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Degree of Explanation 

 

Abstract 

Partial explanations are everywhere. That is, explanations citing causes that explain some 

but not all of an effect are ubiquitous across science, and these in turn rely on the notion 

of degree of explanation. I argue that current accounts are seriously deficient. In 

particular, they do not incorporate adequately the way in which a cause’s explanatory 

importance varies with choice of explanandum. Using influential recent contrastive 

theories, I develop quantitative definitions that remedy this lacuna, and relate it to 

existing measures of degree of causation. Among other things, this reveals the precise 

role here of chance, as well as bearing on the relation between causal explanation and 

causation itself. 

 

 

1) Introduction 

One of the central aims of the sociological classic Bowling Alone (Putnam 2000) is to 

identify the causes of the decline in ‘social capital’ in the USA since 1960. Many 

candidates have been suggested: increased work hours; suburban sprawl; government 

welfare policy; more women going to work; television; increased divorce rates; and 

others besides. It turns out (Putnam argues) that no single cause explains the decline 

entirely. The question of critical interest, both historically and as a guide to future 

intervention, is to quantify each cause’s partial contribution. The focus is not on how 

general or deep or transportable a particular explanation or mechanism is, important 

though those concerns may also be, but rather is narrowly on the extent to which a cause 

explains an effect in a specific singular case. A singular explanation may well be derived 

from a generalization; nevertheless, its accuracy in a specific case is a distinct issue. 

 

To repeat, in this and other cases no individual cause explains all of the explanandum. So 

our philosophical task is not to assess which among several complete or full explanations 

is preferable; rather, it is to assess the extents to which different incomplete explanations 

are incomplete in a single case.
1
 Why should we be motivated to analyze degree of 

explanation, so understood? Because this issue arises ubiquitously in both science and 

everyday life. How much was the decreased murder rate explained by lower 

unemployment? Which was the more important cause of the plant’s height, the fertilizer 

or the new greenhouse? Was it the penetrating offense or the stout defense that was 

mainly responsible for the football team’s victory? The relevant explanations here are 

acknowledged by all to be incomplete; the concern is rather to what degree each 

explained their explanandum. 

 

Such judgments are made implicitly all the time but they require conceptual clarification. 

Comparing different causes’ importance, and apportioning responsibility between them, 

requires making good sense of the notion of partial explanation, i.e. of degree of 

explanation.
2
 A quantitative notion of degree of causation is already widespread in 

                                                 
1
 It might be that the measures to be developed in this paper can be applied to type-level explananda too. 

But I will frame the discussion in terms of token cases only. 
2
 Throughout, by ‘explanation’ I will mean causal explanation. 
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statistics and many sciences. And the problem of explanandum-dependence (to be 

discussed below) is also widely recognized. But, I will argue, the latter issue implies 

problems for the standard view of the former, and this has not been widely recognized, 

thus motivating the need to develop a definition specifically of degree of explanation. 

 

It turns out to be very useful to make our concepts in this area explicit. For instance, if the 

causes in a partial explanation are probabilistic, how much is the outcome due to them 

and how much to simple chance? Should a definition incorporate both aspects? Can they 

even be separated? What is the role of contrasts? The devil is in the details. 

 

I frame the analysis in terms of a contrastive-counterfactual theory of causal explanation, 

in accordance with current philosophical orthodoxy. As Ylikoski and Kourikoski (2010) 

comment, this ties together theoretical and practical knowledge, because explanatory 

understanding can now be cashed out in the currency of advice regarding interventions. 

In particular, degree of explanation will by definition capture the extent to which an 

intervention is the one we want. More precisely, it will capture the amount by which the 

impact of the intervention licensed by a partial explanation falls short of the desired 

impact. It also answers what-if-things-had-been-different questions by expressing the 

extent to which things would have been as different as we wanted them to be. 

 

The formal task turns out to be a delicate one. The vast literature on defining causation 

itself is of no direct help because in the cases of interest here typically all parties already 

agree on what causes are present. The issue at hand is, rather, each cause’s explanatory 

importance, and this matter of degree is clearly distinct from mere causation or 

explanation simpliciter. To be clear: the issue is not that existing theories of causation 

and explanation are incorrect. Indeed, as noted, this paper’s analysis will be framed in 

terms of existing difference-making views. Rather, the issue is that there is an unfulfilled 

need to use these theories to define degree of explanation precisely. Structural equations, 

for instance, can certainly be used to motivate the definitions of degree of explanation 

that I develop, and to calculate the quantities that enter those definitions. However, they 

do not furnish the definitions themselves. 

 

Although the issues here are of great applied import, this paper is a theoretical one. It is 

organized as follows: I begin by stating a familiar quantitative definition of degree of 

causation (section 2). I then introduce the problem of explanandum-dependence, to 

motivate the need for a separate definition specifically of degree of explanation (section 

3). Sections 4 to 8 are devoted to the intricate task of chiseling out such a definition. I 

then finish by exploring that definition’s relation to previous work (section 9), and its 

implications for the distinction between causation and explanation (section 10). 

 

2) Causal strength 

Let X be a cause variable and Y an effect variable. Y is a function of the state of the 

world, i.e. of X and W, where W is background conditions (i.e. formally a set of variables 

representing the state of the world just excluding X).
3
 Let XA denote the actual value of 

X, and XC the salient counterfactual value of X. And let YA and YC denote the values that 

                                                 
3
 In causal graph terms, there are arrows into Y from both X and W. 
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Y takes given XA and XC respectively.
4
 Then define the degree of causation (or, 

equivalently, the causal strength or importance) of a cause variable X with respect to an 

effect variable Y, to be: 

  YA – YC  [1] 
 

Formula [1] is quite intuitive, being just a representation of counterfactual difference-

making. We are interested in the quantity of effect for which XA is responsible, and this is 

just the level of effect with XA compared to the level with the alternative input XC. The 

unit of any CS is the unit of the effect variable Y. The actual and counterfactual values of 

Y are real numbers. A causal strength (‘CS’) is the difference between them, and may be 

positive, zero or negative. For example, the CS of kicking a ball might be yielded by the 

ball’s acceleration with the kick compared to its acceleration without that kick.
5
 A 

negative CS here would correspond to accelerating the ball backwards; a zero CS to 

leaving its acceleration unchanged. 

 

At the heart of [1] is that it captures a controlled-experiment sensibility. We want to 

compare the level of effect with and without the cause while keeping all else equal. For 

instance, it would be no use comparing the acceleration of a ball with and without a kick 

if simultaneously a gust of wind had blown up, because obviously the calculation would 

then yield only the combined impact of the two changes. For this reason, the terms in [1] 

must be evaluated with the background conditions constant across the two terms.
6
 

 

YC, the right-hand term in [1], is a counterfactual – we are interested in what the level of 

effect would have been, given XC and W. How can this term be evaluated? Because, in 

reality, background conditions are never quite exactly the same from moment to moment, 

epistemologically the best we can ever do is find data from as good a re-creation as 

possible of the relevant conditions. In this respect, [1] serves as a normative ideal, telling 

us what hypothetical quantity is relevant to evaluating a CS. Only some actual sources of 

data, namely those adequately approximating controlled constant-W conditions, will then 

be appropriate.
7
 

 

3) The problem of explanandum-dependence 

Not surprisingly, [1] or something like it has a long history in several different literatures 

as a measure of degree of causation. In the philosophy of history, the motivation behind 

                                                 
4
 For ease of exposition, as well as using YA, XC etc to denote particular values of a variable, throughout I 

will also use them to denote particular events that instantiate those values. I will reserve lower-case 

notation, i.e. yA, xC etc, for values of qualitative variables (section 5 below). 
5
 Often, as with temperature, the ‘absence’ of a cause may make little sense. Rather, in such cases we are 

interested in the impact of a cause relative to some specific non-zero alternative. Thus when occasionally I 

refer to the absence or negation of a cause this should be understood merely as convenient shorthand for 

some salient XC. No commitment is implied to ‘negative events’. 
6
 Strictly speaking, in fact the background conditions are not constant because as well as impacting Y, in 

general a change from XC to XA will also change W too. But for our purposes we may ignore that wrinkle, 

so long as any change in W is only a consequence of the change in X. The point is that incorporating a 

counterfactual term and conditioning on W eliminates spurious correlations. 
7
 Like all counterfactuals, the ones invoked here may sometimes be vague or indeterminate. In those 

circumstances, then so also is the corresponding CS. Generally, I do not endorse any particular semantics 

for counterfactuals here, as the salient locus of philosophical dispute lies elsewhere. 
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[1] is similar to that behind several classical views, for instance those in the nineteenth 

century of Yule and Weber (Turner 1986, Northcott 2008c). More recently, measures in 

psychology, psychiatry, statistics, epidemiology, law and computer science are similar. 

Moreover, still other measures are closely related, being again essentially comparative of 

an effect with and without a cause.  

 

Within analytic philosophy, [1] reflects the common emphasis on causation’s difference-

making aspect – a cause is something that makes a difference to its effect. Thus, 

naturally, the strength of a cause is how much difference it makes. The form of [1] can be 

incorporated into the contemporary Bayes net and causal modeling literatures, and 

arguably is endorsed by experimental practice, at least in the case of quantitative 

variables (Woodward 2003, Pearl 2000, Spirtes et al 2000). More generally, it is also 

consistent with the mainstream literature on probabilistic causation (Hitchcock 1996). 

 

Yet, notwithstanding this ubiquity, [1] cannot yet be a complete account of degree of 

explanation. The reason stems from the fact that contemporary theories of causal 

explanation are contrastive in both the cause and effect slots (Dretske 1972, Van Fraassen 

1980, Garfinkel 1981, Achinstein 1983, Woodward 2003).
8
 On this view, explanation 

takes the general form: 

XA-rather-than-XC explains YA-rather-than-YC  

where YA and YC are respectively the actual and contrast values of the effect variable Y. 

Intuitively, this captures the sensitivity of explanation to the precise specification of the 

explanandum. As it were, YC picks out which aspect of the effect is of interest, and 

without it an explanandum is under-specified. 

 

As (Sober et al 1992, 134) remarks: “A problem that constantly befuddles debates about 

the importance of different causes … is the correct designation of the object of 

explanation (the explanandum)”. (Sober et al 1992) and (Martin 1989) are two of the few 

to emphasize it in this context.  

 

The problem – for everyone – is that formula [1] is vulnerable on exactly this point. In 

particular, it incorporates choice of contrast only on the cause side, which is fine for an 

analysis of CS but not for one of degree of explanation. With regard to the latter, [1] 

stands incomplete. Although the contrastive view of explanation neatly captures 

explanandum-dependence, no one (to my knowledge) has ever adapted its machinery to 

the issue of defining degree of explanation. This is a notable lacuna. 

 

To make matters more precise, begin by noting that any contrastive explanandum takes 

the form ‘YA-rather-than-YC’, where YA and YC are values of the effect variable Y. Now 

introduce a subtle but important point of notation. So far, we have defined YA and YC to 

be the values that Y takes when X = XA and X = XC respectively. However, these YA and 

YC are not necessarily the ‘YA’ and ‘YC’ that characterize a target explanandum. 

Therefore, for clarity, I will henceforth denote a target explanandum instead by YA*-

rather-than-YC*. The asterisks signify that these particular values of Y are specified 

                                                 
8
 I discuss the sense in which causation itself might be contrastive, and how that matters to the concerns of 

this paper, in section 10 below. 
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independently of any particular explanans, i.e. independently of any particular values of 

X. There is no guarantee that YA and YC will match precisely YA* and YC*. The crucial 

matter, as we will see, is the extent to which they indeed do. 

 

[1]’s critical insensitivity is to these YC* and YA*. There is of course a sense in which [1] 

is perfectly ‘sensitive to YC’ already, namely that its right-hand term is by definition a 

contrast level of Y. The key point though is that [1]’s ‘YC’ is a function of the explanans, 

in particular of XC; yet this is not the ‘YC’ that [1] needs to be sensitive to, which is that 

one specified by the explanandum independently of the explanans, i.e. YC*. Analogous 

points apply to [1]’s incorporation of YA instead of YA*. Fundamentally, the problem is 

really [1]’s insensitivity to choice of explanandum, i.e. to both YC* and YA*. The result is 

that we still have no acceptable account of degree of explanation. 

 

All this becomes clearer by example. Take, for instance, the first dropping of an atomic 

bomb in war. What explains the timing of this event? In other words, why did it occur on 

6
th

 August 1945 at Hiroshima? Consider two causes: the fine weather that day; and 

Japan’s reluctance to surrender. And respective salient contrasts: bad weather that day; 

Japan amenable to surrender. Both these causes can be argued to have greatly increased 

the bombing’s probability. First, if the weather had been bad instead of good, the 

bombing would have been postponed.
9
 Second, if Japan had been willing to surrender, 

Truman would likely have thought the bombing unnecessary. But the two causes increase 

the probability of different aspects of the bombing. In particular, the weather impacted its 

precise timing, whereas the Japanese attitude impacted only its rough timing (or, for 

those optimists who believe that there might otherwise never have been such an event, 

whether a first atomic bombing occurred at all). Thus the weather is highly explanatory 

of the short-term explanandum – why the first bombing occurred on 6
th

 August 1945 

rather than in the subsequent few days (i.e. YC* = the bomb was first dropped in the 

subsequent few days); Japan’s attitude, by contrast, is highly explanatory of a longer-term 

explanandum – why the first bombing occurred in 1945 rather than in some subsequent 

year (i.e. YC* = the bomb was first dropped only in subsequent years). 

 

The problem is that the simple formula [1] is unable to capture this crucial distinction. 

Both the weather and the Japanese attitude made a big difference to whether the bomb 

was dropped, and for this reason both factors score well on [1]. But it is impossible to 

represent in [1] the crucial distinction between the long-run and short-run explananda, 

because just considering YA and YC alone still leaves unclear which aspect of the effect is 

explanatorily relevant. In the notation of this paper, we need a successor to [1] that is 

YC*-sensitive. 

 

Might, though, the difference between the two explananda be representable in [1] after 

all, in particular via a judicious choice of effect variable? Let us see why not. The 

suggestion is that we can incorporate appropriate sensitivity to YC* indirectly via our 

definition of Y. For instance, we might invoke the longer-term explanandum by defining 

                                                 
9
 In fact, bad weather at Hiroshima would probably have led to the mission being diverted to a target where 

the weather was better. So we must interpret ‘bad weather’ here to cover, say, every other sizeable Japanese 

city too. 
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Y in a coarse-grained manner, say delineating time by year. Then YA* = the bomb was 

dropped in the year 1945. Sure enough, this generates, as desired, a high causal strength 

for Japan’s attitude but not for the weather. Formally, applying a probabilistic version of 

[1]
10

, and simplifying the relevant probabilities to 1 and 0: 

-- Weather’s causal strength = pr(a bomb was first dropped in 1945 / fine weather 

on 6
th

 August 1945) – pr(a bomb was first dropped in 1945/ bad weather on 6
th

 

August 1945) = 1 – 1 = 0 

-- Japan’s attitude’s causal strength = pr(a bomb was first dropped in 1945 / 

Japan’s actual attitude) – pr(a bomb was first dropped in 1945 / Japan amenable to 

surrender) = 1 – 0 = 1 

So far, so good. But how do we apply the same strategy to the short-run explanandum? 

Presumably Y would now have to be fine-grained, so that YA* = a bomb was first 

dropped on 6
th

 August 1945 precisely. Running through the calculations for this new 

YA*: 

-- Weather’s causal strength = pr(a bomb was first dropped on 6
th

 August 1945 / 

fine weather on 6
th

 August 1945) – pr(a bomb was first dropped on 6
th

 August 

1945 / bad weather on 6
th

 August 1945) = 1 – 0 = 1 

-- Japan’s attitude’s causal strength = pr(a bomb was first dropped on 6
th

 August 

1945 / Japan’s actual attitude) – pr(a bomb was first dropped on 6
th

 August 1945 / 

Japan amenable to surrender) = 1 – 0 = 1 

The problem is the second calculation: the Japanese unwillingness to surrender still 

scores highly even for the short-run explanandum. Indeed, it is hard to see how this can 

be avoided if, like [1], we take no consideration of YC*. For (focusing on the right-hand 

terms in each calculation) what would be required, roughly speaking, is a true description 

of the Hiroshima bomb drop that was sufficiently fine-grained to be rendered improbable 

by bad weather yet also sufficiently coarse-grained to be rendered probable by Japanese 

willingness to surrender. It seems impossible to satisfy both these constraints 

simultaneously. 

 

Similar dilemmas arise in many other examples. I conclude that, when formulating 

degree of explanation, [1] alone cannot be enough. Yet the problem can be solved, as we 

will see, by a formula that incorporates explicitly the explanandum values of Y, i.e. YA* 

and YC*. 

 

4) Degree of explanation I – the quantitative case 

As it will be understood here, degree of explanation (‘DE’) is an objective relation in a 

token case between an explanandum and an explanans. The sequence of analysis will be 

as follows:  

-- First, we define a target explanandum YA*-rather-than-YC*, i.e. an actual value YA* 

and contrast value YC* of the effect. 

-- Second, we consider an explanans XA-rather-than-XC, i.e. an actual value XA and 

contrast value XC of a cause. This explanans automatically yields suggested values for 

YA* and YC*, namely YA and YC. 

                                                 
10

 In particular, the effect variable in these applications of [1] is a probability, the latter being understood as 

single-case chance (see section 5 for discussion). 
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-- Then third, we compare the target explanandum values of the effect variable with those 

values suggested by the explanans, i.e. we compare YA* with YA, and YC* with YC. DE 

is then a matter of how well the explanans’s suggested values for Y match up with the 

target ones. 

 

It may help intuition to compare degree of explanation DE, so conceived, with causal 

strength CS. Consider interventions: the CS definition [1] tracks the impact of these 

directly. In particular, it tracks the impact on Y of a change from XC to XA. But things are 

not quite the same with DE. Rather, we can think of DE instead in terms of the desired 

result of an intervention. In particular, DE tracks how well a change from XC to XA will 

yield the desired change from YC* to YA*. That is, CS tracks the impact of an 

intervention; DE tracks to what extent this impact is the one we wanted. 

 

Making our understanding of DE precise will be the (surprisingly intricate) business of 

the next few sections. Begin with cases where the effect and effect-contrast are different 

values of the same quantitative or scalar variable. Perhaps, say, the explanandum is why 

something is one height rather than another, or one temperature rather than another. 

Formally, such an explanandum can be represented by YA*-rather-than-YC* for some 

quantitative variable Y. A critical initial question is then: given W, would a change from 

XC to XA be responsible for exactly the salient change from YC* to YA*? If so, then I 

deem XA-rather-than-XC to be fully explanatory.  

 

This latter term deserves explication. For, sowing confusion, ‘full explanation’, 

‘explanatory strength’, ‘explanatory power’ and the like can mean many different things 

(see Ylikoski and Kuorikoski 2010 for a survey). So, to be clear: the sense of ‘fully 

explanatory’ that I have in mind is when a cause makes all (rather than only some of) the 

difference with respect to an effect. This is the sense that is of critical interest when 

considering interventions and thus the one that dovetails best with contemporary theories 

of causal explanation. This is also the sense that dovetails with our starting desideratum, 

as the ‘partial explanations’ I wish to illuminate are those that specify a cause that makes 

only some of the difference – and not explanations that are ‘partial’ merely in the sense of 

specifying only one cause out of the many that determine any given event. 

 

More generally, the implicit alternative definition here is that we have ‘full explanation’ 

only when we have an accurate description of all an event’s causes. But this seems 

pointlessly to insist on an unattainable perfection, and in practice would render no 

explanation anything other than ‘partial’. As noted, a difference-making view of causal 

explanation naturally lends support instead to describing as ‘fully’ explanatory any cause 

that makes all the difference; what else, on a difference-making view, could full 

explanation be? 

 

Notice also that therefore I am not concerned with the distinction between causes and 

background conditions – if a cause and a background condition both made all the 

difference, then both would count as fully explanatory in this paper’s sense. The salient 

distinction is rather that between a cause that makes all the difference and one that does 

not.  
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More formally, then, in the sense just specified, XA-rather-than-XC fully explains YA*-

rather-than-YC* if and only if the following two conditions are both satisfied: 

1) YA = YA*, i.e. YA* occurs when XA occurs 

2) YC = YC*, i.e. YC* would have occurred had XC occurred 

Our true goal, however, is a measure of partial explanation. We may now define this as 

how close we come to satisfying the conditions for full explanation. Formally, the degree 

of explanation of an explanans XA-rather-than-XC with respect to an explanandum YA*-

rather-than-YC* is: 

|YA* – YA| + |YC* – YC|   [2] 
 

Intuitively, [2] captures the distance between the target levels of Y and the levels of Y 

suggested by the explanans.
11

 For this reason, the smaller [2]’s value the better the DE. 

We have full explanation if and only if [2]’s value is zero, which follows only if the two 

conditions for full explanation earlier are both satisfied. The DE score corresponding to 

the neutral case of no explanation is typically |YA* – YC*|, i.e. the size of the starting 

explanandum.
12

 As with formula [1], constant background conditions are assumed. The 

units of DE are the units of the effect variable Y. 

 

To accommodate indeterminism, we should interpret YA and YC to be expected values. 

Thus, strictly, [2] should be: E(|YA* – YA|) + E(|YC* – YC|). But for ease of exposition, in 

the text I will omit explicit reference to the expected-value operators. I discuss 

indeterminism more in the next section. (In the deterministic case, necessarily YA* = YA 

and so [2] reduces to its right-hand term.) 

 

Visually, imagine a line representing the Y-variable, and compare two intervals defined 

on that line as per Figure 1 – the target explanandum interval [YA*, YC*] and the interval 

suggested by the explanans [YA, YC]. DE is then a matter of how well the suggested 

interval matches the target one. (CS corresponds to the suggested interval alone.) The 

left-hand term in [2] corresponds to the horizontal distance between points YA* and YA; 

the right-hand term to that between YC* and YC. In the case of full explanation, both the 

distances are zero. 

 

(INSERT FIGURE 1 HERE) 

 

A focus on actual events alone cannot capture DE satisfactorily. To see why the right-

hand term in [2] is necessary, suppose we wish to explain why the tea in a cup is 23 

rather than 0 degrees Celsius, i.e. is room temperature rather than freezing. Then YA* = 

23 and YC* = 0. And suppose further we offered up a clearly irrelevant explanans such as 

‘because my team won rather than lost the ballgame last night’. Then YA, i.e. the 

temperature of the tea given that my team won the game, is room temperature, i.e. 23 

degrees. It follows that the left-hand term in [2], |YA* – YA|, is zero, just as desired. The 

                                                 
11

 Absolute values appear in the formula because it is the absolute size of the distance, rather than its 

direction, that matters. We thereby also avoid the undesirable possibility of two non-zero terms cancelling 

each other out. 
12

 See shortly for an illustrative example. 
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obvious explanatory inadequacy only shows up in the counterfactual right-hand term, 

because even if my team had lost the ballgame, still the tea would have been room 

temperature anyway. Thus YC = 23 too, and so the right-hand term in [2], |YC* – YC|, 

becomes |0 – 23|. Therefore [2]’s overall value is also |0 – 23|, i.e. precisely the size of 

the starting explanandum, and nothing has been gained. In conclusion, on any contrastive 

view we must consider more than actual events. The critical fact here is that the result of 

the ballgame made no difference, but this was not revealed by the left-hand term alone. 

 

5) Degree of explanation II – the qualitative case 

Turn next to perhaps the most common case, namely when the effect variable is 

qualitative, for instance if the effect of interest is a discrete event. Examples include: the 

dropping of the Hiroshima bomb, the American Revolution, or a leaf having a particular 

color. Even though ultimately I will argue that the qualitative and quantitative cases are 

closely related (section 7), it will still prove useful to distinguish them notationally. So 

for qualitative effect variables, switch to the lower case, letting yA* denote the target 

effect event and yC* denote the target contrast effect event. Note from the beginning that 

yA* and yC* need not be exhaustive, i.e. that in general we cannot simply assume yC* = 

not-yA*. For example, yA* and yC* might represent a non-exhaustive pair of political 

parties, policy options, or leaf colors. 

 

A difference from the quantitative case is that, unlike YA* and YC* earlier, yA* and yC* 

cannot be interpreted as two different points on a single quantitative scale, and hence it is 

not informative to compute a ‘distance’ between them. For example, even if we set by 

convention one leaf color = 1, another = 2, another = 3, etc, still we cannot meaningfully 

compare the different ‘distances’ between different leaf colors. Accordingly, in the 

qualitative case no good sense can be made of a DE defined in terms of ‘distance’ 

between yA* and yC*. 

 

Nevertheless, quantitative traction can still be gained. The key is to switch to considering 

the probabilities of yA* and yC*. I will denote these by pr(yA*) and pr(yC*) respectively. 

In qualitative cases, it is these probabilities that become the effect variables of interest. 

(Much the same applies to the interpretation of [1] in qualitative cases.) 

 

I conceive of the probabilities here as objective single-case chances. Such chances are, of 

course, philosophically controversial, and taking them to be the effect variables deviates 

from usual practice in the causal modeling literature. In defense: in practice, they are 

invoked ubiquitously in many sciences, but it does not seem common that actual 

scientific disputes turn on disputes about particular evaluations of them. Besides, of 

course, other accounts of the metaphysics of probability have their own difficulties too. 

At any rate, chances seem to be a presupposition of many claims of CS and DE. To be 

sure, the epistemology of such chances can be difficult. If their value really is crucially 

unclear in any particular case, then so will be the associated CS or DE. In practice, 

perhaps, often we will only be able to measure whether an explanation captures more or 
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less well what is intended to be explained, rather than being able to claim knowledge of 

the relevant chances’ exact values.
13

 

 

The numerical distances of interest in qualitative cases are that between the value for 

pr(yA*) set by the explanandum and the value for it suggested by the explanans, and 

likewise for that between the target and suggested values of pr(yC*). As before, begin by 

asking: given W, would a change from XC to XA be responsible for exactly the salient 

change from yC* to yA*? More particularly, XA-rather-than-XC fully explains yA*-rather-

than-yC* if and only if the following two conditions are both satisfied: 

1) yA* occurs when XA occurs, i.e. pr(yA* / XA & W) = 1 

2) yC* would have occurred had XC occurred, i.e. pr(yC* / XC & W) = 1 

 

These two conditions again yield us in turn a measure of partial explanation. In particular, 

the degree of explanation achieved by an explanans XA-rather-than-XC with respect to an 

explanandum yA*-rather-than-yC* is: 

[1 – pr(yA* / XA)] + [1 – pr(yC* / XC)]  [3] 
(For ease of exposition, here and subsequently I omit explicit mention of W in each 

probability term; as before, W should be assumed constant across any formula.) We have 

full explanation when the distances between suggested and target values are both zero, in 

which case the value of [3] as a whole will be zero. The DE score corresponding to the 

neutral case of no explanation is often 1. When the latter is the case, a necessary 

condition for achieving any explanatory credit is then that both probabilities in [3] be 

greater than zero. 

 

The similarity between [3] and [2] is obvious. The target explanandum probabilities are 

1, so, as it were, YA* = 1 and YC* = 1. And YA and YC in [2] correspond to the relevant 

probabilities suggested for the target values by the explanans, so, as it were, YA = pr(yA* 

/ XA), and YC = pr(yC* / XC). (In general, the two cases are nevertheless not quite 

equivalent – section 7.) 

 

Notice that [3] allows for indeterminism.
14

 In particular, although in the actual world both 

XA and yA* occurred, it does not follow automatically that pr(yA* / XA) = 1. Perhaps 

instead yA* was a fluke, and normally XA would have been expected to lead to some 

other outcome. Generally, if pr(yA* / XA) is small, then XA led to yA* only by fluke; if it 

is close to 1, on the other hand, then yA* was only to be expected. The left-hand term in 

                                                 
13

 I do not endorse here any particular account of objective chance. The burden of this paper is only to 

explicate DE once given the probabilities in an explanandum and explanans, not to explicate those 

probabilities’ underlying metaphysics. 
14

 The ‘indeterminism’ here is uncertainty regarding what effect results from a particular specification of 

cause and background conditions. I express no opinion on the further metaphysical issue of whether that 

uncertainty in turn results merely from the coarse-grainedness of such specifications, or in addition from 

the world itself ultimately being indeterministic ‘all the way down’. 

 Some have objected that the mere raising of yA*’s probability is unworthy of explanatory credit if 

that probability remains below 1. But, following (Strevens 2000), I reject this objection as incompatible 

with well founded scientific practice, not to mention with standard notions of probabilistic causation. (See 

also Northcott 2010 regarding our judgments of causation in indeterministic cases.) 
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[3] thus serves to measure the explanatory credit due to chance. If and only if chance has 

played no explanatory role at all, pr(yA* / XA) = 1, and so the left-hand term is zero.
15

 

 

If the probability in [3]’s right-hand term is less than 1, by contrast, then the explanatory 

gap that that represents is not due to chance. The reason is that yC*is not an actual event 

and so has had no opportunity, as it were, flukily to occur in defiance of a low pr(yC* / 

XC). In quantitative cases, indeterminism is reflected by a possibly non-zero value for the 

left-hand term |YA* – YA| in [2], which, recall, should be read as being preceded by an 

expected-value operator. 

 

This touches on a deeper issue. As it were, two distinct things may affect an 

explanation’s success: the cause and contrast it cites, and chance. [3] penalizes alike 

explanatory incompleteness stemming from either factor. Suppose, however, we wished 

to assess the explanatory success purely of the cause-element, eliminating any penalty for 

the role of chance. In that case, we would be concerned just with explaining correctly the 

probability of yA*, and not with the subsequent chance-element of whether yA* happened 

actually to occur. 

 

So far we have assumed that yA* should always be taken to have a target probability of 1. 

If the actual probability of yA* (conditional on XA & W) is less than 1, that inevitably 

means we must then concede an explanatory role for chance. So far, our formulas for DE 

have penalized that. But this new ‘chance-free’ measure applies to an explanandum of 

‘why was the probability of yA* this rather than that value?’ In other words, the salient 

contrast is now some alternative probability of yA*, not some alternative event yC*. 

Formally, this is a significant change because it means that there is now only one effect 

variable in play, namely pr(yA*). We have therefore left the qualitative case behind and 

returned to the quantitative one. Thus formula [2] rather than [3] applies, with ‘Y’ in [2] 

just being pr(yA*). The target level YA* of Y is the actual probability of yA*, and the 

target contrast level YC* is whatever contrast probability of yA* is specified by the 

explanandum. 

 

In this way, we may accommodate a focus on, so to speak, just the cause rather than 

chance element in an explanans. However, often the explanandum of interest is in fact 

‘why did yA* occur (rather than some yC*)?’ In other words, we seek to explain the actual 

occurrence of yA*, not just its probability. In that case, [3] is again the relevant measure. 

It indeed penalizes an explanans that leaves yA* merely likely rather than certain – but I 

think that, if we are seeking to explain yA*’s actual occurrence, this is just as it should be. 

An explanation that leaves less to chance deserves to be rewarded for that. Analogously, 

quantum theory is usually thought highly successful at explaining the probability of some 

outcomes, but famously unsuccessful at explaining why those particular outcomes then 

                                                 
15

 In the deterministic case, pr(yA* / XA) = 1 automatically, corresponding as just noted to zero explanatory 

role for chance. The right-hand term in [3], i.e. [1 – pr(yC* / XC)], could now only take the values 0 or 1. So 

[3] tells us that in deterministic qualitative cases DE scores can only be 0 or 1, i.e. a factor can only explain 

either everything or nothing. But although some cases of interest fall into this category, clearly many do 

not. So any satisfactory DE formula must offer a treatment of indeterminism too. 
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actually occurred. Precisely this distinction is what this paper’s formulas reflect in their 

treatment of chance. 

 

To illustrate [3] in action, finally, return to the Hiroshima example. This is a qualitative 

case. Let yA* = the first dropping of an atomic bomb in war, i.e. the dropping of the 

Hiroshima bomb. Let XA = (the occurrence of) fine weather that day, XC = bad weather 

that day. And let ZA = Japanese reluctance to surrender, ZC = Japanese willingness to 

surrender. Consider the short-term explanandum, i.e. why the bomb was dropped exactly 

when it was. This is represented by yC* = a bomb was first dropped in the few days after 

6
th

 August 1945. Intuitively, recall, here the fine weather is highly explanatory whereas 

the Japanese reluctance to surrender is not. Begin by assuming pr(yA* / XA) = 1. Then, 

applying [3]: 

1) Good weather’s DE = [1 – pr(yA* / XA)] + [1 – pr(yC* / XC)] = [1 – 1] + [1 – 

pr(given bad weather, a bomb would first have been dropped in the few days 

after)] = 0 + (1 – quite high) = (1 – 0.9, say) = 0.1. 

2) Japanese attitude’s DE = [1 – pr(yA* / ZA)] + [1 – pr(yC* / ZC)] = 0 + [1 – 

pr(given Japanese willingness to surrender, a bomb would first have been dropped 

in the few days after)] = (1 – quite low) = (1 – 0.1, say) = 0.9.
16

 

Thus, as desired, the weather but not the Japanese attitude is endorsed as highly 

explanatory. Of course, what matters here is not the exact figures but rather only the 

general point they illustrate – namely that [3] successfully tracks those factors that 

determine DE. As is easily shown, the results are reversed for the long-term 

explanandum, i.e. for a new yC* = a bomb was first dropped only in subsequent years. 

Then it is the Japanese attitude, but not the weather, that comes out highly explanatory. 

 

Now suppose in addition that, even given the fine weather, still it was only 50-50 that a 

bomb would first be dropped that day, in other words that pr(yA* / XA) = 0.5. [3] tells us 

that in that case the fine weather’s DE = (1 – 0.5) + (1 – 0.9) = 0.6, i.e. now much further 

from full explanation. Intuitively, this is because even given the fine weather, still it was 

rather chancy whether a bomb would be dropped. As it were, much of the explanandum 

remains unexplained even after taking the fine weather into account, therefore reducing 

the explanatory credit due to the latter. 

 

6) Scope of DE 

[3] is rather more adaptable than it might first appear. In particular, it is readily extended 

to cases where the contrast of interest is a range of values. For instance, ‘why was the 

budget $2m rather than anything under $1m?’ could be represented by yC* = the event of 

any budget under $1m. Other forms of explananda can be accommodated similarly, such 

as a concern only with ordinal outcomes (‘yC* = less than yA*’). 

 

Analogous remarks apply also to yA*. That is, the same actual event may be described in 

many ways, possibly impacting the DE score. In this sense, DE is description-dependent. 

Fundamentally, formula [3] is only defined once given a prior choice of yA* and yC*. One 

                                                 
16

 The background conditions implicit in ‘pr(yC* / XC)’ should be taken to include ZA but not XA, while 

those implicit in ‘pr(yC* / ZC)’ include XA but not ZA. 
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result of this is precisely the flexibility to encompass many different explanatory 

concerns about the same actual event. 

 

Much the same is also true of the quantitative case’s formula [2]. That too is defined only 

once given a prior choice of variable Y. Just as with the qualitative case, this again gives 

us the flexibility to encompass many different explanatory concerns surrounding the 

same actual event. For example, a concern with logarithmic scores could be readily 

accommodated by re-defining Y accordingly. In this way, for instance, [2] can embrace a 

multiplicative rather than difference understanding of error. Similarly, if our concern is 

with the variance rather than mean of Y, we are free to set up [2] with the former rather 

than latter as the effect variable. This flexibility, shared also by formula [1] for causal 

strength, is an important asset. 

 

7) Relation between the qualitative and quantitative cases 

The close similarity between [2] and [3] reflects how DE is much the same concept in 

qualitative and quantitative cases. Each time, it is a matter of the total distance between 

the explanandum’s and explanans’s values for the actual and contrast effect. It is natural 

then to ask: is there any real difference between the two cases at all? The answer is ‘yes’: 

in the quantitative case there is only one effect variable, namely Y; YA* and YC* are 

merely two different target values of it. In the qualitative case, by contrast, there are two 

independent effect variables, namely pr(yA*) and pr(yC*). That is, even though yA* and 

yC* can be seen as two different values of the same variable, their probabilities are 

independent – if pr(yA*) has a particular value, we cannot infer that of pr(yC*). 

 

Before discussing this difference further, note first that in one special case it melts away. 

In particular, if yA* = not-yC*, then it follows that, for any given W, pr(yA* / W) = 1 – 

pr(yC* / W), and hence that there is again only one independent effect variable. In that 

case, the qualitative case indeed reduces to the quantitative one. In particular, we may 

equate the quantitative effect variable Y with the qualitative one pr(yA*).
17

 

 

In general though, in the qualitative case there are two distinct effect variables in play. 

DE is then measured in units of probability. In the quantitative case, it was measured in 

units of effect. Of course, if an effect term is the probability of an event, then probability 

is the unit of effect – and that is just as well since, as we saw, this provides the means of 

ensuring that in the qualitative case the two otherwise distinct effect variables are made 

commensurable, and thus that it makes sense to add the two distances represented in [3]. 

 

In summary, any contrastive explanandum has two terms. The issue is these terms’ 

relation to each other – are they values of one common variable or of two independent 

variables? The former case I have labeled ‘quantitative’, as it applies whenever an 

explanandum asks why we are at one point rather than another on a single quantitative 

                                                 
17

 In Figure 1, in the normal qualitative case we would need two separate lines, one on which to represent 

the target probability of yA* and the explanans’s suggested probability for it, and the other on which to 

represent the same for yC*. For each line, the target probability would be 1. But if yA* = not-yC*, and hence 

pr(yA*) = 1 – pr(yC*), then we can again use a single line, the two target probabilities on it being 1 and 0. 
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scale. The latter case I have labeled ‘qualitative’, as it typically applies whenever an 

explanandum asks why one qualitative event occurred rather than another. 

 

8) Apportioning responsibility between causes 

Our DE formulas address merely the degree of explanatory credit accruing to any one 

cause. Often though, the real focus of interest is weighing up the relative importance of 

different causes of the same outcome. How do our formulas speak to that? In brief, 

simply that each cause’s DE is assessed individually, and then whichever has the better 

DE is the more important. 

 

So far, so straightforward. But things become more apparently troublesome when we 

consider non-additive causation. Imagine, for example, that adding one bag of Green 

fertilizer increases a plant’s height by 2 inches, that adding instead a bag of Blue fertilizer 

increases it by 4 inches, but that adding both the fertilizers together does not increase the 

plant’s height by 6 inches, as we might expect, but rather by 14 inches. That is, there is a 

positive interactive effect between the two of an extra 8 inches. How much of the credit 

for the full 14 inches then accrues to the Green fertilizer alone? Intuitively, the issue 

seems confusing because it is not clear how – or whether – to include the big interactive 

effect with Blue. 

 

Suppose that without fertilizer the plant does not grow at all, and that the explanandum of 

interest is ‘why is the plant height 14 rather than zero inches?’, i.e. YA* = 14 and YC* = 

0. Then, for cause-contrasts of zero bags of the respective fertilizer, we may apply 

formula [2] to each of Green and Blue: 

1) For Green (assuming the presence of Blue), YA = height given Green = 14, and 

YC = height without Green = height with just Blue = 4. 

Therefore Green’s DE = |YA* – YA| + |YC* – YC| = |14 – 14| + |0 – 4| = 4 

2) For Blue (assuming the presence of Green), YA = height given Blue = 14, and 

YC = height without Blue = height with just Green = 2. 

Therefore Blue’s DE = |YA* – YA| + |YC* – YC| = |14 – 14| + |0 – 2| = 2 

Thus Blue is more explanatory here than is Green, as we would expect. Yet both these 

causes are highly explanatory relative to the ‘size of explanandum’. Intuitively, there 

were 14 inches of plant height to explain, and compared to that Green and Blue’s 

explanatory errors were each pretty low; in particular, they do not add up to 14. But, the 

worry runs, how can two different causes both explain ‘most’ of an explanandum? Isn’t 

there only so much explanatory credit to go round? 

 

A view that seems very widespread is that an explanandum comes with a fixed pie of 

explanatory credit available, with different causes then competing for the largest slice of 

that pie in zero-sum fashion. But I diagnose this view to be mistaken, informed by, so to 

speak, a naïvely additive sensibility. In non-additive cases, we should expect such a 

sensibility to lead our intuitions astray. It is perfectly possible for many different causes 

simultaneously to have large slices of the pie. The slices need not add up to the total pie – 

arguably, that is the whole meaning of non-additivity! In this instance, Green and Blue 



 15 

fertilizer both made a large difference to the plant’s height, and DE formulas should 

reflect that.
18

 

 

9) Relation to previous accounts 

There have been several recent accounts of ‘partial explanation’ or ‘explanatory power’ 

but none turns out quite to focus on our precise issue.
19

 Two omissions in particular 

constantly recur. First, no other account has analyzed (or usually even noted) the impact 

of explanandum-dependence here – even though that should be mandatory given a 

contrastive view of causal explanation. Second, the focus has been on, in our 

terminology, full explanations, proposing criteria according to which some of these are 

better or more probable or otherwise more desirable than others. The focus has therefore 

not been on explanations whose cited causes do not fully account for the explanandum in 

the first place. Note that this kind of incompleteness is not due to indeterminism, i.e. we 

are not concerned merely with a less-than-1 probability of there being a full explanation – 

rather, in such cases the probability of a full explanation is zero. (To use our earlier 

terminology, the shortfall occurs in the cause-element, not just in the chance-element.) 

 

As a result of these shortfalls, Halpern and Pearl’s (2005) account of partial explanations, 

for instance, offers no way of comparing the degree of explanation offered by two 

independent known explanations. Yet just such a comparison is a desideratum in social 

science ubiquitously, as in the Bowling Alone example with which we began. Schupbach 

and Sprenger’s (2011) analysis of explanatory power, again offers no analysis of 

explanandum-dependence. Not by coincidence, their eventual definition then recalls ours 

of causal strength, being a function of (in our terminology) increasing pr(yA / XA), but 

with no allowance for either yA* or yC*. Finally, the two omissions above are also shared 

by Ylikoski and Kuorikoski’s otherwise excellent (2010) survey. 

 

One important precursor that does acknowledge explanandum-dependence is Hitchcock 

and Woodward (2003), who discuss what they call ‘explanatory depth’, and moreover in 

the context of precisely the kind of contrastive theory of causal explanation that I have 

been working with.
20

 However, Hitchcock and Woodward are interested in 

generalizations rather than particular token explanations. They define explanatory depth 

to be, roughly speaking, the range of interventions under which a generalization remains 

invariant. In this paper’s notation, a generalization enables the formulation of a correct 

explanans for a given explanandum by telling us the value of XC that would – given 

appropriate W – generate the relevant yC* or YC*. (Hitchcock and Woodward do not 

discuss indeterministic cases and thus the possibility also that YA ≠ YA*.) Explanatory 

                                                 
18

 A similar point applies to causal strengths, as per formula [1]: different causes’ strengths may sum to 

more than the total effect (or to less than it, in the case of negative rather than positive interaction). 

Moreover, different causes’ DE and CS scores may not ‘add up to the total’ even when there is no non-

additive interaction, although there is no space to show that here. 
19

 In addition to those works to be mentioned in this section, especially notable pioneers in the field are 

Sober (1988) and Sober et al (1992). Other treatments include those in Good (1961), Strevens (2000), 

Holland (1986), Pearl (2000), Spirtes et al (2000), and Northcott (2006, 2008c). 
20

 As Hitchcock and Woodward show, neither nomothetic nor unificationist models of explanation are well 

suited to capturing explanatory depth. So far as I know, neither has either model’s framework been used to 

analyze our issue of DE. I do not discuss here the prospects for doing so. 
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depth in this sense is therefore quite distinct from the degree to which a particular 

explanandum has been explained. Hitchcock and Woodward acknowledge the latter 

issue, which is the focus of this paper’s DE scheme, labeling it “accuracy” (p184), but 

they do not discuss it in detail. 

 

Turn briefly now to those few previous accounts that, like ours, do seek to analyze degree 

of explanation in particular cases. The formal definition of DE that is by far the most 

common in scientific practice, being widespread right across the biological and 

behavioral sciences, is that derived from the analysis of variance and a range of related 

statistical techniques. But the critiques of these techniques as instruments for assessing 

causal responsibility are by now familiar in the literature, so I will not belabor those 

critiques here beyond adding my endorsement of them. (For a sampling, see Lewontin 

1974, Northcott 2006, 2008a, Shipley 2000, Spirtes et al 2000.)
 21

 

 

These statistical techniques are also squarely aimed at the apportionment of explanatory 

credit between different causes. A notable additional critique of them is then that they 

implicitly assume that individual causes’ credits should necessarily ‘add up’ to the total 

effect. As discussed in the preceding section, I think this is a mistake.
22

 

 

The historian E.L. White once remarked that if “mosquitoes were as necessary as the 

Christians [to the fall of the Roman empire, then] neither is paramount to the other” 

(quoted in Martin 1989, 54). The central thought here, as with other proposals in the 

philosophy of history literature, is to identify a factor’s DE with its necessity for the 

explanandum. But such simple necessity is neither necessary nor sufficient for high DE, 

as is easily demonstrated (Northcott 2008c). For example, an unnecessary cause that 

raises the probability of an effect from 0.1 to 0.9 may certainly contribute more (in both 

the CS and DE senses) than a necessary cause that merely raises one from 0 to 0.1.
23

 

Analogous objections apply even to more sophisticated versions of this approach, such as 

those of Richard Miller (1987, 99) or Raymond Martin (1989, 78).
24

 Generally, the very 

fact that explanation can come in degrees at all tells against any identification of DE with 

necessity. 

 

10) Causation versus explanation 
If we adopt counterfactual theories of causation and explanation, then an important 

benefit of this paper’s distinction between CS and DE is that it sheds light on that 

                                                 
21

 In practice, the coefficients in regression analyses are also often used to quantify causal contribution, 

albeit in population rather than singular contexts. This too has been much criticized, e.g. by Spirtes et al 

(2000) and Northcott (2012). 
22

 This critique holds even though ANOVA, for instance, assigns credit to interaction terms separate from 

those representing causes individually. Formally, my quibble is with the denial by ANOVA of credit to 

individual causes for interactive effects in which they participate. 
23

 Admittedly, such counterexamples require indeterminism. But indeterminism in the sense required here, 

i.e. relative to the relevant causal model, is ubiquitous. Besides, for our purposes all we need is that there 

are some such indeterministic cases. 
24

 Miller also outlines another sense of DE that he labels ‘depth as priority’. But this turns out to be 

equivalent either to DE’s yC*-dependence, or else to Mill’s classic problem of causal selection. 
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between causation and explanation. (Again, by ‘explanation’ I have in mind here causal 

explanation.) 

 

To begin, note that DE scores are closely tied to the issue of explanatory relevance. First, 

we must state what, in a contrastive framework, such relevance amounts to. Formally, an 

explanans XA-rather-than-XC is explanatorily irrelevant with respect to an explanandum 

YA*-rather-than-YC* if and only if the following condition is satisfied: 

YA = YC    [4] 

In the qualitative case, there being now two independent variables, there are two 

conditions that must be satisfied: 

1) pr(yA* / XA) = pr(yA* / XC) [5] 

2) pr(yC* / XA) = pr(yC* / XC)  [6] 

In words, the change from XA to XC makes no difference to Y or, in the qualitative case, 

to either pr(yA*) or pr(yC*). 

 

Next, note that an immediate implication of counterfactual theories is that XA-rather-

than-XC is a cause if and only if it makes a difference to Y.
25

 It follows that something is 

a cause if and only if its CS ≠ 0. Thus, on a difference-making view CS is well labeled, 

since it indeed tracks causation. (Not coincidentally, this dovetails neatly with CS’s 

tracking of interventions.) 

 

Here, I propose that DE is well labeled too – by incorporating explanandum-dependence, 

it tracks explanation, just as CS tracks causation. In particular, a cause is explanatorily 

relevant if it fails to satisfy any of equations [4], [5] and [6]. (How else, on a difference-

making view, could explanatory relevance be understood?)  

 

Three claims about the relation between causation and explanation then follow: 

1) Explanatory relevance implies causation, i.e. a non-neutral DE implies a non-zero 

CS.
26

 

2) In turn, causation implies explanatory relevance, i.e. a non-zero CS implies that 

conditions [4], and [5] and [6], for explanatory irrelevance are not satisfied.
27

 

                                                 
25

 In keeping with the rest of the paper, throughout this section I formulate counterfactual considerations 

contrastively. This is in line with an explicitly contrastive-counterfactual view of causation (e.g. Northcott 

2008b, Schaffer 2005). But, if desired, this particular section’s discussion could equally well be framed in 

terms only of a counterfactual theory more generally. The reason is that the relevant contrastive 

considerations are germane to the interpretation of ‘~XA’ even on a binary-counterfactual view, save now 

entering via the pragmatics rather than semantics. So either way, contrastive considerations are inevitably 

incorporated somehow. 
26

 In the quantitative case, from [4] explanatory relevance implies that YA ≠ YC, and thus from [1] that CS ≠ 

0. In the qualitative case, from [5] and [6] explanatory relevance implies that pr(yA* / XA) ≠ pr(yA* / XC) 

and pr(yC* / XA) ≠ pr(yC* / XC), and thus from [1] that CS ≠ 0 whether the effect variable in [1] be either 

pr(yA*) or pr(yC*). 
27

 In the quantitative case, from [1] a non-zero CS implies that YA ≠ YC, and thus that [4] is not satisfied. In 

the qualitative case, from [1] a non-zero CS with pr(yA*) as the effect variable implies that pr(yA* / XA) ≠ 

pr(yA* / XC), and thus that [5] is not satisfied. The same applies with respect to pr(yC*) and [6]. 

Note that a non-zero CS is compatible with a neutral DE score though, albeit only one achieved 

‘flukily’ by an explanans that does impact on Y but that just happens to achieve as little explanatorily as 

does something irrelevant. 
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3) However, causation does not imply full explanation. That is, full explanations are only 

a subset of causations. Generally, a 4-ton {XA, XC, YA, YC} endorsed as causal becomes 

also fully explanatory only if YA = YA* and YC = YC*, i.e. only if the cited YA and YC 

happen also to be those independently made salient by the explanandum. Since this is 

frequently not the case, so frequently something may be a cause but not fully 

explanatory.
28

 

 

It is because of this final possibility that the Japanese unwillingness to surrender may 

have caused the Hiroshima bombing, for instance, even while for some purposes not 

being explanatory of it. Or that having a particular gene may be a cause of schizophrenia, 

but not very explanatory of it because it increases the risk only by a small percentage. Or 

that the air-conditioning may be a cause of the room’s low temperature, even while not 

explaining why that temperature is nevertheless higher than last year’s. 
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28

 In the quantitative case, from [1] causation implies only that YA ≠ YC. But from [2], full explanation 

requires further that YA = YA* and YC = YC*. Therefore causation alone does not imply full explanation. In 

the qualitative case, when pr(yA*) is the effect variable, from [1] causation implies only that pr(yA* / XA) ≠ 

pr(yA* / XC). But from [3], full explanation requires further that pr(yA* / XA) = pr(yC* / XC) = 1. Causation 

similarly fails to imply full explanation when the effect variable is pr(yC*). 
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Figure 1 – Visual representation of degree of explanation 
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