
1 23

Synthese
An International Journal for
Epistemology, Methodology and
Philosophy of Science
 
ISSN 0039-7857
Volume 190
Number 17
 
Synthese (2013) 190:3671-3693
DOI 10.1007/s11229-012-0218-4

A modal ontology of properties for
quantum mechanics

Newton da Costa, Olimpia Lombardi &
Mariano Lastiri



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Synthese (2013) 190:3671–3693
DOI 10.1007/s11229-012-0218-4

A modal ontology of properties for quantum mechanics

Newton da Costa · Olimpia Lombardi ·
Mariano Lastiri

Received: 3 May 2012 / Accepted: 6 November 2012 / Published online: 15 November 2012
© Springer Science+Business Media Dordrecht 2012

Abstract Our purpose in this paper is to delineate an ontology for quantum mechan-
ics that results adequate to the formalism of the theory. We will restrict our aim to the
search of an ontology that expresses the conceptual content of the recently proposed
modal-Hamiltonian interpretation, according to which the domain referred to by non-
relativistic quantum mechanics is an ontology of properties. The usual strategy in the
literature has been to focus on only one of the interpretive problems of the theory and
to design an interpretation to solve it, leaving aside the remaining difficulties. On the
contrary, our aim in the present work is to formulate a “global” solution, according
to which different problems can be adequately tackled in terms of a single ontology
populated of properties, in which systems are bundles of properties. In particular, we
will conceive indistinguishability between bundles as a relation derived from indis-
tinguishability between properties, and we will show that states, when operating on
combinations of indistinguishable bundles, act as if they were symmetric with no need
of a symmetrization postulate.
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1 Introduction

From a very general viewpoint, the conceptual challenges of quantum mechanics use
to be faced from one of two perspectives. One of them is a sort of instrumentalist
stance, which conceives the theory as a mere calculational tool for prediction. The
other takes a realist position and tries to elucidate how reality would be if quantum
mechanics were true. This paper is clearly framed in this second position: our purpose
is to delineate, as precisely as possible for us, an ontology for quantum mechanics
that results adequate to the formalism of the theory. Of course, there is not a sin-
gle possible quantum ontology: the Löwenheim–Skolem theorem teaches us that, if
a first order theory has a model, it has a countable model; as a consequence, it can-
not have a unique model up to isomorphism. Therefore, we will restrict our aim to
the search of an ontology that expresses the conceptual content of the recently pro-
posed modal-Hamiltonian interpretation (Lombardi and Castagnino 2008; Ardenghi
et al. 2009; Lombardi et al. 2010; Ardenghi and Lombardi 2011), according to which
the domain referred to by non-relativistic quantum mechanics is an ontology of
properties.

Although all embodied in the formalism of the theory, the ontological problems
posed by quantum mechanics are of different nature: contextuality prevents the simul-
taneous assignment of determinate values to all the properties of a quantum system;
non-separability seems to affect the independent existence of non-interacting systems;
indistinguishability challenges certain traditional assumptions about individuals as
Leibniz’s principle of identity of indiscernibles. The usual strategy in the literature
has been to focus on only one of these problems and to design an interpretation to solve
it, leaving aside the remaining difficulties. However, one might aspire to formulate a
“global” solution, according to which all the problems can be adequately tackled in
terms of a single ontology: this is our aim in the present work.

For this purpose, the paper is organized as follows. In Section 2 we will briefly
describe the main theses of the modal-Hamiltonian interpretation, stressing its onto-
logical claims on the basis of which the proposed ontology will be introduced in the
following sections. Section 3 will be devoted to characterize different kinds of prop-
erties as the elemental items of the ontology; here the relation of indistinguishability
between properties will be introduced. Section 4 will explain how the features of space
and time identify certain properties on the basis of their invariance under space–time
transformations. In Section 5 we will introduce the concept of bundle of properties,
distinguishing atomic bundles as those composed by the invariant properties identified
in the previous section; in this section we will also define indistinguishability between
bundles as a relation derived from indistinguishability between properties. In Section
6 we will consider the combinations of bundles, and we will discuss the consequences
that the indistinguishability between bundles has on the result of the combination. On
this basis, Section 7 analyzes how states, when operating on combinations of indis-
tinguishable bundles, act as if they were symmetric with no need of a symmetrization
postulate. Finally, in Section 8 we will review the proposal in order to summarize how
this ontology of properties and bundles of properties allows us to face the different
ontological challenges of quantum mechanics, and what perspectives are opened up
by this new interpretative framework.
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2 The modal-Hamiltonian interpretation of quantum mechanics

The main idea behind modal interpretations is that quantum states constrain possibil-
ities rather than actualities: “the state delimits what can and cannot occur, and how
likely it is -it delimits possibility, impossibility, and probability of occurrence- but
does not say what actually occurs” (van Fraassen 1991, p. 279). On the basis of van
Fraassen’s original idea (1972, 1974), several authors presented realist interpretations
that can be viewed as members of the “modal family”, since all of them agree on
the following points (see Dieks and Vermaas 1998; Dieks 2007; Dieks and Lombardi
2012):

• The interpretation is based on the standard formalism of quantum mechanics.
• The interpretation is realist, that is, it aims at describing how reality would be if

quantum mechanics were true.
• The quantum state describes possible properties, with their corresponding proba-

bilities, which evolve unitarily according to the Schrödinger equation.
• A quantum measurement is an ordinary physical interaction: there is no collapse.
• The quantum state refers to a single system, not to an ensemble of systems.

The core feature that distinguishes the different modal interpretations from each
other is the rule of actual-value ascription: each member of the family proposes its
own rule for selecting the preferred context, that is, the set of the observables that
acquire an actual value without violating the restrictions imposed by the contextuality
of quantum mechanics (Kochen and Specker 1967).

The modal-Hamiltonian interpretation endows the Hamiltonian of the system with
a central role, both in the definition of systems and subsystems and in the identification
of the preferred context. The first step is, then, to identify the systems referred to by
the theory. By adopting an algebraic perspective, a quantum system is defined in the
following terms (see Lombardi and Castagnino 2008):

Systems postulate (SP): A quantum system S is represented by a pair (O, H)

such that (i) O is a space of self-adjoint operators on a Hilbert space H, rep-
resenting the observables of the system, (ii) H ∈ O is the time-independent
Hamiltonian of the system S, and (iii) if ρ0 ∈ O′ (where O′ is the dual space of
O) is the initial state of S, it evolves according to the Schrödinger equation in
its von Neumann version.

Of course, any quantum system can be partitioned in many ways; however, not any
partition leads to parts that are, in turn, quantum systems (see Harshman and Wickra-
masekara 2007). On this basis, a composite system is defined as

Composite systems postulate (CSP): A quantum system represented by
S: (O, H), with initial state ρ0 ∈ O′, is composite when it can be parti-
tioned into two quantum systems S1: (O1, H1) and S2: (O2, H2) such that
(i) O = O1 ⊗ O2, and (ii) H = H1 ⊗ I 2 + I 1 ⊗ H2, (where I 1 and I 2 are the
identity operators in the corresponding tensor product spaces). In this case, the
initial states of S1 and S2 are obtained as the partial traces ρ1

0 = T r(2) ρ0 and
ρ2

0 = T r(1) ρ0; we say that S1 and S2 are subsystems of the composite system,
S = S1 ∪ S2. If the system is not composite, it is elemental.
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As we have said above, the contextuality of quantum mechanics prevents us from
consistently assigning actual values to all the observables of a quantum system in a
given state. Therefore, the second step is to identify the preferred context by means of
a rule of actual-value assignment:

Actualization rule (AR): Given an elemental quantum system represented by
S: (O, H), the actual-valued observables of S are H and all the observables
commuting with H and having, at least, the same symmetries as H .

This actualization rule implies that any observable that has less symmetries than the
Hamiltonian cannot acquire a definite actual value, since this actualization would
break the symmetry of the system in an arbitrary way.

Before proceeding, let us stress that we should distinguish between the mathemat-
ical language (self-adjoint operators, functionals, eigenstates and eigenvalues of an
operator, etc.) and the physical language (observables, states, values of the observ-
ables, etc.): each term of the mathematical language represents a physical item whose
name belongs to the physical language. It is this physical interpretation of the math-
ematical formalism what turns it into the formalism of a physical theory. But since
this distinction would make the reading long and tedious, we shall follow the usual
presentations, where both languages are mixed under the assumption that the reader
knows the difference between mathematical and physical terms. Nevertheless, we will
pay special attention to the ontological language: the ontological meaning of language
is a central issue when the task is to understand the picture of reality supplied by the
interpretation (see Lombardi and Castagnino 2008):

Mathematics Physics Ontology

Self-adjoint operators Observables Type-properties
Eigenvalues of Values of an observable Case-properties

a self-adjoint
operator

Probability function Physical probability Ontological propensity
Functionals States Codification of propensities

The goal will be to describe the quantum ontology in the ontological language; for this
purpose we will introduce ontological postulates (Proposition 1, Proposition 2, etc.),
definitions (Definition 1, Definition 2, etc.), and corollaries (Corollary 1, Corollary 2,
etc.).

3 Elements of the ontology: properties

3.1 Type-properties

The assumption of an ontology of substances and properties is implicit in the quantum
physicists’ everyday discourse. Anchored in the ordinary language of subjects and
predicates, they usually speak about electrons as having a certain momentum or pho-
tons as having a certain polarization, as if there existed an underlying “something” to
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which properties are “stuck”. But perhaps ordinary language is not the only factor that
favors an ontological picture containing the categories of substance and of property. In
the discourse of physics, states “label” quantum systems; observables are “applied” to
states and are conceived as representing the properties of the system. In the orthodox
formalism of quantum mechanics, states, represented by vectors of the Hilbert space,
are fundamental from a logical viewpoint; observables, in turn, are logically posterior
because represented by operators acting on those previously defined vectors. When the
logical priority of states over observables, embodied in the Hilbert space formalism,
is endowed with an ontological content, the assumption of an ontology of substances
and properties, with the traditional ontological priority of substances over properties,
turns out to be “natural”.

The modal-Hamiltonian interpretation, on the contrary, adopts an algebraic
approach as its formal starting point. In this formalism, the basic elements of the
theory are the observables; states are logically posterior since they are represented
by functionals over the set of observables. If this logical priority of observables over
states is transferred to the ontological domain, observables turn out to embody the
representation of the elemental items of the ontology. In other words, whereas a realm
of substances and properties seems to be the natural reference of the theory in the
Hilbert space formalism, the algebraic approach favors the adoption of an ontology of
properties, in which the ontological category of substance is absent. On this basis, we
introduce the first ontological postulate:

Proposition 1 There exist universal type-properties, symbolized as [A], [B], [C], etc.,
each one of which has countless instances. We will symbolize an instance of a universal
type-property [A] as [Ai ].
An example of universal type-property is the energy [H ], which can be instantiated
as the energy [H1] of this particular system, for instance, a free electron.

In physics, each instance [Ai ] of the universal type-property [A] is represented by
an observable Ai belonging to a certain set of observables Oi

(
Ai ∈ Oi

)
. Mathemat-

ically, each observable is represented by a self-adjoint operator Ai belonging to a set
of self-adjoint operators Oi

(
Ai ∈ Oi ⊆ Hi ⊗ Hi

)
.

3.2 Case-properties

The nature of possibility has been one of the most controversial issues in the history
of philosophy. However, two general conceptions can be identified, both of which
find their roots in Antiquity. One of them, usually called “actualism”, is the concep-
tion that reduces possibility to actuality. This was the position of Diodorus Cronus;
in Cicero’s words, “Diodorus defines the possible as that which either is or will be”
(cited in Kneale and Kneale (1962), p. 117) The other conception, called “possibi-
lism”, conceives possibility as an ontologically irreducible feature of reality. From this
perspective, the stoic Crissipus defined possible as “that which is not prevented by
anything from happening even if it does not happen” (cited in Bunge (1977), p. 172).
For actualists, the adjective ‘actual’ is redundant: non-actual possible items (objects,
properties, facts, etc.) do not exist, they are nothing. According to possibilists, on
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the contrary, not every possible item is an actual item: possible items—possibilia
constitute a basic ontological category (see Menzel 2007)

As we have seen, according to modal interpretations, the formalism of quantum
mechanics does not determine what actually is the case, but rather describes what
may be the case, that is, possibility. In the particular case of the modal-Hamiltonian
interpretation, possibility is conceived from a possibilist, non-actualist perspective:
what is possible cannot be reduced to actuality and does not need to become actual to
be real. This means that reality spreads out in two realms, the realm of possibility and
the realm of actuality. In Aristotelian terms, being can be said in different ways, as
possible being or as actual being, and none of them is reducible to the other. On this
basis, we will distinguish between possible and actual case-properties.

Proposition 2 Any instance [Ai ] of a universal type-property [A] has possible case-
properties [ai

j ].

Following with the previous example, we can talk of the possible case-properties [ωi
j ]

of the energy [H1] of this free electron, where [H1] is an instance of the universal
type-property energy [H ].

In physics, the possible case-properties [ai
j ] are represented by the possible values

ai
j of the observable Ai . Mathematically, the possible values ai

j are represented by the

eigenvalues of the self-adjoint operator Ai : Ai
∣∣∣ai

j

〉
= ai

j

∣∣∣ai
j

〉
.

Although the case-properties of an instance of a universal type-property belong to
the realm of possibility, one of them may enter the world of actuality:

Proposition 3 Given any instance [Ai ] of a universal type-property [A], among all
its possible case-properties [ai

j ], no more than one of them becomes actual. We will
symbolize the actual case-property resulting from the actualization of the possible
case-property [ai

k] as [ai
k]. When one of the [ai

j ] becomes actual, say [ai
k], we will say

that the instance [Ai ] actualizes and acquires the actual value (case-property) [ai
k].

This ontological postulate implies that an instance [Ai ] of the universal type-property
[A] may or may not actualize. This is a consequence of the Kochen-Specker theorem,
which establishes one of the central differences between the quantum world and the
classical world: in the quantum case, omnimode determination does not hold.

In their ordinary language, physicists use to talk about the value that an observable
“effectively” acquires, in general as the result of a measurement. However, quantum
mechanics does not account for actualization and, as a consequence, neither in the
physical language nor in the mathematical language there is a representation of the
actual case-property [ai

k] as different as the possible case-property [ai
k].

3.3 Indistinguishability between properties

In their book on identity and individuality in physics, French and Krause (2006) note
that the category of individual requires some “principle of individuality” that makes
an individual to be that individual and not another. The metaphysical question is, then,
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what confers individuality to individuals. The answers to this question can be broadly
divided into two kinds: (i) those that appeal to a “transcendental individuality”, that
is, something over and above any set of properties of the individual, like, for instance,
substance, and (ii) those that appeal to some subset of the properties of the individ-
ual, together with some further principle which ensures that no other individual must
possess that subset; in this case, the properties that confer individuality are usually
spatio-temporal properties under the assumption of impenetrability, which guarantees
that two individuals cannot occupy the same spatial region at the same time.

In the discussions about the ontological commitments of quantum mechanics, sev-
eral authors have pointed out the serious challenge posed by the theory to the notion
of individual. Already in the 60s, Heinz Post (1963) argued that elementary parti-
cles cannot be regarded as individuals, but they must be seen as “non-individuals” in
some sense. Paul Teller (1998) addresses the problem in terms of “haecceity”, that is,
what makes an object to be different from all others in some way that transcends all
properties. According to this author, quantum mechanics provides good reasons for
rejecting any aspect of quantum entities that might be thought to do the job of hae-
cceity: “I suggest that belief in haecceities, if only tacit and unacknowledged, plays
a crucial role in the felt puzzles about quantum statistics” (Teller 1998, p. 122). In
turn, quantum non-separability leads Tim Maudlin to assert that the world cannot be
conceived as just a set of separate and localized objects, externally related only by
space and time (Maudlin 1998, p. 60). All these authors stress the fact that the notion
of individual does not fit into the structure of quantum mechanics (see also French
and Krause (2006), and references therein).

The quantum feature that has given rise to a deep skepticism about the notion of
individual is the indistinguishability of “identical particles”, which is introduced in
the formalism of quantum mechanics as a restriction on the set of states: non-sym-
metric states are rendered inaccessible. Steven French (1998) considers that such a
restriction is consistent with the ontological view of particles as individuals: quantum
statistics is recovered by regarding those states as possible but never actually realized.
However, the restriction on the non-symmetric states has an unavoidable ad hoc flavor
in the context of the theory. In this sense, Redhead and Teller (1992) reject the talk of
individuals by claiming that the posit of inaccessible non-symmetric states amounts
to the introduction of a surplus structure in the formalism. When, on the other hand,
indistinguishability is understood in terms of the identification of the complexions
resulting from the permutations of identical particles, the traditional idea of individual
runs into troubles. Particles cannot be individuated by labeling them, and individuality
becomes a controversial notion in the light of this fact.

As we have seen, the modal-Hamiltonian interpretation, on the basis of the algebraic
approach, adopts an ontology of properties, where observables represent the elemental
items of the ontology. Therefore, our aim will be to derive the indistinguishability of
quantum systems from the indistinguishability of their properties:

Definition 1 Any two instances [A1] y [A2] of the universal type-property [A] are
indistinguishable, that is, only numerically different, if their respective case-proper-
ties [a1

j ] and [a2
j ] are represented by the same number: a1

j = a2
j . We will symbolize

indistinguishability as [A1] ∧= [A2].
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Corollary 1 The indistinguishability between instances of universal type properties
is an equivalence relation.

The indistinguishable instances of a given universal type-property do not satisfy
Leibniz’s Principle of Identity of Indiscernibles (for a discussion about this principle
in the context of physics, see French and Krause (2006)). This happens not because
the principle is false in this case, but because it does not apply: the principle applies
to individuals, whereas here we are considering items belonging to the ontological
category of property.

In spite of the fact that physicists use to talk about “indistinguishable particles”,
quantum mechanics is not endowed with a formal relationship for indistinguishabil-
ity and, as a consequence, there is no mathematical representation for this relation.
Some authors developed logical systems specifically designed to deal with indistin-
guishability in a formal context: the semiextensional quasisets theory, developed by
Newton da Costa and Decio Krause (1994, 1997, 1999) (see also Krause (1992), and
da Costa et al. (1992)), and the intensional quasets theory, developed by dalla Chiara
and di Francia (1993, 1995), describe collections of objects having cardinality but not
order type, that is, objects to which the concept of individual of classical logic does
not apply. The strategy to be developed in the present work is different, because based
on a complete renunciation of the category of individual object.

4 Elements of the ontology: space and time

4.1 Features of space and time

As it is well known, in non-relativistic quantum mechanics space and time have clas-
sical features:

Proposition 4 Space and time are Galilean, that is, time is homogeneous, space is
homogeneous and isotropic, and their properties are represented by the group of the
Galilean transformations.

The Galilean group is defined by the commutation relations between its generators. In
absence of external fields, these generators represent the basic magnitudes of the the-
ory: the energy, the three momentum components, the three angular momentum com-
ponents, and the three boost components. In turn, external fields modify the evolution
of the system and, as a consequence, their effect is accounted for by the Hamiltonian:
it ceases to be the generator of time-displacements in the commutation relations, and
only retains its role as generator of the dynamical evolution (see Lombardi et al. 2010).
Nevertheless, the Schrödinger equation is still covariant under the Galilean transfor-
mations (for the conditions to be satisfied by external fields in order to preserve the
covariance of the Schrödinger equation, see Brown and Holland (1999)).

As stressed by Jean-Marc Lévi-Leblond (1974), although it is usual to read that
non-relativistic quantum mechanics is covariant under the Galilean transformations,
this issue has been scarcely treated in the standard literature on the theory. For instance,
the commutation relations defining the Galilean group are often not even quoted in
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the textbooks on the matter (an exception is Ballentine (1998)). This situation is very
odd to the extent that space–time symmetries endow the formal skeleton of quantum
mechanics with the physical flesh and blood that make the theory to be a physical
theory: they identify the fundamental physical magnitudes of the theory, like energy,
position, momentum, spin, etc. From our ontological perspective, we can say that the
features of space and time impose constraints to universal type-properties, since those
features rule how their instances behave under time-translations, space-translations,
space-rotations and velocity boosts. Moreover,

Corollary 2 Among all the universal type-properties, the features of space and time
distinguish, through the Galilean group, the universal type-properties whose instances
are invariant under all the transformations of the group. These universal type-prop-
erties are the mass [M], the internal energy [W ] and the squared spin [S2], and all
the remaining universal type-properties that can be defined as functions of them.

Mathematically, the Galilean group is a Lie group. The Casimir operators of the
group are operators that commute with all the generators of the group and, as a con-
sequence, are invariant under all the transformations of the group. In particular, the
universal type-properties mass [M], internal energy [W ] and squared spin [S2] are
physically represented by the observables mass M , internal energy W and squared
spin S2, which, in turn, are mathematically represented by Casimir operators of the
Galilean group.

4.2 Actualization

As we have stressed in Section 2, the main difference among the diverse modal inter-
pretations rests on the rule that selects the preferred context of the actual-valued
observables. In the case of the modal-Hamiltonian interpretation, the actualization
rule depends on the Hamiltonian, which is not invariant under all the Galilean trans-
formations (it is not invariant under velocity-boosts). Nevertheless, it can be proved
that, when the definition of quantum system is considered, the rule admits a Galilean-
invariant formulation (see Ardenghi et al. 2009; Lombardi et al. 2010). The natural
way to obtain this invariant formulation is by appealing to the Casimir operators of
the Galilean group: if the actualization rule has to select a Galilean-invariant set of
actual-valued observables, such a set must depend on those Casimir operators, which
are invariant under all the transformations of the Galilean group. Precisely,

Proposition 5 (Actualization rule AR’) The only instances of universal type-proper-
ties that actualize are the instances [Mi ] of the mass [M], [W i ] of the internal energy
[W ], [S2i ] of the squared spin [S2], and the instances of the universal type-properties
that, in each case, are represented by operators obtained as functions of the Casimir
operators of the Galilean group.

Let us recall that a continuous space–time transformation admits two interpreta-
tions. Under the active interpretation, the transformation corresponds to a change from
a system to another—transformed—system; under the passive interpretation, the trans-
formation consists in a change of the viewpoint—the reference frame—from which
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the system is described (see Brading and Castellani 2007). Nevertheless, in both cases
the invariance of the fundamental law of a theory under its symmetry group implies
that the behavior of the system is not altered by the application of the transformation:
in the active interpretation language, the original and the transformed systems are
equivalent; in the passive interpretation language, the original and the transformed
reference frames are equivalent.

Since the Galilean group of continuous space–time transformations is the sym-
metry group of quantum mechanics, in the passive interpretation language we have
to say that the invariance of the quantum laws amounts to the equivalence between
inertial reference frames, that is, reference frames time-displaced, space-displaced,
space-rotated or uniformly moving with respect to each other: the application of a
Galilean transformation does not introduce a modification in the physical situation,
but only expresses a change of the perspective from which the system is described.
On the other hand, from a realist viewpoint, the fact that certain observables acquire
an actual value is an objective fact in the behavior of the system. Therefore, the set of
actual-valued observables selected by a realist interpretation must be also Galilean-
invariant, since such a set must not change as the result of a mere change of descriptive
viewpoint. But the Galilean-invariant observables are always functions of the Casimir
operators of the Galilean group. As a consequence, one is led to the conclusion that
any realist interpretation that intends to preserve the objectivity of actualization may
not stand very far from the modal-Hamiltonian interpretation.

5 Non-elemental items: bundles

5.1 Bundles of instances of universal type-properties

One of the main areas of controversy in contemporary metaphysics is the problem of
the nature of individuals or particular objects: is an individual a substratum supporting
properties or a mere “bundle” of properties? (see Loux 1998). The idea of a substratum
acting as a bearer of properties and/or as the principle of individuation has pervaded the
history of philosophy. For instance, it is present under different forms in Aristotle’s
“primary substance”, in Locke’s doctrine of “substance in general” or in Leibniz’s
monads. Nevertheless, many philosophers belonging to the empiricist tradition, from
Hume to Russell, Ayer and Goodman, have considered the posit of a characterless
substratum as a metaphysical abuse. As a consequence, they have adopted some ver-
sion of the “bundle theory”, according to which an individual is nothing but a bundle
of properties: properties have metaphysical priority over individuals and, therefore,
they are the fundamental items of the ontology.

Our idea of an ontology of properties favors the conception of a quantum system
as a bundle of properties:

Definition 2 A bundle hi is a collection of instances of universal type-properties:
hi = {[Ai ], [Bi ], [Ci ], ...}

The concept of bundle is the ontological correlate of the physical concept of sys-
tem. This means that the bundle h1 is physically represented by a system S1, which
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is identified by a set of observables O1. In turn, mathematically, a physical system
S1 is represented by the set of operators O1, or by the Hilbert space H1 if O1 =
H1 ⊗ H1.

Although this proposal is framed in the general idea underlying bundle theories, it
is relevant to stress the difference between this conception of quantum system and the
classical notion of individual as a bundle of properties. According to the traditional
versions of the bundle theory, an individual is the convergence of certain case-proper-
ties, under the assumption that the type-properties corresponding to that individual are
all determined in terms of a definite case-property. For instance, a particular billiard
ball is the convergence of a definite value of position, a definite shape, say round,
a definite color, say white, etc. So, in the debates about the metaphysical nature of
individuals, the problem is to decide whether this individual is a substratum in which
definite position, roundness and whiteness inhere, or it is the mere bundle of those
case-properties. But in both cases the properties taken into account are actual: bundle
theories identify individuals with bundles of actual case-properties.

The fact that the modal-Hamiltonian interpretation adopts an ontology of proper-
ties as the reference of quantum mechanics does not mean that it identifies a quantum
system with a bundle of properties in the same sense as in traditional bundle theo-
ries, designed under the paradigm of classical individuals. We know that not all the
instances of the universal type-properties constituting a quantum system can acquire
an actual case-property; only the instances selected by the preferred context actual-
ize. Of course, in each context one could insist on the classical idea of instances of
universal type-properties with their definite actual case-properties with no contradic-
tion: the picture of a bundle of actual case-properties that defines an individual could be
retained in each context. But as soon as we try to extend this ontological picture to all
the contexts by conceiving the individual as a bundle of bundles, the Kochen-Specker
theorem imposes an insurmountable barrier: it is not possible to actually ascribe the
case-properties corresponding to all the instances of the universal type-properties of
the system in a non-contradictory manner. Therefore, the classical idea of an individ-
ual as a bundle of bundles of actual case-properties does not work in the quantum
framework.

Moreover, according to the indeterministic nature of quantum mechanics, even for
the instances of universal type-properties that actualize, the particular possible case-
property that becomes actual is not determined. So, also for this reason, the strategy of
identifying a system as a bundle of actual case-properties is not adequate in the quan-
tum context. Therefore, it seems reasonable to conceive a quantum system as a bundle
of instances of universal type-properties instead of relying on actual case-properties.
This reading has the advantage of being immune to the challenge represented by the
Kochen-Specker theorem, since this theorem imposes no restriction on type-proper-
ties.

It is worth noting that, by contrast with traditional bundle theories, when the quan-
tum system is conceived in this way, the account of its identity over time poses no
difficulty: the space of observables remains invariant during the entire “life” of the
system. On the other hand, nothing happening in the realm of actuality modifies the
identity of the quantum system: it is the same no matter what possible case-properties
become actual.
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5.2 Atomic bundles

Mathematically speaking, the Galilean group has irreducible representations, in which
the Casimir operators are multiples of the identity: M = m I, W = w I and S2 = s(s +
1)I ; as a consequence, each irreducible representation is labeled by a triplet (m, w, s).
In physics it is assumed that each irreducible representation of the Galilean group rep-
resents a kind of elemental particle, characterized by its mass m, internal energy w and
its spin s. We will use the symbol Pα to denote a particular quantum system that is an
elemental particle, and we will define the concept of atomic bundle as the ontological
correlate of the physical concept of elemental particle.

Definition 3 A bundle hα is atomic if (i) there is no more than one instance of each
universal type-property in it, (ii) the instances [Mα] of the mass [M], [W α] of the
internal energy [W ] and [S2 α] of the squared spin [S2] always belong to it, and (iii)
these instances are represented by observables Mα, W α y S2 α, which, in turn, are
mathematically represented by operators that are multiples of the identity.

On the basis of this definition it can be said that an atomic bundle is mathemati-
cally represented by the Casimir operators Mα, W α, S2 α, which are multiples of the
identity (Mα = mα I, W α = wα I, S2 α = sα(sα + 1)I respectively) and, therefore, in
each irreducible representation of the Galilean group each one of them has a single
eigenvalue (mα, wα, sα(sα + 1) respectively). This physically means that, in any kind
of elemental particle, each one of the observables Mα, W α, S2 α has a single pos-
sible value mα, wα, sα(sα + 1). In turn, this ontologically means that each one of
the instances [Mα], [W α], [S2 α] of the universal type-properties [M], [W ], [S] has a
single possible case-property [mα], [wα], [sα(sα + 1)] respectively. According to the
Actualization Rule (Proposition5), in the atomic bundle hα the instances [Mα], [W α]
and [S2 α] actualize, that is, they acquire an actual case-property; but since all of them
have a single possible case-property, this is the possible case-property that actualizes:

Corollary 3 In any atomic bundle hα, the instances [Mα], [W α], [S2 α] of the universal
type-properties Mα, W α, S2 α actualize, and they acquire the actual case-properties
[mα], [wα], [sα(sα + 1)] respectively.

5.3 Indistinguishable atomic bundles

Although physicists, in their ordinary language, use to talk about “indistinguishability
among particles”, in the ontology proposed here there are not particles as individuals:
the ontological correlate of the concept of particle is the concept of atomic bundle,
but bundles have no principle of individuality that makes them individuals. So, from
our perspective, bundles are not individuals and indistinguishability is not a relation-
ship between individuals. Let us begin by considering the indistinguishability between
two atomic bundles, which “inherit” the indistinguishability between their respective
instances:
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Definition 4 Two atomic bundles hα and hβ are indistinguishable, symbolized as

hα �= hβ, when the respective instances of universal type-properties belonging to

them are indistinguishable: ∀[Aα
i ] ∈ hα,∀[Aβ

i ] ∈ hβ, [Aα
i ] ∧= [Aβ

i ] ⇒ hα �= hβ

Corollary 4 Indistinguishable atomic bundles are only numerically different.

Corollary 5 Given two indistinguishable atomic bundles hα y hβ, their respective
actual case-properties are represented by the same numbers:

hα �= hβ ⇒ mα = mβ, wα = wβ, sα(sα + 1) = sβ(sβ + 1).

The indistinguishability between two atomic bundles hα y hβ expresses the physi-
cal indistinguishability between the corresponding elemental particles Pα y Pβ, and
agrees with the physical fact that all the elemental particles of the same kind—that is,
with the same values of mass, internal energy and spin—are indistinguishable.

6 Combinations of bundles

6.1 Combinations and kinds of combinations

Up to this point we have characterized an ontological concept of indistinguishability
that expresses, in ontological terms, the physical relationship between the correspond-
ing elemental particles. Now we have to show that this ontological concept of indis-
tinguishability admits the same formal treatment as that physical indistinguishability
receives in the practice of physics. For this purpose, we will begin by defining the
combination of bundles.

Definition 5 Given two bundles h1 and h2, physically represented by the sets of
observables O1 and O2 respectively, and mathematically represented by the set of
self-adjoint operators O1 and O2 respectively, the combination between bundles is
defined as an operation h1 ♦ h2 = hc, where hc is a new bundle physically repre-
sented by the set of observables Oc = O1 ⊗ O2 and mathematically represented by
the set of self-adjoint operators Oc = O1 ⊗ O2.

Let us stress again that, in the context of this ontological proposal, bundles are
not individuals, that is, they do not have a principle of individuality that preserves
their identity through change. As a consequence, any combination of bundles is a new
bundle, in which the identity of the components is not retained, precisely because they
are not individuals.

In the practice of quantum mechanics, certain relationships between the observables
of a composite system and the observables of its components are usually assumed. For
instance, it is accepted that the observable A1 of a subsystem S1 and the observable
A = A1 ⊗ I 2 of the composite system S = S1 ∪ S2 represent the same property (see
discussion in Lombardi and Castagnino (2008), Subsect. 4.1). In order to express this
fact in the ontological language, we introduce the following postulate:
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Proposition 6 Given two bundles h1 and h2, which combine in the bundle hc =
h1♦h2, the instance [A1] ∈ h1 of the universal type-property [A], represented by
the operator A1 ∈ O1, is the same instance as [A1 ⊗ I 2] ∈ hc = h1♦h2 of the
same universal type-property [A], represented by the operator A1 ⊗ I 2 ∈ O1 ⊗ O2:
[A1] = [A1 ⊗ I 2].

It is clear that, when we say that [A1] = [A1 ⊗ I 2], the symbol ‘=’ represents
logical identity: ‘a = b’ means that the terms ‘a’ and ‘b’ refer or denote the same item
in the ontological realm.

Finally, we will distinguish two forms of combination of bundles, depending on the
existence of interaction or not.

Definition 6 Given two bundles h1 and h2, which combine in the bundle hc =
h1 ♦ h2, where the instance [H c], belonging to hc, of the universal type-property
energy [H ] is represented by an observable H c, represented in turn by an operator
H c = H1⊗ I 2+ I 1⊗H2+Hint ∈ Oc = O1⊗O2, there are two kinds of combinations
between h1 and h2:

* when Hint �= 0, the combination is an interaction,
* when Hint = 0, the combination is an aggregation, which will be symbolized as

h1 ∗ h2 = hc. By extension, we will call the bundle hc the ‘aggregate’ of h1 and
h2.

6.2 Aggregates of bundles

Here we will only consider aggregates, since we are interested in the statistics of
quantum systems. Let us insist that, even in the case of aggregates, in which there is
no interaction, the result of the combination is a new bundle where the component
bundles, being not individuals, lose their identity. For this reason, it is reasonable to
suppose that the aggregation of two bundles is a combination that does not depend
on the order of the combination: in the mathematical representation of any instance
belonging to the bundle hc = h1 ∗ h2, it doesn’t matter if the first instance comes from
h1 and the second from h2, or vice versa.

Proposition 7 Let us consider the bundles h1 = {[A1
i ]

}
and h2 =

{
[A2

j ]
}

, phys-

ically represented by the sets of observables O1 and O2 respectively, and mathe-
matically represented by the sets of self-adjoint operators O1 y O2 respectively. The
instances [Cc], [Cc′ ] belonging to hc = h1∗h2, and represented by the operators

Cc = ∑
i j ki j

(
A1

i ⊗ A2
j

)
∈ Oc = O1 ⊗ O2 and Cc′ = ∑

i j ki j

(
A2

j ⊗ A1
i

)
∈ Oc =

O1 ⊗ O2, are such that [Cc] = [Cc′ ] and, therefore, [A1
i ⊗ A2

j ] = [A2
j ⊗ A1

i ].

The mathematical counterpart of this ontological condition, [A1
i ⊗ A2

j ] = [A2
j ⊗ A1

i ],
is the restriction on the admissible operators representing instances of the composite

bundle: the admissible operators are those of the form Cc = ∑
i j ki j

(
A1

i ⊗ A2
j

)
∈

Oc ⊆ O1 ⊗ O2 such that A1
i ⊗ A2

j = A2
j ⊗ A1

i .
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It is interesting to notice that, in the case of aggregates of (indistinguishable or not)
atomic bundles, for all the instances of universal type-properties that actualize, the
mathematical counterpart of Proposition 7 is satisfied as a direct consequence of the
nature of those instances. In fact, given two atomic bundles

hα =
{
[Hα], [Mα], [W α], [S2 α], . . .

}
(1)

hβ =
{
[Hβ], [Mβ], [W β], [S2 β], . . .

}
(2)

which combine as hα∗hβ = hc:

(a) Let us consider the instances [Mα] ∈ hα and [Mβ] ∈ hβ of the universal type-
property mass [M]. On the basis of Proposition 6 we know that

[Mα] = [Mα ⊗ I β] and [Mβ] = [Mβ ⊗ I α] (3)

The instances [Mα ⊗ I β], [Mβ ⊗ I α] ∈ hc are mathematically represented by
the operators Mα ⊗ I β, Mβ ⊗ I α ∈ Oc = Oα ⊗ Oβ respectively. Therefore, in
the mathematical domain,

Mα ⊗ I β = mα I α ⊗ I β = mα
(

I α ⊗ I β
)

= mα
(

I β ⊗ I α
)

= I β ⊗ mα I α = I β ⊗ Mα (4)

Mβ ⊗ I α = mβ I β ⊗ I α = mβ
(

I β ⊗ I α
)

= mβ
(

I α ⊗ I β
)

= I α ⊗ mβ I β = I α ⊗ Mβ (5)

The fact that Mα ⊗ I β = I β ⊗ Mα (Mβ ⊗ I α = I α ⊗ Mβ) in the mathe-
matical domain expresses the ontological fact that [Mα ⊗ I β] and [I β ⊗ Mα]
([Mβ ⊗ I α] and [I α ⊗ Mβ]) are different names of the same instance of the
universal type-property mass belonging to the aggregate. This is reasonable
when it is admitted that the result of the aggregation of two bundles must not
depend on the order in which the component bundles are combined. In other
words, the fact that the tensor product commutes in this particular case expresses
mathematically the ontological claim of Proposition 7, according to which

[Mα ⊗ I β] = [I β ⊗ Mα] and [Mβ ⊗ I α] = [I α ⊗ Mβ] (6)

(b) Let us now consider the instance [Mα ⊗ I β + I α ⊗ Mβ] ∈ hc, represented by
the operator Mα ⊗ I β + I α ⊗ Mβ ∈ Oc ⊆ Oα ⊗ Oβ. On the basis of Eqs. (4)
and (5), we know that:

Mα ⊗ I β + I α ⊗ Mβ = I β ⊗ Mα + Mβ ⊗ I α (7)

And due to the commutativity of the sum,

I β ⊗ Mα + Mβ ⊗ I α = Mβ ⊗ I α + I β ⊗ Mα (8)
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Therefore, from Eqs. (7) and (8),

Mα ⊗ I β + I α ⊗ Mβ = Mβ ⊗ I α + I β ⊗ Mα (9)

Equation (9) expresses, in the mathematical domain, the ontological fact that
[Mα ⊗ I β + I α ⊗ Mβ] and [Mβ ⊗ I α + I β ⊗ Mα] are different names of the
same instance of the universal type-property mass belonging to the aggregate.
This ontological fact is a particular case of the Proposition 7, according to which

[Mα ⊗ I β + I α ⊗ Mβ] = [Mβ ⊗ I α + I β ⊗ Mα] (10)

(c) Analogous conclusions can be drawn for all the instances represented by the
Casimir operators of the Galilean group, since they are multiples of the identity,
and for all the instances represented by functions of those Casimir operators that
are also multiples of the identity.

Summing up, Proposition 7 restricts the operation of aggregation to the particular
cases in which the tensor product commutes: A1

i ⊗ A2
j = A2

j ⊗ A1
i . Nevertheless,

this is not yet equivalent to the commutativity of the operation of aggregation itself,
which would imply that A1

i ⊗ A2
j = A2

i ⊗ A1
j . As we will see, the commutativity of

aggregation is related with indistinguishability.

6.3 Aggregates of indistinguishable atomic bundles

In an aggregate of indistinguishable bundles, it can be expected that the instances
belonging to the aggregate do not distinguish between the component bundles. In the
atomic case,

Proposition 8 In the case of the aggregate of indistinguishable atomic bundles hα and

hβ, hα �= hβ, the operation of aggregation is commutative: hα ∗ hβ = hβ ∗ hα = hc

Proposition 8 adds an additional restriction to the instances belonging to the bundle
resulting from the aggregation. Mathematically, it requires that the operators Cc =
∑

i j ki j

(
Aα

i ⊗ Aβ
j

)
∈ Oc = Oα ⊗ Oβ representing the instances belonging to hc =

hα ∗ hβ, when hα �= hβ, are such that Aα
i ⊗ Aβ

j = Aβ
i ⊗ Aα

j . In other words, the
instances [Cc] ∈ hc are represented by observables symmetric with respect to the per-
mutation between hα and hβ. Taking the simpler case Cc = Aα ⊗ Bβ and considering
the components of the operators, if Aα = [ai j ] and Bβ = [bmn], then Cc = [ci jmn] =
[ai j bmn] = [amnbi j ] = [cmni j ].

Summarizing up to this point: the indistinguishability between instances of uni-
versal type-properties leads to the indistinguishability between bundles. Due to their
indistinguishability, when two indistinguishable bundles combine in an aggregate, the
operation of aggregation commutes. And it is this commutation what leads to the
symmetry of the bundle resulting from the aggregation: the operators representing
the instances belonging to the new bundle are symmetric with respect to the permuta-
tion of the indices corresponding to the two component operators.
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As in the case of Proposition 7, in the case of aggregates of indistinguishable atomic
bundles, for all the instances of universal type-properties that actualize, the mathemat-
ical counterpart of Proposition 8 is satisfied as a direct consequence of the nature of

those instances. In fact, given two indistinguishable atomic bundles hα �= hβ,

hα =
{
[Hα], [Mα], [W α], [S2 α], . . .

}
(11)

hβ =
{
[Hβ], [Mβ], [W β], [S2 β], . . .

}
(12)

which combine as hα ∗ hβ = hc:

a) Let us consider the instances [Mα] ∈ hα and [Mβ] ∈ hβ of the universal type-
property mass [M]. On the basis of the definition of indistinguishability between
atomic bundles (Definition 4), we know that

hα �= hβ ⇒ [Mα] ∧= [Mβ] (13)

Moreover, from Proposition 6 we know that

[Mα] = [Mα ⊗ I β] and [Mβ] = [Mβ ⊗ I α] (14)

Therefore, from Eqs. (13) and (14), we can conclude that [Mα ⊗ I β] ∈ hc and
[Mβ ⊗ I α] ∈ hc are both instances of the universal type-property mass [M] and
that they are indistinguishable:

[Mα ⊗ I β] ∧= [Mβ ⊗ I α] (15)

Mathematically, the instances [Mα ⊗ I β], [Mβ ⊗ I α] ∈ hc are represented by the
operators Mα ⊗ I β, Mβ ⊗ I α ∈ Oc = Oα ⊗ Oβ respectively. Therefore, in the
mathematical domain:

Mα ⊗ I β = mα I α ⊗ I β = mα
(

I α ⊗ I β
)

= mα
(

I β ⊗ I α
)

(16)

From the definition of indistinguishability between instances of universal type-
properties (Definition 1),

[Mα] ∧= [Mβ] ⇒ mα = mβ (17)

Replacing Eq. (17) into Eq. (16),

mα
(

I β ⊗ I α
)

= mβ
(

I β ⊗ I α
)

= mβ I β ⊗ I α = Mβ ⊗ I α (18)

Therefore, from Eqs. (16) and (18),

Mα ⊗ I β = Mβ ⊗ I α (19)
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This shows that, in the bundle hc resulting from the aggregation of indistinguish-

able atomic bundles hα and hβ, the two indistinguishable instances [Mα ⊗ I β] ∧=
[Mβ ⊗ I α] are effectively indistinguishable even mathematically, since they are
represented by the same symmetric operator Mα ⊗ I β = Mβ ⊗ I α ∈ Oc =
Oα ⊗ Oβ. In physical terms, once the particles have entered in the aggregate,
their masses are also properties of the aggregate but they are completely indis-
tinguishable.

b) As proved above (see Eq. (10)), [Mα ⊗ I β + I α ⊗ Mβ] ∈ hc and [Mβ ⊗ I α + I β ⊗
Mα] ∈ hc are different names of the same instance of the universal type-property
mass [M] belonging to the aggregate: [Mα ⊗ I β + I α ⊗ Mβ] = [Mβ ⊗ I α +
I β ⊗ Mα]. We have also proved that this ontological identity is mathematically
represented by the equality between operators (see Eq. (9)): Mα ⊗ I β + I α ⊗
Mβ = Mβ ⊗ I α + I β ⊗ Mα. Therefore, the instance [Mα ⊗ I β + I α ⊗ Mβ] =
[Mβ ⊗ I α + I β ⊗ Mα], physically interpreted as the total mass of the aggregate
of the two particles, is also represented by a symmetric operator.

c) Again, analogous conclusions can be drawn for all the instances represented by
the Casimir operators of the Galilean group, since they are multiples of the iden-
tity, and for all the instances represented by functions of those Casimir operators
that are also multiples of the identity.

7 States

7.1 States as codification of propensities

As we have seen in Section 3, the modal-Hamiltonian interpretation adopts an alge-
braic approach as its formal starting point: observables are the basic elements of the
theory, represented by self-adjoint operators, and states are represented by function-
als over the set of those operators. This formal priority of observables expresses the
ontological priority of properties. Moreover, we have seen that any instance [Ai ] of
a universal type-property [A] has possible case-properties [ai

j ], where possibility is
interpreted from a possibilist, non-actualist perspective: each possible case-property
may become actual or not. In this interpretative context, states measure an ontological
propensity to actualization (see Lombardi and Castagnino (2008), Subsect. 4.2).

Proposition 9 Given a bundle h1, its state e codifies the measure of the propensity
to actualization for all the possible case-properties of all the instances of universal
type-properties belonging to the bundle.

Mathematically, if the bundle h1 is represented by the set of operators O1, the state e
is represented by an operator ρ ∈ O1′

, where O1′
is the dual of O1. Without loss of

generality, here we will consider the expectation values, mathematically computed as
T r(ρA1): the measures of the propensities to actualization for the possible case-prop-
erties [a1

i ] of the instance [A1] can be obtained by replacing the operator A1 by the
corresponding eigenprojector

∣∣a1
i

〉 〈
a1

i

∣∣ in the trace.
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7.2 States of aggregates of indistinguishable bundles

In the discussions about “identical particles”, the arguments are usually tied to the
Hilbert space formalism, whose vectors are the basic mathematical entities represent-
ing states that, in turn, are assumed to be applied to particles. In general, the problem
is posed in terms of considering the distribution of two particles, 1 and 2, over two
states |a〉 and |b〉, and the question is: how many combinations (complexions) are
possible to obtain the state of the composite system? The classical answer is given by
the Maxwell–Boltzmann statistics, according to which there are four possible combi-
nations: the principle of individuality, no matter which one, makes particle 1 in |a〉
and particle 2 in |b〉 a different combination than particle 1 in |b〉 and particle 2 in
|a〉. When the situation is conceived in these terms, the problem consists in explaining
why a permutation of the particles does not lead to a different complexion in quan-
tum statistics. The modal-Hamiltonian conception of quantum systems as bundles of
instances of universal type-properties, based on the algebraic formalism, leads to a
different reading of the problem from the very beginning.

Let us consider the aggregate of two indistinguishable atomic bundles hα �= hβ:
hα∗hβ = hc. In the previous section we have seen that, due to ontological reasons,
the operators Cc representing the instances of the aggregate are operators symmetric
with respect to the permutation of the indices coming from hα and hβ: Cc = [ci jmn] =
[cmni j ]. In turn, we know that any operator can be decomposed into a symmetric part
and an antisymmetric part. In the particular case of the operator ρ, which mathemati-
cally represents the state e, it can be expressed as

ρ = ρS + ρA (20)

where the symmetric part ρS = [ρS
i jmn] is such that ρS

i jmn = ρS
mni j and the antisym-

metric part ρA = [ρA
i jmn] is such that ρA

i jmn = −ρA
mni j . Therefore, the application of

the operator ρ to the symmetric operator Cc results:

ρCc =
(
ρS + ρA

)
Cc = ρSCc + ρACc = ρSCc + 0 = ρSCc (21)

This means that the antisymmetric part of the state has no effect in its application onto
symmetric observables and, therefore, it is superfluous: only the symmetric part has
physical and ontological meaning. This means that the states of aggregates of indistin-
guishable atomic bundles behave as if they were represented by symmetric operators.
Moreover, if the state e is represented by the operator ρ = ρS + ρA ∈ O1′

and the
state eS is represented by the symmetric operator ρS ∈ O1′

, both e and eS codify the
same propensities on the case-properties of the instances of the aggregate.

In the particular case of pure states, the symmetric ρS = |ϕ〉 〈ϕ| may be expressed in
terms of a symmetric state vector, |ϕ〉 = ∣∣ϕS

〉 = 1/2
(∣∣ϕ1

〉 ⊗ ∣∣ϕ2
〉 + ∣∣ϕ2

〉 ⊗ ∣∣ϕ1
〉)

, or in
terms of an antisymmetric state vector, |ϕ〉 = ∣∣ϕA

〉 = 1/2
(∣∣ϕ1

〉 ⊗ ∣∣ϕ2
〉 − ∣∣ϕ2

〉 ⊗ ∣∣ϕ1
〉)

.
Therefore, the symmetry or antisymmetry of the vectors representing physical pure
states of aggregates of “elemental particles” are not the result of an ad hoc symme-
trization or antisymmetrization, but are due to ontological reasons: those symmetry
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properties of the states are a consequence of the symmetry of the observables of the
aggregate, and this symmetry is, in turn, a consequence of the ontological picture
supplied by the interpretation.

Summing up, from the perspective given by the modal-Hamiltonian interpretation,
the problem of the statistics of indistinguishable “particles” can no longer be inter-
preted in the same terms as those in which classical statistics is understood, that is, by
asking how two particles can be distributed over two states. From the new perspec-
tive, after the application of the operation of aggregation, there are not two bundles
anymore, but a single bundle with an internal symmetry manifested in the symmetry
of its elements.

8 Conclusions and perspectives

In the context of the modal-Hamiltonian interpretation, the talk of individual entities,
as electrons or photons, and their interactions can be retained only in a metaphorical
sense. In fact, in the quantum framework even the number of particles is represented
by an observable N , which is subject to the same theoretical constraints as any other
observable of the system; this leads, especially in quantum field theory, to the pos-
sibility of states that are superpositions of different particle numbers (see discussion
in Butterfield (1993)). This fact, puzzling from an ontology populated by individuals,
is not surprising when viewed from the modal-Hamiltonian ontological perspective,
according to which a quantum system is not an individual but a bundle of instances
of universal type-properties. The particle picture, with a definite number of particles,
is only a contextual picture, whose validity is restricted to the cases in which the
observable N belongs to the preferred context. In these cases, we could metaphor-
ically retain the idea of a composite system composed of individual particles. But
in the remaining situations, this idea proves to be completely inadequate, even in a
metaphorical sense.

On this basis, the modal-Hamiltonian position moves away from the usual argu-
ments involved in the debate about “identical particles” in a relevant sense. In the
proposal of a structure for the ontology referred to by quantum mechanics, the starting
point is not the particular problem of the indistinguishability between two or more
systems (“particles”), but the purpose of supplying an interpretation compatible with
the constraints imposed by the Kochen-Specker theorem: the problem of contextuality
resulting from this theorem, since arising in a single system, is logically prior to any
problem invoking more than one system. For this reason, we consider that the solu-
tion to the problem of indistinguishability should derive from an adequate ontological
answer to the problem of contextuality, as one of its consequences.

As we have seen, the problem of contextuality is what led us to discard the idea of
a bundle of actual case-properties and to conceive the quantum system as a bundle of
instances of universal type-properties. This view has the advantage of being immune to
the challenge represented by the Kochen-Specker theorem, since this theorem imposes
no constraint on type-properties. But when we restrict our attention to the domain of
type-properties, it is difficult to see what subset of the bundle may confer individuality
to the quantum system: whereas, for instance, impenetrability can be argued for in the
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domain of actual case-properties, there is no obstacle to two bundles having the same
instance of the universal type-property position. For this reason, instead of insisting on
the hard search for some principle of individuality applicable to the universal realm,
we prefer to endorse the idea that quantum systems are not individuals: they are strictly
bundles, and there is no principle that permits them to be subsumed under the ontolog-
ical category of individual. Therefore, Leibniz’s Principle of Identity of Indiscernibles
is not applicable to them: two quantum systems conceived as bundles may agree in
all their properties and, nevertheless, they may still be two systems, only numerically
different.

In the context of this ontological picture, indistinguishability does not arise as the
consequence of a restriction on quantum states (symmetrization or antisymmetriza-
tion), nor due to the adoption of a set theory that defines a relation of indistinguish-
ability—different than identity—between individuals. Indistinguishability becomes a
consequence of the structure of the ontology, as a result of an internal symmetry of the
bundle resulting from the aggregate of indistinguishable atomic bundles. Furthermore,
the picture of an ontology inhabited by bundles also modifies the understanding of
the problem of non-separability. Once we accept that the original bundle-systems lose
their identity in the composite system after interaction, non-separability can no longer
be conceived as the consequence of the correlations between two individual parti-
cles in different spatial positions, but must be understood in terms of the correlations
between the case-properties of a single non-individual bundle.

The features of the modal-Hamiltonian proposal make us to consider whether its
actualization rule, expressed in terms of the Casimir operators of the Galilean group
in non-relativistic quantum mechanics, can be transferred to quantum field theory by
changing accordingly the symmetry group: the definite-valued observables of a sys-
tem in quantum field theory would be those represented by the Casimir operators of
the Poincaré group, and the observables commuting with them and having, at least,
the same symmetries. Since M and S2 are the only Casimir operators of the Poincaré
group, they would always be actual-valued observables. This conclusion would stand
in agreement with a usual physical assumption in quantum field theory: “elemental
particles” always have definite values of mass and spin, and those values are precisely
what define the different kinds of elemental particles of the theory. Nevertheless, from
our ontological viewpoint, strictly speaking those “elemental particles” are atomic
bundles constituted by instances of the universal type-properties mass and squared
spin.

Of course, this proposal is not closed at all, but opens up a field of new logi-
co-ontological questions. We know that any system of logic implies an ontology. In
fact, our ontological picture does not seem to be adequately captured by any formal
theory whose elemental symbols are individual variables referring to objects, whether
countable or not. This makes us recall Brower’s view that logic is subordinate to math-
ematics: from the intuitionistic perspective, mathematics is fundamental since it arises
out of the intuition of succession in time; logic depends on mathematics to the extent
that it is a codification of the constructive activity of mathematicians. The situation in
intuitionism may serve to understand, by analogy, the case of the ontology proposed
here: the modal-Hamiltonian ontology is fundamental, it does not depend on a logical
system but, on the contrary, the appropriate logic must be selected a posteriori, on
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the basis of its ability to express the structure of this specific ontology. In particular,
an ontology populated by bundles of instances of universal type-properties cries for
a “logic of predicates” in the spirit of the “calculus of relations” proposed by Tarski
(1941), where individual variables are absent. Of course, the development of such a
system of logic is far beyond the scope of the present paper, but the task deserves to
be considered in a future work.
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