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Abstract Philosophers have relied on visual metaphors to analyse ideas and explain
their theories at least since Plato. Descartes is famous for his system of axes, and Witt-
genstein for his first design of truth table diagrams. Today, visualisation is a form of
‘computer-aided seeing’ information in data. Hence, information is the fundamental
‘currency’ exchanged through a visualisation pipeline. In this article, we examine
the types of information that may occur at different stages of a general visualization
pipeline. We do so from a quantitative and a qualitative perspective. The quantitative
analysis is developed on the basis of Shannon’s information theory. The qualitative
analysis is developed on the basis of Floridi’s taxonomy in the philosophy of informa-
tion. We then discuss in detail how the condition of the ‘data processing inequality’
can be broken in a visualisation pipeline. This theoretic finding underlines the useful-
ness and importance of visualisation in dealing with the increasing problem of data
deluge. We show that the subject of visualisation should be studied using both quali-
tative and quantitative approaches, preferably in an interdisciplinary synergy between
information theory and the philosophy of information.
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1 Introduction

Visualisation is a form of ‘computer-aided seeing’ information in data. As a techni-
cal term, ‘visualising’ refers to different aspects of a visualisation process, primarily
in two semantic contexts. Viewing concerns the process of specifying significant or
noteworthy information, creating appropriate visual representations, and conveying
visual representations to viewers. In the literature on computer visualisation, this is
explained intuitively in terms of making visible to one’s eyes. Seeing concerns viewers’
thought processes and cognitive experiences of interpreting received information and
converting the information to mental representations of what the information intends
to convey. In the aforementioned literature, this is explained intuitively in terms of
making visible to one’s mind.

The two contexts of viewing and seeing correspond to different parts of a visual-
isation pipeline, as shown in Fig. 1.

Fig. 1 A typical visualisation pipeline
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In viewing, one focuses on the parts of a visualisation process that are mediated by
some information and communication technology (ICT) system, typically a computer.
These include computational algorithms for filtering, visual mapping and rendering,
as well as display systems and user interfaces. In seeing, one seeks to optimise the
usefulness and effectiveness of a visualisation process. Issues addressed in this context
typically include the creation of visual metaphors, design of visual representations,
and evaluation of visualisation results and user experience.

Consider, for example, how visualization was created in a real-world application
(Drocourt et al. 2011). A team of glaciologists compiled a dataset that consisted of 10-
year records of seasonal and inter-annual changes in frontal position (advance/retreat)
of some 200 marine terminating glaciers in Greenland. A team found that conven-
tional visual representations, such as time-series plots and topographic maps, could
not provide an effective overview of the changes of all glaciers while maintaining
both the spatial and temporal contexts. A few visualization scientists were thereby
asked to help design a more effective visualization. They first enriched the data by
connecting the names of glaciers with the actual geospatial locations in relation to the
geography of Greenland. After observing the glaciologists for a period, they realised
that these glaciologists knew the geography of Greenland extremely well. Viewing
a Greenland map was mainly for providing a spatial context to the identities of the
glaciers rather than geographical information about Greenland herself. The visualiza-
tion scientists took advantages of this finding to reduce the dimension of the map by
filtering out some spatial information. This was achieved by mapping the coastline
of Greenland to a circle, and then mapping the spatial location of each glacier to a
position on the circle. The two dimensional (2D) Cartesian coordinates of a glacier
thus became a 1D angular coordinate on the circle. This enabled the temporal dimen-
sion to be mapped to a spatial dimension represented by radial coordinates in the polar
coordinate system. In addition, the visualization scientists and glaciologists worked
together to choose a visual mapping in which status of advance and retreat of each
glacier is mapped to two different colours and the levels of changes to the thickness
of the circular rings corresponding to different years. When the visualization was first
displayed to the glaciologists who were able to view the whole dataset in a single
glance, the new perceptual experience stimulated some strong cognitive reactions,
including new hypotheses about the correctness of some data records, the patterns of
changes in different regions, and so forth.

Information is the fundamental ‘currency’ exchanged through a visualisation pipe-
line. In this paper, we consider two theoretic frameworks of information. The most
well-known, formal theory of information is Shannon’s information theory (Shannon
1948), which provides a framework for quantifying uninterpreted information, and
optimising information coding and communication. Recently, Chen and Jänicke (2010)
showed how information theory can explain many phenomena in visualisation pro-
cesses, including overview-zoom-details interaction, logarithmic visual design, and
the use of motion parallax in volume visualisation.

In philosophy, there have been some studies on the topics of information (Floridi
2011), although the literature is still rather limited when compared to similar efforts
about knowledge in epistemology. Floridi (2002) defined thephilosophy of information
as follows:
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Definition Philosophy of information (PI) =def. the philosophical field concerned
with (a) the critical investigation of the conceptual nature and basic principles of
information, including its dynamics, utilisation and sciences, and (b) the elaboration
and application of information-theoretic and computational methodologies to philo-
sophical problems.

These two theoretic frameworks—information theory and the philosophy of infor-
mation—encompass our quantitative and qualitative understanding of information
respectively. This paper focuses on the taxonomies of information in the context of
visualisation. We examine how those technical categorisations of information in visu-
alisation are related to the information map proposed by Floridi (2010). We then
present a scheme that enables the application of the information map to visualisa-
tion in a qualitative manner, while accommodating information-theoretic measures
quantitatively, through Shannon’s theory.

2 Existing taxonomic maps for visualization

There are many ways in which information in visualisation can be categorised. As
shown in Fig. 1, one may categorise the input data before it reaches the stage of
enriching and Filtering, the graphical models at the intermediate stage between visual
mapping and rendering, or the output imagery information appearing on a display. In
addition, instead of categorising information directly, one may consider the tasks and
operations for visually processing information, or the interactions allowed in visual-
isation. It is also common to provide a hybrid scheme, where different categorisations
are organised into a hierarchical classification tree, hence a taxonomy.

Many taxonomies proposed for visualisation include categorisation of input data
featuring data types, data attributes and application contexts (Wehrend and Lewis
1990; Shneiderman 1996). Tory and Möller (2004) divide input data broadly into two
classes: (a) spatial data and (b) non-spatial data. The former have an inherent spatial
component, such as a computed tomography dataset, or a collection of geographic
information. The latter typically are not associated with a precise geometric or geo-
graphic specification, and require a visual mapping process before the data can be
rendered. For example, given a family tree as the input data to the pipeline in Fig. 1,
the visual mapping stage has to assign a pair of 2D coordinates to every node in the
tree.

For spatial data, one tends to consider the dimensions of a spatial domain (e.g.,
1D, 2D, 3D, etc.), the presence of a temporal dimension, the measured or computed
quantities associated with each spatio-temporal location (e.g., scalars, vectors, tensors,
etc.), the underlying data model (e.g., continuous or discrete), and the ways in which
data quantities are organized (regular grids, meshes, scattered points, etc.).

For non-spatial data, one may categorise data based on the primitive data types
(e.g., nominal, ordinal, interval, ratio, etc.), the composite types (enumerated sets,
strings, objects, documents, web contents, pictures, voice and sound, videos, etc.), the
organization and connectivity of data (e.g., sequences, tabular data, trees, networks,
etc.), and the cardinality of attribute space.
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A number of taxonomies are based on the tasks of information processing in visu-
alisation (Buja et al. 1996; Zhou and Feiner 1998; Chi 2000). In visualisation, user
operations and tasks can be grouped broadly into three main categories: informa-
tion retrieval, information analysis, and information dissemination. The category of
information retrieval encompasses operations for exploring the data space through
overview, browsing, navigation, zooming, observing derived quantities such as data
ranges, distributions, errors, certainty and sensitivity, inspecting extracted features
such as iso-contours and iso-surfaces, performing deformation on object space, and
viewing animated sequences representing spatial navigation or temporal progres-
sion. The category of information analysis serves perhaps the most important goal
of visualisation for gaining insight from the data. It includes a wide range of ana-
lytical tasks, such as finding extrema, anomalies and clusters, sorting, filtering, com-
bining and partitioning data, making comparisons and identifying correlation, and
evaluating hypotheses. The category of information dissemination includes oper-
ations for presenting information, hence helping others to comprehend the data,
such as summarisation, annotation, illustration and animation. One operation com-
mon to all three categories is memory externalisation, providing users with efficient
means to support future cognitive operations and tasks in information processing
with visual representations closer (than the data itself) to users’ mental models of the
data.

Interestingly, categorisation based on output visual information has not been as
common as that for input data and visualisation tasks. Keim and Kriegel (1996) pro-
posed a categorisation based on some common visual representations, including geo-
metric projection, pixel-based, icon-based, and tree and graph. This categorisation has
not been widely adopted, partly because the category of geometric projection encom-
passes a very large collection of visual representations. A meaningful way to divide
this category into sub-classes is yet to be found. One alternative approach is to char-
acterise a visualisation output by the visual channels that are used meaningfully in the
visualisation. These visual channels include:

� Geometric Channels:
◦ size / length / width / depth
◦ orientation
◦ shape
◦ curvature
◦ smoothness

� Optical Channels:
◦ intensity / brightness
◦ colour / hue / saturation
◦ opacity / transparency
◦ texture (partly geometric)
◦ line styles (partly geometric)
◦ shape / blur
◦ shading and lighting effects
◦ shadow
◦ depth (implicit / explicit cues)
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◦ implicit motion / motion blur
◦ explicit motion / animation / flicker

� Topological and Relational Channels:
◦ connection
◦ node / internal node / terminator
◦ intersection / overlap
◦ depth ordering / partial occlusion
◦ closure
◦ distance / density

� Semantic Channels:
◦ number
◦ text
◦ symbol / ideogram
◦ sign / icon / logo / glyph / pictogram
◦ isotype

Each visual representation usually makes use of several visual channels. It is also
common to use a combination of visual channels to encode concepts and metaphors
(e.g., pie and division, stream and flow, safe and dangerous, maps, and so on).

3 An information map for visualisation

There has been no general agreement on a unified definition of information. Shannon
‘philosophically’ commented on the lack of an agreement (Shannon 1993, p. 180)
without much hope:

The word “information” has been given different meanings by various writers in
the general field of information theory. It is likely that at least a number of these
will prove sufficiently useful in certain applications to deserve further study and
permanent recognition. It is hardly to be expected that a single concept of infor-
mation would satisfactorily account for the numerous possible application of
this general field.

Floridi (2010) studied a large collection of definitions of information. A popu-
lar definition may be paraphrased thus: information is data + meaning (Davis and
Olson 1985, p. 200; Checkland and Scholes 1990, p. 303). As we shall see presently,
this corresponds in the philosophy of information to the following weak definition of
information (Floridi 2011):

Definition information = def.well-formed and meaningful data.

A stronger definition includes the further condition of truthfulness. In the rest of this
article, we shall use information in the previous weak sense, unless specified otherwise.

Although the various taxonomic maps described above have many practical uses in
visualisation, it would be contentious to refer to any of them as an information map.
The categorisation based on input data types captures very little about the meaning
of the information contained in the data. While it semantically distinguishes one type
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Fig. 2 Floridi’s original information map, redrawn based on (Floridi 2011)

of data from another, it does not semantically separate one data set from another.
Likewise, the categorisation based on operations and tasks encodes the actions on
information, but it is totally insensitive to its semantics. Finally, the categorisation
based on output visual information is concerned primarily with the forms of visual-
isation or the mechanisms for delivering information. It also appears to be insensitive
to the meaning of the data and hence the information being displayed.

Floridi (2010) proposed an information map by categorising information into sev-
eral types, as shown in Fig. 2. In the rest of this article, we shall adopt it as a taxonomy
based on meaning in order to develop a new categorisation of visualisations.

Note that the map also indicates how information relates a parte ante to data and a
parte post to knowledge in a hierarchical manner. Strictly speaking, in order to become
information, data need to be well-formed, meaningful, and truthful. The first require-
ment implies that a collection of data has been put together correctly in one or more
data sets according to the rules (syntax) of the chosen code (usually a combination
of natural and formal languages). The second requirement implies that the data must
also comply with the meanings (semantics) of the chosen code. The third requirement
allows one to distinguish, in a strict sense, between information and mis- or disinfor-
mation (untruthful data).New knowledge can then be built upon available information
and existing knowledge through various cognitive processes, such as learning, asso-
ciation, and reasoning.

As defined in (Floridi 2010), the different categories or sub-categories of informa-
tion are:

� Environmental (also known as natural) information—this is well-formed data (pat-
terns) as something, e.g., the series of concentric rings visible in the wood of a
cut tree trunk correlated to its age;
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� Semantic information—this is well-formed and meaningful data, that can be ana-
lysed as
◦ Instructional information—this is semantic information for something, e.g.,

‘open the door!’;or
◦ Factual information—this is semantic information about something, e.g., ‘the

door is open’; this in turn can be
– True information—this is semantic content (well-formed and meaningful

data), which is also truthful; also known as semantic information, or simply
information. The lack of precision may generate confusion, but contexts
often resolve the ambiguity. As indicated above, in this paper ‘information’
is used both in its weak and in its strong sense, with further specifications
whenever the distinction is unclear;

– Untrue ‘information’—this is pseudo information (cf. false friend, who is
not a friend at all), equivalent to semantic content (well-structured and
meaningful data) which is not truthful; it is further analysable as
• Misinformation—pseudo information accidentally or unintentionally

untruthful, e.g., a mistake; and
• Disinformation—pseudo information purposefully or intentionally

untruthful, e.g., a lie.

An interesting question is how the previous categorisation by meaning is related to
various categorisations by input, output and process. Comparing Figs. 1 and 2, we can
make the followings observations.

Once the data have entered into the visualisation pipeline in Fig. 1, we can assume
that the data have been parsed correctly. In other words, the data is well-formed, since
it would have otherwise been thrown out by the syntactic parser. We can also assume
that the pipeline does not generate syntactic errors within the system, or has a mech-
anism to detect and correct such syntactic errors. Hence, with conditions (1) and (2),
all data in the pipeline may be assumed to be well-formed. After the first stage of
processing, meaningless data will either be filtered out or enriched with additional
semantic tagging. All data at the end of this stage are both well-formed and mean-
ingful. Hence, they constitute information according to the definition by Davis and
Olson (1985, p. 200), or semantic content (information in the weak sense), according
to Floridi (2011). Arguably, none of the processing stages afterwards will deliberately
remove semantic associations. Even when some processing stages do remove some
semantic associations by mistake, we assume that such associations can be recalled
from the stage of Enriching Filtering. If one can assume that the data are truthful, then
this ensures that all data in the pipeline are information (in the strong sense) from that
stage onwards. However, we do include the possibility that initial errors, or computa-
tional errors, or sampling noise may be introduced at each processing stage. Because
human-computer interaction is allowed in the pipeline, and the software involved
might be faulty and unreliable, cases of misinformation and disinformation may occur
and information (in the strong sense) may become corrupted. The interested reader
may wish to consult Tufte (2001) for a collection of interesting examples.

It is possible, although neither intuitive nor useful in this context, to consider the
digital information in the pipeline as environmental information, that is, as mere
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patterns to be interpreted. Rather, it is preferable to consider all information after
the stage of enriching filtering as semantic information. We call this the principle of
presumed informativeness: data are considered well-formed, meaningful, and truthful
until proven otherwise. It is also possible to classify some information in the pipeline
as instructional information, since one of the goals of a class of visualisation tech-
niques, namely illustrative visualisation, is usually instructional (think, for example,
of the visual instructions usually accompanying ready-to-assemble furniture). Finally,
in visualisation, it is common to introduce various forms of abstraction for more effec-
tive perception and cognition, which usually involve omission of some information
in the resultant visual representations. In many applications, the size of the data set
concerned is too large for a visualisation to depict all the information contained. A
decision will have to be made, either by the system or by the users, to leave out some
information of the resultant visual representations. Therefore, it is useful to underline
a specific category of information that gets lost during the process.

Based on the above observations, we can conclude that, in general, Floridi’s cate-
gorisation by meaning is applicable to the information in a visualisation pipeline. Some
may suggest that it might be helpful to introduce new sub-categories of information,
such as geometric and optical information, into the information map. We consider
this unnecessary, mainly because such information is in a transitional status before
a visual representation is produced by the rendering stage. The visualisation being
viewed by the users, that is, the imagery information as labelled in Fig. 1, is in the
most important as well as stationary state of the pipeline. So we can, and should, focus
on the information in this particular state. Figure 3 shows an information map, which

Fig. 3 An information map for visualisation
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has been slightly modified based on Fig. 2, in order to illustrate its relationship with
the pipeline as well as to highlight the category of lost information.

4 An information-theoretic framework for visualisation

Information theory is a branch of probability theory. It was first developed by Shannon
(1948) in the context of communication systems, focusing on data compression, error
detection and correction. Since then, this theoretic framework has been further devel-
oped and has found applications in many disciplines, including image processing and
computer vision. Recently, Chen and Jänicke (2010) showed how information theory
can be fruitfully applied to many aspects of visualisation, and they made a case for
information theory to be an underpinning theoretic framework of visualisation. How-
ever, they also pointed out areas of visualisation where information theory cannot be
naïvely applied without adaptation and extension, due to the semantic nature of infor-
mation. Visualisation concerns visually coding and communicating meaningful data.
When we consider only the central path of the visualisation pipeline in Fig. 1, that is,
without human–computer and human–human interaction, we can observe that it is very
similar to a communication system or a data processing pipeline. Although human–
computer and human–human interaction is an ordinary phenomenon and is highly
valuable in visualisation, it is not absolutely compulsory. In general, our affordability
for human–computer and human–human interaction will always be limited, whereas
we will continue to increase our access to more computational power in the central
path, up to the displaying stage. Therefore, it is not an over-simplification to take a
first look at the central path of the visualisation pipeline in Fig. 1.

Let us first examine the similarities and differences between a communication
system and the central path of a visualisation pipeline without human-computer and
human-human interaction. The two are similar in the following ways.

4.1 System structure

A communication system is typically composed of a series of sub-systems. Some sub-
systems may modify the messages for various reasons, such as conversion between
different standards, strengthening the security, and so on. Others may perform a simple
function of relaying messages, which are referred to as ‘store and forward’. A visual-
isation pipeline as shown in Fig. 1 can also be seen as a series of sub-systems.

4.2 System abstraction

Shannon (1948) defines a basic communication system as a pipeline connecting source,
encoder, channel, decoder and destination. Chen and Jänicke (2010) show that a visu-
alisation pipeline, without interaction, can also be abstracted into five basic compo-
nents as a basic communication system. These two abstract models are illustrated in
Fig. 4.
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Fig. 4 Abstract models of visualisation and communication

4.3 Objective

The primary objective of a communication system is to transfer messages from a
source to a destination as accurately and quickly as possible. Visualisation has a com-
parable objective. By transforming information contained in the original data into an
appropriate visual representation, the goal is to enable the viewers to gain an insight
about the data quickly and accurately.

4.4 Information loss

Although many forms of communication are lossless (e.g., emails and file transfer),
some are lossy (e.g., voice over internet protocol, and video conferences). For small
data sets, it is possible to preserve all the information from the source in the resultant
visualisation. For large data sets, visualisation is usually a lossy process.

4.5 Errors and noise

Both communication systems and visualisation pipelines are subject to errors and
noise.
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4.6 Probabilistic nature

Many aspects of a visualisation pipeline feature events and phenomena with probabi-
listic certainty or uncertainty, bearing a striking resemblance with a modern communi-
cation pipeline. For example, messages in a communication system are not guaranteed
to reach their destination, while information in a visual representation is not guaran-
teed to be received by a viewer. The quality of a communication system is typically
measured by sampled probabilistic quantities, while the quality of visualisation is
often measured by probabilistic experiments.

4.7 Semantic awareness

There has often been a misconception that a communication system does not require
any understanding of the information being transmitted, whereas the visualisation
pipeline does so. First, both involve some responsiveness to the semantic content
passing through the system. A modern communication system usually applies differ-
ent compression algorithms to different types of messages (e.g., text, voice and video).
In some cases, some basic forms of meaning are detected. For instance, a piece of text
may be compressed using a dictionary-based method, or a piece of phone conversation
may be compressed using salience detection and removal. Similarly, a visualisation
pipeline usually expresses a good knowledge of input data types (e.g., volume data,
network data). Sometimes, data may be further classified by using a feature classi-
fier or a transfer function. In fact, the goal of the visual mapping stage is to encode
the semantics made available using geometric and optical information. Second, given
the functional nature of a communication system and a visualisation pipeline, it is
not appropriate for either to have to focus too much on the semantic content passing
through the system. For a communication system, handling too much semantic content
will undermine the privacy and security requirements for such a system while seri-
ously affecting its performance. As an enabling technology, the goal of visualisation is
to help viewers to interpret data, especially in situations where analytical tools are not
‘smart’ enough to draw useful and reliable conclusions from the data. For instance,
given a 3D computed tomography, it may be acceptable for a medical visualisation
system to highlight the regions of interest. However, at the moment it is simply not
feasible for a system to detect a tumour automatically and then show it to a doctor
instructively.

The communication systems and visualisation pipelines are also different in several
ways:

4.8 Type compatibility

A communication system normally ensures that the messages received from the source
will reach the final destination more or less in the same data type. As shown in Fig. 1,
a visualisation pipeline almost always transforms the information from the source to
imagery information, if we consider the viewers as the destination. In most situations,
the information in the source data and the generated visual information will not be of
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the same form. There are of course some exceptions, such as tag cloud visualisation.
In fact, the type of the information at any stage of the pipeline after visual mapping is
expected to differ significantly from the original type.

4.9 Compactness

The encoding scheme in communication system places a huge emphasis on data com-
pression. In particular, source coding for noiseless channels focus almost solely on the
compactness of the messages to be transmitted. In a visualisation pipeline, the visual
encoding stages (i.e., enriching filtering, visual mapping, and rendering) often result in
output that requires more space than the input, especially for a small data set from the
source. For example, when a pie chart shows a dozen of percentage values, the space
requirement for the display is much more than that for the numerical representation
of the percentage values.

4.10 Human involvement

Though we focus here on the central path of Fig. 1, it is important to point out that
the most significant difference between typical visualisation pipelines and commu-
nication systems is the involvement of humans. Shannon’s model of communication
assumes that humans do not participate in any operations of the three main compo-
nents, encoder, channel and decoder. However, the decoder stages of a visualisation
pipeline (i.e., perception and cognition) are essentially human-centred components. In
addition, human–computer and human–human interaction brings about further human
involvement in the visualisation.

To summarise, on the one hand, the similarity between communication systems
and visualisation pipelines is significant enough to warrant the consideration of infor-
mation theory as a theoretic framework to underpin visualisation. The role of such
a theoretic framework is to house a collection of fact-based theorems consistently
for explaining observed phenomena or events in visualisation, to provide quantitative
means for measuring the properties and attributes of observed phenomena or events
in visualisation, to enable the discovery of new theorems inferentially, and to test and
falsify conjectures proposed for visualisation. In fact, up to the time of writing this
paper, there has not been any serious proposal for other alternative theoretic frame-
work in the field of visualisation, though attempts have been made to draw inspiration
from other theoretic or conceptual frameworks in computer science (including logic,
AI, and software engineering), psychology, and linguistics. An exception is Chen
and Jänicke (2010), whose work gave several examples where theorems, rules and
measures in information theory can be used to explain phenomena and events in visu-
alisation. These examples include logarithmic plots, overview and details-on demand,
redundancy, and motion parallax in visualisation. They also outlined a collection of
possible correspondence between information theory and visualisation, from which
one may find further examples of using information theory in visualisation. To avoid
repetition, readers are encouraged to consult the original paper (Chen and Jänicke
2010) for details.
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On the other hand, the difference between communication systems and visualisa-
tion pipelines is also significant enough to suggest that one needs to be cautious when
applying information theory to visualisation. We should not indiscriminately apply
information measures to quantifying properties and attributes in visualisation without
considering the underlying probabilistic space, which often encodes some human fac-
tors within the pipeline or external factors that enter the pipeline with data. Because of
the involvement of humans, some of such factors are intrinsically semantic and very
difficult to capture and measure quantitatively or syntactically. Hence, the probabilistic
space underlying probability mass functions becomes undefined. At the same time, we
should not be deterred by any situation where information theory cannot currently offer
a satisfactory explanation or measurement. We know that much of information theory
assumes that an information source or a channel is memoryless. Such an assumption
is critical to the derivation of many theorems in information theory. Nevertheless, this
does not imply that all components in a communication system are memoryless. It
merely suggests that an application of information theory to a system is valid when
the memory factor is negligible in the system. By carefully defining the underlying
probabilistic space, one can also mitigate the effect of memory. However, it is highly
desirable to broaden information theory by combining it with a philosophy of infor-
mation that can provide better analytical methods for memoryful systems and fully
semantic features in the visualisation system. Information theory is a scientific subject
that is continuously being developed. Theoretic research in the context of visualisation
will no doubt contribute to its expansion.

One of the well-known concepts in information theory is the data processing
inequality (Cover and Thomas 2006). This is a widely accepted principle among sci-
entists and researchers in data processing, and many other areas of computer science.
Without being drawn into the mathematical details of the data processing inequality,
we can explain it with the aid of Fig. 5.

Consider two data processing sub-systems, A and B. Sub-system A takes an input
data set X, processes it according to a pre-defined algorithm, and generates an output
data set Y. The next sub-system B in the pipeline takes data set Y as the input, pro-
cesses it according to another pre-defined algorithm and generates data set Z as an
output. In information theory, mutual information is a quantity that measures how
much information one data set holds about another data set. Mathematically, it is triv-
ial to prove that the measurement is symmetric, that is, the two data sets contain the
same amount of information about each other. This is why it is called ‘mutual’ infor-
mation. The data processing inequality theorem states that the information contained
in Z about X cannot be more than the information contained in Y about X. In other
words, the information about X can only decrease or be kept the same after it has been
processed. This is an intuitive and sensible conclusion that is consistent with common
sense. Mathematically, the proof of the data processing inequality theorem is based

Fig. 5 A typical pipeline that
may meet the Markov chain
condition
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on the assumption that the pipeline, X to A to Y to B to Z in Fig. 5 is a Markov chain.
This implies that X and Z are conditionally independent, given Y. In other words,
sub-system B does not have any direct information about X except for the information
included in data set Y. Alternatively, even if B has direct access to such information,
for some reason, it is assumed that it cannot, or will not, make use of such information
in producing output Z.

In visualisation and, in fact, in many data processing systems in which semantic
information has a role to play, the Markov chain condition is usually broken. When it
is, the data processing inequality may not hold. When it does not, we are then able to
increase the information in Z about input data set X.

There are three different ways in which one may break the Markov chain condition:

(a) One may allow users to interact with sub-system B. If the users have some knowl-
edge about X, which is not encoded in the intermediate data set Y, such knowledge
can be used to influence the production of Z, and hence improve the inferences
that can be made from data set Y.
For example, let X be an itemised list of five products sold by a store in December.
Sub-system A computes a statistical summary based on X and outputs data set
Y containing [Jackets:15, Trousers:18, Shirts:28, Ties:5, Shoes: 34]. Sub-system
B offers several visual representations (e.g., bar chart, bubble chart, pie chart) to
display Y. The user interactively selects the pie chart to display the summary data,
and types in a caption ‘proportion of sales in £ in December’. In this case, the
interaction has brought back some information lost in data set Y. The pie chart is
a well-understood metaphor for proportional partition, from which one can infer
that the five values are percentage values. The caption adds further information
that the partitioning is in terms of sales values rather than numbers, and is about
December rather than other months.

(b) One may encode some knowledge about X in sub-system B.
For example, data set X may contain a 400 × 400 grid of sampled tempera-
ture values in a range between −40 and 40◦C. Data set Y is a set of contour
lines computed from Y, representing temperatures {−40,−20, 0,+20,+40◦C}
respectively. Sub-system B assigns purple, blue, white, yellow and red colours to
the contour lines at the five different temperatures, and then computes colours for
pixels between each pair of neighbouring contour lines by smoothly transform-
ing one contour colour to another. Hence the resultant visualisation Z includes
information between contour lines that was removed by sub-system A. As long
as the colour interpolation algorithm in sub-system B matches reasonably well
with the transitional patterns of temperatures in X, Z has more information about
X than Y.

(c) One may allow sub-system B to seek extra information about X, based on the
information contained in Y, from an external sub-system.
For example, X is a simulation model with a control parameter 0 ≤ t ≤ 1. Sub-
system A runs the model with t = 1 and produces a data set Y. Sub-system B is
for generating a visualisation from Y. B is aware that the same model has been
run previously with t = 0, 0.1, 0.2, . . . , 0.9, and retrieves the visualisations gen-
erated previously for other t values from a database. B then compares the current
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visualisation with the previous ones, and illustratively highlights those parts of
visualisation most different from the previous ones. This is resulting in a final
visualisation Z with sensitivity annotation. Z thereby contains information about
X that is not in Y.

One may object that, even though we are able to increase the information to the same
level as it is contained in data set X, we cannot gain more information than that which
enters into a visualisation pipeline. The original input data set X therefore should set
the upper limit. However, let us consider the sub-system B as a visualisation system,
and the data set Y as the input data set to the visualisation system. Sub-system A merely
represents a process that obtains a data set to be visualised from a data source. For
example, the process can be a computational simulation of a dynamic model, which
generates a set of values representing the changes of some attributes at some discrete
time intervals. In this case, the dynamic model is X, and the set of values is Y. Can
the visualisation system B generate more information than that contained in the input
data set Y? Of course, the answer is yes if we can break the Markov chain condition.
Note that this reasoning can be extended to more complex situations by adding more
sub-systems at the beginning of the pipeline. For instance, X may be a special case of
a more general model W, which may be a model approximating a natural phenomenon
V. Can the visualisation system B potentially help the users to gain an insight about the
natural phenomenon V? Again, the obvious answer is yes. This is because the users
who interact with sub-system B have the knowledge about the general model W and
the phenomenon V. Hence the output Z does not solely dependent on Y, but also on
X, W and V.

A difficult point to address concerns how the increase in information, gained through
visualization by breaking (the conditions of) a Markov Chain, may be measured.
The new information gained largely depends on (a) the human users’ interaction with
the visualization system, (b) the information that is hardcoded in the system, or (c) the
information in a knowledgebase that can be assessed dynamically by the system. Now,
(a) is potentially measurable by considering the parameter space of a system as the
information space. There have been theoretically attempts to measure (b)1 but, so far,
there is no practical solution to the problem of measuring information quantity in a
program. Finally, (c) features a combination of (a) and (b), and thus inherently is as
difficult as (b).

The usefulness of human-computer interaction in a visualisation pipeline has been
widely appreciated in the field of visualisation, but it has never been explained in terms
of information theory until the work by Chen and Jänicke (2010). Despite the fact that
breaking the essential condition of data processing inequality is an everyday phe-
nomenon in visualisation,2 we only recently realised that breaking such a condition in
significant and substantive ways may hold the key to address the increasing problem of

1 On measuring information in a program, see works on algorithmic information theory such as Chaitin
(1975) and Claude (1996).
2 Floridi (forthcoming) argues that breaking the condition of data processing inequality is essential in
order to explain non-natural (i.e., conventional, artificial, synthetic) meanings, thus complementing the
naturalist tradition, which seeks to account for non-natural meanings by reducing them entirely to natural
ones through signalling or information theory.
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data deluge. Since human-computer interaction requires time and human resources, the
amount of interaction that we can afford will always be limited. This indicates that the
aforementioned approach (a) does not scale well in the long run. Meanwhile, hard-cod-
ing too much application-specific or data-specific information in a visualisation system
will be costly, in terms of software engineering, and restrictive, in terms of software
deployment. This places an engineering constraint on approach (b). In comparison with
(a) and (b), the adoption of approach (c) is clearly to be preferred. Chen et al. (2009)
introduced the notion of knowledge-assisted visualisation to highlight the potential
merits of capturing and reusing knowledge in a visualisation pipeline. Their results
are consistent with approach (c) for breaking the condition of the data processing
inequality and with the analysis of semantic information proposed by Floridi (2011).

This brings us back to the information map illustrated in Fig. 2. While it is useful
to break the condition of data processing inequality, it is also necessary to realise
that the semantic information added into the visualization pipeline through the above-
mentioned ways can be true as well as untrue. Furthermore, there is limited control
over the perception and cognition stages of the pipeline, and hence over the insight
gained by individual viewers of a visualization. This poses a fundamental as well as a
practical question about the quality of visualization, which is a part of a more general
philosophical question about the quality of information. On the one hand, visualiza-
tion has a crucial role in dealing with data deluge. On the other hand, like almost all
mechanisms for information processing and communication, there will be opportunity
for mis- and disinformation. These are important but still open questions, which we
are investigating in our current research.3

5 Conclusion

The information map presented in Fig. 3 introduces a qualitative outlook of the visu-
alisation pipeline. The first half of the central path (up to optical transmission) is
traditionally studied in a quantitative manner using various measures, ranging from
information-theoretic measures (e.g., entropy, mutual information) to algorithmic
measures (e.g., complexity, speed, space usage). More and more emphasis has been
placed on quantitative analysis of the second half of the central path, for instance
through user studies. Nevertheless, what the users are really interested in is the seman-
tic content of the information, which is traditionally studied in a qualitative manner.
This presents us with two options, which are not mutually exclusive. We could con-
duct more qualitative research on the subject of visualisation. While there have already
many case studies on specific applications of visualisation, there is no reason to sug-
gest that we should not study human subjects in depth to gain a better understanding of
how a form of visualisation is learned and used in a common or specialised contextual
setting. For instance, many of us have been enlightened by Oliver Sack’s books (Sacks
1986, 2010). We would equally be informed by case studies such as ‘the man who mis-
took a treemap for …’ It is also necessary to state that qualitative research does involve

3 See the AHRC-funded project “Understanding Information Quality Standards and their Chal-
lenges (2011–2013)”, directed by Luciano Floridi as PI: http://www.philosophyofinformation.net/IQ/
AHRC_Information_Quality_Project/Home.html.
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data collection, data analysis, and validation. At the same time, we could introduce
more quantitative measures to describe meanings and related concepts. Many abstract
concepts already have parallel concepts that are quantifiable, for example, accuracy,
Kullback-Leibler information, and so on. Many abstract concepts that were not quan-
tifiable one or two millennia ago (e.g., force, heat, etc.) are quantifiable today. It
would certainly be useful if scientists could devise an information map consisting of
quantifiable concepts corresponding to those in Fig. 3. We should pursue both options.
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