THe LONDON SCHOOL
oF ECONOMICS anp
POLITICAL SCIENCE

LSE Research Online

Kai Spiekermann
Sort out your neighbourhood: public good
games on dynamic networks

Article (Accepted version)
(Refereed)

Original citation:
Spiekermann, Kai (2009) Sort out your neighbourhood: public good games on dynamic
networks._Synthese, 168 (2). pp. 273-294. ISSN 1573-0964 DOI: 10.1007/s11229-008-9424-5

© 2009 Springer Science+Business Media B.V.

This version available at: http://eprints.Ise.ac.uk/26739/
Available in LSE Research Online: July 2014

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.Ise.ac.uk) of the LSE
Research Online website.

This document is the author’'s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://eprints.lse.ac.uk


http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=k.spiekermann@lse.ac.uk
http://www.springer.com/philosophy/philosophy+of+sciences/journal/11229
http://dx.doi.org/10.1007/s11229-008-9424-5
http://link.springer.com/
http://eprints.lse.ac.uk/26739/

Sort out Your Neighbourhood: Public Good
Games on Dynamic Networks

Kai Spiekermann

Abstract

Axelrod (1984) and others explain how cooperation can emerge in
repeated 2-person prisoner’s dilemmas. But in public good games with
anonymous contributions, we expect a breakdown of cooperation because
direct reciprocity fails. However, if agents are situated in a social network
determining which agents interact, and if they can influence the network,
then cooperation can be a viable strategy. Social networks are modelled
as graphs. Agents play public good games with their neighbours. After
each game, they can terminate connections to others, and new connections
are created. Cooperative agents do well because they manage to cluster
with cooperators and avoid defectors. Computer simulations demonstrate
that group formation and exclusion are powerful mechanisms to promote
cooperation in dilemma situations. This explains why social dilemmas
can often be solved if agents can choose with whom they interact.

More than 20 years after Axelrod’s seminal computer tournaments and the
discussion about direct reciprocity in repeated games [Axelrod1984], we still
haven’t understood all mechanisms leading to sustained cooperation. Most
settings researchers have looked at are based on two unrealistic assumptions.
Firstly, most models to explain cooperation comprise games with two players.
2-person prisoner’s dilemmas, in particular, have received much attention. But
more realistic settings involve more than two persons. Cooperation becomes
much harder in multi-person dilemmas. Under realistic assumptions, it breaks
down because targeted reciprocation against defectors is not possible. Secondly,
most models do not take the effects of social structure into account. They as-
sume random matching of strategies or a tournament of pairwise matching. But
the reality of human interaction looks quite different: People are situated in a
social network. They meet some people much more often than others. More-
over, people can influence with whom they interact, thereby changing the social
structure that determines who interacts with whom.

On the one hand, moving from 2-person to multi-person games makes the
emergence and maintenance of cooperation harder. On the other hand, social
structure often makes it easier. When we allow agents to change the social net-
work, cooperation can emerge, even in settings quite hostile to cooperation. In
this paper I present a model where agents are situated in a network they are
able to change over time. They play public good games with their neighbours,



and they cannot observe who of their neighbours defect. This is not an environ-
ment where one would expect cooperators to thrive. Nevertheless, simulations
show that cooperators can do well because they change the social structure of
interaction over time.

This paper is in 6 parts. In section 1 I introduce dynamic networks and
discuss how the notion of social structure has influenced recent models of co-
operation. This leads to a preliminary, simple model where 2-person prisoner’s
dilemmas are played on a dynamic network in section 2. Section 3 presents the
core model and the simulation results. I discuss the robustness of the model in
section 4. Section 5 extends the robustness analysis by taking scale-free network
topologies into account. Section 6 draws conclusions.

1 Dynamic Networks

Axelrod himself noted that the feasibility of cooperation increases when the en-
counter of strategies is positively correlated, that is when cooperators are more
likely to meet cooperators [Axelrod1984, pp. 63-69; 158-168]. He considered
“clustering” and “territoriality” as possible solutions to the problem that cooper-
ative strategies cannot invade a population of defectors individually. At about
the same time, and referring to earlier work from [Axelrod & Hamilton1982],
[Eshel & Cavalli-Sforzal982] discussed “assortment” as an important factor to
explain how cooperation can be initiated in an evolutionary process when the
default behaviour is defection. [Hirshleifer & Rasmusen1989] introduced the
idea of ostracism into the economics literature, but they did not explicitly dis-
cuss the spatial dimension. In a first wave of literature, with contributions
from mathematicians, computer scientists, theoretical biologists, economists,
and from other fields, researchers demonstrated the importance of spatial struc-
ture for the emergence of cooperation. [Lindgren and Nordahl1994a] discuss
iterated prisoner’s dilemmas on a lattice to model cooperation in biological
systems (see also [Lindgren & Nordahl1994]). Cellular automata with differ-
ent strategies evolve and spatial structure supports the coexistence of coopera-
tive and non-cooperative strategies. A similar approach by [Ashlock et al.1996]
leads to the conclusion that partner selection is an important mechanism for
the emergence and stability of cooperation in spatially structured ecologies.
[Nowak et al.1994] also analyse the success of cooperative strategies if evolution-
ary games are played on lattices. Of particular interest for my own approach
are papers that incorporate dynamic spatial structures. [Tesfatsion1997] analy-
ses the formation of trade networks where trade interactions resemble iterated
prisoner’s dilemmas and agents can accept or refuse trading partners. Where
partner selection takes place, payoffs are higher, compared to random partner
matching.

More recently, a second wave of literature on the connection between spa-
tial structure and cooperation has emerged. This second wave is informed by
recent advances in network theory (see for example [Strogatz2001]). Influential
papers on the formation of networks in general are [Skyrms & Pemantle2000,



Bala & Goyal2000]. Philosophical applications regarding the problem of co-

operation on networks can be found in [Alexander2003, Alexander2007] and
[Vanderschraaf2006, Vanderschraaf2007]. Both authors argue that social struc-

ture is crucial to explain human cooperation in cooperation dilemmas. Many

new contributions in theoretical biology systematically explore the impact of dif-

ferent network topologies [Lieberman et al.2005, Ohtsuki & Nowak2006, Ohtsuki & Nowak2006a,
Ohtsuki et al.2006, Santos & Pacheco2006, Hauert & Szabo2003, and further

references in these papers|. Of particular interest for this paper is [Santos et al.2008]

because they model public good games on networks.

In the aforementioned models the structure of the network remains static.
The network structure influences the agents’ behaviour and payoffs, but agents
are not able to change the structure. This paper, by contrast, implements dy-
namic network structures, similar to [Pacheco et al.2006] and [Pacheco et al.2008].
The latter offer an analytical treatment of the co-evolution of network structure
for a system of direct reciprocity. [Zimmerman et al.2004] have a related discus-
sion for 2-person prisoner’s dilemmas. In contrast to these papers, my analysis
is concerned with public good games on dynamic networks. Agents can influ-
ence the agents they have contact with and thereby shape their neighbourhood.
This mirrors the nature of social structure in reality: We have some, but not
complete control over the set of people we interact with. We can cut ties with
those who cheat us and establish ties with those who seem trustworthy. Such
networks can be of a professional (trade networks, academic collaborations, etc.)
or a private nature (networks of acquaintance, social networks in virtual worlds,
etc.). The approach taken here assumes that the change of network structure
happens fast, while the strategies of agents remain unchanged, ruling out the
co-evolution of structure and strategy.

Social structure regulates who interacts with whom, and it provides opportu-
nities for agents to change their interaction partners. One typical way to imple-
ment the notion of structure is to use grids or—less technically—checkerboards.
Each agent inhabits one field on a checkerboard and has a limited number of
neighbours. The disadvantage of modeling social structure as a checkerboard
is its rigidity: Every field on the board has a fixed number of neighbours in
its immediate local neighbourhood. Real social networks look different: Firstly,
agents can differ in their number of social contacts; secondly, these contacts are
not necessarily local (think of online communities); and thirdly, real agents have
the chance to influence the network structure by making and breaking social re-
lations. To incorporate these properties of real social networks, I model social
structure as a graph.

A graph consists of vertices and edges. When drawing a graph, vertices are
represented as points, and edges as lines connecting these points. Each edge
connects two vertices. I take a vertex to represent an agent, and an edge to
represent a social relation between two agents. The network in the model is
dynamic. It changes its structure because agents can choose to delete edges and
new edges are created. This represents the fact that agents have a choice with
whom they have social relations.

Analytical solutions to repeated games on dynamic networks are difficult



to find. The space of possible strategies is enormous and the relation between
network structure and game strategies is difficult to capture. If there is a large
number of agents and a large number of rounds, it is almost impossible to derive
an extended game form and “solve” the game. In any case, it is quite implausible
to assume that agents have common knowledge of the complete history of game
outcomes and network topology. Also, the complex dynamics of repeated games
in networks, especially if multi-person games are played, are difficult to tackle
analytically. The upshot is that an analytical solution to these complex games
is practically impossible and would have to rest on knowledge and rationality
assumptions that would render the model unrealistic. Still, these games can be
analysed in greater detail. For complex and dynamic games we need to replace
deductive analysis with computational modelling.

2 2-Person Prisoner’s Dilemmas

I start with a very simple model to introduce the modelling approach. In the
beginning, agents are situated in a social network, with random social structure,
constrained by a fixed number of edges (I use different initial network topologies
in section 5). For instance, in figure 1, panel a, we see a randomly structured
network with 50 agents, with 25 cooperators (white) and 25 defectors (black),
connected by 100 randomly drawn edges. Each pair of connected agents plays
a 2-person game with payoffs as stated in table 1.

Table 1: Game form with prisoner’s dilemma payoffs.
cooperate defect
cooperate 2,2 -1, 3
defect 3, -1 0,0

For payoff maximising agents these payoffs constitute a prisoner’s dilemma.*

However, not all agents are immediate payoff maximisers in this model: T as-
sume that “cooperators’ always cooperate, even though cooperation is not a
Nash equilibrium for payoff maximisers. “Defectors”, by contrast, always defect.
Defectors do better than cooperators in each single game in terms of payoff.
However, agents are allowed to sever ties. Deleted ties are replaced by new
random ties. Agents can try to sever ties with defectors, hoping that they get
connected to cooperators instead. Cooperators aim to cluster with their own
kind and avoid defectors, defectors aim to connect to cooperators to exploit
them.

More technically speaking, a network is represented by a graph with n ver-
tices and k edges. Let the edges be non-directional. Self-loops (a vertex con-
nected by an edge to itself) are ruled out. Each vertex represents an agent.

IFor simplicity, I will occasionally call a game with the payoffs of a prisoner’s dilemma a
prisoner’s dilemma, even though cooperators do not play a prisoner’s dilemma in their own
perception, all things considered.



Vertices can be of two types: Cooperators (C) and defectors (D). The edges
represent interaction relations between agents such that two connected agents
interact with each other in each round of the game. In the beginning, the
edges randomly connect vertices.? The type of each vertex is also determined
at random with the condition that there be x cooperators and y defectors.

In each round, every pair of agents connected by an edge plays a prisoner’s
dilemma (in terms of monetary payoff).? Cooperators always cooperate, defec-
tors always defect. The payoffs for the prisoner’s dilemma are as stated in table
1. After playing the game agents can choose to delete one of “their” edges, i.e.
they can choose to delete one of the ties* connecting them to other agents. They
can also choose not to delete any edge. This means if an agent i has d edges, i
has d + 1 alternatives: Delete one of the d edges, or delete no edge.

Different deletion strategies are conceivable. I explore two simple strategies:
zealous and inert. In the first simulation I assume that cooperators are zealous.
This means they sever ties with defectors whenever they can. Defectors are
inert, i.e. they never delete connections to other agents, because they benefit
from having ties with cooperators and are not harmed by other defectors. After
all agents had the option to delete one edge, the number of deleted edges is
replaced by new random edges.> This procedure is repeated for many rounds.

Figure 1 shows the effect of repeated play. White vertices represent, coopera-
tors, black defectors. In the beginning (panel a) players are randomly connected.
After 100 rounds (panel b), the network has changed its structure. Coopera-
tors are only connected to other cooperators, defectors only to defectors. The
situation depicted in 1b is stable with the strategies described. Neither cooper-
ators nor defectors have reason to sever any ties, given the strategies zealous for
cooperators and inert for defectors. Since new ties are only established when
old ties are deleted, no change in the network structure takes place once coop-
erators and defectors are completely separated. The payoffs for defectors are
higher than for cooperators in the beginning, but separation of the two soon
puts cooperators in a better position. In figure 1b defectors receive zero payoff,
while cooperators receive payoff 2 for each tie to another cooperator.

With a slight modification the effect becomes even more dramatic. Assume
that defectors are zealous, too, i.e. they sever ties to other defectors if they
can. Figure 2 shows the result. Since defectors no longer keep their edges to
other defectors, the cooperators get all edges in the network, and defectors are
isolated with no ties to other agents. I have included pseudo-code for this model
in the appendix.

Even though the model is simple, it already provides some useful insights.

2Note that the graph is not a complete graph, i.e. typically many pairs of vertices are not
directly connected.

3If there are multiple edges between two agents, they play the game as often as there are
edges between them. Multiple edges can be interpreted as representing a particularly intensive
interaction.

41 use the terms “edge” and “tie” interchangeably throughout the paper.

5For simplicity, I assume that the new random edge can also be the old, deleted edge. This,
of course, is very unlikely for a sufficiently large network. When adding edges, multiple edges
between the same agents are allowed.



Figure 1: Complete assortation for 2-person prisoner’s dilemmas with coopera-
tors severing ties to defectors. Cooperators are white, defectors black. (a) is the
initial setting with 50 vertices and 100 edges, (b) the network structure after
100 rounds.
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Firstly, it shows that network dynamics are a powerful mechanism to enforce
cooperation. Without network dynamics, the best cooperators can do is to play
a conditional strategy like Axelrod’s TIT-FOR-TAT. Such strategies ‘punish’
defectors with defection. These punishments are costly. By contrast, moving
away is a cheap but highly effective punishment, because it imposes future
losses on the defector, while giving the punisher a chance to increase payoffs
by finding a better partner. Secondly, despite its simplicity, the model gives us
a good idea of how some social interactions work. Buyer-seller relations often
resemble 2-person prisoner’s dilemmas: The buyer can refuse to pay, the seller
can refuse to send the goods (or send faulty goods). If an agent finds that
her business partner has cheated her, she stops dealing with him and finds new
partners (similar results were reported by [Tesfatsion1997]). In this way business
networks of reliable traders emerge even though other enforcement mechanisms
are missing (proceeding against someone in a different country is often not worth
the effort). However, this will only work if both sides expect future interactions.
Without a shadow of the future, neither side has an incentive to cooperate.

3 Multi-Person Public Good Games

More interesting questions arise when cutting ties to defectors is not that easy.
Many real social dilemmas involve more than two persons. The paradigmatic
cases are collective action and public good problems. When many persons are
involved, it is often difficult or impossible to determine who has cooperated or
defected. People can get away with free-riding, because there are no effective
ways to monitor behaviour and punish defectors. The more anonymous inter-
actions are, the easier free-riding gets. For instance, it is often convenient to



Figure 2: Complete assortation for 2-person prisoner’s dilemmas with cooper-
ators and defectors severing ties to defectors. (a) is the initial setting with 50
vertices and 100 edges, (b) the network structure after 100 rounds.
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dump one’s rubbish into the street in a moonless night (defect), rather than
separating it and carrying it to the next recycling center (cooperate). If no one
is watching, or if people do not know each other well enough to identify offend-
ers (think of large anonymous blocks of flats), free-riding remains undetected
or unpunished. Therefore, I assume that the behaviour of other agents is not
directly observable, i.e. contributions are anonymous. This means that agents
only know how many players play and how the outcome differs from the ideal
outcome of universal cooperation. They do not learn who has defected, unless
this can be inferred indirectly. Rather than cutting specific ties to defectors,
cooperators can only try to gradually “move away” if they are caught in a neigh-
bourhood with high levels of defection. Surprisingly, cooperators can do well
even in public good games with anonymous contributions. People observe how
well the production of public goods is going on the aggregate level, and change
the social network accordingly. This is the idea for the next model.

I describe the core features of the model here; pseudo-code is provided in the
appendix, and some details of the model are explained in the notes. The model
is initialised by creating a graph with vertices and edges. Vertices represent
agents, edges relations between agents. Each round in the model has three
stages: a playing stage, an edge deletion stage, and an edge replacement stage.

I begin by describing the playing stage. There are two types of agents,
cooperators (or contributors) and defectors (free-riders). Agents are again rep-
resented by vertices in a network. Following Alexander’s (2007) terminology, let
the associated group of an agent i be all directly connected neighbours of i and
¢ himself. If a neighbour is multiply connected to ¢ the neighbour features in the
associated group as often as he is connected.® In each round, each agent plays

60ne could say that the multiply connected agent has a higher stake in the game. Also,
when agents delete an edge to another agent with whom they are multiply connected, this



a public good game with the agent’s associated group. The associated group of
i is denoted H;, and |H;| is the cardinality of the associated group. Each agent
i makes a contribution ¢; € {0,1} to the public good. For notational simplicity,
I use superscripts to indicate which agent initiates the game, and subscripts to
denote who receives the payoff. The net payoff p¢ for each participant m in the
game initiated by ¢ is

3 e
r% —¢m  for |H;| > 2

(1)
0 for |H1‘ < 2.

The enhancement factor r is a parameter with 1 < r < 2. For convenience,
I assume r = 1.5. If all agents contribute, each agent receives a net payoff
r — 1, provided there are at least 2 players.” Defection is the strictly dominant
strategy for payoff maximisers. However, cooperation can be a viable strategy if
cooperators manage to play the game only or primarily with other cooperators.

Figure 3 gives an example. Agent m has edges with agents a, b, and c,
who again have edges with other agents. Remember that all agents play the
public good game with their associated group. Here m plays one game with
{a, b, c}, but m also participates in the games initiated by all direct neighbours.
Therefore, m participates in four games.

Figure 3: A network constellation. Grey circles are defectors, white circles

cooperators.
(o)

O

In general terms, the payoff p,, for an agent m is determined by adding the
payoffs from all the public good games m is playing, similar to the model of
overlapping neighbourhoods proposed by [Santos et al.2008]. This results in

O

Oo—© O

reduces the number of edges between them by 1, rather than deleting all edges.

"If agent m is ¢ times (multiply) connected to i, m plays the game as often as he is
connected and his net payoff is cpf,. This means he contributes c times and gets the payoffs
for playing c times.
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In the edge deletion stage agents can influence their network by severing
ties. The edge deletion proceeds asynchronously in random order. Each agent
has the opportunity to delete one edge to one neighbour, or do nothing. After
the edge deletion stage is over, the number of deleted edges is replaced by new
random edges in the network.®

I now turn to possible strategies in the edge deletion stage. Agents are able
to gradually change their neighbourhood when the level of cooperation is un-
satisfactory. The question is whether cooperators manage to find cooperative
neighbourhoods given that they cannot identify defectors directly.” Agents need
a criterion to decide if and which ties they should cut. Rational agents should
try to determine this criterion by calculating the expected utility gain or loss
from severing a tie. To undertake this task it is necessary to understand the
information available to an agent after the playing stage is over and before the
network change stage begins. The agent does not receive information about
who among the neighbours and the neighbours’s neighbours is a defector or
cooperator, unless this can be inferred from the information described. How-
ever, the agent is aware of the network topology in his first and second degree
neighbourhood.

After playing in the constellation as shown in figure 3, the following infor-
mation is available to agent m:

1. Agent m knows the rate of defection in his neighbourhood H_,, (H_,, is
the neighbourhood of m without agent m himself, that is H,,/{m}).

2. Agent m knows the rates of defection in the groups Hgy —rm, Hp,—m, and
Hc,—m

In the example, m knows from the game initiated by m that there is one defector
in the immediate neighbourhood. From the other games m knows that a and
a’s neighbour are cooperators. He infers that in the set of b and b’s neighbours
without m (denoted as Hy, _,,) are 1 defector and 2 cooperators. In addition,
m knows that ¢ and his two neighbours are defectors. This in turn also leads to
the conclusion that b is a cooperator.

The example demonstrates that agent m is not only interested in the type
of the immediate neighbours. Since m is involved in 4 games (one initiated
by himself, three others initiated by a, b, and ¢), m cares about the types of
his second degree neighbours as well. In the example, m should delete the edge
with agent ¢, as cooperating with ¢ and her neighbours leads to negative payoffs.
However, in general it is not trivial to see whether an agent should sever ties

8 Again, it is possible that the new random edges replace edges that have just been deleted.
Multiple edges are allowed.

9Except for the special case that a cooperator has only one neighbour, or is able to make
inferences from the games played.



and to which neighbour. To answer this question it is necessary to calculate
the expected!? payoff change from round t to round ¢ + 1 caused by severing
an edge {m,z}. When severing a tie to an agent « € H_,, the expected payoff
changes in two ways. Firstly,  no longer participates in the game initiated by
m. Secondly, m no longer participates in the game initiated by z. The expected
payoff change AE(p,,) is

AE(pm) = [Pm,—z — Pm] — P, (3)

with p;? . being the payoff m receives from the game initiated by m but
played without agent 2.'' The value of the term Di.—z — P, depends on whether
x is a cooperator or a defector. In most cases m does not know the types of his
neighbours. However m is able to estimate the probabilities that a neighbour
is a defector based on the outcomes of previous games. The complexity of
these calculations depends on the sophistication of the agents. With perfect
memory and assuming that agents are able to start with suitable prior beliefs,
a Bayesian treatment would be possible. A Bayesian agent uses all information
that becomes available during the course of the game and updates her beliefs
about the types of all other agents. In this paper I restrict myself to much
simpler and arguably more realistic heuristics.

There are two reasons why a Bayesian calculation of the expected utility
change is of little practical relevance. Firstly, it is unlikely that agents individ-
ually or on average behave like perfectly rational Bayesian agents, as the level
of computational effort is enormous.'?> Agents have incomplete information and
limited cognitive abilities. Therefore they have to use simplifying heuristics
to make decisions. Secondly, it is more interesting to show that even rather
unsophisticated agents can reach structures where cooperators keep defectors
in check. In realistic settings, agents use simple heuristics, and it is of little
interpretative interest to model agents as much more sophisticated than they
actually are.

To explore the ensuing dynamics, it is a good idea to run computer simu-
lations with some plausible strategies. The estimation heuristic underlying all
my strategies assumes that agents base their network choice exclusively on the
outcome of the games they have played in the current round. The rule I propose
is simple: If an agent wants to sever a tie, the agent severs the tie to the agent
whose game had the highest rate of defection in the current round (ties are
broken with a random choice among those with the highest rate). In the case of
figure 3, this choice is obvious: In the game initiated by m himself, m infers that
there is one defector in the immediate neighbourhood. When playing the game

10The change is expected because it rests on the assumption that the rest of the network
remains unchanged, which is usually not the case.

1n the special case of multiple edges, the expected payoff must be calculated such that
one of the multiple edges is deleted. This means that = participates in one game less initiated
by m, and m participates in one game less initiated by =.

12Note that if the game is played over many rounds with a limited number of agents,
the evidence gathered in the current game should lead to a revision of all earlier reasoning
processes based on earlier evidence. This is computationally very demanding.

10
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Figure 4: Panel a shows complete assortation for a public good game with
defectors playing inert and cooperators playing zealous after 100 rounds. There
are 25 cooperators and 25 defectors, connected by 100 edges. Panel b shows
the average payoff per agent per round over time for cooperators (dashed) and
defectors (solid).

initiated by a, b, and ¢, m realises that ¢’s neighbourhood has the highest rate
of defection (here, without m it is 100%). m infers that ¢ must be the defector.
But even if no certain inference can be drawn, it makes sense to assume that
the neighbour with the highest defection rate in the neighbourhood is the most
likely defector.'3

To understand the basic dynamics of the game, I analyse two simple strate-
gies already familiar from the 2-person prisoner’s dilemma. The zealous strategy
means that an agent severs one tie to a neighbour if the agent experienced a
non-zero rate of defection in his own neighbourhood. The agent deletes the
tie to the neighbour with the highest rate of defection.'* The inert strategy
means that agents never sever a tie to another agent. From a myopic perspec-
tive (looking only one round ahead), defectors should play inert, since they are
never harmed by any tie to other agents, and severing ties reduces their chances
to exploit cooperators. Cooperators, by contrast, should play a less tolerant
strategy, and zealous is a strategy trying to get rid of ties to defectors.

Figure 4 shows a typical result when 25 zealous cooperators play against
25 inert defectors, connected by 100 edges, over 100 rounds. Figure 4a reveals
that cooperators and defectors are completely separated after 100 rounds, and
given the strategies zealous and inert this is a stable state, i.e. the network
will not change any further. We can see in figure 4b that defectors have higher
payoffs in the beginning, but cooperators soon do much better than defectors.

13Bear in mind, though, that this reasoning is based on the assumption that m can remember
nothing but the last round.

141f there are several agents with the maximum rate of defection, one of them is picked
randomly.

11



Since defectors do not have any connections to cooperators once the network
reaches a stable state, their payoffs in all further rounds will be 0. The assor-
tation procedure has led to mutually beneficial ties between cooperators, while
the ties between defectors do not benefit the defectors. I ran this simulation
100 times with different random networks as initial setting, and in each simula-
tion complete separation was reached after 100 rounds. The average payoff for
cooperators was 2.05, for defectors 0.16.

Defectors “lose” this game because they always end up without any connec-
tion to cooperators, that is with zero payoff for all rounds after the assortation
is complete and the network is in stable state. The myopic inert strategy led
to the complete separation of cooperators from defectors. However, if defectors
adopt a less tolerant strategy they might be able to avoid a network stable state
with complete separation of cooperators and defectors. Can defectors have a
better strategy than inert against zealous? To describe the development of the
network, it is useful to distinguish three different types of edges. CC edges con-
nect cooperator to cooperator, DD defector to defector, and CD cooperator to
defector (and vice versa). Thinking about the dynamics of the game analysed
so far, it is obvious that defectors should sever DD edges because this creates
a chance for new CD edges, i.e. opportunities for the exploitation of coopera-
tors. Therefore, defectors should not accept all connections to fellow defectors.
Rather they should keep the dynamics in the network going and try to avoid
settlement into a stable state with full assortation. To do this, defectors must
delete some or all connections with other defectors. I run simulations where
defectors do not accept defectors in their neighbourhood to test this intuition.

Let us assume that that all cooperators and defectors play zealous. However,
with the given parameters (25 cooperators, 25 defectors, 100 edges, 100 rounds)
a stable state with complete separation still emerges in all run simulations.
Figure 5 shows a typical result after 100 rounds. The zealous strategy has
not only led to a complete separation of defectors and cooperators, it also left
all defectors without any connection to other agents. The average payoffs for
cooperators are much better than for defectors, but defectors tend to hold out
for longer with zealous and have better payoffs before the separation kicks in,
indicating that zealous at least delays the settlement into complete separation.
After the network is in a stable state, however, zealous/zealous leads to higher
payoffs for cooperators compared to zealous/inert, because there are now more
edges between cooperators in the stable state. The graph in 5b suggests that
cooperators earn a payoff of 4.5 per round. This is what we should expect:
Assume by stipulation that all 25 cooperators have at least one edge when the
network is in stable state. This is not an unreasonable assumption, given that
the average cooperator has 8 edges with the given parameters in stable state.
We can then calculate the average payoff by computing all contributions to
the public goods games: Each cooperator contributes in the game initiated by
herself. Also, each of the 100 edges induces two further contributions. Therefore,
we have 225 contributions. Each contribution yields payoff 0.5 (because everyone
cooperates). Thus the average payoff is 225 % 0.5/25 = 4.5.

I ran this simulation 100 times (with different random networks as starting
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Figure 5: Complete assortation if both cooperators and defectors play zealous
with 25 cooperators, 25 defectors and 100 edges. Panel b shows the average
payoff over time for cooperators (dashed) and defectors (solid).

points), and in all simulations complete separation obtained after 100 rounds.
The average payoff for cooperators per round was 3.66, for defectors 0.53.

These results are a powerful demonstration that cooperaters can fare very
well when they have a chance to cluster. Note that the situation is very hostile
to cooperation. Cooperative strategies are usually outcompeted by defectors in
repeated anonymous public good games. By providing agents with very limited
levels of information, and—crucially—with the option to shape the interaction
environment, it is possible for cooperators to cluster and do well.

As pointed out above, the game described is too complex to be analysed
analytically, but some observations can still be made. Firstly, with the strategies
for cooperators as described above (both zealous, or cooperators zealous and
defectors inert) the network will always reach a stable state eventually, even if
agents were to use a zero-intelligence strategy for edge deletion and simply chose
edges at random. I do not offer a a formal proof for this conjecture, but the
gist of the argument can easily be seen: There is a small non-zero probability
for a transition path from any transient state to a stable state. Therefore the
network will eventually end up in a stable state through random drift, certainly
in infinite, perhaps in (a very long) finite time. Secondly, the fact that many
simulations end up in stable states very fast cannot be explained by random
drift alone. The reason for these fast settlements is that cooperators delete CD
edges more often and CC edges less often than with the zero-intelligence random
edge deletion strategy, thereby pushing the network toward an absorbing stable
state. The success of cooperators to reach complete separation from defectors
depends on their ability to work towards transitions that are beneficial to them.

The results obtained so far demonstrate that a process of assortation is
feasible under specific sets of parameters. Do the specific results hold more
generally? Until now the number of agents was assumed to be small, and the
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number of edges was limited. Also, it would be important to see how the
model behaves if the rate of cooperators to defectors is changed. I turn to these
questions in the next section.

4 Parameter Variations and Robustness

To assess the relevance of my model, it is important to show the robustness
of its behaviour with different parameter values. A full exploration of the pa-
rameter space is infeasible, given the restrictions in computing power and the
difficulty to derive analytical results for dynamic models. Nonetheless, it is
possible to consider at least some sensible parameter constellations to gain a
better understanding of the model’s behaviour. I begin with variations in the
rate of defectors. I also explore settings with larger networks and networks with
increased interconnectivity.

When there are more cooperators than defectors, the network dynamic still
leads to complete separation. With 40 cooperators and 10 defectors, both play-
ing zealous, and 100 edges in the network, a stable state of complete separation
occured in all 100 simulations after fewer than 100 rounds. Cooperators fared
well with an average payoff per round of 2.92, defectors badly (0.14). What
happens when there is a rather small group of cooperators playing against a
large group of defectors? In 100 simulations with 10 cooperators and 40 de-
fectors, with both types of agents playing zealous, no separation occured after
100 rounds. Figure 6 shows some constellations after 100 rounds. There are
still many defectors connected to cooperators, and exploitation of cooperators
is widespread. It is also interesting to see that some defectors tend to connect
with many cooperators. One can interpret this as a “camouflage” effect. A de-
fector connected to many cooperators is less likely to be identified as a defector.
I increased the number of rounds to 1000. The network settled into a stable
state in 32 out of 100 simulations. Cooperators experienced low payoffs (0.60),
while defectors did better (1.34). For small groups of cooperators it is harder
to separate within a reasonable number of rounds.

Larger networks do not differ substantively in their behaviour from the re-
sults observed so far. 100 cooperators and 100 defectors, linked by 400 edges,
with both types playing zealous, behave almost identical to the smaller model:
In 20 simulations over 100 rounds, complete separation was always reached and
the average payoff for cooperators was 3.80, compared to 0.44 for defectors.

A higher number of edges per vertex can pose a problem for cooperators.
In a graph with high connectivity, it is more difficult to distinguish between
cooperators and defectors. This is bad for cooperators and good for defectors.
Two simulations suggests that it takes more time for the model to settle into a
stable state of separation. In simulations with 25 cooperators, 25 defectors, 200
edges, and 100 rounds, with both types playing zealous, complete separation
was reached in 47 games out of 100. Cooperators had an average payoff of
2.98, defectors 3.67. Longer play turns around the results to the advantage of
cooperators: With 1000 rounds, all 100 simulations reached a stable state and
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Figure 6: Network constellations after 100 rounds with 10 cooperators and 40
defectors and 100 edges. Both cooperators and defectors play zealous.

Table 2: A summary of all simulation results with random initial network and
random edge replacement.

coop  def strategy  coop, edges rounds simu- % stable payoff payoff

(x) (y) def (k) lations  state coop def
25 25 zealous, inert 100 100 100 100 2.05 0.16
25 25 zealous, zealous 100 100 100 100 3.66 0.53
40 10 zealous, zealous 100 100 100 100 2.92 0.14
10 40 zealous, zealous 100 100 100 0 —1.81 1.60
10 40 zealous, zealous 100 1000 100 32 0.60 1.34

100 100 zealous, zealous 400 100 20 100 3.80 0.44
25 25 zealous, zealous 200 100 100 47 2.98 3.67
25 25 zealous, zealous 200 1000 100 100 7.56 0.62

cooperators had an average payoff of 7.56, defectors 0.62. This result of delayed
separation is plausible: Since the number of deleted and replaced edges per
round does not increase, more rounds are needed to shift the edges. In addition,
in a network with large associated groups, the information derived from the
defection rates in the neighbourhood has lower quality, compared to networks
with smaller associated groups. With the given, limited information it is harder
to identify defectors in large groups rather than in small groups. However, in
the next section I describe a different edge replacement rule that mitigates this
scaling problem regarding connectivity.

Table 2 gives a summary of all my simulations so far. Taking stock, the
model displays robustness against most variations. A complete and stable sep-
aration of cooperators from defectors is independent of the number of agents.
However, if the rate of cooperators is low, separation slows down. Also, a higher
connectedness of the network delays the process towards a stable state of sepa-
ration.
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5 Scale-Free Networks and Preferential Attach-
ment

In the last section I tested the robustness of the model under different parameter
values. In this section I want to cast the net wider and test the robustness of
the result with a different network topology. I distinguish between two different
aspects: initial network topology and rules for replacing edges. The simulations
considered above were initialised with random networks. Deleted edges were
replaced with random edges between any two non-identical agents. These as-
sumptions can be changed, leading to a huge space of possible models. Here I
look at least at some plausible assumptions.

Apart from testing the robustness of the results, there are other reasons
why different network topologies and rules for changing the topology are worth-
while to consider. While random networks have the merit of theoretical sim-
plicity, they do not seem to be the typical form of real social contact networks.
[Newman2003], reviewing empirical results of network research, shows that most
social networks have at least two properties: First, many social networks are
so-called “small-world networks”; second, the distribution of vertex degrees often
follows a power law.

A network is a small-world network if the average path between any two
vertices is short, compared to the overall size of the network. The famous (but
not necessarily true) hypothesis that any two persons are separated by only “six
degrees of separation” is based on the assumption that social contact networks
are small-world networks. One simple way to create a small-world network is
to start with a “large-world” network, a lattice structure for instance. In a
lattice, vertices are only connected to other adjacent vertices. Paths from one
point of the lattice to another point can be long. The lattice can be turned
into a small-world network by adding a few shortcuts. This reduces the av-
erage path length dramatically, because paths between two formerly distant
vertices are now shorter due to the shortcuts. Random graphs, as used above,
are small-world networks because there are many shortcuts available in the net-
work. Another structural feature that can induce the small-world property is
the existence of “superhubs”. A superhub is a vertex with a very high degree
(the degree of a vertex is the number of edges connected to a vertex). In a
social contact network, a superhub is a person who knows more people than
most other persons. For instance, teachers are often superhubs because they
interact with hundreds of students. If superhubs exist, the network is usually a
small-world network, because each vertex is close to a superhub, and any two
vertices can be connected with a short path through the superhub.

Empirical studies suggest that many social networks have a degree distribu-
tion that follows a power law in its tail. This is in contrast to random networks,
whose degree distribution is binomial. Let pg be the fraction of vertices with
degree d, which is equivalent to the probability of picking a vertex of degree d
if one chooses a vertex randomly. If the distribution of probabilities py follows
a power law, pg ~ d~%, we call the network a scale-free network. The difference

16



cumul. distribution
1.00

0.50

0.20

0.10

0.05

0.02 degree

Figure 7: Panel a shows a preferential attachment graph with mg = m = 2,
50 vertices (25 cooperators, 25 defectors), and 97 edges. Panel b shows the
cumulative degree distribution function for this graph on a log-log scale. The
line-shaped, downward-sloping curve indicates an approximate power-law degree
distribution.

between scale-free networks and random networks is that there are typically
more superhubs in a scale-free network than in a random network. Scale-free
networks are also small-world networks because of the superhubs.

Why are so many networks scale-free? It is likely that the answer lies in
the growth process of networks. If there is a widely shared growth process that
produces scale-free networks, this would explain their frequent occurance. One
such growth mechanism is preferential attachment [Barabasi & Albert1999|. It
proceeds as follows: Start with a small complete graph with mg vertices. For
each time step, add a vertex and connect it to m existing vertices. For pref-
erential attachment, assume that the probability II that a new vertex will be
connected to an old vertex i depends on the degree of the old vertex, so that
II(d;) = d;/ >_; d;. This growth process leads to a scale-free network for large
n [Barabasi & Albert1999, p. 511]. Figure 7 shows one preferential attachment
graph and its cumulative degree distribution function. One can see a few su-
perhubs and many peripheral vertices. The line-shaped cumulative distribution
function indicates that the degree distribution follows approximately a power-
law.

Since many social networks are approximately scale-free, it makes sense to
test my models on scale-free network topologies for a more realistic setting. I
start this exploration by using preferential attachment graphs as initial network
topology, but leave the rest of the model unchanged. The graphs are created by
starting with 2 vertices, connected by one edge. Then vertices are added, where
each connects to 2 existing vertices according to the preferential attachment rule
described. The types of vertices are determined randomly such that there are
25 cooperators and 25 defectors. I ran 100 simulations, connected by 97 edges
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(1 edge from the starting constellation, 96 edges from the 48 added vertices),
all agents playing zealous, with 100 iterations each. Each simulation started
with a different preferential attachment graph. All networks quickly reached
a complete separation of cooperators and defectors, and cooperators did well
(100% stable state, cooperator payoff 3.67, defector payoff 0.47), similar to
the results with random initial topologies. This is not surprising: Since deleted
edges are replaced by random edges, the network transforms into a near-random
network after a few rounds, and therefore the simulation results should be very
similar to those with random networks as initial topology.

A more interesting question is how the model behaves when the replacement
of edges follows a preferential attachment mechanism. As before, deleted edges
are replaced by new edges, but this time the random choice of two non-identical
vertices is weighted according to the degrees of the existing vertices. A vertex
with degree d gets a weight of d + 1. I introduce the fixed component 1 to
give agents with degree 0 a positive probability to be reconnected again. The
probability of a new edge between vertices a and b with degrees d, and dj is

P({a,b}) = dqe +1 . dy+1 n dy +1 . de +1
’ Zj (dj + 1) Zj,j;ﬁa (dj + 1) Zj (dj + 1) Zj,j;éb (dj + 1).

Call this method preferential edge replacement. It models the phenomenon that
agents who already know many people are more likely to meet. This is a more
realistic connection mechanism than random connections.

The simulation results confirm the robustness of the model. Again, I start
with preferential attachment graphs, but now use the preferential edge replace-
ment mechanism. In 100 simulations with 25 cooperators, 25 defectors, 97 edges,
and 100 iterations, the network reached a stable state in all simulations, with
high payoffs for cooperators (3.77, compared to 0.37 for defectors). The model
is robust regarding the change of edge replacement mechanism. Interestingly,
the model with preferential edge replacement also scales better regarding more
highly connected networks, compared to non-preferential edge replacement.'?
In 100 simulations with 25 cooperators, 25 defectors, 190 edges (mg = m = 4),
and 100 iterations, a stable state was reached in 79% of the simulations. The
average payoffs were 4.78 for cooperators and 2.06 for defectors. This com-
pares to 49% stable states and payoffs 2.71 (cooperators) and 3.57 (defectors)
for a random graph model without preferential edge replacement and otherwise
similar parameters. For 279 edges (mo = m = 6), the difference is even more
pronounced, as table 3 shows. The preferential edge replacement speeds up
the separation of cooperators and defectors, compared to random edge replace-
ment. This shows that cooperators can do well after a few dozen rounds, even
in networks with relatively high connectivity. All simulations with preferential
attachment graphs are summarised in table 3.

151 would like to thank one of my anonymous referees for pointing out to me that scale-free
networks might scale better in this regard.
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Table 3: A summary of simulation results with preferential attachment net-
works. All simulations are based on the strategy zealous for both cooperators
and defectors. (PA: preferential attachment).

coop def initial edge edges rounds simul- % payoff  payoff
(x) (y) network replace (k) ations  stable coop def
state

25 25 PA random 97 100 100 100 3.67 0.47
25 25 PA PA 97 100 100 100 3.77 0.37
25 25 PA PA 190 100 100 79 4.78 2.06
25 25 random random 190 100 100 49 2.71 3.57
25 25 PA PA 279 200 100 90 7.83 2.42
25 25 random random 279 200 100 35 3.30 5.31
100 100 PA PA 397 100 20 100 3.83 0.39

6 Conclusion

The agents in this model operate in a setting that is usually rather hostile to
cooperation. While repeated 2-person prisoner’s dilemmas can lead to coop-
eration under suitable conditions, this is not likely in anonymous public good
games for two reasons: Firstly, in n-person settings it is not possible to punish
specific agents with reciprocal defection. Secondly, if the setting is anonymous,
it is not even possible to identify defectors, rendering punishment impossible.
The model I propose enables cooperators to do well because it introduces social
structure. The key to successful cooperation is a clustering of cooperators and
an exclusion of defectors.

The model proposed is simple. It admits only two basic fixed strategies for
the playing stage. Future work could consider more advanced strategies that
react to previous outcomes. Also, since the playing stage strategies are fixed,
the model does not allow for the coevolution of strategies and network structure.
This assumption makes sense if strategies are based on dispositions that cannot
easily be changed. Nevertheless, it would be interesting to relax this restriction.
Moreover, the current model has a fixed number of edges. Several extensions are
conceivable where the number of edges changes over time. This would require
the introduction of a more sophisticated decision process for the creation and
deletion of edges.

The problems of collective action and public good provision have concerned
political philosophers and economists for a long time. A lot of energy has been
invested into explaining why, empirically, much more cooperation occurs than
standard rational choice theory predicts. A focus on repeated games surely
points in the right direction, but it only goes half the way. To explain the
possibility of cooperation in n-person games with anonymous contributions, one
option is to add social structure. This move is particularly attractive because it
makes social structure endogenous. Therefore, the model captures an important
aspect of social interaction in reality: Social structure and the success of social
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interactions are in a dynamic relation with each other. Mutually beneficial
interaction reinforces social relations, exploitation weakens them.

This phenomenon is well-known from real settings. For instance, when peo-
ple venture into joint projects (founding a company, sharing a flat, writing a
paper together, etc.), each participant can either contribute or free-ride. It is
often difficult to detect free-riding, and even if it can be detected, it is difficult to
punish the defector efficiently. Rather, people choose not to continue interaction
in groups where the outcome is disappointing. Learning from experience, agents
change the social structure of the environment by sticking with groups where
free-riding is rare, and staying away from groups where free-riding is common.
Individuals willing to cooperate try to cluster in groups with other cooperators,
and try to exclude those who defect. What is remarkable about the simulation
results is the success of this strategy, even if the information available to the
agents is very limited. It is not necessary to track down specific defectors, it
suffices to observe the collective outcome and change ties to other agents in
response.

I have mentioned mundane examples of cooperation such as flatsharing, co-
authoring papers, or running a company as a group of shareholders. However,
perhaps the most fundamental problem of cooperation is about life and death:
The problem of providing security to live peacefully with each other. In a state
of anarchy, where a central provision of policing and security is not possible,
security becomes a public good problem. Hobbes reminds us that everyone can
kill everyone in a (Hobbesian) state of nature:

“NATURE hath made men so equal in the faculties of body and
mind as that, though there be found one man sometimes manifestly
stronger in body or of quicker mind than another, yet when all is
reckoned together the difference between man and man is not so
considerable as that one man can thereupon claim to himself any
benefit to which another may not pretend as well as he. For as
to the strength of body, the weakest has strength enough to kill the
strongest, either by secret machination or by confederacy with others
that are in the same danger with himself.” [Hobbes1996[1651], ch.
13]

When government fails, murderers are no longer kept in check by the threat of
punishment. Everyone has to fight for himself, and the public good of peace
can no longer be provided. In these situations, fleeing to safer areas is often the
only option. The large-scale move of refugees in civil wars or failed states can
be understood as the attempt to find a safe haven of mutual cooperation in the
most basic sense of cooperation: not killing each other. The model discussed in
this paper is certainly much too simple to be applied to such complex problems,
but with some caveats one could draw the conclusion that overcoming a state
of anarchy requires a formation of new local “clusters” of cooperation based on
processes of inclusion and exclusion. The model could suggest that states of
prolonged anarchy are likely to be followed by a phase of localisation, where
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villages or clans form cores of cooperation. Clearly, much more methodological,
theoretical, and empirical work is needed to apply computational models to
such complex problems. Nevertheless, the example suggests the potential areas
of application.

Modelling public good problems with anonymous contributions on dynamic
networks shows that cooperation can be maintained, and cooperative agents
can do well, if they choose with whom they interact. Cooperators can find each
other and build groups of cooperation. Endogenous, dynamic social structure
is one important approach to understand the emergence of cooperation.

Pseudo Code for 2-Person Model

The model was coded in Mathematica. I include pseudo code for the all
zealous strategy for one iteration to describe the central routines of the program
used.

// INITIALISATION

Create network topology.

Set budget of all agents to 0.

Set status of agents to cooperator or defector.

//MAIN ROUTINE

//GAME

For each edge in network:
Play prisoner’s dilemma with agents connected by edge
according to their status and change budgets.

End For.

//DELETE EDGES
Set deletedEdges = 0.
For each wvertex in network in random order:
If vertex currently has one or more neighbors
AND one or more of neighbors is defector then:
Set cutoffAgent = one of the defectors in neighborhood chosen randomly.
Change network by deleting one edge from vertex to cutoffAgent.
Set deletedEdges = deletedEdges + 1.
End if.
End for.

//REPLACE EDGES
For each edge from 1 to deletedEdges:

Add random edge (no self-loops) to metwork.
End for.

Pseudo-Code for Public Good Model
This is pseudo-code for one iteration, assuming that both types play strategy
zealous.

// INITIALISATION

Create network topology.

Set budget of all agents to O.

Set status of agents to cooperator or defector.

//MAIN ROUTINE
//GAME
For each wvertex in network:
Set associatedGroup(vertex) = all agents connected to vertex incl. vertex.
//agents multiply connected to vertexr are counted multiply.
Play public goods game in associatedGroup and change budgets.
End For.

//RECORD DEFECTION RATES
For each vertexr in network:
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neighbors(vertexr) = all agents connected to vertex excl. vertex.
For each mb in neighbors(vertex):
Set otherPlayers = associatedGroup(nb)/{vertex}.
Set defRates(vertex,nb) = |all defectors in otherPlayers|/|other Players|.
End For.
End For.

//DELETE EDGES
Set deletedEdges = 0.
For each vertexr in network in random order:
If vertex currently has one or more neighbors
AND |defectors in meighbors(vertex)| > 0 then:
Set maxdefector = agent with highest rate in defRates(vertez)
of those currently connected to vertexr. //random choice if tied
If defRates(maxdefector) > 0 then:
Delete one edge from vertex to maxdefector in network.
Set deletedEdges = deletedEdges + 1.
End if.
End if.
End for.

//REPLACE EDGES
For each edge from 1 to deletedEdges:
Add random edge (no self-loops) to metwork.

End for.
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