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Abstract

At the 1927 Como conference Bohr spoke the now famous words “It is wrong to think
that the task of physics is to find out how nature is. Physics concerns what we can say
about nature.” However, if the Copenhagen interpretation really holds on to this motto,
why then is there this feeling of conflict when comparing it with realist interpretations?
Surely what one can say about nature should in a certain sense be interpretation inde-
pendent. In this paper I take Bohr’s motto seriously and develop a quantum logic that
avoids assuming any form of realism as much as possible. To illustrate the non-triviality
of this motto a similar result is first derived for classical mechanics. It turns out that the
logic for classical mechanics is a special case of the derived quantum logic. Finally, some
hints are provided in how these logics are to be used in practical situations and I discuss
how some realist interpretations relate to these logics.

1 Introduction

Over the last few decades much of research in the foundations of quantum mechanics has fo-
cused on the impossibility of certain interpretations. Results such as the Kochen-Specker theo-
rem (Kochen & Specker, 1967) or the Bell inequalities (Bell, 1964), (Clauser, Horne, Shimony & Holt, 1969)
mainly establish what is unspeakable in quantum mechanics. Often these results are inter-
preted in favor of instrumentalist or Copenhagen-like interpretations of quantum mechanics.
But as it is well known, switching to an epistemic account of physics alone isn’t sufficient to
account for the counter-intuitive aspects of quantum mechanics. Furthermore, these accounts
often resort to vagueness when explaining, for example, how quantum mechanics can violate
Bell inequalities. A notorious example is Bohr’s account of complementarity.

In this paper I propose a formal reasoning scheme for epistemic approaches in physics in
order to shed some light on what is speakable in quantum mechanics. After all, the more
clearly one understands the empirical part of quantum mechanics, the easier the ontological
part can be investigated. To get a feeling for the problems I have in mind, consider the
following result from probability logic.

Theorem 1. Suppose P is a probability function on a collection of sentences S that satisfies
the following rules for all A,B ∈ S:

1. If A ⊢ B, then P(A) ≤ P(B).
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2. P(A ∨B) ≤ P(A) + P(B).

Then, if S obeys classical logic, the following inequality holds for all A1, A2, B1 and B2 in S:

P(A1 ∧B1) ≤ P(A1 ∧B2) +P(A2 ∧B1) + P(¬A2 ∧ ¬B2). (1)

Proof. The result follows by writing out in the following way:

P(A1 ∧B1) = P(A1 ∧B1 ∧ (B2 ∨ ¬B2)) = P((A1 ∧B1 ∧B2) ∨ (A1 ∧B1 ∧ ¬B2))

≤ P(A1 ∧B1 ∧B2) + P(A1 ∧B1 ∧ ¬B2) ≤ P(A1 ∧B2) + P(B1 ∧ ¬B2)

= P(A1 ∧B2) + P(B1 ∧ ¬B2 ∧ (A2 ∨ ¬A2))

= P(A1 ∧B2) + P((B1 ∧ ¬B2 ∧A2) ∨ (B1 ∧ ¬B2 ∧ ¬A2))

≤ P(A1 ∧B2) + P(B1 ∧ ¬B2 ∧A2) +P(B1 ∧ ¬B2 ∧ ¬A2)

≤ P(A1 ∧B2) + P(A2 ∧B1) +P(¬A2 ∧ ¬B2).

(2)

It is well-known that quantum mechanics is capable of violating such inequalities. To see
this one can consider a pair of entangled qubits and set Ai = [σA

ri
= 1

2 ], ¬Ai = [σA
ri

= −1
2 ],

Bi = [σB
ri

= 1
2 ] and ¬Bi = [σB

ri
= −1

2 ] for i = 1, 2, where σA
ri

is the spin along the ri-axis of
the qubit send to Alice, and σB

ri
the spin along the ri-axis of the qubit send to Bob. Now any

interpretation (realist or instrumentalist) of quantum mechanics must be able to point out a
flaw in this theorem. For example, non-local theories may argue that a revelation of the truth
value of, say, A1 instantaneously causes an altering of the truth values of B1 and B2. From
a Copenhagen perspective one may argue for example that B1 and B2 are complementary
sentences which cannot meaningfully occur both in a single sentence, making the proof of
theorem 1 meaningless. A similar approach would be used by followers of the consistent
histories approach or the many worlds interpretation. And the list can go on.

One of the responses that I find most intriguing is that from orthodox quantum logic
(Birkhoff & von Neumann, 1936). In this approach the proof simply fails because it uses
the law of distributivity several times; the premises of the theorem do not hold in quantum
mechanics. The elegance of this approach is that it points to a flaw in the proof precisely there
where the proof clashes with quantum mechanical calculations. But as far as explanations
go, this approach only replaces a mystery with another mystery as long as no explanation is
given for the failure of distributivity. In particular it raises questions about the meaning of
the logical connectives “and” and “or”. It is well argued that their meaning in quantum logic
should at least differ from the classical meaning (Dummett, 1976), but it isn’t that clear what
it should be instead. From this perspective, traditional quantum logic has failed in providing
a framework for reasoning about quantum mechanical phenomena.

A striking example (due to Popper) of the problem with interpreting logical connectives
in quantum logic is the following. The law of excluded middle is maintained in quantum
logic and therefore, for every proposition P the formula P ∨¬P is always true. Furthermore,
for every pair of propositions P1 and P2 it holds that if P1 is true, then P1 ∧ (P2 ∨ ¬P2) is
also true. However, in quantum logic there are such pairs for which P1 is true, but neither
P1 ∧ P2 nor P1 ∧ ¬P2 is true (a failure of the law of distributivity). That is, P1 presents
itself as a proposition that is both incompatible with P2 and ¬P2 and may thus be thought
of as an excluded middle. Obviously, this contradiction arose because I held on to a certain
interpretation of the logical connectives. But the derivation seems innocent enough for me
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to conclude that no satisfactory interpretation of the quantum logical connectives can be
defined. Rather, I tend to agree with Popper that

“the kind of change in classical logic which would fit what Birkhoff and von Neu-
mann suggest [. . . ] would be the rejection of the law of excluded middle [. . . ], as
proposed by Brouwer, but rejected by Birkhoff and von Neumann” (Popper, 1968).

But a crude shift to intuitionistic logic in which the law of excluded middle is simply thrown
overboard seems unsatisfactory. In some cases one simply finds it to be true. More specifically,
upon a measurement of σA

ri
one knows that either Ai or ¬Ai will be true. The decidability

of a proposition thus depends on the context in which the proposition is formulated. But in
general decidability in one context can’t be expected to hold in another context. Of course
this is already well-known. Feynman formulated this difficult nature as follows for the two-slit
experiment:

“What we must say (to avoid making wrong predictions) is the following. If one
looks at the holes or, more accurately, if one has a piece of apparatus which is
capable of determining whether the electrons go through hole 1 or hole 2, then
one can say that it goes either through hole 1 or hole 2. But, when one does
not try to tell which way the electron goes, when there is nothing in the ex-
periment to disturb the electrons, then one may not say that an electron goes
either through hole 1 or hole 2. If one does say that, and starts to make any
deductions from the statement, he will make errors in the analysis. This is the
logical tightrope on which we must walk if we wish to describe nature successfully.”
(Feynman, Leighton & Sands, 1963, p. 37-9)

The aim is now to provide a logical framework in which this ‘logical tightrope’ has a natural
place.

2 A simple example

As may be obvious, in this text I take ‘measurement’ as a primitive concept. It is my opinion
that this is unproblematic as long as one focuses only on the epistemic part of a theory.
For quantum mechanics this seems justified since there is no consensus on the ontological
interpretation. A consequence of this approach is noted by Bell.

“When one forgets the role of the apparatus, as the word ‘measurement’ makes
all too likely, one despairs of ordinary logic – hence ‘quantum logic’. When one
remembers the role of the apparatus, ordinary logic is just fine.” (Bell, 1990, p.
34)

And indeed the logic derived here will not be classical and may thus be conceived as a quantum
logic. However, I would like to go further than Bell and state that, if one finds an ontology for
the apparatus in terms of the theory, classical logic seems a necessity; reality forces the law of
excluded middle upon us. In particular I am skeptic about the generalized notion of reality
proposed in the topos theoretic approach in (Döring & Isham, 2011) or the ‘quantum num-
bers’ approach in (Corbett & Durt, 2009). At the opposite end, it may be clear that classical
logic is by no means sufficient for a clear ontological description (Baltag & Smets, 2011).
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The conceptually most difficult part in the derivation of a quantum logic is to let go of any
ontological prejudices. Therefore I will start with a simple example which will be generalized
to classical mechanics. It turns out that already in these cases the epistemic approach makes
the logic significantly more complex. In the case of classical mechanics the obtained logic
can then easily be reduced to the standard logic by assuming the standard ontology. That
is, the interpretation in which observables correspond to certain elements of physical reality
that have values at all times. In the quantum case a similar logic will be developed but, as it
is well known, due to the Kochen-Specker theorem the logic can not be reduced to a simpler
one by introducing the standard ontology of classical mechanics. The advantage of taking
the detour with classical mechanics is that it shows already what an amount of work it takes
to drop the assumption of realism and it shows the similarity between classical and quantum
mechanics from the epistemic point of view.

It is the consensus that “elementary” propositions in scientific theories are of the form
A ∈ ∆ where A is some observable and ∆ is some subset of the set of all possible measurement
outcomes for A (usually taken to be Rn or some subset thereof). Oddly enough there is no
consensus on what the proposition A ∈ ∆ stands for exactly (Isham, 1995). In the traditional
viewpoint observables correspond to certain elements of a physical reality and, as such, have
a definite value at all times. The proposition A ∈ ∆ is then taken to be a proposition about
the definite value of the element of physical reality corresponding to A; A has a value in ∆.
It is an ontological proposition.

The simplest example is a theory describing only one observable A which can assume the
values 0 and 1. The standard logic for this theory consists of the sentences

⊥ = A ∈ ∅ A ∈ {0} A ∈ {1} ⊤ = A ∈ {0, 1}. (3)

Equating ⊤ (triviality) with A ∈ {0, 1} is based on the assumption that A has a definite value
at all times. But from the instrumentalist point of view one cannot get to this conclusion;
one is only certain of the fact that A has a definite value when one checks that this is indeed
the case. Note that this is not the same as denying that A has a definite value at all times,
it is just acknowledging that instrumentally one cannot know this. It is based on the credo
that “unperformed experiments have no result”1. So at least the sentences ⊤ and A ∈ {0, 1}
should be treated as logically distinct. It seems intuitive that a same argument can be held to
take apart ⊥ and A ∈ ∅. But there is an asymmetry. Still holding on to interpreting A ∈ ∆
as “A has a value in ∆” the sentence A ∈ {0, 1} can be found true upon measurement of A.
The sentence A ∈ ∅ on the other hand is a rather meaningless sentence in the instrumentalist
approach. In fact, if one thinks about it, the whole phrase “A has a value in” is only well-
defined in the context of a measurement. So whenever the sentence A ∈ ∅ has a meaning, it
is false. But then a similar argument can be held for all sentences of the form A ∈ ∆.

The ambiguity that arises from the fact that sentences not always have a meaning is due
to the ontological baggage that “has a value” brings along. For the sake of clarity I therefore
propose a new interpretation of A ∈ ∆ and have it stand for “I have measured A and the
result lay in ∆”. In this interpretation all the sentences in (3) have a definite meaning at all
time. It also follows that A ∈ {0, 1} is not trivially true, whereas A ∈ ∅ may be considered
trivially false. For this last point I am adhering to the opposite of Peres’ credo: “performed
experiments have a result”. This idealization helps to keep things as simple as possible. To

1This is the title of Peres’ article (Peres, 1978) in which he advocates against the use of counterfactual
reasoning. This opinion is also reflected in (Peres, 1984) and (Peres, 2002).
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emphasize this new interpretation I also introduce a new notation. The standard A ∈ ∆ will
now be denoted MA(∆). The logic resulting from these considerations is depicted in figure 1.

⊥

MA({1})MA({0})

MA({0, 1})

⊤

Figure 1: The intuitionistic logic for a simple the-
ory with one observable.

Some readers may get the feeling they
are being tricked into the use of intuition-
istic logic so I would like to explain that in
the present case the use of this kind of logic
is not that strange at all. Classical logic re-
lies on the idea that there is a fact of the
matter as to which every sentence is either
true or false. Intuitionistic logic focuses more
on the epistemic view, interpreting ‘true’ as
‘knowing it to be true’. The truth of a nega-
tion is then read as ‘knowing it to be false’.
An example in mathematics is the sentence
“∀x ∈ R : x ≥ 0 or x ≤ 0”. Classically this
is a true sentence, but intuitionists empha-
size that real numbers can be constructed
for which one simply does not know whether
x ≥ 0 or x ≤ 0 is the case, and so they reject
this sentence. Platonists often argue that the sentence is true by virtue of the existence of
the set of real numbers in a Platonic world. In physics intuitionistic logic then seems ap-
propriate if one recognizes that one does not know what the ontology is of the system under
investigation.

For the true classical logician these arguments are most likely not convincing and he/she
may argue that negation is just wrongly defined here. In that sense the negation of “knowing
it to be true” should be “not knowing it to be true” (which is what one does in formal
epistemic logic). Much more propositions would have to be added to make the logic classical
and most of them are rather dull. For example, in the mathematical case one would now have
propositions about not having a proof of x ≤ 0 for some x ∈ R. In physics one would have
to add propositions about not performing measurements. From this perspective the choice
for intuitionistic logic in this text is based on simplicity. So no claim for the necessity of
intuitionistic logic is made here. In particular, I disagree with the idea that logic may be
empirical (Putnam, 1969).

3 Classical Mechanics

In classical mechanics the situation immediately becomes more interesting and more com-
plex simply because there is more than one observable. The task is to identify elementary
propositions of the formMA(∆) with mathematical objects in some set LCM . Logically equiv-
alent propositions may then be identified with the same object in LCM . But also sentences
composed of several of these elementary propositions should be in this set, and LCM should
respect the reasoning structure for these sentences. Consequently, LCM will be a lattice in
which meets and joins can be interpreted as the logical connectives ‘and’ and ‘or’. The first
thing to do is to establish what the total set of elementary propositions is i.e., to investigate
which sentences MA(∆) can be formed.

In classical mechanics, an observable A is identified with a function fA on a phase space
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Ω taking values in VA ⊂ R, the set of possible measurement outcomes for A. The laws
about these observables are completely captured by the structure of these functions. A set of
observables {A1, . . . , An} obeys a law if there exists a function f : VA1

× · · · × VAn → R such
that

f (fA1
(ω), . . . , fAn(ω)) = 0, ∀ω ∈ Ω. (4)

This law may then be written as f(A1, . . . , An) = 0.

It should be noted that I thus focus on the observables in the theory rather than on the
phase space. In fact, I abandon the ontological assumption that the system at each moment
actually finds itself in a certain state ω ∈ Ω. So I also diverge from the standard method of
developing a logic for classical mechanics, which is based on this ontological assumption. The
purpose is not to argue against this assumption but to show that, as it turns out, if one drops
this assumption, classical mechanics and quantum mechanics become more alike.

It seems inappropriate to assume that every function from Ω to some subset of R should
also correspond to an observable. However, given some set of observables Obs , this set can be
completed in a certain way, adding more observables. For instance, for every observable A and
every2 f : VA → R the function f ◦ fA can also be considered an observable corresponding to
a measurement of A and then applying f to the outcome. More generally, for every sequence
of observables A1, . . . , An and every f : VA1

× · · · × VAn → R one can consider the observable
identified with a simultaneous measurement of A1, . . . , An and then applying f to the outcome
string. A set of observables will be called complete if it contains all such additional observables
(i.e. it is closed under the application of functions). I will assume from now on that Obs is
completed in this sense.

The set of elementary propositions for classical mechanics is now given by

EPCM := {MA(∆) ; A ∈ Obs,∆ ⊂ VA}. (5)

In the end, this set should in some way be related to the logic LCM of the theory. To
figure out what this logic should be it is best to investigate how this logic should behave
when restricting to elementary propositions. In other words, it is to be investigated what an
appropriate preorder would be for the set EPCM both interpretation wise and mathematically
(for indeed, the elementary propositions have now been identified with mathematical objects).

A consequence of the functional relationships between observables is that the set of possible
measurement outcomes for an observable isn’t of much importance, but rather the partition
of Ω that is generated by it, i.e. the set

PA := {f−1
A (x) ; x ∈ VA}. (6)

In particular, if two observables generate the same partition, then they are completely equiv-
alent. That is, a measurement of the one allows one to completely determine the outcome of
the measurement of the other and vice versa. Note that this is the case for two observables
A1 and A2 iff there exists an invertible function f : VA1

→ VA2
such that f ◦ fA1

= fA2

and f−1 ◦ fA2
= fA1

. Consequently, a sufficient condition for two propositions MA1
(∆1)

and MA2
(∆2) to be logically equivalent is PA1

= PA2
and f−1

A1
(∆1) = f−1

A2
(∆2). This logical

2It may disturb the reader that I allow every function and I don’t restrict to some class of functions. It
does indeed seem more appropriate to confine oneself to a certain class. However, the choice of which class is
an entire different discussion and I don’t have a clear opinion on this. The reader is free to choose any class
(e.g. Borel, continuous, computable, etc.) for her/himself and it won’t effect the present discussion.
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equivalence is a first indication of what the pre-order on EPCM should look like. In the end
two propositions MA1

(∆1) and MA2
(∆2) are then logically equivalent iff

MA1
(∆1) ≤ MA2

(∆2) and MA2
(∆2) ≤ MA1

(∆1). (7)

In the following I define ≤ by investigating sufficient and necessary conditions for concluding
MA1

(∆1) ≤ MA2
(∆2) for any pair of propositions. Obviously, ≤must therefore be interpreted

as “logically implies”.

The set of all partitions generated by Obs

LObs := {PA ; A ∈ Obs}, (8)

will play an important role. It is turned into a lattice by the following definitions:

PA1
≤ PA2

⇐⇒ ∀∆1 ∈ PA1
,∃∆2 ∈ PA2

: ∆1 ⊂ ∆2, (9a)

PA1
∧ PA2

:= {∆1 ∩∆2 ; ∆1 ∈ PA1
,∆2 ∈ PA2

}, (9b)

PA1
∨ PA2

:=
∧

{PA ; A ∈ Obs , PA1
≤ PA, PA2

≤ PA}. (9c)

Note that PA1
≤ PA2

iff there is a surjective function f : VA1
→ VA2

. It should be checked that
the operations (9b) and (9c) again correspond to elements of LObs . This indeed follows from
the criterion that Obs was completed. For example, PA1

∧PA2
corresponds to the partition of

any observable A for which there is an invertible function f : VA1
×VA2

→ VA. Arbitrary meets
can also be defined and consequently, there is also a bottom element PObs corresponding to
the measurement of all observables. Note that if Obs would include all functions, this bottom
element becomes the partition of Ω in singleton sets {{ω} ; ω ∈ Ω}. The top element of LObs

is given by the partition {Ω}.

There is a direct physical significance to this lattice. The existence of a surjective function
f : VA1

→ VA2
implies that there is a law associating with each outcome of the measurement

of A1 a distinct outcome for the measurement of A2. Certainly, within the theory, these laws
are true indefinitely and therefore performing a measurement of A1 and then applying the
function f to the outcome counts as a proper measurement of A2. By the same reasoning,
suppose PA3

= PA1
∧ PA2

. Then a measurement of A3 counts as a measurement of both A1

and A2. And in the case that PA3
= PA1

∨ PA2
, then both a measurement of A1 counts as a

measurement of A3 and a measurement of A2 counts as one for A3.
Besides the structure of LObs , the lattices of subsets of the outcome sets also play an

important role. If one keeps the observable A fixed, it is clear that one should have that if
∆ ⊂ ∆′ ⊂ VA then

MA(∆) ≤ MA(∆
′). (10)

So this establishes what the preorder on EPCM should be when restricting to a single ob-
servable. To investigate the relation between elementary propositions concerning distinct
observables consider first the situation where two observables A1 and A2 satisfy the relation
PA1

≤ PA2
. From earlier considerations I argued that this together with the assumption

f−1
A1

(∆1) = f−1
A2

(∆2) is sufficient to conclude that MA1
(∆1) implies MA2

(∆2). Combining this
with (10) results in the conclusion

(

PA1
≤ PA2

and f−1
A1

(∆1) ⊂ f−1
A2

(∆2)
)

=⇒ MA1
(∆1) ≤ MA2

(∆2). (11)
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In this situation the existence of a particular functional relation (law) between A1 and
A2 is used to argue that a measurement of A1 counts as a measurement of A2. But does
conversely a measurement of A2 furnish any information about A1? In common texts on
logics for classical mechanics the answer is definitely yes. The proposition MA2

(∆2) would
then imply MA1

(f−1(∆2)). This conclusion is based on the reasoning that a measurement of
A2 reveals information about the state ω ∈ Ω in which the system finds itself, and in all the
possible states in which MA2

(∆2) is true, the proposition MA1
(f−1(∆2)) is also true. Here

one interprets MA(∆) as a proposition about a property of the system. However, this use of
terminology is unsuiting if one abandons the realist interpretation of the state of a system. In
fact, it may be clear by now that if one focuses on the concept of measurement the proposition
MA1

(VA1
) is a stronger one than MA2

(VA2
) if PA1

≤ PA2
.

So in this light it seems natural to just define ≤ by replacing ‘=⇒’ by ‘⇐⇒’ in (11). I
would say this is almost correct. There are actually situations in which the order structure
of LObs doesn’t matter, and that is when the elementary proposition itself is a contradiction:
MA(∅). Remember that this is a consequence of the idealization that performed experiments
have a result. With this idealization the preorder on EMCM becomes

MA1
(∆1) ≤ MA2

(∆2)

⇐⇒
(

PA1
≤ PA2

and f−1
A1

(∆1) ⊂ f−1
A2

(∆2)
)

or ∆1 = ∅.

(12)

This preorder leads to a non-trivial equivalence relation, and the set of equivalence classes
can now be characterized by the set

SCM := {(P,∆) ; P ∈ LObs,∅ ( ∆ ⊂ Ω, P ≤ {∆,∆c}} ∪ {⊥}, (13)

where ⊥ corresponds with the equivalence class {MA(∅) ; A ∈ Obs}. The inherited partial
order on SCM takes the form

(P1,∆1) ≤ (P2,∆2) ⇐⇒ P1 ≤ P2 and ∆1 ⊂ ∆2, (14)

and of course ⊥ ≤ (P,∆) for all (P,∆). It should be noted that already SCM has a much
richer structure than the standard logic for classical mechanics; there is no way to associate
every (P,∆) with a subset of the state space in a consistent way without ‘forgetting about
P ’.

Now in the end the set SCM of equivalence classes of elementary propositions will be
considered as a subset of the logic LCM . But LCM also includes disjunctions and conjunctions
of sentences in SCM and may therefore be larger than SCM . It must be investigated if this is
indeed the case, and I will start with conjunctions.

Consider two observables A1, A2 ∈ Obs. Then for any pair of sets ∆1,∆2 the proposition
MA1

(∆1) ∧ MA2
(∆2) is read as “I have measured A1 and the result lay in ∆1 and I have

measured A2 and the result lay in ∆2”. If the use of the second ‘and’ in this sentence is in
any sense similar to the uses of the other ‘and’-s (a natural requirement), this may also be
read as “I have measured A1 and A2 and the result of the first lay in ∆1 and the result of
the second in ∆2”. By assumption there is an observable A3 whose measurement counts as a
measurement of both A1 and A2 and that satisfies PA3

= PA1
∧ PA2

. The above sentence is
then equivalent to the sentence “I have measured A3 and f1 applied to the result lay in ∆1

8



and f2 applied to the result lay in ∆2”, where A1 = f1(A3) and A2 = f2(A3). But this is
just the same as saying that “I have measured A3 and the result lay in f−1

1 (∆1) ∩ f−1
2 (∆2)”,

which again corresponds to an elementary proposition. In conclusion, in LCM it should at
least hold that

(P1,∆1) ∧ (P2,∆2) =

{

(P1 ∧ P2,∆1 ∩∆2), ∆1 ∩∆2 6= ∅

⊥, else.
(15)

So conjunctions are pretty much what one would expect. Disjunctions on the other hand
are more difficult because they cannot be imbedded within the partial ordered set of elemen-
tary propositions. At least, not without running into interpretational difficulties. There is of
course the option to define it as the least upper bound given the definition of conjunctions:

(PA1
,∆1) ∨ (PA2

,∆2) :=
∧

{

(PA,∆) ∈ SCM ;
(PA1

,∆1)≤(PA,∆),

(PA2
,∆2)≤(PA,∆)

}

= (PA1
∨ PA2

,∆1 ∪∆2)
(16)

but it seems inappropriate to identify a measurement of A1 or A2 with a measurement of
neither. The present interpretation demands something stronger. But it is also impossible to
identify the disjunction with a joint measurement of the two observables. This is too strong
a demand and in conflict with the partial order on SCM (i.e. logically inconsistent). Rather,
the aim is to broaden the lattice such that

(PA1
∧ PA2

,∆1 ∪∆2) < (PA1
,∆1) ∨ (PA2

,∆2) < (PA1
∨ PA2

,∆1 ∪∆2) . (17)

That is, the disjunction of two elementary propositions is simply no longer an elementary
proposition.

The set of propositions increases immensely with this step, for it now also includes all
propositions of the form

∨

A∈O

(PA,∆A), O ⊂ Obs, (PA,∆A) ∈ SCM . (18)

Fortunately, conjunctions of such propositions can then again be defined by postulating that
the lattice should be distributive. The equality

∨

A1∈O1

(PA1
,∆A1

) ∧
∨

A2∈O2

(PA2
,∆A2

) =
∨

A1∈O1

A2∈O2

(PA1
,∆A1

) ∧ (PA2
,∆A2

) (19)

will then simply be taken as the definition of the left-hand side. I will now investigate how
the set of propositions can be fully specified.

Note that every proposition of the form (18) can be written as a disjunction over all
observables simply by introducing a somewhat sloppy notation and taking disjunctions with
(PA,∅) = ⊥ for all A /∈ O. Of course this is a cumbersome way of expressing a proposition but
it has the advantage that the same notation can be used for every propositions, elementary
or not. More specifically, every proposition can be written as a function S : LObs → P(Ω)
(the power set of Ω) with the restriction that for all A (PA, S(PA)) ∈ SCM . This function
can then be identified with a proposition in the following way:3

S ≃
∨

P∈LObs

(P, S(P )). (20)

3The introduction of these functions is purely for mathematical convenience. One may also formally in-
troduce the set of objects of the form of (18) and then introduce disjunctions that are consistent with this
notation.
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Clearly the set

F := {S : LObs → P(Ω) ; (P, S(P )) ∈ SCM or S(P ) = ∅} (21)

with its interpretation (20) is rich enough to incorporate the desired disjunctions, but it also
needs to be narrowed down for it contains many sentences that are logically equivalent.

With a single proposition (P,∆) several functions can be identified. Indeed, any function
will do as long as S(P ) = ∆ and (P ′, S(P ′)) ≤ (P,∆) for all P ′ ∈ LObs . Note that this
necessitates that S(P ′) = ∅ whenever neither P ≤ P ′ nor P ′ ≤ P . That is, as long as S
represents the disjunction of (P,∆) with sentences that are all stronger than (P,∆), then the
meaning of S is equivalent to (P,∆). A special procedure for constructing such a function
is taking for each S(P ′) the highest value possible in accordance with the interpretation of
(P,∆). That is, (P ′, S(P ′)) is the weakest sentence that is still stronger than (P,∆). The
function obtained in this way will be denoted S(P,∆) and it satisfies

S(P,∆)(P
′) :=

{

∆, P ′ ≤ P

∅, else.
(22)

In the same line, the function S⊥ associated with ⊥ ∈ SCM is the function that assigns ∅ to
every partition. With this definition an injection i : SCM → F has been defined by

i : (P,∆) 7→ S(P,∆). (23)

The disjunctions in the form of (18) can now officially be defined in terms of these func-
tions:

(

∨

A∈O

S(PA,∆A)

)

(P ) :=
⋃

A∈O

(

S(PA,∆A)(P )
)

. (24)

The set of all functions of this form forms a subset of F and it is given by

LCM := {S : LObs → P(Ω) ; S ∈ F and S(P1) ⊂ S(P2) whenever P1 ≥ P2}. (25)

Indeed, it is straight forward to check that the construction (24) always leads to an element
of LCM . Conversely, every element of LCM is of this form since every S ∈ LCM satisfies

S =
∨

P∈LObs

S(P,S(P )). (26)

That is, every element of LCM is associated with a disjunction of (equivalence classes of)
elementary propositions. The set LCM is turned into a complete distributive lattice by the
following definitions:

S1 ≤ S2 ⇐⇒ S1(P ) ⊂ S2(P )∀P ∈ LObs , (27a)
(

∨

i∈I

Si

)

(P ) :=
⋃

i∈I

Si(P ), (27b)

(

∧

i∈I

Si

)

(P ) :=
⋂

i∈I

Si(P ). (27c)
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Infinite distributivity follows from the infinite distributivity of the Boolean lattice of subsets
of Ω. The bottom element is given by S⊥ and the top element is given by S⊤ which assigns
to each partition the set Ω. Finally, LCM is turned into a Heyting algebra by defining the
relative pseudo complement

S1 → S2 :=
∨

{S ∈ LCM ; S ∧ S1 ≤ S2}. (28)

It is easy to check that the embedding function i respects the partial order and preserves
arbitrary meets:

(P1,∆1) ≤ (P2,∆2) ⇐⇒ S(P1,∆1) ≤ S(P2,∆2),

S(P1,∆1)∧(P2,∆2) = S(P1,∆1) ∧ S(P2,∆2).
(29)

And this turns LCM into a proper extension of SCM .

Strictly speaking, the top element S⊤ of LCM corresponds with the measurement of any
observable taking only one possible outcome e.g. f⊤ : Ω → {1}. A measurement of such
an observable may be considered to be not a measurement at all, for it doesn’t require any
physical act to obtain the value of this observable; it is already given by the laws of the
theory. In the case where Obs is generated by a single observable A with VA = {0, 1}, this
lattice reduces to the one in figure 1. To see this note that the lattice of partitions is given by

LObs = {PA, P0}, (30)

with PA the partition of Ω generated by A given by

PA = {∆0 = f−1
A ({0}),∆1 = f−1

A ({1})} (31)

and P0 the trivial partition {Ω}. Notating the elements of LCM as pairs (S(P0), S(PA)), one
finds that

LCM = {⊥ = (∅,∅), (∅,∆0), (∅,∆1), (∅,Ω), (Ω,Ω) = ⊤}, (32)

which is precisely the lattice of figure 1.

It takes some time to appreciate the complexity of LCM . Obviously, assuming the standard
ontology for classical mechanics is much more convenient in every day life. But now imagine
(if you can) a person unaware of any realist interpretation of classical mechanics. Then
his/her logic for reasoning in classical mechanics is likely to resemble LCM . In fact, this is
the situation we find ourselves in with respect to quantum mechanics. With the difference
of not having a formal logic LQM . So what is again the advantage of such a logic? First
of all, it makes clearer what is speakable in quantum mechanics independent of any realist
interpretation. And secondly, realist interpretations can be compared with respect to their
simplification of LQM . It makes clear the explaining role of the interpretation. For example,
consider meeting the aforementioned person. At first you are confused about his/her form
of reasoning. But then you recognize the form of LCM and you see that the reasoning is
correct, but just very cumbersome. And then you can explain that propositions like S(P1,∆)

and S(P2,∆) actually are equivalent. And then this person can reflect about whether or not
this interpretation is satisfactory. Are the philosophical consequences of the interpretation
satisfactory or not? I will return to this discussion in section 5.
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4 Quantum Mechanics

For the definition of LQM I will follow an approach similar to the one for classical mechanics.
But of course, since it is a different theory, along the line differences in the logic will emerge.
In quantum mechanics a system is associated with a C*-algebra C and each observable A is
associated with a self-adjoint operator Â within this algebra. For convenience I will assume
that every self-adjoint operator is associated with an observable. In section 5 it will follow that
this assumption can be relaxed. Also, for mathematical convenience, I will only consider finite
dimensional C*-algebras. More general cases can be studied, but the necessary mathematical
care involved would soon blur the discussion. The set of possible measurement outcomes for
an observable A is given by the spectrum σ(Â) of the operator Â. The set of elementary
propositions for quantum mechanics is thus given by

EPQM := {MA(∆) ; Â = Â∗,∆ ⊂ σ(Â)}. (33)

As with the classical case, both elements of the pair that constitute an elementary propo-
sition bring along a mathematical structure. This then imposes a preorder on EPQM . The
correct preorder depends on the interpretation of the elementary propositions.

A measurement of any observable A may also count as a measurement of the observable
obtained by applying a function f to the outcome of the measurement of A. This observable
should again be associated with a self-adjoint operator. Luckily such an operator can be
found easily by applying f to the operator associated with A.4 For every observable A there
is a unique Abelian sub-algebra A ⊂ C in which all self-adjoint elements are functions of the
operator associated with A, and every function of A is an element ofA. Thus a measurement of
A can be associated with a measurement of all the observables whose corresponding operator
lies in A. Every Abelian sub-algebra of C is of this form. Two observables are considered
equivalent if they generate the same algebra. The set of all Abelian sub-algebras is denoted
A(C).

Like with the partitions of Ω in the classical case, the Abelian sub-algebras of C form a
partial ordered set by taking set inclusion as partial order. It should be noted that, like in
the earlier example of incompatible observables, this poset is not a lattice. A meet is still
defined by taking the intersection, but in general for a pair of Abelian algebras A1 and A2

there is no Abelian algebra containing both. In fact, this is only the case if the algebras
commute: [A1,A2] = 0. That is, every element of A1 commutes with every element of A2. It
is important to note that the partial order is reversed in comparison with the classical case.
That is, for two observables A1 and A2 with A2 = f(A1) one has PA1

≤ PA2
in the classical

case and A2 ⊆ A1 in the quantum case.

In quantum mechanics the set of possible measurement outcomes VA coincides with the
spectrum of the operator associated with A. Furthermore, every subset ∆ of VA can be
associated with a projection operator µ

Â
(∆) ∈ A, where µ

Â
is the spectral measure for Â.

These operators correspond with the observable associated with applying the function that
assigns the value 1 to elements of ∆ and the value 0 to the complement of ∆ in VA to the
outcome of a measurement of A. All projection operators in A are of this form and their set

4Formally, the function of an operator isn’t well-defined for arbitrary f , but it is for a huge class off functions
such as Borel functions.
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is denoted P(A). The analogy with the classical case thus far is summarized as follows:

fA : Ω → VA ↔ Â ∈ C, Â = Â∗ (34)

PA ∈ LObs ↔ A ∈ A(C) (35)

{∆ ⊂ Ω ; PA ≤ {∆,∆c}} ↔ P(A) (36)

In orthodox quantum logic the partial order structure on the set of observables is com-
pletely ignored. There, two elementary propositions MA1

(∆1) and MA2
(∆2) are considered

to be equal iff µ
Â1

(∆1) = µ
Â2

(∆2). It thus assumes the partial order MA1
(∆1) ≤ MA2

(∆2) iff
µ
Â1

(∆1) ≤ µ
Â2

(∆2). In other words, the proposition MA1
(∆1) is being equated to the propo-

sition Mµ
Â1

(∆1)({1}). The underlying thought is most likely that both propositions reveal

the same information about the actual state of the system. But although that interpretation
may be consistent for classical mechanics, in quantum mechanics it is controversial. In fact,
there aren’t many people left who think this line of ontological reasoning leads to satisfactory
results. That is the tale of quantum logic (Maudlin, 2005).

One of my main objections is that orthodox quantum logic doesn’t take into account the
notion of incompatible observables. Indeed, it may well be the case that µ

Â1
(∆1) = µ

Â2
(∆2)

even when A1 and A2 do not commute. It seems hardly appropriate that two propositions can
be considered equivalent even if they are about mutually exclusive measurements. Adding
the requirement [Â1, Â2] = 0 as being necessary for equivalence isn’t enough, for it conflicts
with associativity:

MA1
(∆1) ∼ Mµ

Â1
(∆1)({1}) ∼ Mµ

Â2
(∆2)({1}) ∼ MA2

(∆2), (37)

while MA1
(∆1) ≁ MA2

(∆2).
The solution is to take the notion of measurement seriously, leading to the definition

MA1
(∆1) ∼ MA2

(∆2) ⇐⇒ A1 = A2 and µ
Â1

(∆1) = µ
Â2

(∆2), (38)

where it is assumed that ∆1 and ∆2 are not empty. Propositions of the form MA(∅) are again
identified with contradiction. The set of (equivalence classes of) elementary propositions is
characterized by the set

SQM := {(A, P ) ; A ∈ A(C), P ∈ P(A), P 6= 0} ∪ {⊥}, (39)

with injection MA(∆) 7→ (A, µ
Â
(∆)). The partial order is defined analogously to the classical

case:
(A1, P1) ≤ (A2, P2) ⇐⇒ (A2 ⊂ A1 and P1 ≤ P2) or P1 = 0, (40)

where all elements of the form (A, 0) are considered equivalent and equal to ⊥.
Like in the classical case, it should be investigated how disjunctions and conjunctions of

elementary propositions behave. Now again it is on the wish list to associate the conjunction
MA1

(∆1)∧MA2
(∆2) with a proposition concerning the simultaneous measurement of A1 and

A2. In quantum mechanics this is troublesome if [Â1, Â2] 6= 0. In fact, I propose that in this
case MA1

(∆1)∧MA2
(∆2) simply expresses a contradiction. On the other hand, if Â1 and Â2

do commute, the conjunction has a clear meaning as an elementary proposition:

(A1, P1) ∧ (A2, P2) =

{

(A1 ∨ A2, P1 ∧ P2), [A1,A2] = 0

⊥, else,
(41)
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where A1 ∨ A2 is the smallest Abelian sub-algebra that has both A1 and A2 as a subset.
However, for disjunctions one faces the same difficulties as for the classical case and the set of
propositions has to be expanded. For this I take a similar approach as for the classical case.

A measurement of A1 implies a measurement of A2 iff there is a function f such that
A2 = f(A1). This is the case iff A2 ⊂ A1. A proposition (A, P ) is thus equivalent with the
disjunction of all propositions (A′, P ′) with A ⊂ A′ and P ′ ≤ P . This is then again equivalent
to the disjunction of all propositions (A′, P ) with A ⊂ A′. The proposition (A, P ) can thus
again be identified with a function S(A,P ) : A(C) → P(C) with

S(A,P )(A
′) =

{

P, if A ⊂ A′,

0, else.
(42)

S(A,P ) is interpreted as the disjunction of all propositions (A′, S(A′)) where A′ runs over
all Abelian sub-algebras of C. By assuming associativity5 , disjunctions of such propositions
Si : A(C) → P(C) can be formed by taking joins on the level of the projection operators:

(S1 ∨ S2)(A) := S1(A) ∨ S2(A), (43)

which again defines a function on A(C). The set of functions that is formed by taking con-
secutive disjunctions in this manner is given by

LQM :=
{

S : A(C) → P(C) ; S(A)∈P(A) and
S(A1)≤S(A2) whenever A1⊂A2

}

. (44)

Indeed, for every index function I one has that
∨

i∈I S(Ai,Pi) is an element of LQM . On the
other hand, every element of LQM satisfies

S =
∨

A∈A(C)

S(A,S(A)). (45)

Obviously, (43) cannot be a join until a partial order has been defined on LQM . This partial
order is inherited from the partial order on SQM . To say that S1 ≤ S2 is to say that for every
A1 ∈ A(C) there exists an A2 ∈ A(C) such that (A1, S1(A1)) ≤ (A2, S2(A2)). This requires
that A1 ⊃ A2 and S1(A1) ≤ S2(A2). Because S2 ∈ LQM this implies S1(A1) ≤ S2(A1). The
partial order then obtained is

S1 ≤ S2 ⇐⇒ S1(A) ≤ S2(A) ∀A ∈ A(C). (46)

It is easy to check that (43) is indeed the join with respect to this order.

The meet on LQM is now given by

(S1 ∧ S2)(A) := S1(A) ∧ S2(A). (47)

It is consistent with the conjunction for the elementary propositions given by (47):

S(A1,P1)∧(A2,P2) = S(A1,P1) ∧ S(A2,P2). (48)

5Or rather, distributivity between the disjunctions within the interpretation of each Si and the disjunction
between S1 and S2.
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The lattice LQM is furthermore a complete distributive lattice by virtue of the lattice
structure of the projection operators:





∨

i∈I

(
∧

j∈J

Si,j)



 (A) =
∨

i∈I









∧

j∈J

Si,j



 (A)



 =
∨

i∈I









∧

j∈J

Si,j(A)









=
∧

j∈J

((

∨

i∈I

Si,j(A)

))

=
∧

j∈J

((

∨

i∈I

Si,j

)

(A)

)

=





∧

j∈J

(
∨

i∈I

Si,j)



 (A).

(49)

Consequently, LQM is turned into a Heyting algebra by introducing the relative pseudo-
complement

S1 → S2 :=
∨

{S ∈ LQM ; S ∧ S1 ≤ S2}. (50)

Negation is defined in the standard way as ¬S := S → ⊥.

5 Discussion

The Heyting algebra LQM is not a new logic for quantum mechanics but it was actually
already proposed earlier in (Caspers, Heunen, Landsman & Spitters, 2009). Although it was
studied there to some extend from a mathematical point of view, no philosophical derivation
was given as to why this should be the correct logic for describing quantum systems. The
only attempt I found at interpreting LQM was the line

“Each element of [LQM ] corresponds to a “Bohrified” proposition, in the sense that
to each classical context [A ∈ A(C)] it associates a yes-no question (i.e. an element
of the Boolean lattice [P(A)] of projections in [A]), rather than being a single pro-
jection as in standard quantum logic.” (Caspers, Heunen, Landsman & Spitters, 2009,
p. 732)

In the present article, an interpretation has been given and I have shown that this interpreta-
tion is not only consistent with this logic, but also derived this logic from the interpretation.
A “Bohrified” proposition may now be understood as a proposition written as a disjunction of
elementary propositions. However, the elementary propositions as I introduced them (func-
tions of the form S(A,P )) play no role in the article of Caspers et al. It is an open question if
the interpretation given here is the only one consistent with LQM .

The classical case results as a special case of the quantum case. To see this consider the
finest partition of Ω allowed by the observables PObs . The set C0(PObs) of all complex valued
functions on PObs that vanish at infinity forms an (Abelian) C*-algebra. The lattice LQM

obtained for this algebra is precisely the lattice LCM2. The details of this analogy are left to
the reader.

When comparing the lattices LCM and LQM it is rather surprising that, despite their
similarity, the first allows a simple modification with the aid of realism, while for the second
this is unclear. At least it is known that the same method for classical mechanics cannot be
used for quantum mechanics. This is a result of the Kochen-Specker theorem which implies
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that no state space can be defined in which every state dictates the values for all observ-
ables in a way consistent with the laws of the theory. Somewhat peculiarly this hasn’t much
to do with the specific feature that certain observables cannot be measured simultaneously.
Rather, it has to do with the algebraic structure of the set of observables. This is explicitly
made clear in so-called MKC-models for quantum mechanics (Meyer, 1999), (Kent, 1999),
(Clifton & Kent, 2001) and (Hermens, 2011). These models can provide an ontology by re-
stricting to a certain subset of observables, most of which still cannot be measured simulta-
neously. More popular ontological models like Bohmian mechanics (Bohm, 1952) get by by
assuming that every proposition MA(∆) is in fact of the form MX(∆′) where X is a special
observable denoting the position of some particles (for example, the pointer on a measuring
apparatus). In fact, any advocate of a specific realist interpretation of quantum mechanics
will argue that LQM is a very cumbersome logic for reasoning, but many will differ in pointing
out which aspect is precisely cumbersome.

But how cumbersome is the logic in practice? The lattice LQM is claimed to provide a
consistent way to reason about quantum mechanical propositions. In most practical cases
however, one only considers a finite set of possible measurements and it then seems inappro-
priate to use propositions that essentially talk about all possible measurements. For example,
one may ask the question “what is the appropriate logic if I know I will measure A?” Truth
be told, propositions in LQM explicitly refer to the past, but as the future is the future’s past
one may as well think of the propositions as ones concerning the future.

The natural approach is to say that in the case of an actual measurement a lot of the
propositions in LQM may be considered equivalent:

S1 ∼A S2 ⇐⇒ S1(A) = S2(A). (51)

The set LQM/ ∼A is the Boolean lattice of projection operators in A. In other words:
given the measurement of A, every proposition about outcomes of the measurement becomes
decidable. So in practice, the intuitionistic logic behaves classically. Note that this result is
similar to the case of orthodox quantum logic.

In general a measurement of an observable A is not a complete measurement and there
are observables of which A is a function. So actually a measurement of A only gives certainty
about the observables A′ with A′ ⊆ A but not about the observables A′′ with A ⊆ A′′. From
this perspective one should introduce the more subtle equivalence relation

S1 ∼
′
A S2 ⇐⇒ S1(A

′) = S2(A
′) ∀A′ ⊃ A. (52)

If A is a maximal observable this is again the equivalence relation ∼A but in general it gives
rise to a more refined conditional logic

LQM/ ∼′
A=

{

S :↑ A → P(C) ; S(A′)∈P(A′) and
S(A1)≤S(A2) whenever A1⊂A2

}

, (53)

where ↑ A = {A′ ∈ A(C) ; A′ ⊃ A}. This is again a Heyting algebra (with partial order,
join and meet defined analogously to the standard case). The decidable elements in this
algebra (i.e. the S for which S ∨ ¬S = ⊤) are given by the equivalence classes [S(A,P )] with
P ∈ P(A) i.e. those that correspond with the elementary propositions about measurements
of A. Thus the logic LQM/ ∼′

A is the logic in which propositions concerning measurements
of A are decidable, but other propositions aren’t.

The decidability of a proposition thus strongly depends on the context in which the propo-
sition is formulated and in general, decidability in one context can’t be expected to hold in
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another context. Of course this is already well-known as one may see from Feynman’s story
on page 3. But with the introduction of LQM his tightrope has become much less of a
hand-waving argument.

The equivalence relation ∼′
A was defined by appealing to an uncertainty about what a

full measurement of the system would be, but it can also be seen as appealing to a certain
notion of locality. Indeed, given a measurement of A, one remains uncertain about any other
measurement made on the system possibly at some distance from where the measurement of
A was performed. Symmetrically, the person performing the distant measurement remains
uncertain about the measurement of A (and whether or not it is performed). As a consequence,
people who are studying the same system at distant locations will in general use different logics
describing the system.

As an example consider the standard situation where Alice can choose between two pos-
sible measurements A1 and A2 and Bob can choose between two possible measurements B1

and B2. Suppose both know from each other that these are the only possible measurements
between which they can choose. Let AiBj denote the algebra generated by Ai and Bj . If
Alice chooses to measure Ai the appropriate logic for her will be

LAi
=
{

S : {Ai,AiB1,AiB2} → P(C) ; S(A)∈P(A) for A∈{Ai,AiB1,AiB2},
S(Ai)≤S(AiBj) for j=1,2

}

. (54)

Symmetrically, Bob will use the logic

LBi
=
{

S : {Bi,A1Bi,A2Bi} → P(C) ;
S(A)∈P(A) for A∈{Bi,A1Bi,A2Bi},

S(Bi)≤S(AjBi) for j=1,2

}

. (55)

To properly discuss the connection of these logics with Bell-type inequalities it is necessary
to introduce a notion of probability. It is beyond the scope of this article to investigate what
all consistent possibilities would be for the new quantum logic. However, I do want to sketch
some ideas. It does seem natural that for Alice, using the logic LAi

, the probabilities provided
by the formalism of quantum mechanics that are relevant to her are those that are assigned to
the decidable propositions in her logic: those about the possible outcomes for the measurement
of Ai. That is, she will assign probabilities to those propositions that are decidable for her.
But for other propositions the situation is not clear-cut. The proof of theorem 1 makes more
clear what is at stake. In order for the proof to make sense, one must be able to assign a
probability to the proposition A1 ∧ B1 ∧ (B2 ∨ ¬B2). Although one can identify it with an
element in LA1

, the probability Alice should assign to it is unknown and may well depend
on an underlying ontological model. However, the structure of LA1

does make clear that it
may well be a lower value than that what will be assigned to A1 ∧B1. Note that this is not
necessarily an artifact of LQM being intuitionistic but rather that ¬B2 is not represented in
LQM as the negation of B2. That is, in general one has

S(A,P⊥) ≤ ¬S(A,P ) (56)

and no equality. Either way, this is the domain where one is to seek a peaceful coexistence
between quantum mechanics and some form of locality.

A more recent attempt at finding such a coexistence is delivered by the consistent histories
approach (Griffiths, 2011). In this approach one only looks at partial logics constructed with
equivalence relations of the form (51). Such a partial logic is called a framework, and one
postulates that all reasoning must be performed within one single framework. It follows
roughly from this postulate that no Bell-inequality can be derived since every inequality
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involves more than one framework. Now according to Griffiths the choice of a framework is a
pure epistemological act; it does not influence the system under consideration. Therefore, the
propositions within such a framework are purely epistemic too, for if they were ontological, a
change of framework would influence the system. For example, a sentence about a property
of the system could shift from being true to being meaningless. It thus seems to me that the
consistent histories approach is not capable of properly describing an ontology for quantum
systems, which makes the entire discussion of locality (which is, to be sure, an ontological
concept) quite meaningless. Indeed, the logic suggested by Griffiths is quite reminiscent
of what I have done here, with the difference that LQM acts on a framework-transcending
level; every sentence in LQM is a disjunction of sentences, each formulated within a single
framework.

In conclusion, I don’t believe that the problems in the foundations of quantum mechanics
could vanish by introducing the ‘correct’ logic. Furthermore, it is not my opinion that LQM

should be conceived as the correct logic. I do think that logic can play an important role in
carefully investigating the philosophical problems we face in quantum mechanics. A careful
distinction between empirical and ontological assumptions is mandatory for this, and I think
the logic LQM can help in making this distinction more clear.
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Döring, A. & Isham, C. (2011). “what is a thing?”: Topos theory in the foundations of
physics. In B. Coecke (Ed.), New Structures for Physics, volume 813 of Lecture Notes in
Physics (pp. 753–937). Springer Berlin.

Dummett, M. (1976). Is logic empirical? In H. D. Lewis (Ed.), Contemporary British
Philosophy Volume IV (pp. 45–68). George Allen and Unwin.

Feynman, R. P., Leighton, R. B., & Sands, M. (1963). The Feynman Lectures on Physics,
volume 1. Addison-Wesley.

Griffiths, R. B. (2011). EPR, Bell, and quantum locality. American Journal of Physics, 79 (9),
954–965.

Hermens, R. (2011). The problem of contextuality and the impossibility of experimental
metaphysics thereof. Studies In History and Philosophy of Modern Physics, (0), –.

Hooker, C. A. (Ed.). (1975). The Logico-Algebraic Approach to Quantum Mechanics, Volume
I. D. Reidel.

Hooker, C. A. (Ed.). (1979). The Logico-Algebraic Approach to Quantum Mechanics, Volume
II. D. Reidel.

Isham, C. J. (1995). Lectures on Quantum Theory. London: Imperial College Press.

Kent, A. (1999). Noncontextual hidden variables and physical measurements. Phys. Rev.
Lett., 83 (19), 3755–3757.

Kochen, S. & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics, 17, 59–67. (Reprinted in (Hooker, 1975), pp.
293–328.).

Maudlin, T. (2005). The tale of quantum logic. In Y. Ben-Menahem (Ed.), Hilary Putnam
(Contemporary Philosophy in Focus) (pp. 156–187). Cambridge University Press.

Meyer, D. A. (1999). Finitie precision measurement nullifies the Kochen-Specker theorem.
Physical Review Letters, 83 (19), 3751–3754.

Peres, A. (1978). Unperformed experiments have no results. Am. J. Phys., 46 (7), 745–747.

Peres, A. (1984). The classic paradoxes of quantum theory. Foundations of Physics, 14 (11),
1131–1145.

Peres, A. (2002). Quantum Theory: Concepts and Methods. KLUWER ACADEMIC.

Popper, K. R. (1968). Birkhoff and von Neumann’s interpretation of quantum mechanics.
Nature, 219, 682–685.

Putnam, H. (1969). Is logic empirical? Boston Studies in the Philosophy of Science, V.
(Reprinted in (Hooker, 1979), pp. 181–206.).

19


	1 Introduction
	2 A simple example
	3 Classical Mechanics
	4 Quantum Mechanics
	5 Discussion
	6 Acknowledgements
	References

