,i k

FCD   is the 
flexible connectivity distance between i  and the kth closest point to it. 

Then, we improve the local density estimation by updating the connected k-nearest neighbor of data 
pairs. The enhanced connected local density of data point i  is demonstrated as follows: 

 2
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where ( )CKNN i  represents the connected k-nearest neighbor of data point i . 
In this way, the optimized local density of each data point can better adapt to the structure of the dataset 

and help to obtain more satisfactory clustering results. 

3.3 Calculations of the punished relative distance 

The problem in the original DPC is that the Euclidean distance only considers the local information of 
data points but ignores the global consistency of the whole. Consequently, a special graph-based 
connectivity estimation strategy (CES) [64] is applied to punish the flexible connectivity distance and 
further produced the punished relative distance. Firstly, we provide explanations of some definitions 
involved in CES.  

Definition 4 (Connected Points) Define data points i  and j  are recognized as connected only if the 
maximum distance of any two adjacent points on the path connecting points i  and j  is smaller than 
a given threshold 

ij
T . 

Definition 5 (Found Points) For the path connecting points i  and j , the next point with the max but 
less than 

ij
T  distance to the previous point are recognized as found points. 

Suppose n  is the number of data points in a dataset, the detailed procedure of CES is described here. 
In the beginning, a threshold 

r *
ij ij

T T d=  is defined for later connectivity estimation. Then, define the 
basic item of distance punishment 

basic
dis  as the maximum value of the average distance of all found 

points. Take found point i  as an example, the 
basic

dis  of it is demonstrated by the following formula: 
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Then, record the number of all found points on a path as
ij

Num , and add the second item 
adaptive

dis , 
defined by the following formula, into distance punishment to take a better application of the connectivity 
and spatial distribution between two points. 
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Finally, the punished relative distance of two points is further calculated by the following formula in the 
last step of CES: 

 i i

i basic adaptive
PRD dis dis= + .  (11) 



In Eq. (6) - (8), 
r

T   and 
r

P   two hyper parameters and values of them are fixed at 0.25 and 0.3 
respectively on the basis of extensive experiments. In conclusion, the punished relative distance 

i
PRD  

of each data point is obtained after the punishment of the flexible connectivity distance. The specific 
procedure of CES is described in Algorithm 1. 

Algorithm 1 process of CES 

Input: Distance matrix, 
r

T , 
r

P , X  (data set) 

Output: 
i

PRD  

Step 1: record the number of all found points on a path ,i jNum ; 

Step 2: calculate the basic item of distance punishment using formula (9); 

Step 3: calculate the second item using formula (10); 

Step 4: obtain the punished relative distance using formula (11); 

Return: ,i jNum ,
basic

dis , adaptivedis , 
i

PRD  

3.4 Cluster centers and allocation of remaining points 

With the punished relative distance and connected local density both obtained, we use the same decision 
graph method as the original DPC to identify cluster centers. Data points in the up-right corner of the 
decision graph are recognized as cluster centers.  

Then in terms of the allocation of remaining points, we perform the single-step allocation strategy by 
replacing the Euclidean distance with the flexible connectivity distance. After the cluster centers have 
been found, the remaining data points are assigned to the same cluster as their nearest neighbor with 
higher connected local density according to the flexible connectivity distance. The detailed workflow of 
the proposed DPC-CLD-PRD algorithm is elaborated in Algorithm 2. 

Algorithm 2 process of DPC-CLD-PRD 

Input: distance matrix, data set X ,parameter  , the number of nearest neighbors k  

Output: the clustering results 

Step 1: calculate the distance matrix using formula (5); 

Step 2: calculate the connected local density of each data point using formula (8); 

Step 3: calculate the punished relative distance of each data point using formula (9)-(11); 

Step 4: choose cluster centers and allocate remain points; 

Return: the clustering results 

3.5 Complexity analysis of DPC-CLD-PRD 

The whole time complexity of the proposed DPC-CLD-PRD algorithm is mainly composed of three 
following components: (1) calculating the punished relative distance of each data point 2( )O n   ; (2) 
calculating the updated connected local density of each data point 2( )O n ; (3) assigning the remaining 
data points on the basis of the flexible connectivity distance ( )O n  . Consequently, the overall time 
complexity of DPC-CLD-PRD is 2( )O n . 

4 Experiments 

4.1 Experimental settings 

In this section, nine two-dimensional synthetic datasets and eight real-world datasets from UCI repository 
are selected to verify the feasibility and efficiency of the proposed DPC-CLD-PRD method. Five 
algorithms related to DPC are chosen to compare with the proposed DPC-CLD-PRD algorithm on the 
basis of the same experiments. In addition, based on different algorithms described above, three common 
evaluation metrics are calculated over the same datasets to illustrate the effectiveness of the proposed 
method.  



4.1.1 Datasets 

In this section, nine two-dimensional synthetic datasets include Jain, Flame, Smile, Three-circles, Spiral, 
Compound, Aggregation, and R15 and eight real-world datasets include Vowel, Zoo, Blood, Ecoli, Wine, 
Seeds, Cancer, and Glass are selected in this paper to illustrate the feasibility and efficiency of the 
proposed method. Besides, we apply the Olivetti Face image dataset to the experiments. Detailed 
information about the dimensions, number of samples, and number of clusters of the datasets are provided 
in Tables 1 and 2 respectively. 

Table 1 Two-dimensional synthetic datasets 

Datasets #samples #cluster #dimensions 

Jain 373 2 2 
Flame 240 2 2 
Smile 266 3 2 

Three-circles 299 3 2 
Spiral 312 3 2 

Compound 399 5 2 
Aggregation 788 7 2 

R15 600 15 2 

4.1.2 Algorithms for comparison 

In this section, we introduce the original DPC algorithm and four variants of DPC including MDPC, 
DPC-CE, DPC-MST, and DPC-LDP as comparative algorithms. Experiments on each individual DPC-
related algorithm are conducted based on the same synthetic and real-world datasets in order to compare 
the clustering performance of the proposed DPC-CLD-PRD algorithm. In terms of Olivetti Face image 
dataset, we conduct a comparative experiment on DPC and DPC-CLD-PRD algorithm proposed in this 
paper. 

Table 2 Real-world datasets from UCI repository 

Datasets #samples #cluster #dimensions 

Vowel 871 6 3 
Zoo 101 7 16 

Blood 748 2 4 
Ecoli 336 8 7 
Wine 178 3 13 
Seeds 210 3 7 

Cancer 683 2 9 
Glass 214 6 9 

4.1.3 Parameter setting 

In this section, the detailed parameter settings of the original DPC algorithm, four variants of DPC, and 
the proposed DPC-CLD-PRD algorithm on both 9 synthetic datasets and 8 real-world datasets from UCI 
repository are given in Table 3 and Table 4 as follows. Note that DPC-MST and FHC-DPC require the 
true number of clusters of datasets as their input. 

Table 3 Parameter settings of six algorithms 
Algorithms Parameter settings References 

DPC 1% ~ 2%
c

d =  [19] 
MDPC 2%

c
d = , 7K = , 5 =  [32] 

DPC-CE 2%
c

d =  [64] 
DPC-MST #NC cluster=   [7] 
FHC-LDP 9k = , #C cluster=  [65] 

DPC-CLD-PRD 10k = , 1~100 =  / 

4.1.4 Evaluation metrics 



In this section, clustering performance of five DPC-related algorithms and the proposed DPC-CLD-PRD 
are illustrated according to three common evaluation metrics including clustering accuracy (ACC), 
normalized mutual information (NMI), and rand index (RI). By evaluating labels obtained from the 
clustering results and original true labels, the clustering performance of different algorithms can be 
compared. Note that the larger values of evaluation indexes represent the more satisfactory clustering 
results of algorithms. Besides, the values of evaluation metrics are ranged between the interval [0, 1]. 

Suppose n   represents the number of instances in a dataset, 
i

t   and 
i

r   are the true label and the 
obtained clustering label respectively. In this case, the detailed definition of ACC is given by the 
following formula:  
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Suppose that n  indicates the number of samples in a dataset. i

n  and 
j

n  denotes the number of 
samples in cluster i  and cluster j  respectively. In addition, 

ij
n  represents samples in both group i  

and j . In this way, the specific definition of NMI is given by the following formula: 
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Here, we suppose a   represents the number of instances of the same label and b   represents the 
number of instances of different labels in 

i
t  and 

i
r  respectively. Therefore, the detailed definition of 

RI is given by the following formula: 

 
2
n

a b
RI

C

+
= ,  (14) 

where C  represents the real category information of a dataset. 

4.2 Experiments on synthetic datasets 

In this section, experiments of the original DPC algorithm, four DPC-related methods, and the proposed 
DPC-CLD-PRD approach are provided on nine two-dimensional synthetic datasets. We display the 
original distribution of two-dimensional artificial datasets mentioned above in Fig. 3 to demonstrate the 
efficiency of the proposed algorithm in a more intuitive way. In addition, Fig. 4-Fig. 12 demonstrate the 
clustering results of six comparative algorithms above on nine two-dimensional synthetic datasets in 
detail. Note that figures (a)-(f) in Fig. 4-Fig. 12 represent the clustering performance of DPC, MDPC, 
DPC-CE, LDP-MST, FHC-DPC, and DPC-CLD-PRD respectively. 



 

Fig. 3 The original distribution of 9 two-dimensional synthetic datasets 

The clustering performance of six comparative algorithms on Jain, Flame, Smile, and Four-lines 
datasets are illustrated in Fig. 4-Fig. 7 as follows. As we can observe, the original DPC algorithm is not 
good at identifying the accurate distribution of clusters on Jain, Flame, Smile, and Four-lines datasets. 
On the contrary, the real distribution can be more accurately recognized by the rest five algorithms, 
including MDPC, DPC-CE, LDP-MST, FHC-LDP, and the proposed DPC-CLD-PRD. 

Fig. 8 demonstrates the clustering results of six comparative algorithms on Three-circles data set. 
Three-circles, composed of a round group and two circles of data points, is a classic manifold dataset. 
As is exhibited in Fig. 8, the original DPC and DPC-CE algorithms fail to achieve rewarding clustering 
performance while MDPC, LDP-MST, FHC-LDP, and DPC-CLD-PRD methods are capable of obtaining 
satisfactory clustering results on the dataset. 

The clustering performance on Spiral dataset, shown in Fig. 9, demonstrates that six comparative 
algorithms are all able to obtain the most optimal clustering performance. Note that the original DPC 
method can get the most accurate clustering result when using Cut-off kernel and dc = 2%. 

As is shown in Fig. 10, the clustering accuracy of the proposed DPC-CLD-PRD method in this paper 
is the same as MDPC, DPC-CE, and FHC-LDP algorithms on Compound dataset. They are able to 
discover the correct distribution of data points. However, the original DPC and LDP-MST algorithms are 
incapable of obtaining great clustering performance. 

Fig. 11 and Fig. 12 present the clustering results of six comparative algorithms on Aggregation and 
R15 datasets respectively. Except FHC-DPC, the clustering accuracy of the rest five algorithms is equally 
high overall. In addition, it can be seen from Fig. 12 that all six comparative algorithms perform pretty 
well on R15 dataset. 

 

Fig. 4 Clustering results on Jain dataset 



 

Fig. 5 Clustering results on Flame dataset 

 

Fig. 6 Clustering results on Smile dataset 

 

Fig. 7 Clustering results on Four-lines dataset 



 

Fig. 8 Clustering results on Three-circles dataset 

 

Fig. 9 Clustering results on Spiral dataset 

 

Fig. 10 Clustering results on Compound dataset 



 

Fig. 11 Clustering results on Aggregation dataset 

 

Fig. 12 Clustering results on R15 dataset 
As we can see, Table 5-Table 7 demonstrate ACC, NMI, and RI values respectively of six comparative 

algorithms on nine two-dimensional synthetic datasets we discussed above. It can be seen that the original 
DPC works best only on Spiral dataset. For MDPC, except Aggregation and R15 datasets, the values of 
three evaluation indicators on the remaining seven datasets are the highest. In terms of DPC-CE, it gets 
the maximum values of three evaluation metrics on six datasets, including Jain, Flame, Smile, Spiral, 
Aggregation, and Four-lines. In addition, LDP-MST achieves the most satisfactory performance on Jain, 
Smile, Three-circles, Spiral and Four-lines datasets. In addition, FHC-LDP is good at processing six 
datasets, including Jain, Smile, Three-circles, Spiral, Compound, and Four-lines. Finally, the proposed 
DPC-CLD-PRD method obtains the biggest values of three estimation indicators, which means the best 
performance on all selected synthetic datasets. 

4.3 Experiments on real-world datasets 

In this section, a number of experiments are demonstrated on 8 real-world datasets from UCI repository 
to further illustrate the feasibility and efficiency of the proposed DPC-CLD-PRD method in this paper. 
The specific information of eight real-world datasets is provided in Table 2 in detail. Table 6-Table 8 
display values of three evaluation indicators of the original DPC algorithm, four variants of DPC, and 
the proposed DPC-CLD-PRD method. 

In terms of ACC and RI values displayed in Table 6 and Table 8 respectively, MDPC has the best 



clustering performance on Ecoli dataset while DPC-CE gets the most satisfactory result on Cancer dataset. 
Besides, DPC-CLD-PRD shows the most effective results on six remaining datasets, including Vowel, 
Zoo, Blood, Wine, Seeds, and Glass. Besides, for NMI value shown in Table 7, DPC-CE achieves the 
most optimal clustering results on Vowel, Ecoli, and Cancer datasets while DPC-CLD-PRD gets the best 
performance on the rest Zoo, Blood, Wine, Seeds, and Glass datasets. Table 8 shows RI values of six 
algorithms on eight real-world datasets. 

Table 3 ACC values of six algorithms on nine two-dimensional synthetic datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Jain 0.8606 1 1 1 1 1 
Flame 0.7875 1 1 0.9833 0.9917 1 
Smile 0.6654 1 1 1 1 1 

Three-circles 0.6957 1 0.6589 1 1 1 
Spiral 1 1 1 1 1 1 

Compound 0.6767 0.8722 0.9971 0.8070 0.8722 0.8722 
Aggregation 0.9901 0.8236 0.9987 0.9975 0.9201 0.9987 

R15 0.9226 0.9023 0.9104 0.9021 0.9011 0.9345 
Four-lines 0.8242 1 1 1 1 1 

Table 4 NMI values of six algorithms on nine two-dimensional synthetic datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Jain 0.5068 1 1 1 1 1 
Flame 0.4132 1 1 0.8752 0.9355 1 
Smile 0.4768 1 1 1 1 1 

Three-circles 0.6781 1 0.6695 1 1 1 
Spiral 1 1 1 1 1 1 

Compound 0.7920 0.9151 0.9912 0.8605 0.9151 0.9151 
Aggregation 0.9916 0.7644 0.9957 0.9924 0.9237 0.9957 

R15 0.9942 0.9893 0.9892 0.9762 0.9808 0.9963 
Four-lines 0.8453 1 1 1 1 1 

Table 5 RI values of six algorithms on nine two-dimensional synthetic datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Jain 0.7594 1 1 1 1 1 
Flame 0.6639 1 1 0.9671 0.9834 1 
Smile 0.6843 1 1 1 1 1 

Three-circles 0.7632 1 0.7563 1 1 1 
Spiral 1 1 1 1 1 1 

Compound 0.8467 0.9410 0.9986 0.9279 0.9410 0.9410 
Aggregation 0.9963 0.9257 0.9993 0.9985 0.9561 0.9993 

R15 0.9927 0.9214 0.9354 0.9162 0.9150 0.9968 
Four-lines 0.8968 1 1 1 1 1 

Table 6 ACC values of six algorithms on eight real-world datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Vowel 0.3786 0.4225 0.4237 0.4328 0.2595 0.4340 
Zoo 0.1584 0.1623 0.1683 0.2283 0.4158 0.8119 

Blood 0.6912 0.6925 0.7674 0.6925 0.7634 0.7847 
Ecoli 0.6458 0.6905 0.6458 0.5774 0.5298 0.4494 
Wine 0.5281 0.6517 0.5281 0.5674 0.5393 0.6904 
Seeds 0.6476 0.5619 0.6190 0.6333 0.8143 0.8857 

Cancer 0.6691 0.8634 0.8653 0.6258 0.7452 0.6515 
Glass 0.3458 0.3505 0.3411 0.3084 0.2897 0.3551 

 



Table 7 NMI values of six algorithms on eight real-world datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Vowel 0.4035 0.2462 0.4727 0.2882 0.1415 0.4122 
Zoo 0.7443 0.8012 0.8034 0.3221 0.2140 0.9097 

Blood 0.0463 0.0001 0.0350 0.0001 0.0257 0.1195 
Ecoli 0.5616 0.5527 0.5626 0.5133 0.4997 0.2304 
Wine 0.3998 0.4010 0.3998 0.3041 0.4147 0.4341 
Seeds 0.5866 0.4295 0.5482 0.5423 0.6252 0.6983 

Cancer 0.0823 0.4325 0.4679 0.3576 0.1897 0.0258 
Glass 0.0525 0.0170 0.0433 0.0486 0.0349 0.0606 

Table 8 RI values of six algorithms on eight real-world datasets 

 DPC MDPC DPC-CE LDP-MST FHC-LDP DPC-CLD-PRD 

Vowel 0.4989 0.5778 0.7874 0.6571 0.3763 0.7876 
Zoo 0.8347 0.8531 0.8695 0.6277 0.3335 0.8850 

Blood 0.5869 0.5736 0.6225 0.5736 0.6382 0.6383 
Ecoli 0.7055 0.7957 0.7086 0.7880 0.7869 0.6332 
Wine 0.6105 0.6440 0.6105 0.6016 0.6123 0.6783 
Seeds 0.7286 0.5882 0.7133 0.7325 0.8035 0.8673 

Cancer 0.5565 0.7434 0.7665 0.6367 0.6197 0.5462 
Glass 0.4107 0.4769 0.4186 0.6038 0.6062 0.6165 

4.4 Experiments on Olivetti Face dataset 

In this section, we demonstrate the clustering results of the original DPC algorithm and the proposed 
DPC-CLD-PRD method in this paper on Olivetti Face dataset. The Olivetti Face image dataset contains 
more than 400 face images and about 100 face images are selected for experiments in this paper. Fig. 13 
and Fig. 14 display the clustering performance of DPC and DPC-CLD-PRD respectively.  

As we can recognize in the first and last images, DPC-CLD-PRD achieves a more satisfactory 
clustering performance than DPC. Note that Gaussian kernel is used for density estimation in DPC and 
the value of c

d  is set to 2%. In addition, values of three evaluation indicators including ACC, NMI, and 
RI of DPC are 0.6300, 0.7801, and 0.4110 respectively. As we can see, DPC-CLD-PRD obtains larger 
values of three evaluation indicators, which are 0.6300, 0.8356, and 0.7000. 

 

Fig. 13 The clustering result of DPC on Olivetti Face dataset 

 

Fig. 13 The clustering result of DPC-CLD-PRD on Olivetti Face dataset 



4.5 Analysis of Experimental Results 

As we can see from the above experiments, DPC-CLD-PRD overcomes the poor performance of the 
original DPC on some specific datasets such as manifold datasets. As is shown in experiments on 
synthetic datasets in section 4.3, DPC-CLD-PRD can achieve satisfactory clustering performance on 
manifold datasets. Also, DPC-CLD-PRD obtains the highest values of three evaluation indicators on 
most real-world datasets as is demonstrated in experiments on real-world datasets in section 4.4. In 
addition, the proposed DPC-CLD-PRD algorithm performs better than the original DPC algorithm on 
Olivetti Face image dataset as shown in section 4.5. In conclusion, DPC-CLD-PRD has more successful 
clustering results than DPC and its four variants based on the experiments on synthetic datasets, real-
world datasets from UCI repository, and Olivetti Face image dataset. 

5 Conclusion 

The original DPC algorithm uses the Euclidean distance as the similarity measure and ignores the spatial 
consistency of the data. In this paper, a novel density peaks clustering algorithm with connected local 
density and punished relative distance (DPC-CLD-PRD) is proposed to address the problem. A flexible 
connectivity distance is applied and combined with a special connectivity estimation strategy. In addition, 
a novel density estimation approach is designed for local density calculation. Experiments on both 
synthetic datasets and real-world datasets demonstrate the feasibility and effectiveness of the proposed 
method. 

In the future, we are expecting to reduce the time complexity of the proposed algorithm and improve 
its performance in handling high-dimensional or multi-feature datasets. In addition, we are dedicated to 
enhancing the simplicity and robustness of the proposed algorithm by reducing the sensitivity of the 
parameters in this paper. 
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