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Abstract

The article evaluates the ‘domain postulate’ of the Classical Model of Science and the related 
Aristotelian  prohibition  rule  on  kind-crossing as  interpretative  tools  in  the history  of  the 
development of mathematics into a general science of quantities. Special reference is made to 
Proclus' Commentary to Euclid's First Book of Elements, to the sixteenth century translations 
of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The 
prohibition rule on kind-crossing formulated by Aristotle in Posterior Analytics is used to 
distinguish between conceptions that share the same name but are substantively different: for 
example the search for a broader genus including all mathematical objects; the search for a 
common  character  of  different  species  of  mathematical  objects;  and  the  effort  to  treat 
magnitudes as numbers. 

1. INTRODUCTION

I  first  faced  the  problem  of  understanding  the  meaning  of  the  terms 

‘quantity’, ‘magnitude’ and ‘magnitude in general’ in previous research on 

Hermann  Grassmann.  Criticism  of  the  so-called  traditional  definition  of 

mathematics as science of quantities abounds in the works of philosophers 

and mathematicians of the nineteenth century, especially in the writings of 

German  speaking  authors.  Christian  Wolff,  who  introduced  a  German 

terminology for mathematics and philosophy, used just one word (‘Größe’) 

to express both Latin words ‘quantitas’ and ‘magnitudo’, adding linguistic 

ambiguities to the difficulties concerning the conceptual difference between 

the terms. Kant, Bolzano, Hegel, and Grassmann all criticized the definition 
* I would like to thank for their comments, suggestions and criticisms: Jonathan 

Barnes, Ivor Grattan-Guinness, and an anonymous referee. 
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of  mathematics  as  Grössenlehre and  the  confusion  between  numerical 

quantities  and  extensive  magnitudes.  To understand  such  a  criticism one 

needs to understand when the definition became popular and what it was 

aimed at. It’s a very difficult task, because the terms ‘quantitas’, ‘quantity’, 

‘quantità’,  ‘quantité’  on  the  one  hand  and  ‘magnitudo’,  ‘magnitude’, 

‘grandezza’, ‘grandeur’ on the other hand were often used ambiguously and 

because  the  same  definition  was  adopted  by  different  authors  to  convey 

distinct  conceptions  of  mathematics.  Moreover  the  emergence  of  that 

definition  was  strictly  connected  to  the  development  of  the  concept  of 

mathesis  universalis and to the preference for  one or other of  the words 

‘quantitas’ and ‘magnitudo’ to translate the Euclidean term ‘méghezos’. 

In  the  following  I  will  briefly  illustrate  some  relevant  elements  to 

understand the rise of the so-called ‘traditional’ definition of mathematics as 

a ‘science of quantities’ or a ‘science of magnitudes in general’. I will then 

introduce  three  different  conceptions  of  mathematics  as  a  science  of 

quantities. Finally, I will try to investigate the relation between these three 

conceptions  of  mathematics  and  Aristotle’s  prohibition  rule  on  kind-

crossing: 

you  cannot  prove  anything  by  crossing  from another  kind  –  e.  g. 

something  geometrical  by  arithmetic.  [...]  where  the  kinds  are 

different,  as  with  arithmetic  and  geometry,  you  cannot  attach 
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arithmetical  demonstrations  to  what  is  incidental  to  magnitudes  – 

unless magnitudes are numbers. [...] Hence the kind must be the same, 

if a demonstration is to cross (Post. Anal. 7, 75a35-75b10, p. 12). 

I will argue that Aristotle’s prohibition rule might be useful as a historical 

interpretative tool to bring out certain differences in meaning of the term 

‘quantity’ as used by different authors. I will compare it to the first condition 

of the Classical Model given by De Jong and Betti (2008): “All propositions 

and all concepts (or terms) of S [Aristotelian science] concern a specific set  

of objects or are about a certain domain of being(s)”.

Among  the  authors  that  contributed  to  the  rise  of  the  definition  of 

mathematics as a science of quantities from the second half of the sixteenth 

century to the beginning of the seventeenth century, I will cite here: first, the 

humanists who translated Euclid and who discussed Proclus’ Commentary to 

the  Elements  and Aristotle’s theory of demonstration; second, two authors 

that greatly contributed to the development of algebra and especially to its 

application  to  geometry:  Viète  and  Descartes;  finally, two  authors  that 

contributed to the reduction of the study of geometrical magnitudes to the 

study of numbers: Stevin and Wallis. 

I will present three different conceptions of the domain of mathematics 

associated  to  three  different  strategies  to  explain  the  internal  unity  of 

mathematics: 1)  the search for a broader genus including all mathematical 
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objects; 2)  the  search  for  a  common  character  of  different  species  of 

mathematical objects; and 3) the effort to treat magnitudes as numbers. After 

giving some historical examples of each strategy, I  will investigate if and 

how these strategies might cope with Aristotle’s prescription.  

2.  THE  DEFINITION  OF  MATHEMATICS AS  A  ‘SCIENCE  OF 
QUANTITIES’

In a previous work (Cantù 2003, 2) I suggested that the rise of the definition 

of mathematics as a ‘science of quantities’ was related to the spread of a 

philosophical conception that associated proportion theory with the general 

science  described  in  Proclus’  Commentary  to  the  First  Book  of  Euclid’s 

Elements. According to such a conception, the domain of proportion theory 

is more general than the domain of arithmetic or geometry. It is constituted 

by ‘magnitudes in general’ or quantities, whose properties are expressed by 

the  Euclidean common notions and by  the  definitions  of  Book V of  the 

Elements concerning equality. I do not pretend to reconstruct here the origin 

of the definition of mathematics as a science of quantities – a task that would 

undoubtedly  require  longer  research  and  the  contribution  of  different 

disciplines – but I will briefly mention some elements that cannot be ignored 

in order to undertake such a task: 

– Aristotle’s remark  in  Posterior  Analytics that  some  theorems  on 

proportions  can  be  demonstrated  in  a  general  way  and  the 

association of this  observation with the idea of  a general  science 
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made by Proclus in the aforementioned Commentary;

– the influence of Proclus’ suggestion on some humanistic editions of 

Euclid’s Elements and the preference expressed by some humanists 

for  translating ‘méghezos’ into  ‘quantitas’,  arguing that  the  latter 

term is broader than ‘magnitudo’ and is therefore more apt to denote 

continuous as well as discrete quantities, namely numbers as well as 

geometrical magnitudes;

– the development of algebra and the application of algebraic symbols 

to  geometrical  magnitudes  and  to  numbers,  ending  in  an 

identification  of  quantities  with  numbers,  considered  both 

discontinuous and continuous as used in algebra.

3. ARISTOTLE AND PROCLUS

I will briefly quote two passages from Aristotle’s Posterior Analytics and 

I will quickly summarize the idea of a general science that is to be found in 

Proclus’ Commentary to the First Book of Euclid’s Elements. 

Aristotle  wrote  that  it  is  sometimes  possible  to  prove something in  a 

science by a different science, as when we prove something in harmonics by 

arithmetic or in optics by geometry, but in such cases a science is somehow 

higher than the other. 

Things of this kind are indeed proved in the same way, but there is a 

difference: the fact falls under one science (for the underlying kind is 

5



different),  while  the reason falls  under the higher  science which is 

concerned with the attributes which hold of it in itself  (Post. Anal. 9, 

76a10-15, p. 14). 

Aristotle  remarked  that  something  is  not  proved  universally  and 

primitively, when it  is  proved separately  for  different items even though 

there is something higher it can be proved of, even if it lacks a name:

it might be thought that proportion alternates for items as numbers and 

as lines and as solids and as times. In the past this used to be proved 

separately, although it is possible to prove it of all cases by a single 

demonstration:  because  all  these  items  –  numbers,  lengths,  times, 

solids – do not constitute a single named item and differ in form from 

one another, they used to  be taken separately. Now, however, it  is 

proved universally:  what  they suppose to  hold of  them universally 

does not hold of them as lines or as numbers but as this (Post. Anal. 

5, 74a15-25, p. 9).

In the first part of the Prologue to his Commentary on the First Book of  

Euclid’s Elements,  Proclus  mentioned  certain  simple  theorems  that  are 

common to all  classes of  mathematical  objects  and that  can be observed 

alike  in  numbers,  magnitudes  and  motions.  He enumerated  the  theorems 

governing  proportion,  namely,  the  rules  of  compounding,  dividing, 

converting,  and alternating;  the theorems concerning ratios;  the  theorems 
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about equality and inequality in their most general and universal aspects, as 

having a nature common to all mathematical forms; finally he mentioned 

beauty, order, and the methods called analysis and synthesis (Comm. in Eucl. 

7.13-8.8).  Proclus  did  not  clearly  explain  what  he  intended  by  a  nature 

common to numbers, magnitudes and motions, but in a following passage in 

the section devoted to  Postulates and Axioms Proclus unified number and 

magnitude under the concept of quantity. Enumerating some postulates that 

are common to arithmetic and geometry, he  wrote that  the postulate  that 

quantity  is  capable  of  indefinite  decrease  is  common  to  both,  for  both 

number and magnitude are capable  of  such an increase  (Comm. in  Eucl. 

184.11-29). The general science Proclus was talking about is nonetheless not 

a science of quantities, for he also wrote that the general science 

does not consider it its province to study the properties that belong 

intrinsically to numbers, nor those that are common to all quantities; 

rather  it  contemplates  that  single  form  of  being  or  existence  that 

belongs to all things, and for this reason it is the most inclusive of the 

sciences, all of which derive their principles from it (Comm. in Eucl. 

9.19-25, p. 8).

4.  THE  TRANSLATIONS  OF  EUCLID’S  ELEMENTS  IN  THE 
SIXTEENTH CENTURY

The definition of mathematics as a science of quantities was absent both in 

Aristotle and in Proclus: was it present in the mathematical tradition? And 
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was  there  any  hint  to  a  general  science  of  proportions?  Euclid  proved 

theorems  on  proportions  in  three  different  chapters  of  the  Elements:  the 

general  theory  for  commensurable  and  incommensurable  magnitudes 

developed  by  Eudoxus  is  introduced  in  Book  V; certain  applications  to 

geometry  are  presented in  Book VI;  and  a  theory  of  proportions  among 

numbers is contained in Book VII. Although he did not provide an explicit 

definition of the word, Euclid made use of the undefined word ‘méghezos’ in 

the fifth Book of the Elements, where he introduced the general theory of 

proportions. He never used the Aristotelian expression ‘tò posòn’ to denote 

quantity. The word ‘pelikotès’ occurs twice to denote ratios of homogeneous 

magnitudes and quantities of given ratios (Elem. V. Def. 3, VI. Def. 5*).

As  Crapulli  (1969) observed,  different editions  of  the  Elements provided 

distinct  translations of  the word ‘méghezos’.  Editions based on the Latin 

translation from Arabic by Campanus of Novara – such as Pacioli’s Latin 

edition  of  1509,  Tartaglia’s Italian  edition  of  1543  and  Scheubel’s Latin 

edition of 1550 – translated ‘méghezos’ into ‘quantitas’: the word ‘quantitas’ 

was associated with the Aristotelian property of being equal or unequal and 

was  considered  more  general  than  ‘magnitudo’,  the  latter  being  used  to 

denote lengths, areas or volumes. On the contrary, translations based on the 

Greek  edition  by  Theon  of  Alexandria  –  such  as  the  Latin  editions  by 

Zamberti  and  Commandino  published  respectively  in  1505  and  1572  – 

translated ‘méghezos’ into ‘magnitudo’. Although he mainly used the word 
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‘magnitudo’ in a general sense, Commandino sometimes used it in a stricter 

sense  and  also  used  the  expression  quantity  in  a  broader  sense,  for  he 

remarked that proportion theory is valid not only for magnitudes, but also for 

numbers, motions and time intervals, that is to say for continuous as well as 

for discrete quantities (Crapulli 1969, 18-9). 

In the humanistic tradition the translation of the Euclidean concept of 

‘méghezos’ into quantity was mainly connected with the idea of a mathesis 

universalis and  the  definition  of  mathematics  as  a  science  of  quantities. 

Nonetheless  a  certain  terminological  ambiguity  remained:  beside  authors 

who called mathematics  ‘a  science  of  quantities’,  there  were  others  who 

called it ‘a science of magnitudes in general’. In many cases – Piccolomini 

and Catena for example – ‘quantitas’ was considered as a universal genus 

including  all  ‘quanta’ (Crapulli  1969,  52-3)  and  under  the  influence  of 

Proclus’ science  of  being  it  was  also  conceived  ontologically. Moreover 

proportion  theory  was  conceived  –  for  example  by  Piccolomini  –  as  a 

general  science  common  to  geometry  and  to  arithmetic:  this  ‘scientia 

communis’ was assumed to have its own domain, its own principles and to 

be superordinate to geometry and arithmetic (Crapulli 1969, 39). 

5. THE DEVELOPMENT OF ALGEBRA

Whereas the aforementioned authors sometimes conceived this general 

science from a philosophical rather than a strictly mathematical perspective, 
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from  the  end  of  the  sixteenth  century  onwards the  idea  of  a  general 

mathematical  science became increasingly  connected with the  concept  of 

algebraic calculus. Viète and Descartes conceived the theory of proportions 

as something common to geometry and arithmetic in the sense that it could 

be  applied  to  both  sciences,  but  they  developed distinct  applications  for 

geometry  and  for  arithmetic.  Both  used  more  frequently  the  expression 

‘magnitude in general’ rather than the word ‘quantity’. 

In his work In artem analyticen Isagoge (1591) François Viète developed 

his  Logistica speciosa, that is to say a pure, general algebra that could be 

applied to geometrical magnitudes and to numbers: it was  both a theory of 

equations and a theory of proportions. Viète introduced the key concept of a 

species,  that  should be assimilated neither to the Platonic or  Pythagorean 

conception  of  mathematical  objects  as  separate  entities  nor  to  the 

Aristotelian  conception  of  mathematical  objects  as  abstract  entities. 

According to the reconstruction of Jakob Klein, Viète’s concept of species 

might  be  considered  as  a  generalization  and  transformation  of  the 

Diophantine concept of ‘èidos’,  as  “the characteristic of its kind which a 

number shares with other numbers, or by which it is, in turn, separated from 

them so that a classification of numbers can be obtained” (Klein 1968, 143, 

163). Comparing the role of analysis in geometry and in the Diophantine 

Arithmetic, Viète extended the usual calculus on numbers to a calculus on 

species:  Ars  analytica was  applied  to  numbers  and  to  geometrical 
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magnitudes, but did not entail a fusion or a reunion of the two concepts, for 

algebraic procedures were common to arithmetic and to geometry, but had 

different applications in the two cases (Viète 1591, 137; Klein 1968, 346).

Descartes  is  more  ambiguous  than  Viète,  because  he  sometimes 

mentioned a general science saying that particular sciences were subordinate 

to it, as in the unpublished Regulae ad directionem ingenii (4th Rule), where 

he called the general science ‘universal mathematics’ because it extends to 

all objects of the mathematical disciplines and besides to many other objects 

(Descartes  1701).  He  thus  assumed  that  all  mathematical  disciplines 

(arithmetic,  geometry  but  also  astronomy, music,  optics,  mechanics  and 

many others) were subordinated to universal mathematics, or – as he said – 

were ‘parts’ of it. Descartes’ conception could be described as Aristotelian, 

because the general science included numbers, figures, stars, sounds, but its 

domain was not identified with quantity – even  though all mentioned items 

were ‘quantities’ in the Aristotelian sense of the word. In the fourteenth rule 

Descartes introduced on the contrary the concept of a ‘magnitudo in genere’, 

which  seems  to  be  the  name  of  a  genus  including  different  species: 

everything that can be asserted of the genus can be asserted of the species. 

But  what  are  the  species  of  such  genus?  They  are  ‘multitudines’  and 

‘magnitudines’,  namely  discrete  and  continuous  entities  that  can  be 

compared  by  order  and  measure. Even  though  he  sometimes  expressed 

himself  according to the  traditional  terminology of genera  and species,  I 
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don’t think Descartes intended to define universal mathematics on the basis 

of  a  common ontological  genus,  as  it  seemed to  be the case in  Proclus’ 

Commentary. Descartes remarked that magnitudes and numbers are distinct, 

though magnitudes can sometimes be reduced to numbers and numbers can 

be  used  to  solve  certain  problems  concerning  measure.  Universal 

mathematics – he wrote – can be applied to all things that can be compared 

according to ‘multitudo’ and ‘magnitudo’, order and measure. The domain of 

mathematics  is  actually  constituted  by  relations,  and  particularly  by 

proportions among ‘magnitudes in general’. In some parts of the  Regulae, 

Descartes also tried to relate magnitudes in general to a particular species of 

magnitudes, that is to say to the extension of bodies, which constitutes the 

object of physics. Interestingly enough, Descartes unlike Viète used figures 

and not just symbols to represent algebraic magnitudes (Klein 1968, 198).

Descartes’ and Viète’s developments of algebra did not necessarily entail 

the fusion of arithmetic and geometry into a common science, even though 

the  two  sciences  were  compared  and  the  relation  to  algebraic  equations 

stimulated  the  proliferation of  new construction methods,  the  analysis  of 

their legitimacy and new classifications of geometrical problems according 

to  the  correspondent  equations  to  be  solved  (Bos  2001).  Arithmetic  and 

geometry  remained  distinct  and  numbers  were  not  directly  applied  to 

geometry, because of their inadequacy to express irrational magnitudes, but 

also  because  of  the  difference  in  dimension:  algebraic  operations,  when 

12



applied  to  geometry,  needed  a  dimensional  interpretation  that  might 

distinguish different classes of homogeneous figures, such as lines, planes 

and solids. 

While Viète and Descartes used the term ‘magnitude in general’, in the 

works of Stevin and Wallis algebraic numbers were considered as the main 

object  of  mathematics  and  they  were  called  ‘quantities’.  The  differences 

between numbers and geometrical magnitudes were quite evident to Viète 

and to Descartes: they did not question the difference – inherited from the 

Greek tradition – between discrete a-dimensional numbers and continuous 

dimensional  geometrical  figures.  On  the  contrary, such  a  difference was 

refuted by Simon Stevin, who already in 1585, in his book L’Arithmétique, 

refuted the idea that numbers were discontinuous and magnitudes continuous 

by criticizing the Greek conception of number as a multitude of units. He 

defined number as what explains the quantity of each thing. The unity is 

itself a number – he argued – for it is a part of any number and the part of a 

whole has the same nature of the whole, just as a piece of bread is bread. 

Moreover  he  remarked  that  the  unity  can  be  divided  and  that  therefore 

numbers need not be considered discontinuous. The parts of the unity – he 

said – are themselves numbers, just as the parts of lines are lines: they are 

fractions.  The  relation  between  numbers  and  magnitudes  was  for  him  a 

correspondence:  to  a  continuous  magnitude  corresponds  a  continuous 

number  and  if  the  magnitude  is  divided  in  a  discontinuous  way,  the 
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associated  number  is  discontinuous.  For  this  reason  he  concluded  that 

discrete  numbers  do  not  stand  in  contrast  to  discontinuous  magnitudes 

(Stevin 1585, 502).

John Wallis in his work Mathesis universalis considered universal algebra as 

coinciding  with  arithmetic,  or  at  least  as  being  better  represented  by  its 

symbols,  because  “universal  algebra  is  actually  arithmetical  rather  than 

geometrical”:  since  “geometry  is  almost  subordinate  to  arithmetic”  –  he 

argued – what is universally said in arithmetic can be applied to geometry as 

to  a  subordinate  science.  Wallis  concluded  that  the  calculus  was  not 

geometrical but arithmetical, even though it could be applied to geometrical 

measures, also because geometry was limited to three dimensions, whereas 

the arithmetical calculus could extend to superior powers. He also remarked 

that the arithmetical calculus might compare squares and cubes, what would 

be  impossible  in  geometry, because  it  would  be  impossible  to  compare 

inhomogeneous magnitudes such as a plane and a solid (Wallis 1657, 56). 

Defining a number, as Newton after him, as the ratio of two homogeneous 

quantities, Wallis tended to restrict the domain of universal mathematics to 

algebraic  numbers.  Number  is  not  radically  different  from  magnitude, 

because both are continuous and the former can be used to represent the 

latter  (Wallis  1657,  133).  For  Wallis, mathematics  can  be  defined  as  a 

science of quantities, where quantities should be intended not in the general 

sense used by Aristotle but in a restricted sense: quantities should include 
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magnitudes  and  numbers  as  its  only  proper  species;  in  a  broader  sense 

quantities are instead object of mixed mathematical sciences (Wallis 1657, 

17).

If Viète and Descartes conceived ‘magnitudes in general’ as a common 

character of different species of objects, namely magnitudes and multitudes, 

Stevin  and  Wallis shared  a  different  conception  of  mathematics.  They 

conceived  quantities  as  the  objects  of  arithmetic,  provided  that  numbers 

were  extended to  what  we now call  ‘real  numbers’.  Accepting  irrational 

numbers together  with rational numbers,  Stevin and Wallis could express 

any ratio of two quantities by a number and could therefore reduce geometry 

to arithmetic. 

6.  THREE DISTINCT CONCEPTIONS OF QUANTITY

I have argued that the search for a unique definition of mathematics as a 

science  including  both  arithmetic  and  geometry  should  be  related  to  the 

developments  of  the  theory  of  proportions,  whose  theorems  could  be 

demonstrated  –  as  Aristotle  himself  observed  –  not  only  separately  for 

numbers and for geometrical magnitudes but also in a more general way. I 

have also argued that the traditional definition of mathematics as a science of 

quantities  is  connected  with  Aristotle’s  demonstration  theory  and  with 

Proclus interpretation of it. I have finally presented some examples from the 

end of the sixteenth century to the first half of the seventeenth century that 
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attest different conceptions of mathematics denoted by the same definition. I 

will now investigate their compatibility with Aristotle’s prohibition rule on 

kind  crossing,  which  I  have  partly  used   to  bring  out  the  differences 

themselves.

Although the definition of mathematics as a science of  quantities was 

widely accepted and maintained until the eighteenth century, the concept of 

quantity varied its meaning according to different authors and at different 

times. The examples I have mentioned show different ways of conceiving 

the term quantity and the relation between particular mathematical sciences 

such  as  geometry  and  arithmetic  and  a  general  science  of  quantity. 

Aristotle’s prohibition rule  and his  remarks  on quantity and on scientific 

demonstration  play  a  significant  role  in  these  examples,  both  when 

Aristotle’s theory is accepted and when it is criticized. Apart from explicit 

references to the Aristotelian texts, as it is the case in the humanistic writings 

and in Wallis, the compatibility with the Aristotelian rule might  serve to 

distinguish  three  different  conceptions  of  algebra  and  three  different 

meanings of the word ‘quantity’ or ‘magnitude in general’.

1) The  first  conception  is  characterized  by  the  predominance  of 

Proclus’ interpretation of the Aristotelian prohibition rule, which leads to the 

idea that quantity is the domain of a general mathematical science whose 

content  includes  magnitudes,  numbers,  sounds,  and  motions  and  whose 
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theorems concern proportions and equalities or inequalities. I would attribute 

this  conception  to  many  humanistic  texts  of  the  sixteenth  century,  but 

perhaps also to certain texts of Descartes, such as the passage taken from the 

4th Rule of  Regulae.  The Aristotelian prohibition rule on kind-crossing is 

respected inasmuch as quantity is  intended as  a superior  genus including 

numbers  and  geometrical  magnitudes:  geometry  and  arithmetic  are 

subordinate to a general science of quantity. This point of view needs not 

however correspond to the Aristotelian conception for it seems to be based 

on an ontological perspective influenced by Proclus’ Platonism: there is a 

higher genus and it has a name, whereas Aristotle seems to conceive this 

genus  not  as  a  domain of  being but  as  a  common character  of  different 

species whose higher genus has no name.

2) The second conception might be characterized by the restriction of 

the concept of quantity (or magnitude in general) to figures and numbers, 

namely to geometrical and arithmetical objects, following Euclid rather than 

Aristotle or his commentators. Such a restriction is not based on the genus-

species distinction: the word quantity does not refer to a genus including 

numbers and geometrical magnitudes, but it denotes a new symbolic concept 

whose properties could be derived from the properties of the operations on 

algebraic symbols. The prohibition rule seems nonetheless to be somehow 

maintained, at least in the loose sense that neither Viète nor Descartes ever 

consider  the  idea  of  applying  algebraic  procedures  to  numbers  and  to 
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geometrical  magnitudes  in  exactly  the  same  way:  they  rather  develop 

different procedures for each science. Viète and Descartes take into serious 

account  the  intrinsic  differences  between  numbers  and  geometrical 

magnitudes,  such as  continuity and dimension. That’s why, for example, 

they  insist  on  the  necessity  of  introducing  homogeneity  conditions  in 

proportion theory when it  applies to  magnitudes.  The difference between 

arithmetic  and geometry is  thus maintained as essential  and relevant:  the 

tendency to prove something geometrical by arithmetic is not yet spread, 

though the means for doing it are developed. 

3) The third conception might be connected to further developments of 

the  algebraic  calculus.  The  development  of  algebra  does  not  induce  the 

identification of arithmetic and geometry, but tends to subordinate the latter 

to the former, inasmuch as arithmetic is conceived as a general algebra. The 

attention is drawn to problems concerning the possibility of demonstrating 

geometrical  results  by  algebraic  expressions,  that  is  to  say  –  at  least 

according to Wallis’ understanding of algebra – by arithmetical expressions. 

For Stevin the continuity of geometrical magnitudes is adequately expressed 

by their numbers, that inherit the continuity of the things they are numbers 

of.  Neither  continuity  nor  dimensionality  are  exclusive  features  of 

geometrical magnitudes anymore. The prohibition rule does not seem to be 

relevant and Aristotle’s broad conception of quantity is criticized. Quantities 

are magnitudes and numbers, or simply numbers, in as far as numbers can 
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represent  the  ratios  of  any  two  magnitudes  and  arithmetic  can  compare 

quantities of different dimensions, namely polynomials of different degree.

7.  ARISTOTLE’S  PROHIBITION  RULE  ON  KIND-CROSSING  AND 
THE CLASSICAL MODEL OF SCIENCE

By  the  aforementioned  analysis  of  the  three  different  conceptions  of 

mathematics as a science of quantities I have tried to show that Aristotle’s 

prohibition rule  on kind crossing might be  quite  useful  from a historical 

point of view, especially in order to individuate relevant differences among 

conceptions that share the same name. Firstly, analyzing whether quantity is 

intended as a superordinate genus including numbers, magnitudes and many 

other entities, or just numbers and magnitudes, or as a domain of entities of 

different  species  whose  superior  genus  lacks  a  name,  one  discovers 

interesting  differences  in  the  concept  of  quantity.  Secondly,  Aristotle’s 

prohibition rule on kind crossing might explain certain resistances to the idea 

of  unifying numbers  and magnitudes in  a  single  genus or  to the  idea of 

applying the algebraic calculus in exactly the same way to arithmetic and to 

geometry. Thirdly, Aristotle’s remarks on a general science besides special 

sciences such as arithmetic and geometry might help in understanding how 

the idea of a  mathesis universalis merged with the algebraic conception of 

arithmetic.  Moreover,  the  prohibition  rule,  together  with  Aristotle’s 

considerations  on  mathematical  entities,  might  explain  why  proportion 

theory could not be so easily considered as a special science: propositions on 
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proportions do not concern some genus in an ontological sense but rather 

different  items  such  as  numbers,  lengths,  times,  and  solids.  Finally, the 

prohibition rule  helps to understand the difference between those authors 

who  refuted  the  idea  of  reducing  geometry  to  arithmetic  and  those  who 

tended to identify algebra with arithmetic. 

The first condition of the Classical Model, which De Jong and Betti call 

‘domain  postulate’,  is  strictly  connected  to  the  prohibition  rule  on  kind-

crossing and to  the hierarchical  disposition of sciences.  This  postulate  is 

satisfied whenever the internal unity of a science is provided by its subject-

matter, intended as a specific set of objects or a certain domain of beings. 

The domain postulate, as far as mathematics is concerned, does not assume 

that  the domain of objects  should be as broad as  possible,  that  is  that  it 

should  contain  all  entities  that  share  the  properties  demonstrated  in  the 

theorems:  I  think  it  lacks  an  essential  strive  for  generalization  that  was 

embedded in Aristotle’s demonstration theory. Aristotle’s formulation is a 

useful  guideline,  because  it  helps  to  understand  the  development  of 

proportion theory into a mathesis universalis. To have an equivalent of such 

a strive for generalization, a specific reference to the Aristotelian conception 

of genus and species should perhaps be included in the first condition of the 

model.  

Even though the first condition of the Classical Model is very helpful in 
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the construction of a general interpretative frame, the frame might result too 

comprehensive  when  applied  to  historical  case-studies,  letting  interesting 

distinctions vanish. The views of Wallis, Viète and Descartes would all be 

compatible with the first condition of the Classical Model, since the concepts 

of  universal arithmetic,  logistica speciosa and universal algebra might be 

grounded on the idea of a domain consisting of a specific set of objects; but 

this  would  result,  in  my view, in  understating  some essential  differences 

among such definitions of mathematics. A specific reference to the doctrine 

of genus and species might be useful to understand the relation between the 

Classical Model and Aristotle's epistemology, and to provide the historian 

with  a  tool  that  points  out  not  only  common  traits  but  also  substantive 

differences. 
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