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Abstract The merging/fusion of belief/data collections in propositional logic
form is a topic that has received due attention within the domains of database
and AI research. A distinction can be made between two types of scenarios to
which the process of merging can be applied. In the first type, the collections
represent preferences, such as the voting choices of a group of people, that need
to be aggregated so as to give a consistent result that in some way best repre-
sents the collective judgement of the group. In the second type, the collections
represent factual data that is to be aggregated with an aim of obtaining a re-
sult that maximises factual correctness. After introducing a general framework
for belief merging via some prominent literature on the topic, this paper then
introduces and considers a method for belief merging with the second type of
scenario in mind. Its suitability is corroborated by demonstrating how it can
be seen as a special case of a merging procedure that combines aggregation of
probabilities and maximisation of expected truthlikeness.

Keywords Belief Merging · Information Fusion · Truthlikeness · Judgment
Aggregation

1 Introduction

Propositional belief merging (logic-based information fusion) concerns the
process of aggregating possibly conflicting propositional belief bases/logical
databases into one consistent result.1 Over the last few decades it is a topic
that has received significant attention within the domains of database and AI
research and is also relevant to the topics of judgement aggregation and social
choice theory [5].

A fair portion of this work focuses on merging as a merging of group pref-
erences, with the aim of obtaining a synthesis that best represents the group’s

author

1 See [7] for a good overview.
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preferences according to some criteria. For example, suppose that a group of
four people, Tom, Richard, Harry and Bob, are deciding what they should
do for the night. They can do anywhere between none or all of the following
actions: go out to dinner (A), watch a movie (B) and go to see some live music
(C). Tom and Richard want to do A and B and are happy to go either way
for C. Harry wants to do A, does not want to do C and is happy to go either
way for B. Bob prefers to do none of these things. Out of the nine possible
scenarios arising from these three choices, which should be selected to best
satisfy the preferences of this group?

This paper on the other hand has an epistemic focus and is interested in
the merging of factual data from multiple sources with an aim of obtaining
results that best approximate the true state of the world. For example, suppose
that Tom, Richard and Harry are given a true/false questionnaire with three
questions (Q1, Q2, Q3). In actuality, the correct answers are as follows: (Q1,
false), (Q2, true) and (Q3, true). Tom answers (Q1, false), (Q2, true) and (Q3,
true). Richard answers (Q1, false), (Q2, false) and does not answer for Q3.
Harry answers (Q1, false), (Q2, true) and (Q3, false). How should the group’s
responses be merged with the aim of obtaining an optimal result; if not the
completely correct trio of answers (Q1, false), (Q2, true) and (Q3, true), then
at least a trio with as many correct answers as possible given the group’s
input?

Whilst there has been some work on investigating this epistemic perspec-
tive of merging, it has tended to be in terms of epistemic social choice theory,
involving probabilistic analyses of truth-tracking (arriving at the correct an-
swer) given the reliability of belief sources and concerned with results such
as the Condorcet Jury Theorem [18,6]. This paper approaches the matter of
belief merging and truth conduciveness via the idea of truthlikeness [17], a
concept from the philosophy of science that concerns measuring the extent to
which a theory approaches the truth.

The relevance of truthlikeness to science as a truth-seeking enterprise and
the collaborative nature of science motivate investigation into such a merg-
ing operator. For example, members of a team of individuals investigating a
certain scientific problem might each conduct some experiments and generate
some results pertaining to some hypothesis. When the time comes to combine
these individual results a merging operator conducive to truthlikeness is apt.
Such an operator could also be applied to any non-scientific scenarios where
truth matters; for example, combining eyewitness accounts pertaining to some
event. Beyond simply dividing possible merge results into the one model that
represents the true state of the world and others that do not, a truthlikeness
approach to merging will assess all possible merge results in terms of their
degree of closeness to the true state of the world.

Thus in this paper we are interested in investigating the following ques-
tion: given the aim to obtain results that maximise truthlikeness, what type
of belief merging operator should be employed? Furthermore, what are the
properties of such an operator and how might it differ from operators already
proposed in the literature? We begin in Section 2 by giving a formal frame-
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work for belief merging and some basic belief merging operators that have
been established in the literature, before introducing the new operator pro-
posed in this paper and investigating some of its formal properties. In Section
3 the notions of truthlikeness and estimated truthlikeness are explained and
a formal truthlikeness measure is adopted. In Section 4 we look at the new
merging operator in terms of its truthlikeness conduciveness and demonstrate
how it can be seen as a special case of a procedure that combines probabilities
and maximises estimated truthlikeness.

2 A formal framework for belief merging

Following the framework given in [9,10], some belief merging operators will
now be presented and their basic properties discussed. We start off by estab-
lishing some preliminary definitions:

– We are working with a standard propositional logic language that has a
finite set of atomic propositions P . An interpretation assigns a value from
{0, 1} to each atom p ∈ P . The set of all interpretations/possible states2

for a given logical space is denoted by W .
– We will be using a model-based approach and represent an agent’s belief

base K semantically as the set of its models (mod); that is, the interpre-
tations which satisfy it.

– A belief profile E = {K1, ..., Kn} is a multiset3 of belief bases.
– A merge operator ∆(E) takes a belief profile E as input and returns a set

of interpretations.4

Let ≤E denote a binary relation on W . The set of interpretations resulting
from the merge is defined as:

∆(E) = min(mod(), ≤E)

where min(mod(), ≤E) represents the set of interpretations that are mini-
mal with respect to ≤E . ≤E is characterised by a measure of distance between
an interpretation w and a belief profile E:

w ≤E w′ if and only if d(w, E) ≤ d(w′, E)

d(w, E) is defined by calculating a distance d(w, K) between w and each
belief base K in E and then using some function to aggregate these calcu-
lations. Here the distance d(w, K) is defined using the min distance, which
given some distance measure between interpretations is the minimal distance
between the interpretation w and the models of the belief base K:

2 These terms are used interchangeably.
3 A generalisation of the concept of a set that allows multiple instances of an element.
4 One can also add integrity constraints IC to the operation, such that a merge operator

∆IC(E) takes a belief profile E as input and returns a set of interpretations that satisfies IC
(i.e. IC is used to denote a possibly empty set of formulas that must be logical consequences
of the merging result).
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d(w, K) = min
w′∈K

d(w, w′)

Finally, a function is required to calculate for each interpretation w the
distance d(w, E) based on the values of the distances d(w, K) for each belief
base K:

d(w, E) = ⊕K∈Ed(w, K)

Three aggregation functions investigated in [9] are:

– sum (Σ) - the total sum of d(w, K) for each K ∈ E. In this case, a minimal
d(w, E) is simply a numerical minimum.

– max (Max) - the highest d(w, K) out of each K ∈ E. In this case, a minimal
d(w, E) is simply a numerical minimum.

– leximax (GMax) - a tuple consisting of each d(w, K) positioned from high-
est to lowest. In this case, a minimal d(w, E) is determined by the minimum
first position value, followed by the minimum second position value and so
on.

The notation ∆d,k,⊕ is used to denote the model-based merge operator that
uses d as the distance between interpretations (i.e. d(w, w′)), k as the distance
between interpretations and belief bases (i.e. d(w, K)) and ⊕ as the belief
profile aggregation function. For the remainder of this paper d will generally
be omitted as it is set to the Hamming distance, which is the number of atomic
evaluations on which two interpretations differ. As well as being the default
choice for belief merging implementations, we implement this one particular
distance function as it is the one used for the type of truthlikeness measures
we will be bringing in later to connect with merging. Also, for the rest of this
section k will be omitted as it is set to the min distance.

Example 1 provides a demonstration of these methods, which are partic-
ularly suited to aggregating preferences or opinions. The propositional logi-
cal space to be used throughout this paper consists of the atomic formulas
{p1, p2, p3} and is depicted in Table 1, with interpretations w1 to w8.

p1 p2 p3

w1 1 1 1
w2 1 1 0
w3 1 0 1
w4 1 0 0
w5 0 1 1
w6 0 1 0
w7 0 0 1
w8 0 0 0

Table 1 The eight interpretations/possible worlds in the logical space based on the three
atomic formulas p1, p2 and p3.
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Example 1 Mirroring the first scenario given in the introduction, in this ex-
ample there are four belief bases such that:

– K1 (Tom) = {w1, w2}
– K2 (Richard) = {w1, w2}
– K3 (Harry) = {w2, w4}
– K4 (Bob) = {w8}
– E = {K1, K2, K3, K4}

Table 2 contains a tabulation of the minimal distance between each in-
terpretation and each belief base and the sum, max and leximax aggregation
function results, with the results in bold being those that are selected.

State K1 K2 K3 K4 Sum Max Leximax
w1 0 0 1 3 4 3 (3,1,0,0)
w2 0 0 0 2 2 2 (2,0,0,0)
w3 1 1 1 2 5 2 (2,1,1,1)
w4 1 1 0 1 3 1 (1,1,1,0)
w5 1 1 2 2 6 2 (2,2,1,1)
w6 1 1 1 1 4 1 (1,1,1,1)
w7 2 2 2 1 7 2 (2,2,2,1)
w8 2 2 1 0 5 2 (2,2,1,0)

Table 2 Distances and sum, max and leximax results

Thus:

– ∆Σ(E) = {w2}
– ∆Max(E) = {w4, w6}
– ∆GMax(E) = {w4}

In terms of the first scenario given in the introduction:

– According to ∆Σ(E), the group should go out to dinner, watch a movie
and not go to see some live music.

– According to ∆Max(E), the group should not go to see some live music and
either go to dinner or watch a movie but not both.

– According to ∆GMax(E), the group should go out to dinner, not watch a
movie and not go to see some live music.

�

∆Σ is termed a majority merging operator and the result of ∆Σ operators
can be seen as the election of the most popular choices amongst the integrity
constraints. In our example above three out of the four belief bases had w2

amongst its selections hence w2 as the result. ∆Max tries to minimise the more
remote distances and ∆GMax captures this arbitration characteristic but does
so in a more fine-grained way; given the presence of the relatively distant w8
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amongst the belief bases ∆Max gives the more compromising {w4, w6} and
∆GMax narrows this down. ∆Σ is the most democratic of the methods in the
sense of majority rule though if there are belief base sources whose preferences
have a significantly large distance from the result of ∆Σ such that it would
jeopardise their participation then ∆GMax might be a more suitable choice [9,
p. 785].

2.1 Merging using average distance

As has been established, a distance function must be used to calculate the
distance between each belief base and each interpretation. However rather
than using the min distance for d(w, K), another option introduced in this
paper is to use the average distance between interpretations and belief bases.
That is:

davg(w, K) = 1
|K|

∑

v∈K

d(w, w′)

Example 2 In this example there are four belief bases such that:

– K1 = {w1, w6}
– K2 = {w2, w3, w5}
– K3 = {w2, w5}
– K4 = {w5, w6}
– E = {K1, K2, K3, K4}

Table 3 contains a tabulation of the average distance between each inter-
pretation and each belief base and the sum aggregation function result.

State K1 K2 K3 K4 Sum
w1 2/2 3/3 2/2 3/2 4.5
w2 2/2 4/3 2/2 3/2 4.83
w3 4/2 4/3 4/2 5/2 7.83
w4 4/2 5/3 4/2 5/2 8.17
w5 2/2 4/3 2/2 1/2 3.83
w6 2/2 5/3 2/2 1/2 4.17
w7 2/2 5/3 4/2 3/2 6.17
w8 4/2 6/3 4/2 3/2 7.5

Table 3 Distances and sum results using davg

The result is ∆avg,Σ(E) = {w5}.
�

The result of Example 2 represents the interpretation that is on average
closest to each model of each belief base. Naturally we are prompted to next
consider how and in what kinds of situations such a method could be useful.
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Unlike the three operators given earlier, ∆avg,Σ is not suited to aggregating
preferences or opinions. Rather, as will be supported by findings in the follow-
ing sections, usage of this operator is suited to cases, such as the following two,
where the belief bases represent something like factual theories as to what the
true state of the world is and the goal of merging is to obtain a result that
maximises truthlikeness:

1. The merging of theories/eyewitness accounts from independent sources per-
taining to the truth of some matter. For example, in terms of Example 2,
each K could represent the beliefs of a meteorologist concerning the truth
of p1 (it will be hot tomorrow), p2 (it will rain tomorrow) and p3 (it will be
windy tomorrow). The meteorologist corresponding to K1 believes that it
will rain tomorrow and that either it will be both hot and windy or neither.
K2 believes that exactly any two of the three conditions will obtain and
so on. The result of merging these four bases suggests that it will be rainy
and windy tomorrow but it will not be hot.

2. The merging of scientific experiment results from independent sources per-
taining to some hypothesis.

Thus in Example 2, we take each belief base to represent something like a
theory as to what the true state of the world is; according to K1 it is either
w1 or w6, according to K2 it is one of w2, w3 or w5 and so on.

2.2 Properties of ∆avg,Σ

Having introduced this new merging operator, it is now time to investigate
some of its properties. To begin with, it is worth noting the equivalence be-
tween ∆avg,Σ and ∆min,Σ when belief bases are restricted to certain sets of
models.

As introduced in [3], let c-statement (conjunctive statement) denote a
propositional statement in conjunctive normal form, with each of the c con-
juncts being either an atom or negated atom.5 For example, p1 ∧ p2 is a c-
statement whereas p1 ∧ (p2 ∨ p3) is not. When the statement is the tautology,
c = 0. With this class of statements, we have the following theorem:

Theorem 1 If E consists only of belief bases corresponding to a c-statement
then ∆avg,Σ(E) and ∆min,Σ(E) are equivalent.

Proof See Appendix, Theorem 1.

In developing their merging framework, Konieczny and Pérez [8] provide
a list of six postulates for merging operators.6 Here we will determine which
of these postulates are and which are not satisfied by this new operator, a
task that will provide some important insights into its nature. According to
Konieczny and Pérez, ∆ is a merging operator if and only if it satisfies the
following postulates:

5 These statements are used in the basic feature approach to truthlikeness [3].
6 This list was expanded to nine when incorporating integrity constraints [9].
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(A1) ∆(E) is consistent.
(A2) If E is consistent then ∆(E) ≡ ∧E.
(A3) If E1 ≡ E2 then ∆(E1) ≡ ∆(E2).
(A4) If K1 ∧ K2 is not consistent, then ∆({K1, K2}) 0 K1.
(A5) ∆(E1) ∧ ∆(E2) ⊢ ∆(E1 ⊔ E2).

7

(A6) If ∆(E1) ∧ ∆(E2) is consistent, then ∆(E1 ⊔ E2) ⊢ ∆(E1) ∧ ∆(E2).

∆min,Σ and ∆min,GMax are both examples of such merging operators.
The construction of ∆avg,Σ guarantees that it satisfies (A1). (A2) means

that if the conjunction of the belief bases is consistent (i.e. there is a set of
models common to all of the bases), then the result is simply the conjunction of
the belief bases. Interestingly, ∆avg,Σ does not satisfy (A2); example 3 provides
a counterexample.

Example 3

– K1 = {w1, w2}
– K2 = {w1, w4, w6}
– E = {K1, K2}
– ∆avg,Σ(E) = {w2}

�

(A3) simply means that syntax is irrelevant, a postulate that is trivially
satisfied given that ∆avg,Σ takes a model-based approach.

(A4) is a fairness postulate, which means that when two bases are merged,
the operator should provide a result that favours neither of them. This postu-
late is also not satisfied by ∆avg,Σ ; example 4 provides a counterexample.

Example 4

– K1 = {w1, w2, w3}
– K2 = {w5}
– E = {K1, K2}
– ∆avg,Σ(E) = {w1}

As can be seen, although K1∧K2 is not consistent, K1 is favoured: ∆avg,Σ({K1, K2}) ⊢
K1.

�

(A5) and (A6) taken together mean that if the results of merging two
separate profiles agree on a set of models, then the result of merging their
union will be exactly that set of models.

Theorem 2 ∆avg,Σ satisfies (A5) and (A6).

Proof See Appendix, Theorem 2.

7 ⊔ denotes the union of two profiles. Thus ⊔ is the multiset equivalent of ∪ and can give
results with multiple instances of an element.
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The failure of ∆avg,Σ to satisfy A4 is not a problem given the purpose of
this operator; we have an epistemic focus and are interested in merging for
the purpose of approaching the truth, not in resolving conflict via majority
or arbitration. As Grégoire and Konieczny [7, p. 12] note, A4 “is a strong
impartiality requirement and may appear too strong in some cases”; this is
one of those cases.

The failure of A2 is another issue; ∆avg,Σ does not necessarily respect
agreement among agents in that even if all of the belief bases have at least
one model in common (i.e. they are mutually consistent), the result of this
merging operator will not necessarily consist of models from this common
set. Whilst this peculiarity might strike some as particularly problematic, by
demonstrating the truthlikeness conduciveness of ∆avg,Σ in the following sec-
tions, its general behaviour and failure to satisfy axioms such as A2 will be
given justification according to its purpose. Let us for now discuss the matter
a bit more and get a feel for how ∆avg,Σ behaves in relation to A2.

To begin with, it must be emphasised that often ∆avg,Σ will act in ac-
cordance with A2. Firstly, given Theorem 1, in cases where E is based on
c-statements, A2 will be satisfied. Secondly, given sufficient reliable agreement
amongst sources, the result of ∆avg,Σ will be in accordance with A2. The
following serves as a good example:

Example 5

– K1 = {w1, w2}
– K2 = {w1, w3}
– K3 = {w1, w5}
– E = {K1, K2, K3}
– ∆avg,Σ(E) = {w1}

�

Furthermore, sometimes ∆avg,Σ will not strictly act in accordance with A2,
but will respect agreement amongst belief bases, as shown with the following
example, where the result is a subset of ∧E:

Example 6

– K1 = {w1, w2, w3}
– K2 = {w1, w2, w4}
– K3 = {w1, w2, w5}
– E = {K1, K2, K3}
– ∧E = {w1, w2}
– ∆avg,Σ(E) = {w1}

8

�

Sometimes the result of ∆avg,Σ will keep elements common to all belief
bases with the addition of extra states that also reflect the average:

8 As will become clearer once our formal truthlikeness measure is introduced, the narrow-
ing down here of the result to w1 rather than {w1, w2} can be conducive to truthlikeness.



10 First Author

Example 7

– K1 = {w1, w4}
– K2 = {w1, w4}
– K3 = {w1, w6}
– E = {K1, K2, K3}
– ∆avg,Σ(E) = {w1, w2}

�
Finally, there will be cases where no element common to all belief bases

is kept. The following is but one example, along with a possible scenario to
which it would be suited.

Example 8 Suppose, as represented in the following, that three investigators
conduct independent tests into whether p1 is the case, whether p2 is the case
and whether p3 is the case.

Each investigator tests using their own methods, repeats their test three
times and delivers three results. Furthermore, none of the testing methods are
completely reliable. The results are summed up in the following list. So K1 for
example, observed p1, p2 and p3 on their first trial, p1, p2 and ¬p3 on their
second trial and p1, ¬p2 and p3 on their third trial.

– K1 = {w1, w2, w3}
– K2 = {w1, w2, w5}
– K3 = {w2, w3, w5}
– E = {K1, K2, K3}
– ∆avg,Σ(E) = {w1}

�
Despite w2 being common to all bases, the result of w1 reflects the fact

that taking all tests into consideration, p1 occurred more as a result than ¬p1,
p2 occurred more as a result than ¬p2 and p3 occurred more as a result than
¬p3.

We continue by establishing a new property that I shall term Singleton
Identity:

(Sing Id) ∀K∆({K}) = K

This property, which follows from A2, is not satisfied by ∆avg,Σ . For ex-
ample:

– K = {w2, w3, w5}
– ∆avg,Σ({K}) = {w1} 6= K

Whilst this might be seen as strange for a merging operator, it will be
explicated in terms of truthlikeness maximisation in Section 4.

Finally, a distinction is made in the literature between majority merging
operators and arbitration merging operators [8]. A merging operator (that
satisfies A1 - A6) is a majority operator if it satisfies the following:9

9 Kx = K ⊔ ... ⊔ K
︸ ︷︷ ︸

x
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(M7) ∀K∃x∆(E ⊔ Kx) ⊢ K

This postulate expresses the fact that for any belief base, there is a sufficient
number of times x the base can occur in a belief profile, at which point the
base will prevail in the result of merging the profile.

As shown in [8,9], ∆min,Σ is a majority merging operator. Whilst ∆avg,Σ

is not a merging operator in the sense of satisfying all of postulates (A1 - A6),
as example 9 demonstrates, it does not satisfy (M7) either.

Example 9 It is clear that when K = {w2, w3, w5} for example and E =
{{w1}}, any value of n will be such that ∆(E ⊔ Kn) = {w1} 0 K.

�

A basic way to characterise arbitration is the following strong postulate:

(A7’) ∀K∀n∆(E ⊔ Kn) = ∆(E ⊔ K)

Konieczny and Pérez [8] show that there can be no merging operator satis-
fying both (A1 - A6) and (A7’). Whilst ∆avg,Σ does not satisfy all of postulates
(A1 - A6), it too does not satisfy the strong (A7’).

In order to characterise majority insensitivity arbitration in a way that is
consistent with (A1 - A6), they propose the following:

(A7) ∀K
′

∃KK
′

0 K∀n∆(K
′

⊔ Kn) = ∆(K
′

⊔ K)

According to this postulate, “the result of the arbitration is [to a large
extent] independent from the frequency of the different views” [8]. Konieczny
and Pérez show that ∆min,Max satisfies (A7) and that ∆min,GMax satisfies (A7)
if and only if the number of atoms n in the logical space is such that n > 1.

In fact, ∆avg,Σ also satisfies (A7) given this restriction.

Theorem 3 The ∆avg,Σ operator satisfies postulate (A7) if and only if n > 1

Proof See Appendix, Theorem 3.

Thus interestingly, ∆avg,Σ and ∆min,Σ both use the sum aggregation func-
tion but ∆min,Σ satisfies the majority postulate whereas ∆avg,Σ does not.
Instead, like the merging operators that use the max and leximax aggregation
functions, ∆avg,Σ satisfies a form of arbitration.

3 Truthlikeness and estimated truthlikeness

Truthlikeness or verisimilitude [17] is a concept from the philosophy of science
that concerns measuring the extent to which a theory approaches the truth.
Popper was the first philosopher to seriously investigate this notion as part of
his falsificationist program. In what sense can progress be made if fallibilism
about science is adopted? Well, two theories might both be false, but one
might be closer to the truth than the other and if one false theory is replaced
by another false theory that is more truthlike then this constitutes progress.
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More generally, the concept of truthlikeness can be applied to any collec-
tion of data/beliefs. A simple, mundane example will suffice to elucidate this
notion and demonstrate its direct practical import. Take a situation in which
a catering service is organising for an event. The truth is that at this event
there will be exactly 64 guests. Now take the following statements:

(A) There will be 64 guests
(B) There will be somewhere between 50 and 90 guests
(C) There will be 65 guests
(D) There will be 30 guests

With regards to the number of guests, statement (A) is precisely true and
thus is closest to the truth of the matter. Statements (C) and (D) are both false,
but (C) gives a number closer to the actual number and is thus more truthlike
than (D). The comparison between statements (B) and (C) is an illuminating
one. Statement (B) is true and statement (C) is false, yet statement (C) seems
to be more accurate, as it gives a number just above 64 as opposed to an
unspecific yet true disjunctive range from 50 to 90. Thus whilst (B) is true
and (C) is false, (C) is deemed more truthlike than (B). From this ordering we
can see that in such cases the more truthlike a statement is the more useful it
is and hence the value in devising methods that conduce truthlikeness.

There is a variety of approaches to constructing formal truthlikeness mea-
sures in logical space.10 The Tichy/Oddie proposal to calculate the truthlike-
ness of a dataset/proposition makes it inversely related to the average distance
between the models of the dataset and the interpretation that is the true state.
The setup to calculate distances involves assigning a weight to each atomic el-
ement in the logical space such that these weights sum up to 1. The distance
between two states is a summation of these weights for each atomic evaluation
difference and is thus a derivation of the Hamming distance measured in terms
of these weights. Thus variation in weights can be used to reflect differences
in the truthlikeness significance an atom has. Here we shall simply assign a
uniform weight of 1

n
to each atomic element, where n is the number of atoms

in the logical space. Thus in the case of our example this weight is 1
3 .

The truthlikeness of belief base K relative to some state w thus starts with
the sum of these differences divided by the number of models for K and is
given by the following function with range [0, 1]:

Tr(K, w) = 1 − davg(w, K)

With wt standing for the actual state of the world, the actual truthlikeness
of K is given by Tr(K, wt), which we will shorten to Tr(K).11 Throughout
this paper the actual state will be set to w1. As an example of this measure
take the belief base K = {w1, w2}. Then davg(w1, K) = 1

2 × 1
3 = 1

6 and thus
Tr(K) = 1 − 1

6 = 5
6 .

10 See [16,13] for some surveys.
11 This is known as the Tichy-Oddie truthlikeness measure in the literature.
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Besides the semantic problem of truthlikeness, which concerns what we
mean when we claim that the proposition A is closer to the truth than the
proposition B, there is also the epistemic problem, which concerns on what
evidence we are to judge that A is closer to the truth than B [22, p. 121].
Regarding the latter, given some probability distribution the standard formula
for expected utility in decision theory can be used to calculate the estimated
truthlikeness of a dataset K given evidence Evd [15, p. 180]:

Trest(K|Evd) =

s∑

i=1

Tr(K, wi)Pr(wi|Evd)

s stands for the number of states in the logical space and Pr(wi|Evd) is
the conditional probability of wi given Evd.

Example 10 Referring back to Table 1 and starting off with a uniform prob-
ability of 1

8 for each possible state, conditionalization upon evidence Evd =
p1 ∨ ¬p2 ∨ ¬p3 gives the following probability distribution:

– Pr(w5) = 0
– Pr(w1) = Pr(w2) = Pr(w3) = Pr(w4) = Pr(w6) = Pr(w7) = Pr(w8) = 1

7

With this distribution:

– Trest(p1 ∧ p2 ∧ p3|Evd) = 0.48
– Trest(¬p1 ∧ ¬p2 ∧ ¬p3|Evd) = 0.52

As can be seen, given a certain piece of true evidence (since w1 is the
actual state Evd is true), there can be a marked difference between actual
truthlikeness and estimated truthlikeness: Tr(p1 ∧ p2 ∧ p3) = 1 > Tr(¬p1 ∧
¬p2 ∧ ¬p3) = 0 whilst Trest(p1 ∧ p2 ∧ p3|Evd) < Trest(¬p1 ∧ ¬p2 ∧ ¬p3|Evd).

�

Hopefully, this brief overview of truthlikeness suffices to give an adequate
picture of its significance. For more discussion on the idea of using estimated
truthlikeness as an epistemic utility see [15,12].

4 Belief merging as truthlikeness maximisation

Combining a process of belief change with a truthlikeness measure opens up the
possibility of exploring their relationship. Niiniluoto [14] and others [2,20] for
example have investigated general properties concerning how the truthlikeness
measure of a belief base changes in relation to the process of belief revision.

Whilst there has been a modicum of papers investigating the combination
of belief revision and truthlikeness, the combination of belief merging and
truthlikeness has received close to no coverage. Regarding this combination,
at least two distinct general topics can be investigated:
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1. Given a merging method and truthlikeness measure, when/how does the
truthlikeness of ∆(E) increase relative to the members of E. Are there
ways to characterise the set of E such that the truthlikeness of ∆(E) is
greater than the truthlikeness of the members of E?

2. Given a truthlikeness measure and one or more merging methods, which
of the methods is most conducive to obtaining truthlike results.

To my knowledge Cevolani [1] provides the only published paper that in-
vestigates the combination of truthlikeness and belief merging. Using his basic
feature approach to truthlikeness, he tackles the first of these topics, going
through some simple test cases and exploring how the truthlikeness of ∆min,Σ

results increase/decrease relative to the structure and truthlikeness of input
belief bases.

In this paper we are interested in the second of these topics. We have
introduced the ∆avg,Σ operator with the motivation of truthlikeness. How
does it fare though in terms of truthlikeness conduciveness? In this section it
will be demonstrated that ∆avg,Σ is actually a special case of a procedure that
combines probabilities and maximises estimated truthlikeness.

Given some probability distribution across the possible states in a logical
space, one approach to selecting an optimal set of states is to select those
states which have the highest estimated truthlikeness. Niiniluoto [14] discusses
this approach to using truthlikeness as a guiding factor in developing belief
revision constructions. This form of belief revision by estimating truthlikeness
involves preferring theories which have a larger estimated truthlikeness value
than their rivals. Thus we get a rule of acceptance such that given evidence
Evd, the resulting theory to be selected is simply that which has maximal
estimated truthlikeness conditional upon Evd.

In cases where there is a set of such probability distributions from various
sources, this approach would involve firstly combining the probability distribu-
tions into one and then using the result for the estimation calculations. There
is a variety of approaches to combining probability distributions.12 For our
purposes we shall use the simple linear opinion pool approach to probability
aggregation, which is a weighted linear combination of the source probabilities
given by the formula:

Pr(A) =

n∑

i=1

wiPri(A)

where n is the number of probability distributions, Pri(A) represents dis-
tribution i’s probability for A and the weights wi are non-negative and sum
to one [4, p. 189]. These weightings can be adjusted to reflect the relative
importance of or trust in a belief base source. For example, if two equally dis-
tinguished experts each contribute a probability distribution on some matter
then the weights would be set to 1

2 . Alternatively, if the first contributor has a
better record of prediction than the second, then the weights might be 3

4 and

12 See [4] for an overview.



Belief Merging with the Aim of Truthlikeness 15

1
4 respectively. Obviously probability pooling can be seen as a form of basic
numerical merging. As we will now see, it actually forms one half of a pro-
cedure which combines probability aggregation and truthlikeness estimation
and that, as it turns out, is equivalent to ∆avg,Σ .

Given a belief profile E, we determine a set of probabilities by going
through each belief base K in E and assigning to each of its models w a
uniform probability PrK(w) = 1

|K| . These probabilities are then combined

and the resulting probability distribution is used for estimated truthlikeness
calculations.

Example 11 Take the following belief bases that were used in Example 2:

– K1 = {w1, w6}
– K2 = {w2, w3, w5}
– K3 = {w2, w5}
– K4 = {w5, w6}
– E = {K1, K2, K3, K4}

Given this belief profile, the probability determination method just de-
scribed results in:

– PrK1
(w1) = PrK1

(w6) = 1
2

– PrK2
(w2) = PrK2

(w3) = PrK2
(w5) = 1

3
– PrK3

(w2) = PrK3
(w5) = 1

2
– PrK4

(w5) = PrK4
(w6) = 1

2

Combining all of these probabilities using the linear opinion pool formula
with a uniform weighting of 1

4 for each of the four probability distribution
sources, we get:

– Pr(w1) = 1
2 × 1

4 = 1
8

– Pr(w2) = (1
3 + 1

2 ) × 1
4 = 5

24
– Pr(w3) = 1

3 × 1
4 = 1

12
– Pr(w5) = (1

3 + 1
2 + 1

2 ) × 1
4 = 1

3
– Pr(w6) = (1

2 + 1
2 ) × 1

4 = 1
4

With this probability distribution, the estimated truthlikeness calculations
for each state are:

– Trest(w1) = 0.625
– Trest(w2) = 0.597
– Trest(w3) = 0.347
– Trest(w4) = 0.319
– Trest(w5) = 0.681

– Trest(w6) = 0.653
– Trest(w7) = 0.403
– Trest(w8) = 0.375
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The selected result based on highest estimated truthlikeness consists of the
model w5, the same result as Example 2.13

�

Let FPT (E) stand for this function that combines the probabilities of all
belief bases in E with linear pooling and returns the set of models with highest
estimated truthlikeness based on the combination distribution. As can be seen,
if the d(w, E) results from Example 2 are ordered from lowest to highest and
the Trest() results from Example 11 are ordered from highest to lowest then
the orderings are equivalent. In fact, we have the following general result:

Theorem 4 For any belief profile E, if each K in E adopts a uniform prob-
ability distribution on the set of its models, then the model ordering results
of ∆avg,Σ(E) ordered from lowest to highest and the model ordering results of
FPT (E) ordered from highest to lowest are ordinally equivalent.

Proof See Appendix, Theorem 4.

From Theorem 4 it simply follows that:

Corollary 1 For any belief profile E, if each K in E adopts a uniform prob-
ability distribution on the set of its models, then ∆avg,Σ(E) = FPT (E).

Using this equivalence as a starting point, this method of combining prob-
ability distributions and selecting states based on highest estimated truthlike-
ness can be seen as a more general way to perform the type of belief merging
performed by the operator ∆avg,Σ , a way that can incorporate probability
distributions into the calculations.

Example 12 Take a situation like that of Example 11 with the belief profile
E = {K1, K2, K3, K4}. This time though, suppose that the probability distri-
bution associated with each of the sources is non-uniform:

– PrK1
(w1) = 3

4 , PrK1
(w6) = 1

4
– PrK2

(w2) = 1
2 , PrK2

(w3) = 3
8 , PrK2

(w5) = 1
8

– PrK3
(w2) = 3

4 , PrK3
(w5) = 1

4
– PrK4

(w5) = PrK4
(w6) = 1

2

So for example, in this case the K1 source believes that either w1 or w6

is the actual state, but w1 is more likely. Combining all of these probabilities
using the linear opinion pool formula with a uniform weighting of 1

4 for each
of the four probability distribution sources, we get:

– Pr(w1) = 3
4 × 1

4 = 3
16

13 Using the Tichy-Oddie truthlikeness measure, one or more individual states will always
be amongst the datasets with highest estimated truthlikeness. In cases where there is more
than one such individual state, any datasets formed as a collection of these individual states
will also have this highest truthlikeness value since the truthlikeness of a collection of states
is simply their average truthlikeness.
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– Pr(w2) = (1
2 + 3

4 ) × 1
4 = 5

16
– Pr(w3) = 3

8 × 1
4 = 3

32
– Pr(w5) = (1

8 + 1
4 + 1

2 ) × 1
4 = 7

32
– Pr(w6) = (1

4 + 1
2 ) × 1

4 = 3
16

With this probability distribution, the estimated truthlikeness calculations
for each state are:

– Trest(w1) = 0.667

– Trest(w2) = 0.667

– Trest(w3) = 0.396
– Trest(w4) = 0.396
– Trest(w5) = 0.604
– Trest(w6) = 0.604
– Trest(w7) = 0.333
– Trest(w8) = 0.333

Thus although the belief profile in this example is the same as that of
Example 11, with this probability distribution the result becomes {w1, w2}.

�

Given that the focus of this paper is on the merging of factual data, end-
ing up with a form of merging that can incorporate probability distributions
is a welcome extension. Unlike non-probabilistic voting preferences, the states
comprising factual data from a source might very well have non-uniform prob-
abilities associated with them to reflect the varying degrees of credence the
source has.

It is worth mentioning that this equivalence elucidates the point from Sec-
tion 2 that ∆avg,Σ fails Singleton Identity and can produce a change when
applied to a singleton belief profile; that is, where E = {K}, it is possible for
∆avg,Σ(E) 6= K. This is simply explained by the fact that a singleton belief
profile corresponds to a single probability distribution and that selecting states
with maximum estimated truthlikeness based on that probability distribution
can give a result that differs from the initial states.

This method of combining probability distributions followed by maximis-
ing truthlikeness based on the resulting probability distribution was simply
motivated by standard estimated truthlikeness involving a single distribution.
Since estimated truthlikeness is based on a single probability distribution, it
naturally followed in the case of multiple distributions to combine them into
one and use the result to estimate truthlikeness. The equivalence between this
method and ∆avg,Σ was subsequently realised, thus providing mutual support.
However, as pointed out by a referee, the ‘merge + maximise’ sequence could
be reversed to get a ‘maximise + merge’ procedure. That is, another approach
to dealing with multiple belief bases is to have agents maximise truthlikeness
based on their own distributions first and then merge the results. Whilst it
is beyond the scope of this paper to undertake an investigation into this ap-
proach, some remarks are in order. Firstly, this approach does not seem to
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have support in the way of a correspondence such as that between ∆avg,Σ

and ‘merge + maximise’. Secondly, ‘maximise + merge’ using ∆avg,Σ would
involve two levels of estimated truthlikeness maximisation. The first concerns
the initial maximising that is performed for each base. The second concerns
the truthlikeness maximisation that, as has been shown, is implicit in the
∆avg,Σ process. Is such a doubling in the one procedure legitimate in terms of
expected utility theory? Finally, Jon Williamson [21] argues that judgements
are best aggregated by merging the evidence on which they are based, rather
than by directly merging the judgements themselves:

one should not apply belief merging directly to agents’ judgement sets.
Instead, one should apply belief merging to the agents’ evidence bases
and consider a single hypothetical agent with this merged evidence base.
One can determine appropriate degrees of belief for this hypothetical
agent using objective Bayesian theory and then determine appropriate
judgements using decision theory. These judgements can be viewed as
the aggregate of the original agents’ judgement sets. [21][p. 468].

Whilst the technical details of Williamson’s argument are somewhat differ-
ent from the formal apparatus of this paper, a general application of his idea
suggests that it would be better to merge the probabilities (evidence) first and
then maximise truthlikeness (decision theoretic judgement), rather than vice
versa.

5 Concluding remarks

It was established at the outset of this paper that the process of merging
applies to two different types of problem:

– aggregating preferences/opinions (PM)
– aggregating factual beliefs/data (BM)

Whilst it has not been the intention of this paper to provide a complete
division and formal characterisation of operators for these two types of prob-
lems, a few concluding points are in order. Unlike the min-based merging
operators brought in from the literature in Section 2, the operator ∆avg,Σ is
not suited to PM. For one thing, this is apparent in its failure to satisfy the
A2 property; if a group of agents all have a common preference, then that
preference should be selected. With regards to BM things are different. Whilst
this paper offers no definitive account of BM operators and does not rule out
the usage of operators that satisfy properties A1 - A6 (such as the min-based
merging operators), it has conclusively shown that in cases where the factual
beliefs/data are aggregated with an interest in maximising the truthlikeness
of the result, then an operator such as ∆avg,Σ is a most suitable choice. De-
spite the fact that this method violates certain postulates established in the
belief merging literature, these violations are reasonable given its success with
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regards to truthlikeness conduciveness. At the very least, we have established
that not all BM operators need satisfy A1 - A6.

With regards to future work on the topic of belief merging and truthlike-
ness, one place to start is the equivalence demonstrated in Section 5 of ∆avg,Σ

and the combine probabilities + maximise estimated truthlikeness procedure.
Since this general combination approach involves parameters that can be ad-
justed and components that can be replaced with alternatives there is room
to tailor and experiment with it. Here are three possibilities:

– If a different truthlikeness measure is adopted then it can straightforwardly
replace the method used in this paper.

– Using methods of probability aggregation other than the linear opinion
pool.

– Alternatives to expected utility decision theory as a method of estimating
truthlikeness.14

As just mentioned, there is also the possibility of investigating other untested
combination approaches. One alternative is to first calculate the results of
maximum estimated truthlikeness for each belief base individually and then
combine these results somehow. For example, if one were to first calculate the
results of maximum estimated truthlikeness for each belief base and then select
the resulting states with the highest minimum estimated truthlikeness values
across all belief bases, then one would get the counterpart of the operator
∆avg,Max. Such possibilities and other methods involving belief merging and
truthlikeness await further investigation.

Appendix

Theorem 1. If E consists only of belief bases corresponding to a c-statement
then ∆avg,Σ(E) and ∆min,Σ(E) are equivalent.

Proof It suffices to show that for any given belief base K that corresponds to
a c-statement and interpretations wx and wy :

dmin(wx, K) T dmin(wy, K) if and only if davg(wx, K) T davg(wy, K)

We will show it using <, but the same applies to the other two relations.
For any K, |K| = 2n−c models, where c is the number of atoms in the corre-
sponding c-statement and n is the number of atoms in the logical space.

Now, suppose that dmin(wx, K) = x < dmin(wy , K) = y. The value of

davg(wx, K) will equate to |K|x+z

|K| and the value of davg(wy, K) will equate to
|K|y+z

|K| .

We get |K|x from the fact that whatever state wk in K gives the min
distance x, the other |K| − 1 states will agree with the atom valuations of

14 See [11,19] for a survey.
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wk that give that distance and hence add |K| − 1 to the total sum difference.
Same for |K|y.

Here, z is equal to the sum distance between any given model w of K and

K: z = dsum(w ∈ K, K) =
∑

v∈K

d(w, w′). For any two models wa, wb ∈ K such

that K corresponds to a c-statement, dsum(wa, K) = dsum(wb, K), which is
why z is the same for both davg(wx, K) and davg(wy, K). Specifically, it can

be seen that each of dsum(wa, K) and dsum(wb, K) will equal

n−c∑

i=0

(
n − c

i

)

i.

Given this, it straightforwardly follows that dmin(wx, K) = x < dmin(wy , K) =

y if and only if davg(wx, K) = |K|x+z

|K| < davg(wy , K) = |K|y+z

|K| .

For example, let K = {w1, w2, w3, w4} (p1). dmin(w1, K) = 0 < dmin(w7, K) =

1. dsum(w1, K) = dsum(w3, K) = 4. davg(w1, K) = (4×0)+4
4 = 1 < davg(w7, K) =

(4×1)+4
4 = 2.

Theorem 2. ∆avg,Σ satisfies (A5) and (A6).

Proof When using the sum aggregation function, d(w, E1)+d(w, E2) = d(w, E1⊔
E2). Let d1 stand for the minimum distance for ∆(E1) and d2 stand for the
minimum distance for ∆(E2). For each wx ∈ ∆(E1)∧∆(E2), d(wx, E1 ⊔E2) =
d1 + d2. Since d1 + d2 is the minimum distance for d(w, E1) + d(w, E2), it
follows that it is the minimum distance for d(w, E1 ⊔E2) and hence the result
of ∆(E1) ∧ ∆(E2) will equate to the result of ∆(E1 ⊔ E2).

Theorem 3. The ∆avg,Σ operator satisfies postulate (A7) if and only if n > 1

Proof Preliminary observation suggests that for any K ′ it will often be easy
to find some such K. The following selection procedure guarantees one way
to go about finding some K for any K ′ such that K

′

0 K∀n∆(K
′

⊔ Kn) =
∆(K

′

⊔ K).
First, divide K ′ into two types of cases: (1) those where K ′ consists of two

or more models and (2) those where K consists of one model.
When K ′ consists of two or more models, perform ∆({K ′}) and select one

of the resulting models wx such that wx ∈ ∆({K ′}). This wx will by definition
have a minimum distance out of all d(w, K ′). Next, set K = {wx}. Since
|K ′| > 1 = |K|, K ′

0 K. Now, since wx ∈ ∆({K ′}), ∆(K ′ ⊔ K) = {wx},
since K is adding a minimum distance of 0 to only d(wx, E). But then, any
repetition of K = {wx} added to the input profile will only contribute 0 to
d(wx, E) and so ∆(K ′ ⊔ K) = {wx} = ∆(K ′ ⊔ Kn).

In the case where K ′ consists of one model, this strategy is not possible.
What we can do is the following. Let K ′ = {wy}. Let K consist of each of
the n states that differs from wy by one atom. Given this, K ′

0 K. Next, we
show that generally it is a fact that ∆({K}) = {wy}. Given this, it follows

that ∆(K
′

⊔ Kn) = ∆(K
′

⊔ K).
The average distance between K and wy will be n

n
(there are n states in K

that differ from wy by 1), so if ∆({K}) 6= {wy}, we would need to show that



Belief Merging with the Aim of Truthlikeness 21

there is some wz such that the average distance between K and wz is less than
n
n
. Since n is the common denominator, this amounts to showing that there is

some wz with total sum difference less than n. But this is not possible:

– If wz is not in K, then the total sum distance is m such that m > n, as
none of the distances between wz and members of K can be 0 and at least
one will have to be greater than 1, as there is only one state (i.e. wy) such
that each member of K will differ by 1.

– If wz is in K, then, apart from wz, which has a distance of 0 to itself, it
can be seen that all other members of K will have a difference of 2 from
wz, so the total sum distance will be 0+2(n−1)

n
= 2n − 2.

For all values n > 2, n < 2n − 2, thus ∆({K}) = {wy}. When n = 2,
n = 2n − 2, in which case K has an average distance of 1 to all of the four
possible states and thus ∆({wy} ⊔ K) is still equal to wy .

We finish off with a counterexample for when n = 1. Let w1 be the states in
which the one atom p is true and w2 be the state in which it is false. K ′ = {w1}
and K = {w2} is the only possible type of setup such that K

′

0 K. But
∆(K

′

⊔ K) = {w1, w2} 6= ∆(K
′

⊔ K2) = {w2}.

Theorem 4. For any belief profile E, if each K in E adopts a uniform prob-
ability distribution on the set of its models, then the model ordering results
of ∆avg,Σ(E) ordered from lowest to highest and the model ordering results of
FPT (E) ordered from highest to lowest are ordinally equivalent.

Proof Noting that Trest(K|Evd) =

s∑

i=1

Tr(K, wi)Pr(wi|Evd) = 1−[

s∑

i=1

davg(wi, K)Pr(wi|Evd)],

let F ∗
PT (E) stand for a modified FPT (E), where rather than calculating

s∑

i=1

Tr(K, wi)Pr(wi|Evd)

for each interpretation,

s∑

i=1

davg(wi, K)Pr(wi|Evd) is used instead.

So as to simplify things, we will show that ∆avg,Σ(E) ordered from lowest
to highest is ordinally equivalent to F ∗

PT (E) ordered from lowest to highest.
We do this by showing that for each pair of interpretations (wx, wy):

d(wx, E) T d(wy , E) if and only if

[

s∑

i=1

d(wi, wx)Pr(wi|Evd)] T [

s∑

i=1

d(wi, wy)Pr(wi|Evd)]

Let In(wz , K) be a function such that:

In(wz , K) =

{
1 if wz ∈ K
0 if wz /∈ K
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Beginning with F ∗
PT (E), we first establish that given the belief profile E =

{K1, K2, ...., Kk} the uniform probability of some interpretation wz is given
by:

Pr(wz) =

[
k∑

i=1

In(wz , Ki)

|Ki|

]

1
k

Next we proceed with the following formulation of the relation [

s∑

i=1

d(wi, wx)Pr(wi|Evd)] T

[
s∑

i=1

d(wi, wy)Pr(wi|Evd)]:

s∑

i=1

d(wi, wx)Pr(wi|Evd) T
s∑

i=1

d(wi, wy)Pr(wi|Evd)

if and only if
s∑

i=1

Pr(wi|Evd)(d(wi, wx) − d(wi, wy)) T 0

if and only if

s∑

i=1





k∑

j=1

(d(wi, wx) − d(wi, wy))In(wi, Kj)

|Kj |k



 T 0

if and only if

k∑

j=1









s∑

i=1

[(d(wi, wx) − d(wi, wy))In(wi, Kj)]

|Kj |









T 0

Next we formulate the relation between d(wx, E) and d(wy , E).

k∑

j=1









s∑

i=1

d(wi, wx)In(wi, Kj)

|Kj|









T
k∑

j=1









s∑

i=1

d(wi, wy)In(wi, Kj)

|Kj|









if and only if

k∑

j=1









s∑

i=1

[d(wi, wx)In(wi, Kj)] −

s∑

i=1

[d(wi, wy)In(wi, Kj)]

|Kj |









T 0

if and only if
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k∑

j=1









s∑

i=1

[(d(wi, wx) − d(wi, wy))In(wi, Kj)]

|Kj |









T 0

At this stage we note that the formulation for F ∗
PT (E) is equivalent to the

formulation for the relation between d(wx, E) and d(wy , E) and thus the proof
is complete.
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