
On Choosing Between Deterministic and Indeterministic

Models: Underdetermination and Indirect Evidence

Forthcoming in Synthese

Charlotte Werndl, Lecturer, c.s.werndl@lse.ac.uk

Department of Philosophy, Logic and Scientific Method
London School of Economics

Abstract

There are results which show that measure-theoretic deterministic
models and stochastic models are observationally equivalent. Thus there
is a choice between a deterministic and an indeterministic model and the
question arises: Which model is preferable relative to evidence? If the ev-
idence equally supports both models, there is underdetermination. This
paper first distinguishes between different kinds of choice and clarifies
the possible resulting types of underdetermination. Then a new answer
is presented: the focus is on the choice between a Newtonian determinis-
tic model supported by indirect evidence from other Newtonian models
which invoke similar additional assumptions about the physical systems
and a stochastic model that is not supported by indirect evidence. It is
argued that the deterministic model is preferable. The argument against
underdetermination is then generalised to a broader class of cases. Fi-
nally, the paper criticises the extant philosophical answers in relation to
the preferable model. Winnie’s (1998) argument for the deterministic
model is shown to deliver the correct conclusion relative to observations
which are possible in principle and where there are no limits, in princi-
ple, on observational accuracy (the type of choice Winnie was concerned
with). However, in practice the argument fails. A further point made is
that Hoefer’s (2008) argument for the deterministic model is untenable.
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Figure 1: Observed position of a particle at time 0, 1, . . . 9, 10 (observed
positions are values in the unit square.

1 Introduction

Consider the evolution of the position of a particle. An observer of this physical
process obtains a sequence of observations such as the one shown in Figure 1.
This sequence represents the observed position of the particle at time 0,1, . . .
9, 10 (observed positions are values in the unit square). Scientists aim to find a
model which reproduces these observations and which gives correct predictions.
A question that arises is whether the physical system is best described by a
deterministic or an indeterministic model and opinion might be that the obser-
vations only allow for one or the other. However, recent results on observational
equivalence show that in several cases, including the example of the position of
the particle, both a deterministic and an indeterministic model can account for
the observations. If the evidence equally supports both models, there is under-
determination. Thus, the central question of this paper is: Is a deterministic
or an indeterministic model preferable relative to evidence?

To provide a basis for answering this question, Section 2 introduces the
relevant deterministic and indeterministic models and Section 3 presents the
results on observational equivalence between deterministic and indeterministic
models. Section 4 then distinguishes between different kinds of choice and
clarifies the possible resulting types of underdetermination. Section 5 presents
a novel answer to the central question: the focus is on the choice between
a Newtonian deterministic model supported by indirect evidence from other
Newtonian models which invoke confirmed similar additional assumptions about
the physical systems and a stochastic model that is not supported by indirect
evidence. The examples of choice between deterministic and stochastic models
discussed in the extant philosophical literature fall under this class.

The argument presented is that the deterministic model is preferable. The
argument against underdetermination is then generalised to a much broader
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class of cases. Section 6 subsequently discusses the extant philosophical answers
in relation to the preferable model. Winnie’s (1998) argument for the determin-
istic model is shown to deliver the correct conclusion relative to observations
which are possible in principle and where there are no limits, in principle, on
observational accuracy (the type of choice Winnie was concerned with). How-
ever, for the other kinds of choice, in particular the ones arising in practice, the
argument fails. A further point made is that Hoefer’s (2008) argument for the
deterministic model is untenable. Finally, Section 7 summarises the results.

2 Deterministic and Indeterministic Models

First of all, it should be mentioned that the term ‘model’ as understood in
this paper refers to a set of solutions (and not, as in the semantic view, to a
full solution).1 The deterministic and indeterministic models of concern in this
paper are measure-theoretic deterministic models and stochastic models. There
are two kinds of models: discrete-time models, wherein time increases in discrete
steps, and continuous-time models involving a continuous time-parameter. As
relevant results are easier to understand for discrete time, this paper focuses
on discrete-time models. All results, though, can be applied to continuous-time
models.

2.1 Deterministic Models

This paper is concerned with measure-theoretic deterministic models, i.e., deter-
ministic models denoted by (M,Tt, p). Here M is a set, called the phase space,
where each m ∈M represents a possible state of the deterministic system (i.e.,
m is a variable representing the state of the system). Tt : M → M , where t
ranges over Z, are bijective maps with Tt+s = Tt(Ts) for all t, s; the family of
maps Tt describes the dynamics of the system, namely it describes that each
state m ∈M evolves to Tt(m) after t time steps. And p is a probability measure
which assigns a probability to regions of M .2 Clearly, models thus defined are
deterministic according to the standard philosophical definition, namely that a
model is deterministic iff any two solutions that agree at one time agree at all
times (Butterfield 2005).

The solution through m represents a possible path of the deterministic sys-
tem over time. Formally, it is the bi-infinite sequence (..., T−1(m), T0(m), T1(m), ...);
Tt(m) is called the t-th iterate of m. Deterministic models where the probability
is invariant under time-evolution, i.e., where p(Tt(A)) = p(A) for all regions A

1So models are not individuated as under the semantic view of theories.
2There are various interpretations of this probability measure. For example, according to

the time-average interpretation, the probability of A is the long-run average of the proportion
of time a solution spends in A (cf. Lavis 2011).
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Figure 2: (a) the baker’s map T ((x, y)); (b) the observation function Φ16

of M and all t are called measure-preserving deterministic models. Determin-
istic models, in particular measure-preserving deterministic models, are among
the most important deterministic models in science. For instance, all deter-
ministic models in Newtonian theory that model energy-conserving systems are
measure-preserving (Petersen 1989, 5–6).

In the observation of a deterministic system, a value of the variable repre-
senting the state of the system is observed that is dependent on, but typically
different from, the actual value of the variable. This is because observation can-
not be done with infinite precision (and so observation corresponds to coarse-
graining the phase space). Mathematically, an observation can be modelled by
an observation function, i.e., a function Φ : M → MO, where Φ(m) represents
the observed value and MO is the set of all possible observed values. Finite-
valued observation functions are observation functions with a finite number of
values. A finite-valued observation function Φ is nontrivial iff more than one
value can be seen, i.e., there is a value o with 0 < p({m ∈M | Φ(m) = o}) < 1.
An observation function Ξ is at least as fine as an observation function Φ iff for
any value o of Ξ there is a value q of Φ such that for all m ∈ M if Ξ(m) = o,
then Φ(m) = q. An observation function Ξ is finer than an observation function
Φ iff it is at least as fine as Φ and there are values o1, o2 of Ξ and a value q of Φ
such that for all m ∈M if Ξ(m) = o1 or Ξ(m) = o2, then Φ(m) = q (i.e., there
are two values of Ξ to which Φ assigns the same value). Observation functions
can represent actual or hypothetical observations.

The following two examples illustrate deterministic models.

Example 1: The baker’s model.
Consider the physical system of a particle which starts its motion from a square
and moves in the direction perpendicular to the square (assuming there is no
friction). The particle bounces on several mirrors, causing it to return to the
square where the process starts again. Mirrors are of three kinds: pairs of
mirrors of parabolic shape that lead to divergence or convergence of paths; pairs
of straight mirrors that shift the paths to the left, right, up or down; mirrors
at corners that direct the particle back to the square (see Pitowsky 1995, 166).
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Figure 3: A billiard system with a convex obstacle

This physical system can be described by a Newtonian deterministic model
(M,Tt, p) called the baker’s model. Here M is the unit square [0, 1]× [0, 1], and
p is the uniform probability measure on the unit square. A particle in initial
state (x, y) bounces on the mirrors and returns to the square at T ((x, y)) where

T ((x, y)) := (2x,
y

2
) if 0 ≤ x <

1

2
; (2x− 1,

y + 1

2
) if

1

2
≤ x ≤ 1. (1)

Finally, Tt((x, y)) := T t((x, y)) (T applied t times). Figure 2(a) shows that
T first stretches the unit square to twice its length and shrinks it to half its
width; then, the rectangle obtained is cut in half and the right half is stacked
on top of the left. (Parabolic mirrors lead to the multiplication of the value
of a coordinate by a constant, and straight mirrors lead to the addition of a
constant to the value of a coordinate, see Pitowsky 1995, 166).

Consider the observation function Φ16 of the baker’s map with sixteen values
ei,j = (2i+1

8
, 2j+1

8
), 0 ≤ i, j ≤ 3, assigned as follows: Φ16((x, y)) = (2k+1

8
, 2l+1

8
)

for k
4
≤ x < k+1

4
and l

4
≤ y < l+1

4
, k, l ∈ N, 0 ≤ k, l ≤ 3. Figure 2(b) shows this

observation function; i.e., for all states m in the bottom left box the value e1,1 is
observed, etc. Suppose that the baker’s model is initially in state (0.824, 0.4125).
Then the first 11 iterates coarse-grained by the observation function Φ16 are:
(Φ16(T0((0.824, 0.4125))),Φ16(T1((0.824, 0.4125))), ...,Φ16(T10((0.824, 0.4125)))) =
((7

8
, 3
8
), (5

8
, 5
8
), (3

8
, 7
8
), (5

8
, 3
8
), (1

8
, 5
8
), (3

8
, 3
8
), (5

8
, 1
8
), (3

8
, 5
8
), (7

8
, 3
8
), (7

8
, 5
8
), (7

8
, 7
8
)). This

is the sequence shown in Figure 1. Consequently, an observation of the baker’s
system can yield the time series shown in Figure 1.

Example 2. Newtonian models of billiards with convex obstacles.
Consider the physical system of a billiard ball which moves on a rectangular
table (assuming there is no friction). The billiard table differs from a normal one
because there are a finite number of convex obstacles on the table. Suppose the
evolution of this physical system is modelled at discrete-time intervals tr0, where
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r0 ∈ R+ is an arbitrary constant, t ∈ Z. Figure 3 shows such a billiard system
(grey dots indicate the position of the ball at discrete-time intervals). Such a
billiard system can be described by a deterministic Newtonian model (M,Tt, p)
(cf. Orstein and Galavotti 1974). Here M represents the set of all possible
states. It is the set of all possible vectors consisting of the value representing
the position and the value representing the direction of the velocity of the ball
(all that matters for the construction of phase space is the direction of the
velocity since speed is constant). Tt(m) gives the position and direction after
tr0 time units of the ball that starts out in initial position and initial direction
m. p is the normalised Lebesgue measure and assigns the probability p(A) to
the event that the billiard system takes one of the states represented by A for
any arbitrary region A of phase space. The solution through m is the sequence
(..., T−1(m), T0(m), T1(m), ...), representing the path of the billiard system which
is initially in m (over the time points tr0, t ∈ Z).

2.2 Stochastic Models

The indeterministic models of concern in this paper are stochastic models,
which represent physical systems that evolve according to probabilistic laws.
A stochastic model is denoted by {Zt} and consists of a family of functions
Zt : Ω → E with t ∈ Z, where the functions Zt also specify the probability
distributions of the model. E represents the set of all possible outcomes, called
the outcome space. Each ω ∈ Ω encodes a possible path of the stochastic sys-
tem in all its detail and is usually unknown in practice (hence Ω is the set
encoding all possible paths), and Zt(ω) represents the outcome of the system at
time t. The probability distributions characterise the probabilistic behaviour:
e.g., the probability distribution P (Zt ∈ A) gives one the probability that the
outcome of the system is in A at time t for any region A of E and t ∈ Z.
Joint probability distributions tell one the probabilities of outcomes at different
times, such as P (Zs ∈ A and Zt ∈ B); and conditional probability distributions
P (Zs ∈ A given that Zt ∈ B) tell one the probability that the outcome is in A
at time s given that it is in B at time t (for any t, s and any arbitrary regions
A,B of E).

A realisation represents a possible path of the stochastic system over time.
It is a bi-infinite sequence (..., Z−1(ω), Z0(ω), Z1(ω), ...) for an arbitrary ω ∈ Ω.
For stochastic models there is usually indeterminism – given the initial outcome,
there are several possible outcomes that might follow, and these possibilities
are measured by probabilities. Most indeterministic models used are stochastic
models, which are ubiquitous in science.

Observations of stochastic systems are also modelled by observation func-
tions, i.e., functions Γ : E → EO, where Γ(e) represents the observed value and
EO is the set of all possible observed values. Finite-valued observation functions
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are observation functions with a finite number of values. That an observation
function ∆ is at least as fine as an observation function Γ and that an obser-
vation function ∆ is finer than an observation function Γ is exactly defined as
for observation functions of deterministic models (cf. Subsection 2.1).

The following models are among the most widely-known stochastic models:

Example 3: Markov models.
In Markov models the next outcome depends only on the previous outcome. The
formal definition of a Markov model {Zt} proceeds as follows: (i) the outcome
space consists of N states E = {e1, . . . , eN}, N ∈ N; (ii) and the next outcome
only depends on the previous one, i.e., P (Zt = eh given Zt−1, Zt−2 . . . , Zj) =
P (Zt = eh given Zt−1) for all t ∈ Z, all j ≤ t− 1 and all outcomes eh.

Let us consider a specific Markov model {Wt} defined as follows. There are
sixteen possible states ei,j := (2i+1

8
, 2j+1

8
), and P (ei,j) = 1/16, 0 ≤ i, j ≤ 3. Each

present state can be followed by two other states, and the probability is 1/2 that
the present state is followed by any of these two states. More specifically, {Wt}
is defined such that state e1,1 is followed by state e1,1 or state e1,2, e1,2 by e1,3 or
e1,4, e1,3 by e3,1 or e3,2, e1,4 by e3,3 or e3,4, e2,1 by e1,1 or e1,2, e2,2 by e1,3 or e1,4, e2,3
by e3,1 or e3,2, e2,4 by e3,3 or e3,4, e3,1 by e2,1 or e2,2, e3,2 by e2,3 or e2,4, e3,3 by e4,1
or e4,2, e3,4 by e4,3 or e4,4, e4,1 by e2,1 or e2,2, e4,2 by e2,3 or e2,4, e4,3 by e4,1 or e4,2,
e4,4 by e4,3 or e4,4. For one of the realisations of {Wt} the entries from time 0 to
10 are: (e2,4, e3,3, e4,2, e2,3, e3,1, e2,2, e1,3, e3,2, e2,4, e3,4, e4,4). This is the sequence
shown in Figure 1. Therefore, the time series of Figure 1 can arise from a Markov
model. Recall that this time series can also arise from the baker’s model. These
statements hint at the results concerning observational equivalence between
deterministic and stochastic models. What follows in Section 3 is a discussion
of these results.

3 Observational Equivalence of Deterministic

and Indeterministic Models

What is meant by observational equivalence is that the deterministic model,
relative to an observation function Φ, and the stochastic model, relative to an
observation function Γ, give the same predictions. Therefore, the notion of
observational equivalence is a relation between a deterministic model, an ob-
servation function of a deterministic model, a stochastic model and an obser-
vation function of a stochastic model. The phrase ‘give the same predictions’
needs further elaboration. Relative to an observation function, the predictions
obtained from a stochastic model are the probability distributions over its re-
alisations coarse-grained by the observation function. A deterministic model
comes equipped with a probability measure p. Hence, relative to an observa-
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tion function, the predictions derived are the probability distributions over the
solutions coarse-grained by the observation function. Therefore, a stochastic
model {Zt} to which an observation function Γ is applied and a deterministic
model (M,Tt, p) to which an observation function Φ is applied give the same
predictions iff: (i) possible values of Γ and of Φ are the same, and (ii) probability
distributions over the realisations of the stochastic model coarse-grained by Γ
are the same as probability distributions over the solutions of the deterministic
model coarse-grained by Φ.

Suppose that a deterministic model (M,Tt, p) and an observation function
Φ : M → MO are given. Can a stochastic model observationally equivalent to
(M,Tt, p) be found? The answer is affirmative: {Zt} := {Φ(Tt)} is a stochastic
model. It is constructed by applying the observation function to the determin-
istic model. Assuming that the observation function of the stochastic model
is the identity function (i.e., all outcomes of the stochastic system can be ob-
served), the possible observed values of {Φ(Tt)} are the possible observed val-
ues of (M,Tt, p); and the realisations of {Φ(Tt)} and the solutions of (M,Tt, p)
coarse-grained by Φ have the same probability distributions. Therefore, the
stochastic model {Φ(Tt)}, relative to the identity function, and (M,Tt, p), rela-
tive to Φ, are observationally equivalent. This result can easily be generalised
to the case where the observation function of the stochastic model is not the
identity function. Clearly, for any arbitrary functions Ψ and Γ with Γ(Ψ) = Φ,
we have {Φ(Tt)} = {Γ(Ψ(Tt))}. Therefore, (M,Tt, p) relative to the observation
function Φ is observationally equivalent to the stochastic model {Ψ(Tt)} rela-
tive to the observation function Γ. Hence, at this observation level, the physical
system can be modelled by the deterministic model (M,Tt, p) or the stochastic
model {Ψ(Tt)}.

This result can be illustrated with the example of the physical system of
a particle bouncing on mirrors. It is known that this physical model can be
described by a deterministic Newtonian model, namely the baker’s model (Ex-
ample 1). Now consider the observation function Φ16 (see Figure 4). The set
of possible values of Φ16, {ei,j | 0 ≤ i, j ≤ 3}, is also the set of all possible
outcomes of the stochastic model {Zt} = {Φ16(Tt)}; and the probability distri-
butions of this stochastic model are determined by applying Φ16 to the baker’s
model. As shown in Figure 4, examples for these identical probability distri-
butions are: p(Φ(Tt) = e1,1) = P (Zt = e1,1) or p(Φ(Tt+1) = e4,4 given that
Φ(Tt) = e3,4) = P (Zt+1 = e4,4 given that Zt = e3,4) for all t ∈ Z. It fol-
lows that the deterministic baker’s model, relative to Φ16, and the stochastic
model {Φ16(Tt)}, relative to the identity function (i.e., all the outcomes of the
stochastic system can be observed), are observationally equivalent.3 Thus, at

3The physical systems of a particle bouncing on mirrors and of billiards with convex ob-
stacles involve strong idealising assumptions – in particular, that there is no friction. Conse-
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Figure 4: Observing the baker’s system leads to the stochastic model {Φ(Tt)}

this observation level, the physical system of the particle bouncing on mirrors
can be described by the deterministic baker’s model or by the stochastic model
{Φ16(Tt)}.

It is the case that {Φ16(Tt)} is the Markov model {Wt} (for the defini-
tion of {Wt} see Example 3). Thus the baker’s model, relative to Φ16, and the
Markov model {Wt}, relative to the identity function, are observationally equiv-
alent. Now, there can be an explanation of why the time series of Figure 1 can
arise from both the baker’s model, relative to Φ16, and the Markov model {Wt}.
Figure 1 shows the first 11 iterates of the baker’s map starting in (0.824, 0.4125)
coarse-grained by Φ16, viz. X = ((7

8
, 3
8
), (5

8
, 5
8
), (3

8
, 7
8
), (5

8
, 3
8
), (1

8
, 5
8
), (3

8
, 3
8
), (5

8
, 1
8
), (3

8
, 5
8
),

(7
8
, 3
8
), (7

8
, 5
8
), (7

8
, 7
8
)). But X = (e2,4, e3,3, e4,2, e2,3, e3,1, e2,2, e1,3, e3,2, e2,4, e3,4, e4,4),

which are the first eleven outcomes of a realisation of the Markov model {Wt}.
Clearly, the Markov model {Wt} = {Φ16(Tt)} is nontrivial (where a stochas-

tic model is nontrivial if it is not trivial; for a trivial stochastic model the
transition probabilities, i.e., the probabilities that any arbitrary value follows
another arbitrary value, are trivial (0 or 1)). This indicates observational equiv-
alence to a nontrivial stochastic model. This raises the question whether there
are general results that, given a deterministic model, there are observationally
equivalent nontrivial stochastic models {Ψ(Tt)}. This is an important question
because if {Ψ(Tt)} is trivial, then it could be argued that {Ψ(Tt)} is really a
deterministic model (though formally it is a stochastic model), and that there
is no observational equivalence between deterministic and indeterministic mod-
els. Yet several results show that {Ψ(Tt)} is often nontrivial. What follows is a
result that is relevant in the rest of the paper (cf. Werndl 2009a, 2011).

Theorem 1 If for the measure-preserving deterministic model (M,Tt, p) there
does not exist an n ∈ N and a C ⊆M, 0 < p(C) < 1, such that Tn(C) = C, then

quently, scientists do not test the deterministic and stochastic models describing these systems
by deriving probabilistic predictions from them. However, the example of the particle bounc-
ing on mirrors is easy to understand and billiards with convex obstacles are the prime systems
discussed by the extant philosophical literature. Thus, instead of referring to other examples,
this paper simply assumes that scientists test in this way.
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for any arbitrary nontrivial finite-valued observation function Ψ the stochastic
model {Zt} = {Ψ(Tt)} is nontrivial in the following sense: For every k ∈ N and
t ∈ Z there are ei, ej ∈ E such that 0 < P (Zt+k = ei given that Zt = ej) < 1.

In practice, observations are finite-valued and therefore Theorem 1 says that
every observation in practice leads to a nontrivial stochastic model. Theorem 1
applies to the baker’s model (Example 1) and to Newtonian models of billiards
with convex obstacles (Example 2) (Ornstein and Galavotti, 1974). Thus, re-
gardless which finite-valued observation function is applied to the baker’s model
or a billiard model, nontrivial stochastic models are obtained. Theorem 1 also
applies to several other deterministic models used in science. For example, to
hard-ball models important in statistical mechanics, in particular, to two hard
balls moving in a box and the motion of N hard balls moving on a torus for
almost all values (m1, . . . ,mN , r), where mi is the mass of the i-th ball and r
is the radius of the balls, N ≥ 2 arbitrary (Simányi 1999, 2003); to many other
types of billiard models (Chernov and Markarian 2006); and also to dissipative
models such as the Hénon model and the Lorenz model which have been used to
model weather dynamics and waterwheels (Benedicks and Young 1993, Lorenz
1963, Luzzatto et al. 2005). Furthermore, because of the extreme mathematical
difficulties, for many models it is conjectured but not proven that Theorem 1
applies. For example, it is conjectured that Theorem 1 applies to any number
of hard balls (greater than 3) in a box and the motion of KAM-type models
restricted to regions of unstable behaviour (Berkovitz et al. 2006, 679–680).

The results presented to this point are about how one can find observa-
tionally equivalent stochastic models, when starting with deterministic models.
There are also results about the converse question of how, when starting with
stochastic models, one can find observationally equivalent deterministic models.
The underlying construction is the same. Namely, given a stochastic model {Zt}
and an observation function Γ, one finds a deterministic model (M,Tt, p) and
an observation function Φ such that {Γ(Zt)} = {Φ(Tt)}. Because the specific
results about this converse question are not of significant importance for what
follows, this section only briefly mention two results. First, given any stochastic
model and any observation function Γ, it is possible to construct a determinis-
tic model – called the deterministic representation – and a specific observation
function Φ0 such that the deterministic representation relative to Φ0 is obser-
vationally equivalent to the stochastic model relative to Γ. However, the phase
space of the deterministic representation is the set of all possible realisations
of the stochastic model, and thus the deterministic representation involves a
cheat and is not used in science (cf. Werndl 2009a, 2011). The other extant
results show that specific deterministic models are observationally equivalent to
certain kinds of stochastic models. For instance, several deterministic models
used in science are observationally equivalent to Markov models (Example 3).
As explained above, the baker’s model yields a Markov model relative to Φ16.
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Similarly, billiards with convex obstacles (Example 2) yield Markov models rel-
ative to specific observation functions (cf. Ornstein and Weiss 1991, Werndl
2009a, 2011).

4 Choice and Underdetermination between De-

terministic and Indeterministic Models

As discussed, deterministic and stochastic models are often observationally
equivalent. More specifically, a deterministic model (M,Tt, p) relative to Φ
and a stochastic model {Ψ(Tt)} relative to Γ are often observationally equiva-
lent. Observational equivalence in this sense holds relative to the observation
level determined by the observation functions Φ and Γ and relative to the pre-
dictions which are derivable from the deterministic and the stochastic model.
Therefore, if Ψ corresponds to an observation finer than currently possible (or
actual) observations, then the deterministic and the stochastic model will be
compatible with all currently possible (or actual) observations of the physical
system. For example, if Φ16 corresponds to an observation at least as fine as
the currently possible observations, then the baker’s model (Example 1) and
the Markov model {Φ16(Tt)} (see Example 3) are compatible with the currently
possible observations of the particle bouncing on mirrors (Figure 1 shows an
example).

If there is observational equivalence, there is a choice between models. The
question then arises: Is the deterministic model or the stochastic model prefer-
able relative to evidence? Underdetermination arises if data equally supports
the deterministic model and the stochastic model. Underdetermination is be-
tween models and not – as in usual discussions – between theories (cf. Stanford
2001). Theories provide a general scheme which can be used to obtain models
of many different physical systems; e.g., from Newtonian theory are obtained
models about billiard systems, planetary systems or systems of air currents (de-
pendent on the exact force term, etc.). A model is only about one system, e.g.,
about a ball moving on a table with convex obstacles.4 Back to our example,
there is a choice between the baker’s model and the Markov model {Φ16(Tt)}.
Which model, then, is preferable relative to evidence? If both are equally sup-
ported by evidence, there is underdetermination. For this and similar cases,
scientists face the question of which model to use to describe a physical system.
Scientists should, and want to, choose the model which is best supported by
evidence. Hence, it is decisive which model is preferable relative to evidence.
Also, in some situations, scientists have a clear preference and choose one of

4A physical system is the correspondence in reality to a model. Hence, a physical system
instantiates not only one process but many different processes (namely, all processes arising
from different initial conditions).
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the models, e.g., the Newtonian model of billiards rather than any of the cor-
responding stochastic models. How can their choice be justified? Ideally, their
choice should be based on evidence, and again the question arises which model
is preferable relative to evidence.

It is important to see that observational equivalence, and compatibility with
the currently possible (or actual) observations, may imply, but does not neces-
sarily imply, underdetermination. There are two reasons why there might be
no underdetermination: (i) observations at a lever finer than Ψ can constitute
evidence only for the deterministic or stochastic model; (ii) second, predictions
which are not derivable from the deterministic or stochastic model can consti-
tute evidence only for the deterministic or the stochastic model. That these
two reasons can make one of the models preferable is clearly explained in this
and the next section.

To properly discuss the central question, there needs to be a differentiation
between different kinds of choice and underdetermination. To avoid any po-
tential confusion, this paper distinguishes between models at different levels of
reality versus models at the same level of reality. First, for models at differ-
ent levels of reality the deterministic model describes the evolution of states
at the lower level, and the stochastic model describes the evolution of states
at the higher level. Furthermore, the state at the higher level is a function of
the state at the lower level; hence, the states at the higher and the states at
the lower level are related by an observation function Ψ. A paradigm example
is Boltzmannian statistical mechanics. Here the states at the lower level are
represented by the position and velocity coordinates of the particles of a gas,
and the states at the higher level are represented by values of variables such
as temperature, pressure and volume. The model at the lower level is deter-
ministic while the one at the higher level is stochastic (cf. Frigg 2008, Section
3.2). Second, the deterministic and the stochastic model can be about the same
level of reality ; e.g., they both describe the evolution of the position and the
velocity of a billiard ball. The previous philosophical discussion is about the
second kind of choice (Hoefer 2008, Suppes 1993, Suppes and de Barros 1996,
Winnie 1998). Hence, what follows will be about this second kind of choice.

Whether a deterministic or a stochastic model is preferable relative to ev-
idence depends on the class of observations considered.5 There are four main
cases: First, there is choice relative to currently possible observations, i.e., cur-
rently possible observations given the available technology. If the evidence

5The literature on underdetermination also highlights that whether there is underdeter-
mination can depend on the auxiliary hypotheses which are adopted when testing theories,
such as hypotheses about measurement apparatus (Ladyman 2002, Section 6.4.1, Laudan and
Leplin 1991). The assumption of this paper is that observations can be modelled by observa-
tion functions. Given this, all auxiliary hypotheses adopted when testing the predictions of
the deterministic and the stochastic model seem to have the same effect on the deterministic
and stochastic model. This is assumed in the following sections.
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equally supports a deterministic and a stochastic model, there is underdetermi-
nation relative to currently possible observations (cf. Laudan and Leplin 1991).
Second, there is choice relative to the actual observations. Here there can be
underdetermination relative to the actual observations (cf. Ladyman 2002, Sec-
tion 6.1.1). Third, there is choice relative to observations which are possible in
principle where there are limits, in principle, on observational accuracy. Fourth,
there is choice relative to observations which are possible in principle where there
are no limits, in principle, on observational accuracy. (Here, although observa-
tion can never be made with infinite precision, observations which are possible
in principle allow the researcher to come arbitrarily close to these infinitely
precise values.) For the third and fourth case there could be underdetermina-
tion relative to observations which are possible in principle. All four cases are
discussed. Note that of relevance in practice is the choice relative to currently
possible observations (or actual observations) (cf. Laudan and Leplin 1991). In
what follows, the case where the deterministic model (M,Tt, p) and all of the
stochastic models {Ψ(Tt)} are disconfirmed by the relevant observations is put
aside (simply, none of the models is acceptable).

The first significant result is that there is no underdetermination for the
fourth case, i.e., relative to observations which are possible in principle and
where there are no limits, in principle, on observational accuracy. If it is found
that always finer observations of the state can be made, the deterministic model
is preferable because only the deterministic model always allows that finer ob-
servations can be made. However, suppose that the possible observations show
that there are no other states apart from the states corresponding to the values
of a specific observation function Ψ. Then, the stochastic model {Zt} = {Ψ(Tt)}
is preferable because only this model does not have more states and is in agree-
ment with the observations. Here there is no underdetermination for the reason
(i) mentioned above: Observations at a lever finer than Ψ constitute evidence
only for a deterministic or a stochastic model.

Yet, it is not easy to dismiss the other kinds of underdetermination. Most
importantly, consider the choice between a deterministic model (M,Tt, p) and
a stochastic model {Zt} = {Ψ(Tt)} relative to the currently possible observa-
tions (where Ψ is an arbitrary function). There are two cases: either Ψ is
at least as fine as the currently possible observations or not. The conclusions
are straightforward for the second case. If the possible observations show that
there are no other states apart from the states corresponding to the values of
Ψ, then {Ψ(Tt)} is preferable because only this stochastic model agrees with
the observations (underdetermination fails again for the reason (i), as previ-
ously mentioned). However, if the possible observations show that there are
more states than the values given by Ψ, then {Zt} = {Ψ(Tt)} cannot correctly
describe the relevant level of reality, but all that can be concluded is that ei-
ther a deterministic model or a finer stochastic model correctly describes this
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level of reality. The more interesting situation is when Ψ is at least as fine
as the currently possible observations, and in the rest of the paper this is the
assumption. Here it will not be possible to find out whether there are more
states than the values given by Ψ. The predictions of the deterministic model
and of the stochastic model {Zt} = {Ψ(Tt)} then agree at all currently possible
observation levels. For instance, if Ψ := Φ16 corresponds to an observation as
least as fine as the currently possible observations, then the baker’s model and
{Φ16(Tt)} agree at all currently possible observation levels. If these predictions
are confirmed and other evidence does not favour a model, there is underde-
termination relative to the currently possible observations. (Because Ψ can
vary, there can be underdetermination between a deterministic model (M,Tt, p)
and all the stochastic models {Ψ(Tt)}, where Ψ is an arbitrary fine-enough ob-
servation function.) Underdetermination can still be avoided for reason (ii),
mentioned above, namely if predictions which are not derivable from the deter-
ministic or stochastic model constitute evidence for only one of the models (the
next section discusses such a case).

Similarly for the choice relative to the actual observations and the choice
relative to observations which are possible in principle where there are limits,
in principle, on observational accuracy (where Ψ is an arbitrary function and
{Zt} = {Ψ(Tt)}): Either Ψ is at least as fine as the actual observations or the
observations which are possible in principle, or not. The second case is straight-
forward. If observations show that there are exactly the states corresponding to
Ψ, then {Zt} = {Ψ(Tt)} is preferable. If the observations indicate that there are
more states than values corresponding to Ψ, either a deterministic model or a
finer stochastic model is correct. Again, the more interesting situation is when
Ψ is at least as fine as the actual observations or the observations which are
possible in principle, and in the rest of the paper this is assumed. Here the pre-
dictions of the deterministic model and of the stochastic model {Zt} = {Ψ(Tt)}
agree for all actual observation levels or observation levels which are possible in
principle. If other evidence does not favour a model, there is underdetermina-
tion relative to the actual observations or the observations which are possible
in principle. (Because Ψ can vary, there can be underdetermination between
a deterministic model and all the stochastic models {Ψ(Tt)}, where Ψ is fine
enough.) Again, underdetermination may be avoided for reason (ii) mentioned
above.

The next section presents, for an important class of models, a new answer
to the central model-preference question. Section 6 then discusses the extant
philosophical literature. The paper is organised in this way because the novel
answer provides important background for the criticism of the philosophy liter-
ature. What should be noted, though, is that the new answer was developed as
a response to the extant answers which, in the view of this paper, are unsatis-
factory for the types of choice arising in practice.
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5 A New Argument Against Underdetermina-

tion Based on Indirect Evidence

As explained in the previous section, there is no underdetermination relative
to observations which are possible in principle where there are no limits, in
principle, on observational accuracy. The new argument applies to choice rel-
ative to currently possible observations, relative to actual observations or rel-
ative to observations which are possible in principle where there are limits, in
principle, on observational accuracy. (The argument for the currently possible
observations is outlined, but it carries over to the actual observations and the
observations which are possible in principle). The focus is on a case which, as
will be seen later, generalises the main example discussed by the extant philo-
sophical literature – the physical system of a billiard ball moving on a table
with convex obstacles. Namely, this paper concentrates on the case where the
predictions of a Newtonian deterministic model (M,Tt, p)6 and of a stochastic
model {Zt} = {Ψ(Tt)} which is not based on any theory are confirmed, thereby
there is a choice between (M,Tt, p) and {Zt} (here, Ψ is an arbitrary function
finer than the currently possible observation functions). I will identify condi-
tions showing that the Newtonian deterministic model is preferable. It might
seem intuitive that the deterministic model is preferable, but careful arguments
are needed to show whether or not this intuition is correct. As will be shown
in Section 6, arguments that the deterministic model is preferable can easily
go wrong. The argument will finally be generalised to a much broader class of
cases.

Note that (M,Tt, p) and {Zt} give the same predictions at the currently pos-
sible observation level. To therefore avoid the conclusion of underdetermination,
observations are needed that do not follow from these models and constitute
evidence only for the deterministic or the stochastic model. This paper argues
that such evidence can be found by appealing to other Newtonian models. Here
underdetermination fails for the reason (ii) outlined in Section 4. At this point,
it should be emphasised that for the new argument against underdetermination
other systems are needed in which the theory is confirmed. Hence, the argument
does not apply to the choice between models which describe the whole world.

Focus now turns to the choice between the Newtonian deterministic model
and the stochastic model. What does it mean that a model F is based on a
theory?7 This means that either (i) the model F is derived from the postulates
of the theory and the additional specific assumptions about the physical system

6Here, the assumption is that the Newtonian model can be written as a measure-theoretic
deterministic model (M,Tt, p). As explained in Section 2.1, e.g., all Newtonian deterministic
models which model energy-conserving systems are of this form.

7When a model is based on a theory this means that this is relative to state-of-the-art of
scientific theorising.
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that go beyond these postulates. For example, deterministic models of billiards
with convex obstacles are based on Newtonian theory in this sense. The ad-
ditional specific assumptions are crucial because the model cannot be derived
from the postulates of the theory alone; specific assumptions about the physi-
cal system are always needed to arrive at a model. Or (ii) there is a model C
describing another level of reality and which is derivable from the postulates of
the theory and the additional specific assumptions about the physical system.
Furthermore, it is specified how the states of C correspond to the states at the
other level of reality. With this correspondence rule, the model F is derivable
from C. Examples are stochastic models about the evolution of macrostates,
represented by values of variables such as local temperature, pressure and vol-
ume, in Boltzmannian statistical mechanics. Here for instance, the stochastic
model is derived from the Newtonian model of the motion of the particles of a
gas and the correspondence rule between the states of particles and macrostates.

The new answer to the central question involves the idea of indirect evidence.
This idea can be explained with an example given by Laudan and Leplin (1991,
461–462). The theory of continental drifts states the following:

TC: Every region of the surface of the earth has occupied latitudes as well as
longitudes significantly different from those it now occupies.

The following two hypotheses follow from TC:

H1: Each part of a continent has seen markedly different climates in its history.

H2: In any region of the earth the current alignment of the earth’s magnetic
pole of the magnetism of iron-bearing rock is markedly different from the
alignment of the magnetic rocks of the region from earlier periods.

In the 1950s and 1960s data e about remnant magnetism accrued which sup-
ported H2 and thus also TC. According to Laudan and Leplin, because e sup-
ports TC, e provides (and was regarded as providing) evidence for H1, even
though H1 does not entail e. e is an example of indirect evidence for H1.

There are many other examples of indirect evidence, and indirect evidence
is regarded as an important form of evidence (Laudan and Leplin 1991; Moretti
2007; Okasha 1998, Okasha 2002). Importantly, as noted by Laudan and Leplin
(1991), indirect evidence can block underdetermination. To come back to the
example: suppose there is a hypothesis H’ from which the same predictions are
derivable than from H1 but which does not follow from TC or any other more
general theory. Then the evidence favours H1 over H’ because there is indirect
evidence only for H1 but not for H’; hence, there is no underdetermination.

One main claim made by this paper is that indirect evidence can also block
underdetermination for the choice between models. This can be illustrated
with the example of a Newtonian model of a billiard with convex obstacles
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(Example 2). Here the predictions of the Newtonian model (M,Tt, p) and of
the stochastic model {Ψ(Tt)} are confirmed by the observations. Now consider
other Newtonian models which invoke similar additional assumptions about the
physical systems such as Newtonian models of billiards without obstacles, New-
tonian models of billiards on a table of another shape and Newtonian models
of billiards with several balls.8 Suppose that the predictions of these other
models are confirmed. Because Newtonian theory and the similar additional
assumptions about the physical systems are well confirmed, the evidence for
these other models provides indirect evidence for the deterministic model of
billiards with convex obstacles. There is no indirect evidence for the stochas-
tic model {Ψ(Tt)}. Therefore, the deterministic model is preferable. Likewise,
for the baker’s model of a particle bouncing on several mirrors, consider other
Newtonian models which invoke similar additional assumptions such as Newto-
nian models of a particle bouncing on different kinds of mirrors, or Newtonian
models of several particles bouncing on mirrors. If confirmed by observation,
the observations provide indirect evidence for the baker’s model, making the
baker’s model preferable.

The general argument about the choice between the Newtonian deterministic
model (M,Tt, p) and the stochastic model {Ψ(Tt)} is as follows. By assumption,
the predictions of the Newtonian model and the stochastic model are confirmed
by the observations. There will then usually be other Newtonian deterministic
models which invoke similar additional assumptions about the physical system
as (M,Tt, p), and which are also confirmed by the observations. In these cases,
because both Newtonian theory and the additional similar assumptions are well
confirmed, the evidence for these other models provides indirect evidence for
(M,Tt, p). The stochastic model is not supported by indirect evidence. Con-
sequently, there is more evidence for the deterministic model because it receives
indirect evidence from other Newtonian models. Thus the deterministic model
is preferable, and there is no underdetermination.9 As previously mentioned,
underdetermination fails here for reason (ii) outlined in Section 4: Observations
from other models constitute evidence only for the deterministic model.

What does indirect evidence amount to in these cases? Note that two models
are derivable from the same statement cannot be sufficient for the transmission
of confirmation from one to the other because this would lead to Hempel’s
paradox (the absurdity that any two statements confirm each other – Okasha

8The behaviour of some of these models is very different from that of billiards with convex
obstacles; e.g., for a ball moving on a rectangular table without obstacles the motion is
integrable and thus not chaotic.

9Without question, Newtonian theory has been found to give wrong predictions in certain
domains and ranges, e.g., about the precession of Mercury’s perihelion. However, Newtonian
theory delivers numerous correct predictions in (and is applied in) certain ranges and various
domains. There is, therefore, a large amount of evidence supporting Newtonian theory.
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1998).10 What goes on in these examples can be characterised as follows: There
is indirect evidence when the models (predictions all confirmed) are unified by
a well confirmed theory and by confirmed similar additional assumptions about
physical systems. Here both the well-confirmed theory and the confirmed similar
additional assumptions about the physical systems make a contribution to the
evidence. So indirect evidence results from the unification by a well confirmed
theory and confirmed similar additional assumptions. Thus, this account does
not suffer from Hempel’s paradox.

It is crucial in this instance that the unifying theory of Newtonian mechanics
is well confirmed.11 How is Newtonian theory confirmed? Newtonian theory is
confirmed by all the models which are derived with the help of Newtonian
theory and whose predictions are confirmed. For instance, Newtonian models
of billiards with convex obstacles are derived with help of Newtonian theory;
hence, the observations which confirm their predictions also confirm Newtonian
theory. (Likewise, Laudan and Leplin (1991) argue that the observations about
remnant magnetism confirm the theory of continental drift (TC) because the
predictions about magnetism are derived from the theory of continental drift).
Moreover, Newtonian theory is also confirmed by predictions about symmetries,
e.g., that the motion of a billiard ball on a ship which moves with uniform speed
on a lake is the same as the motion of a billiard ball on land. Here there are no
corresponding predictions on the stochastic side because there is no stochastic
theory that can provide predictions about more than one stochastic model.

Given this account of indirect evidence, the presented new argument can
be generalised: suppose that one model is based on a well confirmed theory
and suppose that there are other models which are based on this theory and
which, because they are unified by the theory and by confirmed similar addi-
tional assumptions, provide indirect evidence for this model. Further, suppose
that the other model is not supported by indirect evidence. Then the model that
is supported by indirect evidence is preferable. It should be briefly mentioned
that a similar argument can also be made in the case where neither of the two
models is theory-based but only one model receives indirect evidence from mod-
els invoking similar additional assumptions. Namely, suppose that one model
is supported by indirect evidence from models which invoke confirmed similar
additional assumptions about the physical systems and that the other model is
not supported by indirect evidence. Then the model that is supported by indirect
evidence is preferable.12 It is important to realise that in these generalisations

10Statement A confirms itself; A derives from A ∧ B where B is any statement; B derives
from A ∧B. Consequently, A confirms B.

11Models can easily be unified by theories which simply accommodate predictions of the
models (e.g., by saying that a creator decided that all these models will become true). In
these cases there cannot be indirect evidence. Hence, what is needed is a well confirmed
theory such as Newtonian theory and not a theory which only accommodates the predictions.

12For instance, such an argument could be used to substantiate the claim that the de-

19



indirect evidence might well lead to the preference for the stochastic model.
In particular, the specific case of the choice between Newtonian deterministic

models and stochastic models which are not supported by indirect evidence was
discussed because it generalises the examples of the extant philosophy literature.
For this specific case Newtonian theory leads to the preference for deterministic
models. However, in other cases Newtonian theory can lead to the preference
for stochastic models. Let me give two examples. For instance, consider the
choice between a stochastic statistical mechanical model of the evolution of the
macrostates of a gas (this model is based on Newtonian theory13) and the de-
terministic representation of this stochastic model. Then, at the level of reality
of the macrostates, the stochastic model can be preferable because of indirect
evidence. Second, consider a stochastic model where the motion of a particle
is described by Newtonian theory with a stochastic force term (an example is
a model arising from the Langevin equation). Given the choice between this
stochastic model and its deterministic representation, indirect evidence can lead
to the preference for the stochastic model.

This new argument against underdetermination appeals to indirect evidence,
and indirect evidence has already been used in the literature to argue against
undetermination (Laudan and Leplin 1991; Okasha 2002; Stanford 2001). How-
ever, the differences are as follows: First, indirect evidence has never been
considered in the debate about the choice between deterministic and indeter-
ministic models. Second, this argument is about choice between models and
not about the choice between theories. As explained, theories provide a scheme
which can be used to obtain models of many physical systems, while a model is
only about one system.

Now that the new answer has been presented, this paper turns to the ex-
tant philosophical literature. Two main papers concerning the initial central
question, namely Winnie (1998) and Hoefer (2008), are discussed.

6 Discussion of the Previous Philosophical Lit-

erature

6.1 Winnie’s Argument for the Deterministic Model

Winnie (1998) aims to provide sufficient conditions under which the determin-
istic model is preferable. His argument is applied to choice between Newtonian
deterministic models (M,Tt, p) and stochastic models obtained by applying a

terministic model of population dynamics presented by May (1976) is preferable over the
corresponding stochastic models.

13The stochastic model is based on Newtonian theory in the second sense, i.e., by involving
a correspondence rule between microstates and macrostates.
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finite-valued observation function Ψ to (M,Tt, p). His main example is the
physical system of a billiard with convex obstacles. His argument is as follows:
Suppose one is given a deterministic model (M,Tt, p) and a nontrivial stochas-
tic model {Zt} = {Ψ(Tt)}, where Ψ is an arbitrary finite-valued observation
function.14 {Zt} is obtained by applying Ψ to (M,Tt, p). This means that the
deterministic model is more informative because it also provides all information
at a finer level than Ψ, e.g., about the predictions obtained when observa-
tion functions finer than Ψ are applied. Thus the deterministic and stochastic
models do not give the same predictions and it can be determined when the de-
terministic model is preferable and when there is no underdetermination. The
following quote illustrates that Winnie endorses what can be considered as the
‘information argument’:

Some deterministic systems, when partitioned, generate stochastic
processes. No one of these stochastic processes can, however, gen-
erate the deterministic flow. The deterministic flow is, if you like,
a recipe for generating stochastic processes, none of which can, in
return, generate its parent flow. [...] The deterministic model thus
outstrips any single Markov model in its conceptual and predictive
power. (Winnie 1998, 317)

Winnie is correct to claim that the deterministic model is more informa-
tive. There is an asymmetry because the stochastic model is generated from
the deterministic model (in the sense that {Zt} = {Ψ(Tt)} arises by applying
the observation function Ψ to (M,Tt, p)) and not the other way round. Winnie
(1998) seems to be concerned with observations which are possible in principle
where there are no limits, in principle, on observational accuracy. For this case,
the information argument succeeds in identifying conditions under which the de-
terministic model is preferable. The observations which are possible in principle
confirm all of the structure provided by the deterministic model about levels
finer than Ψ in case finer observations can always be made. And, as argued in
Section 4, if finer observations of the states can always be made, then the deter-
ministic model is preferable because only the deterministic models allows that
finer observations can always be made.15 For example, if billiards with convex
obstacles are deterministic, only the Newtonian deterministic models agree with
all observations which are possible in principle and, thus, are preferable.

Winnie’s argumentation is successful. Yet the question arises whether the
information argument also works for the other cases. Does it work for the cases

14Winnie only considers finite-valued observation functions Ψ, but all the claims in this
section also hold for any function Ψ such that {Zt} = {Ψ(Tt)} is nontrivial.

15So Winnie has already argued what was highlighted in Section 4: Suppose the concern
is in observations which are possible in principle where there are no limits, in principle, on
observational accuracy. Then, if the phenomenon is deterministic, the possible observations
show that the deterministic model is preferable.
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of concern in practice, viz. the choice relative to currently possible observations
or actual observations, and what about the choice relative to observations which
are possible in principle where there are limits, in principle, on observational
accuracy? The rest of this section argues that the information argument is
not successful in these cases. This is important because Winnie develops his
argument as a criticism of Suppes (1993) and Suppes and de Barros (1996).
These papers defend the claim that there is underdetermination. Suppes (1993)
and Suppes and de Barros (1996) do not state explicitly what kind of choice they
are concerned with, but they repeatedly highlight that there is a choice between
deterministic and stochastic models only because of limitations in observational
accuracy. It therefore seems plausible that Suppes and de Barros were concerned
with currently possible observations (or similar). If so, then Winnie’s criticism
misses the target because it fails for the kind of choice Suppes and de Barros were
concerned with. Note that, as argued in Section 4, in certain cases there is no
underdetermination between deterministic and stochastic models relative to the
currently possible observations. Thus, Suppes and de Barros’ claim that there
is underdetermination relative to the currently possible observations cannot be
generally correct.

Following on from this assessment, the focus is on choice relative to cur-
rently possible observations (but the argument carries over to choice relative to
actual observations and to choice relative to observations which are possible in
principle where there are limits, in principle, on observational accuracy). By
assumption, Ψ is an arbitrary finite-valued observation function where the cur-
rently possible observations do not indicate whether there are more states than
the ones given by Ψ. Thus the predictions of (M,Tt, p) and of {Zt} = {Ψ(Tt)}
agree at all currently possible observation levels. Here the information argu-
ment is that the deterministic model is still preferable because it provides more
information. First, it should be noted that these reasons based on ‘providing
more information’ are non-evidential (because the structure of the deterministic
model finer than Ψ is not empirically accessible). The central question is which
model is preferable relative to evidence and this argument does not answer the
question.

There is also another worry: While it is true that the deterministic model
provides more information, this information might not be of any value. To
stress the point, suppose that the stochastic model {Zt} = {Ψ(Tt)}, where
Ψ is a specific finite-valued observation function, is the correct model (this
can be the case – the predictions derived from the deterministic model and
the stochastic model agree at all currently possible observation levels). The
deterministic model still provides more information, yet this is not of any value
because it does not correspond to anything in the world, and so should not be
taken as a reason to prefer the deterministic model. Similarly, the deterministic
representation (see Section 3) provides more information. Yet, intuitively, this
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does not make it preferable over the stochastic model because it is questionable
whether this additional information is of any value.

To further substantiate the claim that the information argument is untenable
for choice relative to currently possible observations, here is an example where
the premises of this argument are true but the conclusion is not. This example
involves indirect evidence as discussed in Section 5. Suppose that the predictions
of the deterministic model (M,Tt, p) and of the stochastic model {Zt} = {Ψ(Tt)}
are confirmed (where Ψ is a specific observation function). Clearly, (M,Tt, p)
contains more information and the premises of the information argument are
true. Now suppose that {Zt} is based on a well confirmed theory G, and
that there are similar models based on G which are also well confirmed and
which provide indirect evidence for {Zt} (there is indirect evidence because
these models are unified by the well confirmed theory G and invoke confirmed
similar additional assumptions about the physical systems). Further, suppose
that there is no indirect evidence for (M,Tt, p). Then the stochastic model
{Zt} is preferable relative to evidence, and the conclusion of the information
argument is not true.

In summary, Winnie’s argument succeeds for choice relative to in observa-
tions which are possible in principle (the case was concerned with), but it does
not work for the kinds of choice arising in practice.

6.2 Hoefer’s Argument for the Deterministic Model

Hoefer (1998) presents an argument for the deterministic model, with the in-
tention to show that the Newtonian deterministic model (M,Tt, p) is preferable
over any of the stochastic models obtained by applying an observation function
Ψ to (M,Tt, p). (His main example is also the physical system of a billiard with
convex obstacles.) Consider Hoefer’s (2008) claim about the choice between
Newtonian deterministic models and the corresponding stochastic models16:

It may well be true that there are some deterministic dynamical sys-
tems that, when viewed properly, display behavior indistinguishable
from that of a genuinely stochastic process. For example, using the
billiard table above [a billiard system with convex obstacles], if one
divides its surface into quadrants and looks at which quadrant the
ball is in at 30-second intervals, the resulting sequence is no doubt
highly random. But this does not mean that the same system, when
viewed in a different way (perhaps at a higher degree of precision)
does not cease to look random and instead betrays its deterministic
nature. [Hoefer 2008, original emphasis]

16Hoefer’s (2008) aim seems to be to summarise Winnie’s (1998) argument discussed above.
However, the argument Hoefer makes is quite different from Winnie’s argument.
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What this quote expresses depends on the meaning of the word ‘random’,
which is understood very differently in the literature. Hoefer (2008) in the para-
graphs preceding this quote uses the word ‘random’ synonymously to ‘stochas-
tic’. The interpretation of ‘random’ as ‘stochastic’ is confirmed by the first
sentence of the above quote, where Hoefer speaks about a ‘genuinely stochastic
process’. It can be assumed that ‘random’ means ‘stochastic’.17

Then the argument Hoefer makes is as follows: (P1) once a deterministic
phenomenon is viewed in the right way, trivial transition probabilities can be
obtained; (P2) obtaining trivial transition probabilities indicates that the phe-
nomenon is deterministic. (C) Therefore, the deterministic model is preferable.

Hoefer is silent about the kind of underdetermination he is concerned with.
Yet for any of the possible understandings of underdetermination discussed in
Section 4, this argument is misguided for two reasons. First, for every deter-
ministic model of billiards with convex obstacles every finite-valued observation
function yields a nontrivial stochastic model (cf. Theorem 1 and the discussion
thereafter). The possible observations are finite-valued. Thus, there will never
be trivial transition probabilities (Premise (P1) is false), and observations of
billiards will never cease to look stochastic.

Second, assume that by observing a phenomenon trivial transition proba-
bilities are obtained. This does not imply that the observations derive from a
deterministic system, i.e., Premise (P2) is false. Trivial transition probabilities
can result from observing a (nontrivial) stochastic system or a deterministic
system. Two examples are given to illustrate this: first, a deterministic model
which yields trivial transition probabilities; second, a stochastic model which
yields trivial transition probabilities.

First, consider a deterministic model (M,Tt, p) describing the motion of a
billiard ball on a table where there is a barrier in the middle separating the left-
hand side of the table from the right-hand side. If the billiard ball is on one side,
it always was and will stay there. Suppose the observation function Φ tell one
whether the ball is on the right- (or) or left-hand side (ol) of the table. Trivial
transition probabilitiesare then observed: p(Φ(Tt+k) = oi given Φ(Tt) = oj) = 1
if i = j = l or i = j = r and p(Φ(Tt+k) = oi given Φ(Tt) = oj) = 0 otherwise
(for all t, k).

17From what Hoefer (2008) states, this is by far the most plausible interpretation and has
also been suggested to this researcher as the most plausible interpretation by philosophy
colleagues. One could also interpret ‘random’ in Hoefer’s quote as meaning that there are
probability distributions characteristic of stochastic systems. His argument would then be
as follows: Once the observations of a deterministic system are fine enough, there will be
observations of probability distributions characteristic of deterministic systems. These specific
probability distributions provide evidence that the system is deterministic. Therefore, the
deterministic model is preferable. Due to a lack of space, this argument will not be discussed
here. The general discussion, though, of Werndl (2011) is easily applied to this argument,
showing that this argument does not work.
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Second, consider the stochastic model {Zt}, t ∈ Z, defined as follows (a
Markov model – see Example 3): the outcome space is E = {s1, s2, s3, s4},
P{Zt = si} = 1/4 for all i, 1 ≤ i ≤ 4 and all t; P{Zt = si given Zt−1 =
sj} = 1/2 for all i, j ∈ {1, 2} and all t; and P{Zt = si given Zt−1 = sj} = 1/2
for all i, j ∈ {3, 4} and all t. This means that s1 and s2 can be reached from
each other but not from s3 or s4; likewise, s3 and s4 can be reached from each
other but not from s1 or s2. Thus the stochastic model can be split into two
parts: the dynamics involving s1 and s2 and the dynamics involving s3 and
s4. Now, assume to the stochastic model is applied the observation function
Γ : {s1, s2, s3, s4} → {o1, o2}, Γ(s1) = Γ(s2) = o1 and Γ(s3) = Γ(s4) = o2. Γ tells
one whether the outcome is in {s1, s2} or in {s3, s4}. Then one observes trivial
transition probabilities: P (Γ(Zt+k) = oi given Γ(Zt) = oj) = 1 if i = j = 1
or i = j = 2 and P (Γ(Zt+k) = oi given Γ(Zt) = oj) = 0 otherwise (for all
t, k). However, these trivial transition probabilities are obtained from observing
the nontrivial stochastic model {Zt} with Γ. In conclusion, Hoefer’s (2008)
argument that the deterministic model is preferable does not work.

7 Conclusion

At the outset of this paper, there was a discussion of a time series of observa-
tions of the position of a particle (see Figure 1). Scientists aim to find a model
which reproduces these observations and yields correct predictions. One of the
questions which arises is whether the physical system is better described by a
deterministic or an indeterministic model. Intuitively, one might think that the
observations only allow for a deterministic or an indeterministic model. How-
ever, as has been shown in Section 3, this is not so. In several cases determin-
istic models and stochastic models are observationally equivalent. Therefore,
the central question of this paper concerns which model should be preferred
relative to all evidence. If the evidence equally supports both models, there is
underdetermination.

Section 4 distinguished between the different kinds of choice and underde-
termination these results could pose. Section 5 presented a new answer to the
central question: Consider a Newtonian deterministic model D. Suppose that
there are other Newtonian models W which are also confirmed by observations,
and which provide indirect evidence for D (because W and D are unified by
the well-confirmed Newtonian theory and invoke confirmed similar additional
assumptions about the physical systems). Further suppose that the stochas-
tic model is not supported by indirect evidence. Then the Newtonian model
D is preferable. For instance, this argument shows that the Newtonian model
of billiards with convex obstacles is preferable to the corresponding stochastic
models. The new argument was then generalised: suppose that one of the mod-
els is based on a well-confirmed theory, and that there are other models based
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on this theory which invoke confirmed similar additional assumptions and pro-
vide indirect evidence for this model. Further, suppose that the other model
is not supported by indirect evidence. Then the model supported by indirect
evidence is preferable.

Following on from the presentation of the novel answer, Section 6 discussed
the previous philosophical literature. Winnie (1998) argues that because the
deterministic model is more informative than the stochastic model, one can
find out when a system is deterministic, and then the deterministic model is
preferable. I argued that Winnie’s argument succeeds relative to observations
which are possible in principle where there are no limits, in principle, on obser-
vational accuracy (the kind of choice Winnie was concerned with). However,
for the other kinds of choice, in particular the ones arising in practice, the argu-
ment fails. This is so because the argument also applies to situations where the
stochastic model is preferable, and the additional information provided by the
deterministic model might not be of any value. Hoefer (2008) argues that once
one views a deterministic system in the right way, one obtains trivial transition
probabilities, indicating that the system is deterministic. However, this argu-
ment is misguided because for several deterministic systems there will never be
trivial transition probabilities. Furthermore, trivial transition probabilities can
also result from observing a nontrivial stochastic system.

The intuition behind Winnie’s and Hoefer’s arguments is correct – the model
based on Newtonian theory is preferable over a non-theory based stochastic
model. But these arguments fail to establish the desired conclusion for the
kinds of choice of relevance in practice. The proposed new argument, which
appeals to indirect evidence, intends to do justice to this intuition and to show
why the deterministic model is preferable.
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Hénon maps’. Inventiones Mathematicae 112, 541–567.

Berkovitz, J., Frigg, R. and Kronz, F. (2006). ‘The ergodic hierarchy, random-
ness and Hamiltonian chaos’. Studies in History and Philosophy of Modern
Physics 37, 661–691.

Butterfield, J. (2005). ‘Determinism and indeterminism’. Routledge Ency-
clopaedia of Philosophy Online.

Chernov, N. and Markarian, R. (2006). Chaotic Billiards. American Mathe-
matical Society, Providence.

26



Frigg, R. (2008). A field guide to recent work on the foundations of statistical
mechanics. In D. Rickles, ed., ‘The Ashgate Companion to Contemporary
Philosophy of Physics’. Ashgate, London, pp. 99–196.

Hoefer, C. (2008). Causal determinism. In E. Zalta, ed., ‘The Stanford Ency-
clopaedia of Philosophy (Winter 2008 Edition)’,
http://plato.stanford.edu/archives/win2008/entries/determinism-causal/, Stan-
ford.

Ladyman, J. (2002). Understanding Philosophy of Science. Routledge, London
and New York.

Laudan, L. and Leplin, J. (1991). ‘Empirical equivalence and underdetermina-
tion’. The Journal of Philosophy 88, 449–472.

Lavis, D. (2011). An objectivist account of probabilities in statistical physics. In
C. Beisbart and S. Hartmann, eds, ‘Probabilities in Physics’, forthcoming.
Oxford University Press, Oxford.

Lorenz, E. (1963). ‘Deterministic nonperiodic flow’. Journal of the Atmospheric
Sciences 20, 130–141.

Luzzatto, S., Melbourne, I. and Paccaut, F. (2005). ‘The Lorenz attractor is
mixing’. Communications in Mathematical Physics 260, 393–401.

May, R.M. (1976). ‘Simple Mathematical Models with Very Complicated Dy-
namics.’ Nature 261, 459–467.

Moretti, L. (2007). ‘Ways in which coherence is confirmation conducive’. Syn-
these 157, 309–319.

Okasha, S. (1998). ‘Laudan and Leplin on empirical equivalence’. The British
Journal for the Philosophy of Science 48, 251–256.

Okasha, S. (2002). ‘Underdetermination, holism and the theory/data distinc-
tion’. The Philosophical Quarterly 208, 303–319.

Ornstein, D. and Galavotti, G. (1974). ‘Billiards and Bernoulli schemes’. Com-
munications in Mathematical Physics 38, 83–101.

Ornstein, D. and Weiss, B. (1991). ‘Statistical properties of chaotic systems’.
Bulletin of the American Mathematical Society 24, 11–116.

Petersen, K. (1989). Ergodic Theory. Cambridge University Press, Cambridge.
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