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Abstract Sensitivity to the square of the cutoff scale of quantum corrections
of the Higgs boson mass self-energy has led many authors to conclude that the
Higgs theory suffers from a naturalness or fine-tuning problem. However, spec-
ulative new physics ideas to solve this problem have not manifested themselves
yet at high-energy colliders, such as the Large Hadron Collider at CERN. For
this reason, the role of naturalness as a guide to theory model-building is be-
ing severely questioned. Most attacks suggest that one should not resort to
arguments involving gravity, which is a much less understood quantum field
theory. Another line of attack is against the assumption that there exists a
multitude of additional heavy states specifically charged under the Standard
Model gauge symmetries. Nevertheless, if we give ground on both of these as-
saults on naturalness, what remains is a naturalness concern over the prospect
of numerous additional spin-zero scalar states in nature. The proliferation of
heavy scalars generically destabilizes the Higgs boson mass, raising it to the
highest and most remote scalar mass values in nature, thus straining the le-
gitimacy of the Standard Model. The copious use of extra scalars in theory
model building, from explaining flavor physics to providing an inflationary po-
tential and more, and the generic expectation of extra scalar bosons in nature
argues for the proliferation instability problem being the central concern for
naturalness of the Standard Model. Some approaches to solving this problem
are presented.
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1 Introduction

The discovery of the Higgs boson (Aad 2012, Chatrchyan 2012) and nothing
else exotic so far (Soni 2013) has put to rest questions of the existence of the
Higgs boson, and rejuvenated questions about its viability without additional
dynamics beyond the Standard Model. The Higgs boson is unique among the
elementary particles in that its quantum corrections are quadratically sensitive
to high scaledl]. This leads to what many perceive to be a naturalness problem
for the Higgs boson.

To be more precise, if we compute in quantum field theory the self-energy
of the Higgs boson field, we find that the Higgs mass is

2
m%l = m%are + 1215 2/12 + 6O(m\27veak) (1)
7r

where my is the Higgs boson mass with measured value 125 GeV, mypaye is the
Higgs boson bare mass parameter of the unrenormalized lagrangian, y; is the
top quark Yukawa coupling with value close to 1, A is the cutoff value of mo-
mentum in the top quark loop of the Higgs boson self energyﬁ, and 60(m2 )
are all other quantum corrections, where Mmyeakx 1S meant to designate the
weak scaldd. Eq. 0 is explicitly highlighting the contributions to the Higgs
boson mass from the top quark loop, but there are many more contributions.
The naturalness argument, first articulated by Susskind (1979), suggests
that if the Standard Model is a valid theory up to a very high scale, say
A~ Mp; ~ 10" GeV, then mi_, has to be a very large and extraordinarily

1 For an historical overview of how understanding developed over time of the quantum
corrections of scalars and the Higgs boson see Giudice (2008).

2 Quantum loop computations of a scalar boson self-energy involve the integration of
~ f d*q/q? over internal loop momentum ¢ which is formally allowed to go to co. However
the integral is quadratically divergent, meaning fd‘lq/q2 & q2, 40 — 0. If we cut off the
maximum value allowed for g2 to be ¢2,,, = A%, we say that A2 is the “cutoff value of the
momentum” in the integral.

3 When precision of speech is requested we can define myeac = 100 GeV. This scale
is chosen parametrically to be close to the numerical values of the W and Z boson masses
myw = 80GeV and mz = 91 GeV, the top quark mass ms = 175 GeV, the Higgs boson mass
mpy = 125 GeV and the Higgs boson vacuum expectation value v = 246 GeV, normalized to
be the value around which the dynamical Higgs field is expanded in the lagrangian.
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fine-tuned number to canceld the very large contribution y2A2%/1672, thereby
reproducing the small Higgs boson mass of 125 GeV. There is no equivalently
disquieting equation in particle physics that apparently requires such dramatic
fine-tuning of quantum corrections. Only the cosmological constant has per-
haps more mystery of such large discrepancies compared to expectationsﬁ. This
problem sometimes also is called the “hierarchy problem”, in that there exists
a large hierarchy of 10'® between the Planck mass and the weak scale, yet the
quadratic divergences of the Higgs sector imply that the two scales should be
similar.

One can try to appeal to “technical naturalness” (‘t Hooft 1980), which
states that a theory can have a technically Natural small parameter if a new
symmetry emerges as the parameter goes to zero. For this reason the electron
mass of 5 x 1074 GeV is technically Natural despite being orders of magnitude
smaller than the weak scale. This is because an electron chiral symmetry, where
its left and right spins can transform independently, is recovered in the massless
limit. There is no such recovered symmetry restoration when the Higgs mass
goes to zero since the H H mass operator is invariant under all symmetries of
the Standard Model and all chiral symmetries. Only a shift symmetry, whose
transformation is defined to be H — H + constant, appears to be helpful,
since |H|? and |H|* terms are disallowed by it. However, the shift symmetry
is badly violated by the top quark Yukawa interactions y;Q) Htg, which is the
origin of the offending y?A%/1672 term in Eq. [ and thus cannot protect the
Higgs boson mass.

2 Naturalness concerns

The problem of naturalness as presented above is not without weakness. The
core of the argument against naturalness being a serious problem is that there
are no observables that cannot be accounted for in the theory. We always
have infinities in quantum corrections that are formally cancelled by counter
terms embedded in the bare parameter. Furthermore, if we regularize in di-
mensional regularization, artificially setting the number of dimensions to be
n = 4 — ¢, the infinities show up as 1/€ quantum corrections that are cancelled

4 The bare mass-squared mass must be large and negative to cancel the “infinite” part
induced by the top quark. This is fine as long as the combination of the two terms is positive.
5 The quantum field theory diagrams that contribute to the cosmological constant scale
as the integral ~ f d*q where ¢ is an internal particle momentum that is formally allowed

to go to oco. We can introduce a cutoff scale for this integral such that f d*q = Aé‘C” which

we believe should be at least as large as ~ M%, since we believe we know the theory of
nature at energy scales up to at least Mz. This implies that the cosmological constant
would naively be at least Aéc > M% ~ 108 GeV*, or perhaps even M?;L ~ 1072 GeV*

if we allow our integral to be cutoff at the known scale of gravity Mp; = G;\,l/ 2, where
Gn is Newton’s constant of gravity. This constitutes the quantum field theory expectation.
However, measurements in cosmology tell us that A‘éc ~ 1047 GeV*, in gross contradiction
to our naive expectations. This is still an outstanding problem in physics. See Rugh &

Zinkernagel (2001) for a discussion.
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unceremoniously, in contrast to the seemingly dramatic cancellations of the A2
corrections that arise in a cutoff regularization method. There is no culture or
meaning of declaring that counter-term cancellations with 1/e corrections are
outrageously fine-tuned. It is just a formal bookkeeping process to account for
it, and all calculations can be matched to observables, and there is no conflict
with the data. Naturalness, in this viewpoint, is unjustified hysteria generated
by just one of our artificial means of keeping track of intermediate steps in a
quantum field theory calculation. Other authors have addressed this viewpoint
(Bardeen 1995, de Gouvéa et al. 2014, Farina et al. 2013).

The above discussion has focused on quantum corrections in the pure Stan-
dard Model theory. The naturalness concern rears its head more confidently if
we assume that there is new physics with unknown dynamics at a high scale A
that the Higgs boson couples to, which in turn generates quadratic sensitivities
to A in the quantum corrections of the Higgs boson mass.

Sometimes it is argued that we know already there is a new scale, the
scale of the onset of strong gravity and quantum gravity at Mp;, and the
Higgs boson mass is surely affected by dynamics there. However, it is not
a solid argument that the Higgs boson mass must suffer from destabilizing
quadratic corrections due to gravity alone. Indeed, there is no obvious separate
shift symmetry violating interaction of the Higgs boson with gravity that is
not already suppressed by powers of the 1/Mp; coupling and the original
Standard Model couplings. This only would leave corrections that are at most
of order the Higgs mass. Furthermore, whatever non-perturbative concerns
one might have for the Higgs boson inheriting instability up at the Planck
scale due to gravity, it remains uncertain how to account for it. Quantum
gravity is a notoriously unsolved mystery, and the naturalness issues of the
cosmological problem being so small 10747 GeV* compared to expectations
1072 GeV* further highlights our ignorance. It is plausible that any high-scale
quantum gravity intuition that we might try to invoke is dramatically wrong,
and so it is reasonable to question any quantum gravity argument impugning
Higgs naturalness. Since our aim is to test how robust naturalness arguments
can be let us banish further thoughts about gravity and the damage it could
do to the Higgs boson and the weak scale.

Another line of thinking is to consider the prospects of many new particles
at higher scales that are charged under the Standard Model gauge symme-
tries. For example, the existence of heavy vector-like fermions charged under
the Standard Model electroweak symmetries will induce large finite quantum
corrections at the two loop level (Martin 1997), and it has been argued that
any fermions of this kind that exist above 10 TeV destabilize the Higgs mass
scale (Farina et al. 2013). This is a powerful argument in general against the
Higgs boson, since there is nothing to prevent arbitrarily heavy and arbi-
trary number of vectorlike fermions. Their masses are gauge invariant without
the need of additional spontaneous symmetry breaking, and the fermions do
not contribute to gauge anomalies. Furthermore, in many string constructions
there are a large number of vectorlike fermions that can arise in the spectrum.
These generic aspects of vectorlike fermions are summarized recently by Ellis
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et al. (2014). However, assuming that the additional states have to be charged
under the Standard Model for this worry to arise may seem too specialized to
some. Perhaps the underlying theory gives the Standard Model gauge groups
with pure chiral fermions (i.e., left and right fermions with different charges),
whose mass is then necessarily bound to the Higgs boson vacuum expectation
value. There are no known vectorlike fermions in nature, and invoking their
existence, giving them Standard Model gauge charges, and assuming they ex-
ist at very massive scales is maybe too much speculation to convict the Higgs
boson theory and the Standard Model.

At this point we have excluded gravity and additional states charged un-
der the Standard Model from the discussion on Higgs boson naturalness. We
must ask ourselves what else could create a problem for the stability of the
Higgs potential. The leading answer to this is the proliferation of additional
heavy scalars in nature. By “proliferation” we mean the existence of additional
spin-zero scalar bosons beyond the Higgs boson that was recently discovered.
All particles whose fields transform trivially (i.e., spin-zero) under the Lorentz
group operations of rotations and boosts are classified as “additional scalar
bosons.” The analogous categories are the spin-1/2 fermions, and the spin-1
bosons. There are at least 45 spin-1/2 fermions in natureﬁ, and even more
if one counts right-handed neutrinos, and there are at least 13 spin-1 vector
bosons in nature. As yet, we know of only one spin-zero scalar bosoxﬂ, the
Higgs boson, and introducing more of these particles creates additional chal-
lenges that are not experienced when increasing the number of spin-1/2 and
spin-1 representations. For example, if we introduce into the spectrum a scalar
@ with mass Mg one finds that there is no symmetry that forbids a renormal-
izable coupling between H and @ in the form of Hf H®!®. Interactions that
are not forbidden by a symmetry generically occur in quantum field theory,
since a theory does not suffer from self-consistency and completeness questions
“as long as every term allowed by symmetries is included” (Weinberg 2009).
Therefore we expect this mixing to be present. However, its presence intro-
duces a dangerous correction to the Standard Model Higgs mass, Am?%; oc M2.
If M2 > m? the weak scale is destabilized and wants to raise itself to the
higher mass scale of Mg.

It is this prospect of additional heavy scalars that is particularly trouble-
some for naturalness of the Higgs boson mass and the weak scale. In other
words, it is not the intrinsic unnaturalness of the Higgs boson of the Standard
Model that is necessarily so troubling, but the immediate prospects of desta-

6 The number 45 is counting colors and isospin. Q, has 6 (left-handed quarks with 2
isospins, ur, and dr, and each has 3 colors), ugr has 3 (right-handed up quarks with 3
colors), dr has 3 (right-handed down quark with 3 colors), eg has 1 (right-handed electron
with no extra color or isospin factors), and L has 2 (left-handed leptons with 2 isospins, er,
and v ). That makes a total of 15 for each of the three generation of fermions, making a
total of 45 fermions.

7 The Higgs boson field in the Standard Model is a complex electroweak doublet with
four degrees of freedom, of which three are absorbed as longitudinal components of the Z,
W™ and W~ spin-1 bosons, leaving only one physically propagating scalar boson in the
spectrum — the recently discovered Higgs boson.
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bilization when its kind is proliferated in nature. There may be an intrinsic
naturalness issue with the Standard Model, but that is more controversial as
explained above. However, the presence of more scalars at hierarchically larger
scales in nature leads to a clear instability problem. In the next section we will
discuss in more detail this proliferation instability problem of the Higgs bo-
son. We then argue that this is a real concern for the Standard Model, and
that testing a theory against proliferation is not an idle speculation but is
confronting a generic possibility. Finally, we show how some theories protect
against proliferation instability, and in specific we show that supersymmetry
is a prime example of one that solves the problem elegantly. We then end with
some brief concluding comments and summary.

3 Proliferation instability problem

For most of its history the practitioners of particle physics have studied only
particles that make up our bodies. The electrons, neutrons, protons were our
first quarries. We then learned about the neutrino which is a product of nuclear
beta decay, and which is a weak-interaction isospin partner with the electron.
Then we learned about quarks, which are constituents of the nuclei. We have
known about and studied light and photons for much longer, which are carriers
of force between our particles. We learned about the W and Z bosons, and also
gluons, which are again force carriers between the particles that make up our
bodies. It was an astonishing step when we found the muon, which opened the
door to finding many new particles, which however turned out to be merely
copies of particles that make up our bodies, except heavier. The discovery of
the Higgs boson can be interpreted prosaically as another particle that deals
with the stuff of us: it happens to give mass to the particles of our body. This
is a good discovery. Yet again, it is all about us.

Cosmologists and astrophysicists have long dealt with the notion that there
is much more to the universe than what makes up our bodies. After all there
is strong evidence that the stuff of us makes up only about 4% of the energy
density of the universe. Dark matter makes up another ~ 21% and dark en-
ergy ~ 75%. Many particle physicists have embraced the inevitability of dark
matter (Hooper 2008), but most studies concentrate on particles that are close
cousins of our ordinary particles. For example, one of the most popular dark
matter candidates is a spin 1/2 superpartner of a Standard Model gauge boson
with perhaps an admixture of the spin 1/2 superpartner of the Higgs boson
(Jungman & Kamionkowski 1996).

On one hand it is admirable to press for maximal economy in the laws
of nature. Why add more degrees of freedom to theories when a close cousin
particle will do? On the other hand, it is inconceivable that nature’s sole
purpose is to put every particle that possibly exists at our fingertips. This
implicit view that all of particle physics must be closely related to the particles
that make up our human bodies is too narrow of vision. We are unlikely to be
that special in the universe.
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If we do not believe that we are uniquely special, then we have to ask how
stable is our theory if aspects of it are multiplied. As we discussed earlier one
of the most basic categorizations of the Standard Model is the transformation
properties of the particles under the Lorentz group of rotations and relativis-
tic boosts. We believe that nature should be invariant under these actions,
and therefore particles must transform as well-defined representations of this
symmetry. Indeed, we classify the electron as a spin 1/2 fermion, the photon
as a spin 1 boson, and the Higgs particle as a spin 0 boson. These are all
representations of the Lorentz group symmetry.

If we increase the number of fermions and vector bosons under the assump-
tion that gravity is of no concern and that these extra states are not charged
under the Standard Model gauge symmetries, there is no dramatic lifting of
the weak scale hierarchy of masses. The theory is stable to such additions.
There is a subtle question regarding the abelian hypercharge gauge factor,
and whether abelian gauge group proliferation could destabilize the theory in
a different way under some conditions, but that is to be addressed elsewhere
and does not affect our argument here.

On the other hand, proliferation of condensing scalar bosons would dramat-
ically destabilize the weak scale and the Standard Model theory. The nature of
the problem is illustrated if we assume a number of other scalars similar to the
Higgs boson in its broadest sense, without it being charged under Standard
Model gauge symmetries. This problem we will demonstrate more concretely
in the next section.

4 Destabilization from proliferating scalars

The question we wish to investigate now is what goes wrong with the Stan-
dard Model theory when we assume that there are extra condensing scalars
populating the energy landscape up to a very high scale. These extra scalars
constitute a proliferation of the Higgs boson under the general category of
condensing spin-zero particles.

A proliferation of Higgs bosons charged under the Standard Model has
been recognized as a serious source of concern for quite some time. Veltman

(1997) has said that,

The introduction of higher Higgs multiplets, or of more than one dou-
blet has the obvious disadvantage that in general no zero mass vector
boson survives. In other words, the observed zero photon mass is then
an ‘accident.’ For this reason alone these schemes are very unattractive.

This observation speaks to the destabilization of the theory, which requires a
preserved exact abelian gauge symmetry associated with electricity and mag-
netism. The concern of Veltman is largely when there is a proliferation of ad-
ditional condensing scalar fields that are charged under the Standard Model
gauge group. This may be bad enough, but let us focus less on destabilization
of the theory from scalars charged under the Standard Model, and more on
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destabilization of the weak scale by the introduction of additional Higgs boson
fields not charged under the Standard Model.

Let us simplify the matter to begin with and assume just one additional
scalar @ that has no charges under the Standard Model gauge symmetries.
Since |®|? is gauge invariant and Lorentz invariant there is no prohibition to
coupling it with the Standard Model Higgs boson H at the renormalizable
level. The resulting scalar potential is

V= —pgy[HI* = ug| @ +n|H?|9|* + A | H[* + Ag| D[, (2)

Assuming (H) = v and (®) = £, the minimization conditions for this potential
are

*H%ﬂLngJr/\HUQ:O

—3+ gqﬂ F s =0 (3)
These two equations must be satisfied to be at the stable minimum of the
potential.

If we assume all dimensionless couplings are O(1) and u2 ~ &2 > v?
we have a serious problem with eq. [l There is no reason to discount the
prospect of even many condensing scalars with vacuum expectation values as
high as the Planck scale, 10'® GeV, which is sixteen orders of magnitude higher
than the weak scale myeax, but even just this one extra field is destabilizing.
Somehow the large u?,—n&? /2 first two terms in the first minimization equation
above must cancel each other to a large fine-tuned degree in order to match
in magnitude the much smaller Av? term so that the minimization condition
is satisfied. There are only two solutions to this problem. One, we accept a
serious fine-tuning of the parameters such that this cancelation occurs. Or,
assume that for some reason the mixing n between the Higgs and any other
condensing scalar is small so that every term of that first equation is of the
same order O(m?%). The mixing has to be at least as small as n ~ v?/£2 < 1.

There are strong arguments against both solutions to this proliferation
problem. And as alluded to above, the problem gets much worse as the num-
ber of condensing scalars increases. The first solution assumes an accidental
fine-tuned cancellation among terms that is hard to imagine in even just one
equation. However, if we had n scalars then there would be n such minimiza-
tion equations, all requiring similarly spectacular fine-tuned cancellations. The
small mixing solution is less than desirable also, because if there are n such
scalars then we have to assume that there is at least the same small mixing for
every one of them. This is no longer accidental but systematic, and so must
involve a principle, such as a symmetry or some other restriction to the theory
that enforces the small mixing. This principle is unknown from the point of
view of the Standard Model and thus is not satisfactory unless “new physics”
is invoked.

We should remark that even non-condensing scalars when coupled to the
Higgs boson, as in eq.[2 will contribute through one-loop finite quantum effects
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to the mass of the Higgs boson as illustrated, for example, in Martin (1997).
If they coupling to the Higgs boson at O(1) strength and have mass greater
than a few TeV, the Higgs mass scale is destabilized in that case as well.

5 Genericness of proliferation

Another response to the proliferation problem is to assume that there simply
is no proliferation of Higgs bosons in nature, and so no proliferation instability
problem arises. One difficulty with this position, as discussed earlier, is that we
would be required to believe that the Higgs boson is very special in that unlike
any other representations in the Standard Model — the spin 1/2 fermions and
spin 1 vector bosons — there is just one propagating scalar state, the Higgs
boson that gives mass to the particles interacting with us, and no others. This
position fails a modern-day Copernican test of making sure our theories do
not require us to believe we are particularly special.

Beyond these generic expectations we can be more concrete, and perhaps
more compelling, as to the generic need for additional scalar bosons. It is al-
most universally the case that more complete theories that try to incorporate
dark matter, inflation (Baumann 2009), flavor (Babu 2009), or which strive
to be compatible with a theory of quantum gravity, such as string theory,
generically predict that there should be many more particles and much more
dynamics than just what is described by the Standard Model. Regarding this
last category, one should expect dozens, or perhaps even thousands of more
Higgs bosons of exotic sectors that condense and break symmetries (Dijkstra
et al. 2005). Since the Higgs boson is a spin-zero particle, we can immediately
write a super-renormalizable (i.e., operator of dimensionality less than four)
mass operator that is invariant under all gauge symmetries and spacetime
symmetry, H J H;. This in turn allows us to write down a dangerous marginal
operator (i.e., operator of dimensionality equal to four) that mixes the Higgs
bosons H : H;H'H even if H; has completely different gauge charges from the
Standard Model Higgs boson H. And as we saw above, this rapidly destabi-
lizes the weak scale if the exotic scalar is heavy or if its vacuum expectation
value (H;) is parametrically larger than the weak scale, which we should think
is generically possible in the presence of a collection of Higgs states at all
accessible scales from the weak scale to the Planck scale.

6 Solutions to the proliferation instability problem

The reader may object that the discussion in sec. 4 supposed values of approx-
imately unity for the mixing parameters 7 that mix the exotic Higgses Hy
with the Standard Model Higgs via n|Hy|?|H|?, whereas in reality there may
be a good reason for why the 7 values are always suppressed by factors of at
least ~ v2/£2. However, as we commented on above, finding the theory that
enforces this requires the discovery of a new symmetry principle that goes be-
yond anything the Standard Model structure contemplates and reveals. This
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new principle would be embedded in a new theory framework that would no
longer be identified as the Standard Model.

Nevertheless, there are several solutions to the proliferation instability
problem that we have been describing above. Operationally, any theory that
purports to provide a solution has the burden of enforcing stability in the
presence of a large number of massive or condensing scalars. The prospec-
tive solutions include banishing scalars (Susskind 1979) as in technicolor and
composite Higgs theories, banishing high-scale hierarchies as in large extra
dimensions (Arkani-Hamed et al. 1998) or warped extra dimensions (Randall
& Sundrum 1999), or invoking supersymmetry (Haber & Kane 1985, Martin
1997). Not surprisingly, given our discussion above pointing out the impor-
tant connection between the proliferation instability problem and naturalness,
this triumvirate of general approaches that solve naturalness in its broadest
formulations also can potentially solve the proliferation instability problem.

The first solution, to banish the entire category of scalars from the theory,
clearly would take care of any problem systemic to scalars. However, there are
well-known challenges to matching data with this approach (Pomarol 2012),
not to mention that the recent discovery of a weakly interacting Higgs boson
consistent with being elementary puts strain on this idea.

The second solution is banishing the existence of high scales through extra
dimensions. The idea is to reinterpret the single number of the very large
mass Planck scale of gravity as the ratio of two numbers involving the weak
scale and a very large extra dimensional volume or warp factor, in the case of
warped extra dimensions (Csaki 2004). This approach may not work well to
solve the proliferation problem. If we indeed have dozens or more condensing
scalars in nature — let’s call the number Ny — at scales not too far away from
the Higgs mass scale, there is still the potential of destabilizing the Higgs
mass away from the weak scale. For the Higgs mass to be stable the sum of
contributions to the Higgs mass-squared operator would have to be of order
the Higgs boson mass, m?;, ~ Ng&?, where £ is the typical vacuum expectation
value of the exotic condensing scalar. Thus, lowering the high-scale nearer to
the weak scale through large or warped extra dimensions would soften the
destabilization problem some, but may not eradicate it.

The third solution, supersymmetry, is next to consider. It is a remarkable
feat of supersymmetry that the Higgs sector is generically completely sta-
ble to a large number of extra condensing Higgs bosons, in stark contrast to
non-supersymmetric field theories. The key is a required property of super-
symmetry invariance that forces interactions to be analytic in their fields. We
describe in some detail in the next section how the supersymmetric solution
works.

7 The supersymmetric solution

Within supersymmetry one can add many additional condensing scalars at any
scale and no destabilizing would occur, provided two conditions are met. First,
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we have to assume that there is a solution to the p-problem of supersymmetry.
Since supersymmetry invariance requires two Higgs doublets, H,, and Hg, there
is a Lorentz invariant and gauge invariant operator that connects the two into
a single bilinear superfield interaction H, - H4. The coefficient of this operator
is p and the concern is that there is no obvious reason why g is of order myeak
and not Mp;. However, a small value of u is “technically natural”, unlike a
small Higgs boson mass of the Standard Model. In other words, if it is assumed
to be small there is no quantum destabilization of its value. And also, there
are many elegant mechanisms by which the p term naturally could inherit a
value near Mmyeax (Martin 1997).

The second condition is that there should not be any pure singlets in na-
ture under all possible symmetries (Bagger & Poppitz 1993). This condition
is fine, because under almost all general definitions of the properties of the
Higgs boson a pure singlet scalar would not qualify. Also, there are no known
examples in nature of a pure singlet, much less a pure singlet scalar, and al-
though it would not be very convincing to hang the full argument on this fact,
it lends mild support to the supposition that this very narrow pure singlet cat-
egory of nature is not allowed. We note that the right-handed neutrino might
be a pure gauge singlet, if it exists, but it transforms nontrivially under the
Lorentz group as a spinor, and in any event most theory approaches to unifi-
cation of particles and forces give it charge under some other symmetry (i.e.,
the right-handed neutrino transforms under a non-trivial representation of the
symmetry). For example, it may be part of a 16 dimensional representation
of the grand unification group SO(10), and thus carry SO(10) charge (Ross
2003). It is is therefore reasonable to suggest that nature has no pure singlets
under all possible symmetries.

We therefore only consider the case where all the extra condensing scalars
are charged under some symmetry or another. This restriction still lets through
an instability problem because ®!® is gauge invariant anyway and destabilizes
the Higgs sector when it couples to the Standard Model Higgs field operator
HYH, as discussed earlier. Supersymmetry, on the other hand, has analytic
requirements for its superpotential interactions, and therefore there is no place
for &1® to couple to the Higgs boson. This is the key to its solution.

Let us explain further how a supersymmetric field theory absorbs many
extra scalars @; charged under a variety of different symmetries, and how it
preserves stability of the Standard Model Higgs boson and the electroweak
theory. Supersymmetry is a symmetry that transforms bosons into fermions
and vice versa (Wess & Bagger 1992). Supersymmetry invariance of a la-
grangian among all the component fermion and boson fields of nature re-
quires the introduction of additional boson and fermion superpartners (Haber

8 Supersymmetry invariance requires two Higgs boson fields, H, and H, to give mass to
the up and down type fermions separately. It is a feature of supersymmetric theories that
when the scale of supersymmetry breaking (i.e., the scale of exotic super partner masses)
is above Myeak the lightest Higgs boson is an admixture of H, and H, scalar parts and
its properties are remarkably close to the Standard Model Higgs boson (Gunion & Haber
2003).
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& Kane 1985). The addition of superpartners, effectively doubling the number
of particles expected in nature, is analogous to the addition of anti-particles
in standard quantum field theory, which also doubled the spectrum when in-
troduced (Murayama 2000). The non-gauge interactions of supersymmetric
theories are given in short-hand notation by a superpotential, which is an effi-
cient and compact way of writing down supersymmetry invariant interactions
that are allowed in the lagrangian. These interactions are computed by follow-
ing a supersymmetry rulebook applied to the super potential (Wess & Bagger
1992).

One of the results of these supersymmetry rules is that two scalars cannot
couple to each other via H if H 1H§H2 unless they share gauge quantum num-
bers with each other. However, under our considerations, this is not allowed.
Therefore, even though H I H, Hg H, is a perfectly allowed gauge invariant op-
erator from the standpoint of relativistic gauge theories, the analytic structure
of supersymmetry will not allow it. One technicality is that the K&hler poten-
tial interactions can allow H if H 1H§ H>, but this necessarily comes with a very
large suppression factorJ of m2..../M#%,, and is not dangerous.

We have found that despite the possible existence of many heavy or con-
densing scalar fields, the weak scale is not destabilized if nature manifests
supersymmetry not too far from myeak. Supersymmetry is perhaps the most
attractive theory that solves the Higgs Boson proliferation instability prob-
lem. However, it remains to be seen from experiment if nature has chosen
the supersymmetry route. Confirmation would require finding spin zero super
partners of the Standard Model fermions, or spin 1/2 super partners of the
Higgs bosons or gauge bosons (Craig 2013).

8 Conclusions

The question of whether the newly discovered Higgs boson of the Standard
Model suffers from a destabilizing naturalness problem remains an important
concern in particle physics. Trust in the naturalness criteria awaits the discov-
eries or lack of discoveries of the future higher energy proton-proton collisions
at the Large Hadron Collider to begin in earnest in 2015. In the meantime,
theory support for the naturalness criteria, described as a quantum mechanical
quadratic sensitivity to cutoff scales, has been questioned.

In this article I have presented the case for a more restricted formula-
tion of the disquieting features of the Higgs boson, avoiding considerations of
gravity and avoiding the assumption of additional particles charged under the
Standard Model. These are two areas of attack that naturalness has suffered

9 Even if we assumed overlapping gauge quantum numbers of the Higgs boson with some
other exotic scalars, the resulting impact on low scale theory would not destabilize the Higgs
mass even if these scalars condensed due to the existence of stable D-flat directions of the
potential.

10 The Kéibler interaction that would allow this is f d49XJfXHIH1HgH2/M;4:,l where 6 is
the Grassman variable of superspace and X is the supersymmetric breaking spurion whose
F term is Myeax Mp; 02.
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recently, and it is a worthwhile study to exclude these from consideration. As
a result, I have emphasized that the Higgs boson suffers from a proliferation
instability problem, which I have argued should be generically addressed in
all physics theories. There is reason to believe that the Higgs boson is not
the only spin-zero scalar boson in nature. As soon as more are admitted a
serious destabilization problem develops, as we described in the text. Theories
that attempt to get by with no scalars may solve this problem tautologically,
but the discovery of the Higgs boson scalar puts this approach at risk. One
would have to assume that the Higgs boson is a composite state with dynam-
ics nearby — both of which are disfavored by the data. Nevertheless it remains
a viable solution. Theories of extra dimensions and low-scale gravity, which
banish the existence of higher destabilizing scales that the Higgs boson could
couple to via other condensing scalars, are unlikely to solve the proliferation
problem on its own, although they can greatly soften the problems.
Supersymmetry on the other hand appears to solve the proliferation insta-
bility problem without invoking any other features. The only requirements are
that there are no pure singlet scalar states in nature, and that the technically
natural g term that connects pH,, - Hg together is near the weak scale. This is a
restriction on two narrow and technical criteria compared to the admittance of
a very large number of possible exotic Higgs states charged under many differ-
ent exotic symmetries. This is the proliferation concern that is most important
to address, which supersymmetry passes comfortably due to its structure.
We have argued that the scalar proliferation instability problem is per-
haps the least controversial, most generic and most important subcategory of
the general naturalness problem. It is not unexpected that solutions to the
general naturalness problem can solve or help solve the proliferation problem.
Discussions of the general naturalness problem, however, have been plagued of-
ten with quasi-mystical arguments involving quantum gravity and arguments
involving cancellations of bare mass terms with regulator-dependent cutoff
scales, which we have no access to and are mere non-physical intermediate
book-keeping devices for calculation. Considering the requirements for stabil-
ity in the presence of a large number of heavy or condensing scalars in nature
— a generic and motivated consideration — is a more concrete problem to ad-
dress, and we have shown that the requirement of proliferation stability puts
significant restrictions on theory, and implies that there is more to discover
beyond the Standard Model to complete our understanding of the weak scale.
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