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Abstract. We pursue a model-oriented rather than axiomatic approach to the
foundations of Quantum Mechanics, with the idea that new models can often sug-
gest new axioms. This approach has often been fruitful in Logic and Theoretical
Computer Science. Rather than seeking to construct a simplified toy model, we aim
for a ‘big toy model’, in which both quantum and classical systems can be faithfully
represented — as well as, possibly, more exotic kinds of systems. To this end, we
show how Chu spaces can be used to represent physical systems of various kinds. In
particular, we show how quantum systems can be represented as Chu spaces over
the unit interval in such a way that the Chu morphisms correspond exactly to the
physically meaningful symmetries of the systems — the unitaries and antiunitaries.
In this way we obtain a full and faithful functor from the groupoid of Hilbert spaces
and their symmetries to Chu spaces. We also consider whether it is possible to use a
finite value set rather than the unit interval; we show that three values suffice, while
the two standard possibilistic reductions to two values both fail to preserve fullness.

1. Introduction

1.0.0.1. Models vs. Azioms The main method pursued in the founda-
tions of quantum mechanics has been aziomatic; one seeks conceptually
primitive and clearly motivated axioms, shows that quantum systems
satisfy these axioms, and then, often, aims for a representation theorem
showing that the axioms essentially determine the “standard model” of
Quantum Mechanics. Or one may admit non-standard interpretations,
and seek to locate Quantum Mechanics in a larger “space” of theories.

There is an alternative and complementary approach, which has
been less explored in the foundations of Quantum Mechanics, although
it has proved very fruitful in mathematics, logic and theoretical com-
puter science. Namely, one looks for conceptually natural constructions
of models. Often a new model construction can suggest new axioms, ar-
ticulated in terms of new forms of structure. There are many examples
of this phenomenon, sheaves and topos theory being one case in point
(MacLane and Moerdijk, 1992), and domain-theoretic models of the
A-calculus another (Scott, 1970).

A successful recent example of gaining insight by model construc-
tion is the well-known paper by Rob Spekkens on a toy model for
Quantum Mechanics (Spekkens, 2007), which has led to novel ideas on
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the connections between phase groups and non-locality (Coecke et al.,
2009).

1.0.0.2. Big Toy Models We shall also, in a sense, be concerned with
“toy models” in the present paper; with building models which exhibit
“quantum-like” features without necessarily exactly corresponding to
the standard formalism of Quantum Mechanics. Indeed, the more dif-
ferent the model construction can be to the usual formalism, while still
reproducing many quantum-like features, the more interesting it will be
from this perspective. However, there will be an important difference
between the kind of model we shall study, and the usual idea of a “toy
model”. Usually, a toy model will be a small, simplified gadget, which
gives a picture of Quantum Mechanics in some “collapsed” form, with
much detail thrown away. By contrast, we are aiming for a big toy
model, in which both quantum and classical systems can be faithfully
represented — as well as, possibly, many more exotic kinds of systems.

1.0.0.3. Results More precisely, we shall see how the simple, discrete
notions of Chu spaces suffice to determine the appropriate notions of
state equivalence, and to pick out the physically significant symmetries
on Hilbert space in a very striking fashion. This leads to a full and
faithful representation of the category of quantum systems, with the
groupoid structure of their physical symmetries, in the category of
Chu spaces valued in the unit interval. The arguments here make use
of Wigner’s theorem and the dualities of projective geometry, in the
modern form developed by Faure and Frolicher (Faure and Frolicher,
2000; Stubbe and van Steirteghem, 2007). The surprising point is that
unitarity /anitunitarity is essentially forced by the mere requirement of
being a Chu morphism. This even extends to surjectivity, which here
is derived rather than assumed.

We also consider the question of whether we can obtain a natural
representation of this form in Chu spaces over a finite value set. We
show that this can be done with just three values. By contrast, the
two standard possibilistic reductions to two values both fail to preserve
fullness.

The use of Chu spaces for representing physical systems as initiated
in this paper seems quite promising; a number of further topics imme-
diately suggest themselves, including mixed states, universal models,
the representation of convex theories, linear types, and local logics for
quantum systems.

The plan of the remainder of the paper is as follows. In Section 2,
we shall provide a brief overview of Chu spaces. Section 3 contains the
main technical results, leading to a full and faithful representation of
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quantum systems and their symmetries as Chu spaces and morphisms
of Chu spaces. Section 4 presents the results on finite value sets. Finally,
Section 5 contains a discussion of conceptual and methodological issues.

2. Chu Spaces

We shall assume that the reader is familiar with a few basic notions
of category theory.! The bare definitions of category and functor will
suffice for the most part.

Chu spaces are a special case of a construction which originally
appeared in (Chu, 1979), written by Po-Hsiang Chu as an appendix to
Michael Barr’s monograph on s-autonomous categories (Barr, 1979).

Interest in *-autonomous categories increased with the advent of
Linear Logic (Girard, 1987), since x-autonomous categories provide
models for Classical Multiplicative Linear Logic (and with additional
assumptions, for the whole of Classical Linear Logic) (Seely, 1989). The
Chu construction applied to the category Set of sets and functions was
independently introduced (under the name of ‘games’) by Yves Lafont
and Thomas Streicher (Lafont and Streicher, 1991), and subsequently
(under the name of Chu spaces) formed the subject of a series of pa-
pers by Vaughan Pratt and his collaborators, e.g. (Devarajan et al.,
1999; Pratt, 1995; Pratt, 1999). Recent papers on Chu spaces include
(Droste and Zhang, 2007; Palmigiano and Venema, 2007).

Chu spaces have several interesting aspects:

— They have a rich type structure, and in particular form models of
Linear Logic.

— They have a rich representation theory; many concrete categories
of interest can be fully embedded into Chu spaces.

— There is a natural notion of ‘local logic’ on Chu spaces (Bar-
wise and Seligman, 1997), and an interesting characterization of
information transfer across Chu morphisms (van Benthem, 2000).

Applications of Chu spaces have been proposed in a number of ar-
eas, including concurrency (Pratt, 2003), hardware verification (Ivanov,
2008), game theory (Vannucci, 2004) and fuzzy systems (Papadopou-
los and Syropoulos, 2000; Nguyen et al., 2001). Mathematical studies
concerning the general Chu construction include (Barr, 1998; Giuli and
Tholen, 2007).

We briefly review the basic definitions.
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Fix a set K. A Chu space over K is a structure (X, A, e), where X is
a set of ‘points’ or ‘objects’, A is a set of ‘attributes’, ande: X x A — K
is an evaluation function.

A morphism of Chu spaces

fi(X,Ae) = (XA €)
is a pair of functions
f=(fi: X =X, f*: A = A
such that, for all z € X and o’ € A”:
e(z, f*(a)) = €'(f(@), a’).

Chu morphisms compose componentwise: if f : (X1, A1, e1) = (Xa, Ag, e2)
and g : (X2, Ag, €2) — (X3, A3, €3), then

(gof)s=gsofs, (9o f) =fog"
Chu spaces over K and their morphisms form a category Chug.
Given a Chu space C' = (X, A, e), we say that C is:

— extensional if for all a1, as € A:
Ve e X.e(x,a1) =e(x,a2)] = a1 =aq
— separated if for all x1, x5 € X:
Va € A.e(x1,a) = e(x2,a)] = 1 =29
— biextensional if it is extensional and separated.
We define a relation on X by:
x1 ~xy < Va€ Ae(xy,a) = e(xa,a).

This is evidently an equivalence relation: C' is separated exactly when
this relation is the identity. There is a Chu morphism

(q,ida) : (X, A,e) = (X/~, A, €)

where €'([z],a) = e(z,a) and ¢ : X — X/~ is the quotient map.
The space (X/~,A,¢€') is separated; if (X, A, e) is extensional, it is
biextensional.

Proposition 2.1 If f : (X, A,e) — (X', A',€') is a Chu morphism,
then f, preserves ~. That is, for all 1,29 € X,

1 ~ Ty = f*(:El) ~ f*(l‘Q)
Proof For any a’ € A”:

¢'(fula1),a') = e(x1, f7(a")) = e(z2, f*(a)) = €/ (fu(22),d).
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We shall write eChug, sChug and bChuy for the full subcate-
gories of Chug determined by the extensional, separated and biexten-
sional Chu spaces.

We shall mainly work with extensional and biextensional Chu spaces.
Obviously bChug is a full sub-category of eChug.

Proposition 2.2 The inclusion bChuyxy —— eChug has a left ad-
joint.

Proof The unit of the adjunction is the Chu morphism
(Q7 'dA) : (Xv A, e) — (X/N7 A7 6/)

we have already described, while Proposition 2.1 guarantees that given
a Chu morphism

f:(X,Ae) — (Y,B,r)

to a biextensional Chu space, we can factor it through the quotient
space (X/~, A, ¢).

The functor ) : eChug — bChug provided by this adjunction
sends morphisms

(f*af*) : (X7A7 61) — (X/7A,762)

to
(f*/N7f*) : (X/N’A’ 6/1) - (X//NvA/’eé)
where f./~([z]) = [f«(z)]. O

We refer to the functor (Q as the biextensional collapse.
We can define an equivalence relation on the Chu morphisms in each
hom-set in eChug by:

fr~g = Vo fdz) ~ gi(T).
Then Qf =Qg < f~g.

2.0.0.4. Representations Recall that a functor F': € — D is faithful
if for each pair of objects A, B of €, the induced map Fap : C(A, B) —
D(F A, FB) is injective; it is full if each Fap is surjective; and it is an
embedding if F' is faithful and injective on objects. We refer to a full and
faithful functor as a representation, and to a full embedding as a strict
representation. Note that if F' is a representation, it can only identify
isomorphic objects. If F' is a representation, then C is equivalent to a
full sub-category of D, while if F' is a strict representation, then C is
isomorphic to a full sub-category of D.
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As a first example of the representational capacity of Chu spaces,
suppose that {0,1} C K. For any set X, define the following Chu space
on K: (X,PX,ex), where:

1, es
ex(z,S) = v

0 otherwise

Given a function f: X — Y, we send it to the Chu space morphism
(f /™) (X, PXex) = (Y, PYey).

It is easy to see that this defines a full embedding of Set into Chug.

3. Representation of Quantum Systems

Our point of view in modelling physical systems as Chu spaces will
be as follows. We take a system to be specified by its set of states S,
and the set of questions () which can be ‘asked’ of the system. We
shall consider only ‘yes/no’ questions; however, the result of asking a
question in a given state will in general be probabilistic. This will be
represented by an evaluation function

e:SxQ —10,1]

where e(s,q) is the probability that the question ¢ will receive the
answer ‘yes’ when the system is in state s. This is essentially the point
of view taken by Mackey in his classic pioneering work on the foun-
dations of Quantum Mechanics (Mackey, 1963). Note that, following
Mackey, we prefer the term ‘question’ to ‘property’, since in the case
of Quantum Mechanics we cannot think in terms of static properties
which are determinately possessed by a given state; questions imply a
dynamic act of asking.

It is standard in the foundational literature on quantum mechanics
to focus on yes/no questions. However, the usual approaches to quan-
tum logic avoid the direct introduction of probabilities. We shall return
to the issue of whether it is necessary to take probabilities as our value
set in Section 4.

We can take the category Set itself as a crude version of discrete
deterministic classical systems, with arbitrary irreversible transforma-
tions allowed. We now consider the quantum case, in the pure state
formulation. Mixed states will be considered in a sequel to the present

paper.
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Let H be a complex Hilbert space.? We define the following Chu
space over [0, 1]:

(7{07L(7{)76H)

where:

— Ho = H\ {0}, the set of non-zero vectors. We shall regard all such
vectors, not necessarily normalized, as representations of states of
the system. Note that the zero vector is not a legitimate state; its
role in Quantum Mechanics proper (as opposed to linear-algebraic
calculations) is largely as an ‘error element’ when operations can-
not legitimately be performed.

— L(H) is the lattice of closed subspaces of H. This is the standard
notion of yes/no questions in Quantum Mechanics. The observable
corresponding to the subspace S is the self-adjoint operator whose
spectral decomposition is S @ S+ = H. To each subspace S there
corresponds the projector Ps.

— The evaluation ey is the fundamental formula or ‘statistical al-
gorithm’ (Redhead, 1987) giving the basic predictive content of
Quantum Mechanics:

(Y| Psy)  (Psy| Psyp) || Psy|?
HWO S =TuT T Wl W

Note that ey (1, S) = ey(ﬁ, S), so this is equivalent to working
with normalized vectors only.

We have thus directly transcribed the basic ingredients of the Dirac/von
Neumann-style formulation of Quantum Mechanics (Dirac, 1947; von
Neumann, 1955) into the definition of the Chu space corresponding to
a given Hilbert space.

3.1. CHARACTERIZING CHU MORPHISMS ON QUANTUM CHU
SPACES

Recall firstly the following explicit expression for the projection of a
vector 1) on a subspace S. Let {e;} be an orthonormal basis for S.
Then

Pgyp = ZW | e)e;.

It follows that ¢ L S if and only if Pgy = 0.
We begin with a basic fact which we record explicitly.
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Lemma 3.1 For ¢ € H, and S € L(H):

eSS «— ey,S)=1

Proof Firstly, if ¢ € S, then Ps(v)) = 1, so ey(¢,S) = 1.
Next, we recall that Pg1 = I — Pg. Hence

6%(¢75L): o7 (¢ — Psy [ ¢ — Psy)
= T(<¢|w> (¥ | Ps)) — (Pst | ¥) + (Psip | Psy)))
= o (@ | ¥) = (Psy | Psy)).

/\‘

Hence

en (v, 8) + en(v, ) = i ((Pst | Pst) + (¢ | ) — (Psy | Psi))
— 1 —
- <¢|¢> <¢ | ¢> =1

So if ¢ ¢ S, it suffices to show that ey(1,S+) > 0. In this case,
Y = 0+ x, where § € S and xy € S+ \ {0}; so Pg.(f) = 0 and
Pgi(x) = x. Then

en(¥,57) = g (Pse(0) + Psi(x) | Psi(0) + Py (x))
= wimxlx) >0

O

Proposition 3.2 The Chu space (Ho,L(H),ey) is extensional but not
separated. The equivalence classes of the relation ~ on states are exactly
the rays of H. That is:

o~ <= JINeC.¢p= Y.

Proof Extensionality follows directly from Lemma 3.1, since if two
subspaces have the same evaluations on all states, they have the same
elements.

We have

AP (Pst | Psv)
A2 (|9

S0 ¢ = Ay = ¢ ~ . For the converse, let S be the one-dimensional
subspace (ray) spanned by 1, and suppose that ¢ ¢ S. By Lemma 3.1,

ey (v, S) =1, while ey (¢, S) # 1. Hence ¢ £ ). O

en(M, 5) = en(¥,S)
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Thus we have recovered the standard notion of pure states as the
rays of the Hilbert space from the general notion of state equivalence
in Chu spaces.

We shall now use some notions and results from projective geom-
etry. We shall use the very nice Handbook article (Stubbe and van
Steirteghem, 2007) as a convenient reference.

Given a vector ¢ € H,, we write ¢ = {\y | A € C} for the ray which
it generates. The rays are the atoms in the lattice L(H).

We write P(H) for the set of rays of H. By virtue of Proposi-
tion 3.2, we can write the biextensional collapse of (Ho,L(H), ey ) given
by Proposition 2.2 as

(P(H),L(H), en)

where é’]‘l(&) S) = 67.[(¢, S)
We restate Lemma 3.1 for the biextensional case.

Lemma 3.3 For ¢ € H, and S € L(H):

en(,S)=1 < ¢ C8.
Proof Since S is a subspace, 1 C S iff ¢ € S, and the result follows
from Lemma 3.1. O

We now turn to the issue of characterizing the Chu morphisms be-
tween these biextensional Chu representations of Hilbert spaces. This
will lead to our first representation theorem.

To fix notation, suppose we have Hilbert spaces H and K, and a
Chu morphism

(fer £7) = (P(H), L(H), &) — (P(K), L(K), ex).
Proposition 3.4 Fory € H, and S € L(K):

P C fHS) = f.(v)CS.
Proof By Lemma 3.3:

b Cf(S) & enW, f1(5) =1 & ex(fu(¥),5) =1 & fu(y) CS.

(]
Note that P(#H) C L(H).

Proposition 3.5 The following are equivalent:
— f« is injective

— The following diagram commutes:
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That is, for all ¢ € Ho:

b= [ (f ().
Proof  Clearly, (1) implies that f. is injective. For the converse,
Proposition 3.4 implies that ¢ C f*(f.«(¢)). Now suppose that ¢ C

f*(f«())). Applying Proposition 3.4 again, this implies that f.(¢) C

f«(¥). Since fi(¢) and f.(1) are atoms, this implies that f.(¢) = f«(¢),

which since f is injective implies that ¢ = ). Thus the only atom below
[*(f«(¥)) is 1. Since L(H) is atomistic (Stubbe and van Steirteghem,
2007), this implies that f*(f.(:)) C . 0

We state another important basic property of the evaluation.

Lemma 3.6 For any ¢,y € Ho:

en(0,9) =0 & (Py(¢) | P3(4)) =0 & Py(¢) =0 < ¢ L.

O

Proposition 3.7 If f, is injective, it preserves and reflects orthogo-
nality. That is, for all ¢, € Ho:

pLy = fu(@) L fu(¥).
Proof

¢ Ly <= ey(p,h) =0 Lemma 3.6
(

= fu(@) L fi(a)) Lemma 3.6
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11
We define a map f~ : L(H) — L(K):
F7(8) = V{f@) | ¢ € S}
where S, = S\ {0}.

Lemma 3.8 The map [ is left adjoint to f*.
Proof We must show that, for all S € L(H) and T € L(K):

f7(8)CT <« SC D).
Using Proposition 3.4, we have:
7S CT < Y8, fu(th)) CT
&= Y € So.p C fX(T)

<~ S C 7).

We can now extend the diagram (1):

P(H) I P(K)

By construction, f extends fy: this says that f~ preserves atoms.
Since f7 is a left adjoint, it preserves sups. Hence [~ and f, are
paired under the duality of projective lattices and projective geome-
tries, for which see Theorem 16 of (Stubbe and van Steirteghem, 2007).
In particular, we have the following.

Proposition 3.9 f, is a total map of projective geometries (Stubbe
and van Steirteghem, 2007 ).

It follows that we can apply Wigner’s Theorem, in the form given
as Theorem 4.1 in (Faure, 2002). In order to state this, we need some
additional notions.

Let Vi be a vector space over the field F and V5 a vector space over
the field G. A semilinear map from Vi to Vs is a pair (f,«) where
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a:F — G is a field homomorphism, and f : Vi — V5 is an additive
map such that, for all A € F and v € V;:

fw) = a(A)f(v).

Note that semilinear maps compose: if (f,a) : Vi — V2 and (g, ) :
Vo — V3, then (go f,80a): Vi — V; is a semilinear map.

This notion is usually defined in greater generality, for division
rings, but we are only concerned with Hilbert spaces over the complex
numbers.

Given a semilinear map g : V7, — Vs, we define Pg : PV}, — P15 by

P(9)(¥) = 9(¢).

We can now state Wigner’s Theorem in the form we shall use it.

Theorem 3.10 Let f : P(H) — P(K) be a total map of projective
geometries, where dimH > 2. If f preserves orthogonality, meaning
that o B -

oLy = f(¢)Lf(¥)
then there is a semilinear map g : H — K such that P(g) = f, and

(9(8) | 9(4)) = a(( | ¥)),

where o is the homomorphism associated with g. Moreover, this homo-
morphism is either the identity or complexr conjugation, so g is either
linear or antilinear. The map g is unique up to a phase, i.e. a scalar
of modulus 1.

The final statement follows from the Second Fundamental Theorem of
Projective Geometry, Theorem 3.1 in (Faure, 2002) or Theorem 46 in
(Stubbe and van Steirteghem, 2007).

Note that in our case, taking f, = f, Pg is just the action of the
biextensional collapse functor on Chu morphisms.

Note that a total map of projective geometries must necessarily
come from an injective map g on the underlying vector spaces, since
P(g) maps rays to rays, and hence g must have trivial kernel. For
this reason, partial maps of projective geometries are considered in
the Faure-Frolicher approach (Faure and Frolicher, 2000; Stubbe and
van Steirteghem, 2007). However, we are simply following the ‘logic’ of
Chu space morphisms here.

Proposition 3.11 Let g : H — K be a semilinear morphism such that
P(g) = f« where f is a Chu space morphism, and dim(H) > 0. Suppose
that the endomorphism o : C — C associated with g is surjective, and
hence an automorphism. Then g is surjective.
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Proof We write Im g for the set-theoretic direct image of g, which
is a linear subspace of IC, since ¢ is an automorphism. In particular, g
carries rays to rays, since Ag(¢) = g(c71(\)g).

We claim that for any vector ©» € K, which is not in the image
of g, ¥ LImg. Given such a 1, for any ¢ € H, it is not the case
that f.(¢) C 1; for otherwise, for some X, g(¢) = M\, and hence
g(e71(A\71)¢) = 9. Then by Proposition 3.4, f*(») = {0}. It follows
that for all ¢ € Ho,

exc(f+(0),%) = én(¢,{0}) =0,

and hence by Lemma 3.6 that ¢ 1 Img.

Now suppose for a contradiction that such a i exists. Consider the
vector ¢ + x where x is a non-zero vector in Im g, which must exist
since g is injective and H has positive dimension. This vector is not in
Im g, nor is it orthogonal to Im g, since e.g. (¢p +x | x) = (x | x) # 0.
This yields the required contradiction. O

We can now put the pieces together to obtain the main result of this
section. We say that a map U : H — K is semiunitary if it is either
unitary or antiunitary; that is, if it is a bijective map satisfying

Ulp+y) =Us+Uy,  UMP) =c(NU¢, (U |Up)=0((¢]))

where o is the identity if U is unitary, and complex conjugation if U is
antiunitary. Note that semiunitaries preserve norm, so if U and V are
semiunitaries and U = AV, then |\| = 1.

Theorem 3.12 Let H, IC be Hilbert spaces of dimension greater than
2. Consider a Chu morphism

(fo, ) = (P(H), L(H), ex) = (P(K), LK), ex).-

where f, is injective. Then there is a semiunitary U : H — K such that
fr =PU). U is unique up to a phase.

Proof By the proviso on injectivity, we can apply Proposition 3.7.
By this and Proposition 3.9, together with the proviso on dimension, we
can apply Wigner’s Theorem 3.10. Since the semilinear map in Wigner’s

Theorem has an associated automorphism, we can apply Proposition
3.11. U

3.2. THE REPRESENTATION THEOREM

We now turn to the big picture. We define a category SymmH as
follows:
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— The objects are Hilbert spaces of dimension > 2.

— Morphisms U : H — K are semiunitary (i.e. unitary or antiuni-
tary) maps.

— Semiunitaries compose as explained more generally for semilinear
maps in the previous subsection. Since complex conjugation is an
involution, semiunitaries compose according to the rule of signs:
two antiunitaries or two unitaries compose to form a unitary, while
a unitary and an antiunitary compose to form an antiunitary.

This category is a groupoid, i.e. every arrow is an isomorphism.

The semiunitaries are the physically significant symmetries of Hilbert
space from the point of view of Quantum Mechanics. The usual dy-
namics according to the Schrodinger equation is given by a continuous
one-parameter group {U(t)} of these symmetries; the requirement of
continuity forces the U(t) to be unitaries.®> However, some important
physical symmetries are represented by antiunitaries, e.g. time reversal
and charge conjugation.

By the results of the previous subsection, Chu morphisms essentially
force us to consider the symmetries on Hilbert space. As pointed out
there, linear maps which can be represented as Chu morphisms in the
biextensional category must be injective; and if ¢ : H — K is an
injective linear or antilinear map, then P(g) is injective. Our results
then show that if g can be represented as a Chu morphism, it must
in fact be semiunitary. This delineation of the physically significant
symmetries by the logic of Chu morphisms should be seen as a strong
point in favour of this representation by Chu spaces.

We define a functor R : SymmH — eChuy ;:

R:U:H—-K — (Us,U): (Ho, L(H), e2) = (Ko, L(K), ex)

where U, is the restriction of U to Ho.

As noted in Proposition 2.2, the inclusion bChujg ;j —— eChuyg
has a left adjoint, which we name (). By Proposition 3.2, this can be
defined on the image of R as follows:

Q: (Ho,L(H),ex) — (PH,L(H),&x)
and for (Us,U™Y) : (Ho, L(H), e) — (Ko, L(K), exc),
Q: (U, U — (PU,UTY).

We write emChu, bmChu for the subcategories of eChuyy ;) and
bChuy, ;) obtained by restricting to Chu morphisms f for which fi is
injective. The functors R and @) factor through these subcategories.
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Proposition 3.13 R : SymmH — emChu and @ : emChu —
bmChu are functors. R is faithful but not full; Q is full but not faithful.

Proof We verify that if U : H — K is semiunitary, RU is a well-
defined morphism in emChu. Firstly, we verify the Chu morphism
condition. Since U is semiunitary, for ) € H, and S € L(K):

Ps(Uy) = U(Py-1(s)%)-

Indeed, if U is unitary, let {e;} be an orthonormal basis for S. Then
{U~te;} is an orthonormal basis for U~1S. Now

U(Py-1sy) = U (¢ | U e)U ™ e;)
= 2 | U tei)es
= U0 | e
= PsUv
where the third equation holds because U~! = Uf. A similar cal-
culation holds if U is antiunitary. In this case, the inner product is

commuted when we apply conjugate linearity in the second equation,
and commuted back in the third, since for an antiunitary we have

(U e | ) = (U e; |UTTUY) = (U | &),

leading to the same result.
Moreover, U preserves norms, so |[Uy|| = ||¢|. Now

(PsUY | PsUY) = (U(Py-1(5)¢) | U(Py-1(5y¥))
= (Py—(sy¢ | Pu-1s)¥)-

Hence ey (v, U1(9)) = ex(Uv, S), so (Us,U™1) is a Chu morphism.
Finally, U is bijective, so U, is injective. (]

We can analyze the non-fullness of R more precisely as follows.
Proposition 3.14 Let (U,,U™') : (Ho,L(H),ex) — (Ko, L(K),ex)

be a Chu morphism in the image of R. Given an arbitrary function
f:H — C\ {0}, define fU : Ho — Ko by:

fU@) = f()UY).

Then (fU,U™Y) ~ (Us,U™Y). Moreover, the ~-equivalence class of U
1s exactly the set of functions of this form.
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Thus before biextensional collapse, Chu morphisms can introduce ar-
bitrary scalar factors pointwise. Once we move to the biextensional
category, we know by Theorem 3.12 that our representation will be
full, and essentially faithful — up to a global phase. This points to the
need for a projective version of the symmetry groupoid.

The mathematical object underlying phases is the circle group U(1):

UL ={reC|N=1}={" | ecR}

Since A has modulus 1 if and only if AX = 1, U(1) is the unitary group
on the one-dimensional Hilbert space.

The circle group acts on the symmetry groupoid SymmH by scalar
multiplication. For Hilbert spaces H, IC we can define

U(1) x SymmH(H,K) - SymmH(H,K) :: (\,U) — AU.
Moreover, this is a category action, meaning that
AN)oV=Uo(AV)=AUoV).

It follows that we can form a quotient category (in fact again a groupoid)
with the same objects as SymmH, and in which the morphisms will
be the orbits of this group action:

U~V e INeUN).U=AV.

We call the resulting category PSymmMH, the projective quantum sym-
metry groupoid. It is a natural generalization of the standard notion
of the projective unitary group on Hilbert space. There is a quotient
functor P : SymmH — PSymmH, and by virtue of Theorem 3.12,
we can factor @) o R through this quotient to obtain a functor PR :
PSymmH — bmChu.

The situation can be summarized by the following diagram:

SymmH >L emChu

p Q

\ V

PSymmH W> bmChu

Theorem 3.15 The functor PR : PSymmH — bmChu is a repre-
sentation.
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Proof This follows from Theorem 3.12. To see that PR is essentially
injective on objects, we can use the representation theorems of Piron
and Soler (Stubbe and van Steirteghem, 2007), which tell us that we
can reconstruct H as a Hilbert space from L(?). This reconstruction
will give us a Hilbert space H' such that L(H) = L(H'), and P(H) =
P(H'). We can apply Wigner’s theorem to this isomorphism to obtain
a semiunitary U : H = H' from which we can recover the Hilbert
space structure on H. This means that we have recovered H uniquely
to within the coset of idy in PSymmH. O

4. Reducing The Value Set

We now return to the issue of whether it is necessary to use the full
unit interval as the value set for our Chu spaces.

We begin with some generalities. Given a function v : K — L, we
define a functor F,, : Chug — Chup:

F,: (X,Ae) — (X,Avoe)
and F, f = f for Chu morphisms f.

Proposition 4.1 F, is a faithful functor. If v is injective, it is full.

Proof This is easily verified. The Chu morphism condition is pre-
served by composing with any function on values, while F}, is evidently
faithful. For fullness, note that the only values in L relevant to whether
a pair of functions

(f,9): (X, A voe) = (X' A ,voe)

satisfies the Chu morphism condition are those in the ranges of v o e
and voe, which if v is injective are in bijection with those in the ranges
of e and €. O

We can now state the question we wish to pose more precisely:

Is there a mapping v : [0,1] — K from the unit interval to some
finite set K such that the restriction of the functor F}, to the image
of PR is full, and thus the composition

F,oPR : PSymmH — bmChug

is a representation?

There is no general reason to suppose that this is possible; in fact, we
shall show that it is, although not quite in the obvious fashion.
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We shall write n = {0,...,n — 1} for the finite ordinals. The most
popular choice of value set for Chu spaces, by far, has been 2, and
indeed many interesting categories can be strictly (and even concretely)
represented in Chug (Pratt, 1995). This makes the following question
natural:

Question 4.2 Is there a function v : [0,1] — 2 such that F,, o PR is
full and faithful?

What we can show is that the most plausible candidates for such
functions, yielding the two canonical forms of possibilistic semantics as
a coarse-graining of probabilistic semantics, both in fact fail.

Note that any function v : [0,1] — {0,1} must lose information
either on 0 or on 1 — or both. In this sense, the two ‘sharpest’ mappings*
will be:

vo:0—0,(0,1] = 1 v1:]0,1) — 0,1~ 1.

These are the two canonical reductions of probabilistic to possibilistic
information: the first maps ‘definitely not’ to ‘no’, and anything else to
‘yes’, which is to be read as ‘possibly yes’; the second maps ‘definitely
yes’ to ‘yes’, and anything else to ‘no’, to be read as ‘possibly no’. Note
that, under the first of these, Lemma 3.1 will no longer hold, while
under the second, Lemma 3.6 will fail.

Proposition 4.3 For neither v = vy nor v = vy is F, o PR full.

Proof Let H be a Hilbert space with 2 < dimH < oo, and let
(g,0) be any semilinear automorphism of H, where o can be any au-
tomorphism of the complex field.? For each of the above two mappings
of the unit interval to 2, we shall construct a Chus endomorphism
f: Fy,oPR(H) — F, oPR(H) with f, = P(g). This will show the
non-fullness of F,,.

Case 1 Here we consider the mapping v; which sends [0, 1) to 0 and
fixes 1. In this case:

en(,8) =1 < es

and hence the Chu morphism condition on (fs, f*), where f. = P(g),
is:
Ve fiS) = gv)es.

Taking f* = ¢! obviously fulfills this condition. Note that, since g is
a semilinear automorphism, and # is finite-dimensional, g=1 : L(H) —
L(H) is well-defined.

Case 2 Now consider the mapping vy keeping 0 fixed and sending
(0,1] to 1. In this case:

en(,S)=0 <= LS
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and hence the Chu morphism condition on (f, f*), where f. = P(g),
is:
YLS) = g) LS.

We define f*(S) = g_l(Sl L. Note that f* : L(H) — L(H) is well
defined, and also that g~(S L) is a subspace of H; hence g1 (S+)++
g~ 1(St). Now:

en(, f*S) =0 YL frS

eg (S =g71(sH)
g(v) € S*

g() LS

en(fe(¥),8) =0

and hence (f, f*) is a Chu morphism as required. O

rrruy

However, this negative result immediately suggests a remedy: to keep
the interpretations of both 0 and 1 sharp. We can do this with three
values! Namely, we define v : [0,1] — 3 by

0—0, (0,1)—2, 11

Thus we lose information only on the probabilities strictly between 0
and 1, which are lumped together as ‘maybe’ — represented here, by
arbitrary convention, by 2.

Why is this adequate? Given a vector ¢ and a subspace S, we can
write ¢ uniquely as @ + x, where § € S and y € S*t. For non-zero
1, there are only three possibilities: # = 0 and x # 0, which yields
en (4, S) = 0 by Lemma 3.6; 6 # 0 and y = 0 which yields ey (¢, S) =1
by Lemma 3.1; and € # 0 and x # 0, which yields ey(¢,S) € (0,1)
by these Lemmas again, and hence v o ey (1), S) = 2. These are the
only case discriminations which are used in our results leading to the
Representation Theorem 3.15. Hence we have:

Theorem 4.4 The functor F, o PR : PSymmH — bmChug is a
representation.

We note that Chug has found some uses in concurrency and veri-
fication (Pratt, 2003; Ivanov, 2008), under a temporal interpretation:
the three values are read as ‘before’, ‘during’ and ‘after’, whereas in
our setting the three values represent ‘definitely yes’, ‘definitely no’
and ‘maybe’.

Theorem 4.4 may suggest some interesting uses for 3-valued ‘local
logics’ in the sense of Jon Barwise (Barwise and Seligman, 1997).
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5. Discussion

We should understand Chu spaces as providing a very general (and, we
might reasonably say, rather simple) ‘logic of systems or structures’.
Indeed, they have been proposed by Barwise and Seligman as the ve-
hicle for a general logic of ‘distributed systems’ and information flow
(Barwise and Seligman, 1997). This logic of Chu spaces was in no way
biassed in its conception towards the description of quantum mechanics
or any other kind of physical system. Just for this reason, it is interest-
ing to see how much of quantum-mechanical structure and concepts can
be absorbed and essentially determined by this more general systems
logic.

It might be argued that our representation of quantum systems as
Chu spaces has already specified the essential ingredients of the quan-
tum structure ‘by hand’. The conceptual significance of our technical
results is precisely to show that there is a non-trivial ‘capturing’ of
quantum structure by the general notions of Chu spaces:

— Firstly, Proposition 3.2 shows that the general Chu space notion of
biextensionality subsumes the standard identification of quantum
states with rays in Hilbert space. This is scarcely surprising, but
it is a first sign of the proper alignment of concepts.

— The main technical result of the present paper is the Represen-
tation Theorem 3.15. It is worth spelling out the content of this
in more elementary terms. Once we have represented our quan-
tum systems as biextensional Chu spaces (P(H),L(H),ey), all we
have, from the viewpoint ‘inside’ the category Chuyg y, is a pair of
sets and an evaluation function, with all information about their
provenance lost. A Chu morphism

(s £7) = (P(H), L(H), en) = (P(K), L(H), ex)

is given by any pair of set-theoretic functions (fy, f*) satisfying
the Chu morphism condition:

en(¥, 1°(9)) = ex(f+(¥), 9).

The Representation Theorem says that the logic of this Chu mor-
phism condition is strong enough to guarantee that any such pair of
functions must arise from a unitary or antiunitary map U : H — K
on the underlying Hilbert spaces, with the sole proviso of injectivity
of f,.%5 Moreover, U is uniquely determined by f, up to a phase
factor. Of course, we are using one of the ‘big guns’ of the subject,
Wigner’s Theorem, to establish this result. It is worth noting,
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though, that there is some distance to travel between the Chu
morphism condition and the hypotheses of Wigner’s Theorem; and
there are surprises along the way, most notably Proposition 3.11,
which derives surjectivity from the Chu morphism condition —
whereas it must invariably be added as a hypothesis to the many
versions of Wigner’s Theorem.”

The results on reduction to finite value sets are also intriguing.
Not only is the bare Chu condition on morphisms sufficient to
whittle them down to the semiunitaries, this is even the case when
the discriminations on which the condition is based are reduced to
three values. The general case for two values remains open, but we
have shown that the two standard possibilistic reductions both fail
to preserve fullness. A negative answer for two-valued semantics
in general would suggest an unexpected role for three-valued logic
in the foundations of Quantum Mechanics.

5.0.0.5. Where Next? Of course, the developments described in the
present paper are only a first step. We shall briefly discuss some of
the natural continuations of these ideas, several of which are already
in progress.

There are some interesting and surprising connections between
Chu spaces and another important paradigm for categorical sys-
tems modelling, namely coalgebra (Rutten, 2000). These connec-
tions, which seem not to have been explored previously, arise both
at the general level, and also with specific reference to the rep-
resentation of physical systems. They are described in a sequel
to the present paper (Abramsky, 2010), which lifts the results of
the present paper to a coalgebraic setting. The bivariant nature
of Chu spaces is reflected in a novel fibred form of coalgebra, in
which contravariance is represented as indexing.

A natural next step as regards physical modelling is to consider
mized states. There is a general construction on Chu spaces which
allows mixed states to be studied in a uniform fashion, applicable
to both classical and quantum systems. This will be described in
a forthcoming sequel to the present paper.

There are intriguing connections between our approach, and the
work of the ‘Geneva School’ of Jauch and Piron (Jauch, 1968;
Piron, 1976), particularly (Faure et al., 1995). We plan to explore
these in a joint paper with Bob Coecke, Isar Stubbe and Frank
Valckenborgh.
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— It is also of interest to consider universal Chu spaces; single sys-
tems in which all Chu spaces of a given class can be embedded, and
which therefore provide a single model for a large class of systems.
We may additionally ask for such systems to be homogeneous,
which means that they exhibit a maximum degree of symmetry;
such universal, homogeneous spaces are unique up to isomorphism.
Universal homogeneous Chu spaces have been constructed for bifi-
nite Chu spaces in recent work by Manfred Droste and Guo-Qiang
Zhang (Droste and Zhang, 2007). That context is too limited for
our purposes here. It remains to be seen if universal homogeneous
models can be constructed for larger subcategories of Chu spaces,
encompassing those involved in our representation results.

— The relation of the rich logical and type-theoretic aspects of Chu
spaces to quantum and other physical systems should also be
investigated.

Notes

! The charming introductory text (Pierce, 1991) should be more than sufficient.

2 A useful reference for the mathematical background is (Jordan, 1969).

3 Indeed, the Schrodinger equation can actually be recovered from this group via
Stone’s Theorem (Simon, 1976).

4 We consider only functions which fix 0 and 1, to exclude irrelevant permutations
and the trivial case of constant maps.

5 We can extend the argument to infinite-dimensional Hilbert space by requiring
g to be continuous.

6 The injectivity assumption on f. is annoying. It remains unclear if it necessary.

" One of the journal referees remarked that surjectivity is not taken as a hypoth-
esis in the version of Wigner’s Theorem due to Wright (Wright, 1977). Wright’s
Corollary 1 does obtain surjectivity from the assumption that the function f :
P(H) — P(K) on rays can be extended to a projection-valued state, i.e. a map
L(H) — L(K) which preserves orthogonal joins and the top element. These are strong
assumptions, from which surjectivity follows immediately, as Wright observes. By
contrast, the injectivity of f and the Chu morphism condition, with respect to an
a priori otherwise unspecified map L(K) — L(*H), are much weaker assumptions,
which do not ‘build in’ surjectivity in any obvious fashion.
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