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Acceptable gaps in mathematical proofs 

Line Edslev Andersen1 

 

 

 

Abstract Mathematicians often intentionally leave gaps in their proofs. Based 

on interviews with mathematicians about their refereeing practices, this paper 

examines the character of intentional gaps in published proofs. We observe that 

mathematicians’ refereeing practices limit the number of certain intentional gaps 

in published proofs. The results provide some new perspectives on the 

traditional philosophical questions of the nature of proof and of what grounds 

mathematical knowledge. 

Keywords Mathematical practice · gaps in proofs · peer review in 

mathematics · the nature of proofs 

 

1. Introduction 

This paper examines the character of gaps in ordinary mathematical proofs, as 

opposed to formal proofs.2 According to Don Fallis (2003), an ordinary 

mathematical proof is essentially a sequence of basic mathematical inferences 

where ‘a basic mathematical inference’ is an inference that is “accepted by the 

mathematical community as usable in proof without any further need of 

argument” (pp. 49–50). He states that the set of basic mathematical inferences 

varies across time and subdisciplines, but that it appears to be fixed in any given 
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context and that “mathematicians know exactly what the set contains” (Fallis 

2003, p. 49). A proof has a gap wherever it deviates from being a proof in this 

sense. 

Fallis distinguishes between three types of gaps in ordinary proofs: inferential 

gaps, untraversed gaps, and enthymematic gaps. A mathematician has 

overlooked an inferential gap when the sequence of propositions she has in 

mind as being a proof is not a proof (Fallis 2003, p. 51). She has left an 

untraversed gap when she has not gone through all the details of the sequence 

she has in mind as being a proof (pp. 56–57). In the case where nobody else has 

gone through the details either, the gap is universally untraversed. Finally, a 

mathematician has left an enthymematic gap in the presentation of a proof when 

she has not presented the entire sequence of propositions she has in mind as 

being a proof (p. 53). Note that if she leaves a gap in the presentation of the 

proof, this qualifies as an enthymematic gap whether or not she has traversed 

the gap in her head (cf. Fallis 2003, p. 57). Untraversed gaps and enthymematic 

gaps are intentional gaps, and these are the focus of this paper.3 To give an 

example, if someone has written in a proof that “A simple proof by induction 

shows that p” without giving the proof by induction, then she has left an 

enthymematic gap in the proof, a gap in the proof as written. If she has not gone 

through the proof by induction in her head either, she has left an untraversed 

gap in the proof. In the case where nobody else has gone through the details 

either, the gap is universally untraversed. 

Fallis does not explicitly address the question of what types of gaps are left by 

whom.4 The examples he gives in the sections on inferential and enthymematic 

gaps are about authors who leave gaps in their own proofs, but he implies that 

a mathematician can also leave inferential or enthymematic gaps in someone 

else’s proof when she herself interprets or presents that proof. For example, she 

                                                 
3 In a literature review on non-deductive methods in mathematics, Alan Baker (2015) 

has a section on gaps in proofs where he recounts Fallis’ work in (2003). He notes that 

the notion of ‘proof gap’ is in need of further clarification (Baker 2015, section 2.1.2). 

Yacin Hamami (2014) takes steps in this direction by providing a more detailed account 

than Fallis of basic mathematical inferences. In particular, he applies Dag Prawitz’s 

account of valid inference (e.g., Prawitz 2012) to mathematics. Hamami suggests that 

we think of Fallis’ categories of gaps relative to the resulting account of valid 

mathematical inference. For our purposes, it is not necessary that we have a clear 

notion of what a complete proof is. An intuitive notion of this is enough. 
4 We thank a referee for suggesting that we address this question. 
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may commit a logical error when trying to fill in enthymematic gaps left by the 

author. She would then leave an inferential gap in the proof as interpreted by 

her. In the section on untraversed gaps, Fallis speaks about how both authors 

and readers of proofs leave untraversed gaps. He notes that mathematicians 

often leave untraversed gaps when reading published proofs, but that the 

authors of the proofs do not traverse all gaps either. In this paper, when we 

speak of untraversed gaps, we mainly focus on gaps that are left untraversed by 

mathematicians when they validate proofs as refererees, but we also address 

gaps left untraversed by readers in general when validating proofs by others. 

When we speak of enthymematic gaps, we focus on gaps authors leave in 

published proofs. More specifically, we focus on the type of enthymematic gaps 

that referees allow authors to leave in their proofs.        

Fallis’ (2003) main focus are the gaps that have not been traversed by anyone: 

universally untraversed gaps. His aim is to establish that there are proofs with 

universally untraversed gaps that are accepted by the mathematical community. 

He does not examine the general character of universally untraversed gaps or 

the other types of intentional gaps. The aim of this paper is to examine the 

character of intentional gaps in the case of published proofs. Unlike Fallis, we 

mainly focus on untraversed gaps and enthymematic gaps, as opposed to 

universally untraversed gaps. However, by saying something about the character 

of untraversed gaps and enthymematic gaps in published proofs, we also say 

something about the character of universally untraversed gaps in published 

proofs. In the case of enthymematic gaps, this is clear, since every universally 

untraversed gap is also an enthymematic gap. In the case of untraversed gaps, 

we aim to say something about the gaps mathematicians typically leave 

untraversed when validating proofs. By doing so we also say something about 

the character of universally untraversed gaps, although there are probably 

universally untraversed gaps that are not typically untraversed gaps (and vice 

versa). For it is fair to assume that there is a big overlap between the set of 

universally untraversed gaps and the set of typically untraversed gaps.5 

Fallis makes his argument that there are proofs with universally untraversed gaps 

that are accepted by the mathematical community by giving examples of proofs 

that appear to have such gaps. Studying the general character of intentional gaps 

in proofs requires a different approach. This paper is thus based on in-depth 

interviews we conducted with mathematicians. We interviewed them about how 

                                                 
5 We thank the two referees for pressing us to be more clear on the relationship 

between enthymematic gaps, untraversed gaps, and universally untraversed gaps. 
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they referee papers for mathematical journals. Examining mathematicians’ 

refereeing practices can help us determine the kinds of proof gaps that are 

acceptable in published proofs. Our interviews suggest that a referee, when she 

checks a proof for correctness, also checks whether other experts would be able 

to check the proof for correctness. We focus on these two aspects of 

mathematicians’ refereeing practices: on how referees check proofs for 

correctness and on how they check proofs for “checkability” by the relevant 

experts. As we shall see, the first aspect sheds light on the character of untraversed 

gaps in published proofs, while the second aspect sheds light on the character of 

enthymematic gaps in published proofs. These results in turn provide some new 

perspectives on the traditional philosophical questions of what grounds 

mathematical knowledge and of the nature of proof.6 

After having introduced the interviews (section 2), we present the results on 

how referees proceed when checking a proof for correctness. These results tell 

us about the gaps that referees, and presumably mathematicians in general, leave 

untraversed when they validate proofs. It appears that certain subproofs are not 

validated through the checking of details, but by holding the subproofs, 

considered in broad outline, up against the landscape of mathematical 

knowledge (section 3). On this basis, we revise the traditional account of when 

a mathematician is justified in believing that a mathematical proposition p is 

true, on which she must have gone through the proof of p step by step (section 

4). We then turn to the subject of enthymematic gaps and the results on how 

referees check a proof for checkability by the relevant experts. Referees appear 

to be guided by the criterion that enthymematic gaps are allowed when they can 

rather easily be traversed or be seen to be traversable by a large majority of the 

experts (section 5). On this basis, we examine how the ‘right’ amount of 

inferential rigor in published mathematical proofs is brought about by their 

dialogical character (section 6). 

 

2. The interviews  

Our account of mathematicians’ refereeing practices is based on interviews we 

conducted with tenured researchers, of various academic ages, in different fields 

of pure mathematics. They are Danish and employed at Danish universities, and 

                                                 
6 We are grateful to a referee for pressing us to develop further the philosophical 

motivations and consequences of the empirical study. 
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they are all male.7 The choice of interviewing Danish mathematicians, in their 

and our first language, was made in order to allow the interviewees to speak as 

freely as possible and lower the risk of misunderstandings. We presume their 

nationality has not substantially influenced their answers. We interviewed an 

eighth mathematician, a Belgian, at a Belgian university and his responses did 

not stand out from the others. Danish universities were chosen for practical 

reasons. We have translated the quotations from the interviews used in this 

paper and also modified them to remove repetition and fillers. The quotations 

were subsequently reviewed by the interviewees, resulting in very minor 

modifications, and approved for publication. 

The interviews had two parts. First, we asked the interviewees about specific 

experiences they had had with peer review in mathematics. We began by asking 

them to think about the last time they had refereed a paper for an international 

journal and we proceeded to ask them questions, one at a time, about this 

experience (how did you proceed; did you find any errors or shortcomings in 

the paper and, if so, of what kind). We then asked them to think about the last 

time they had a paper refereed by an international journal and asked them 

questions about this experience (how was the feedback you received; did you 

agree with the referee or referees), and so on. We asked them about specific 

experiences to keep them from philosophizing about mathematics and to try to 

get at their actual practice.8 Although some of the interviewees quickly began to 

speak about other experiences they had had with refereeing papers and having 

papers refereed, they succeeded in mostly talking about specific experiences.  

In the second half of the interviews, we asked more general questions, e.g. what 

counts as an error or shortcoming in a proof; can you say something about how 

detailed an argument has to be to constitute a proof; when you are trying to 

determine if a proof is valid, do you check every step of the proof (this question 

was taken from Weber 2008, p. 438). The interviewees were asked to respond 

to these questions on the basis of their general experience as journal referees. 

We ended both parts of the interview by asking questions about other topics 

than peer review – about differences in proof validation practices across 

mathematicians; about their reliance on others’ results in their own work; and 

                                                 
7 The number of female tenured mathematicians that are Danish and working at 

Danish universities is very small. 
8 We thank Henrik Kragh Sørensen and Mikkel Willum Johansen for suggesting this 

approach. 
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about errors in published proofs. The interviewees’ responses to these questions 

are only used to a very limited extent here.  

We transcribed the interviews, immersed ourselves in the transcripts, and 

developed codes grounded in the transcripts (as opposed to, e.g., codes 

grounded in the literature). The final coding taxonomy comprises eight themes 

(the level of thoroughness of the referee; the role of the background knowledge 

of the referee; believability of the results in the proof; believability of the 

approaches used in the proof; line by line checking of the proof; checking for 

checkability of the proof; proof errors; adding details). We had originally 

planned to use the interviews as a basis for an account of differences in how 

mathematicians referee papers, but when transcribing and rereading the 

interviewees we came to see a different story emerge about similarities in 

approach across mathematicians. It is the similarities in approach suggested by 

the interviews we present here. These results are obviously very tentative 

because of the small sample.    

We should mention that papers submitted to mathematical journals are usually 

only reviewed by a single referee (Geist et al. 2010, p. 161; Grcar 2013, p. 422). 

This was confirmed by our interviews, although some of the interviewees 

mentioned that using more than one referee is the standard practice of some of 

the very top-ranked journals. 

 

3. Proof validation and untraversed gaps  

When a referee checks a proof for correctness, she apparently begins by holding 

the proof, considered in broad outline, up against the landscape of what she 

knows. Interviewee 4 explained that he begins by trying to get an overview of 

what the article says, to “form an impression of whether I believe it. Is it 

consistent with what I know or is there something that jumps out at me? For 

example,” he continued, “I recently refereed an article in which there was an 

example that was inconsistent with something in the literature.” Importantly, 

this approach is not only used to find mistakes in proofs, but also to validate 

proofs. Interviewee 5 said that,  

When you have been in this profession for a long time, you have gained 

mathematical insights that sometimes enable you to quickly see if a new 

proof or part of a proof within the scope of your interest is generally 

correct or not. If you don’t ascend to that perspective – put on those 
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glasses – but try to elbow your way through it, then you may calculate, 

calculate and calculate, and eventually come to see if it is correct or not.   

Referring to the same experience-based ability, Interviewee 7 noted that “I only 

become convinced that something is a proof when there’s nothing that stinks! 

You can smell it when something is not right.” It is relevant to mention here 

Eva Müller-Hill’s interviews with six mathematicians. Two of the interviewees 

mentioned that referees are not actually expected to go back to “step one” when 

checking a proof, but only to check the parts that look “suspicious” (Müller-Hill 

2011, pp. 307–308, pp. 327–328; the word ‘suspicious’ was used by both). 

The interviews further suggest that the referee does two types of thing when 

she checks the proof in broad outline against what she knows: She checks 

whether each subresult of the proof seems reasonable in light of what she knows 

and, at least for most of the subresults, whether it seems reasonable that this 

type of result can be proved in this type of way, with this type of tools. If so, 

she will usually not go on to check the subproof line by line. We may thus speak 

of two types of proof validation. We call them Type 1 validation, or validation 

by comparison, and Type 2 validation, or line-by-line validation. Since the 

subproofs that the referee validates using Type 1 validation are not validated 

through the checking of details, the referee will leave relatively many untraversed 

gaps in these.   

For example, Interviewee 1 brought up mathematicians’ ability to evaluate 

whether a new result is true independently of its claimed proof – which is 

needed for Type 1 validation – by saying that, “when you meet a result in your 

own field, you have some sense of whether it is right or wrong.” He explained 

that when you sense that a result is correct and someone then claims to have 

proved it, she sounds convincing. Interviewee 1 and 2 described being extra 

careful when a result is “surprising.” 

The focus on the tools used to prove results implied by Type 1 validation was 

emphasized by Interviewee 6 in the following way: He stated that “I look at the 

result a lot and try to think of similar propositions that I have seen earlier. I 

ponder whether I believe that the ingredients used by the author should be 

strong enough to prove the result in question.” This is similar to a point made 

by mathematician William Thurston. “When I read a mathematical paper in a 

field in which I’m conversant,” he wrote, “I might look over several paragraphs 

or strings of equations and think to myself, ‘Oh yeah, they’re putting in enough 

rigamarole to carry such-and-such idea’” (Thurston 1994, p. 167). Earlier in the 

interview, Interviewee 6 had looked back on the referee reports he had himself 
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received over the years and described how there had been three common types 

of comments. Describing the third type, he said that, “[Sometimes] a referee will 

write something like, ‘you prove this result, but the techniques you use should 

be able to prove a stronger result’.” Sometimes he agrees with the referee. Other 

times, he said, “I have spent months trying to convince myself that the referee 

is wrong so that I can write a short comment to him, explaining why the stronger 

results cannot be proven by the same techniques.” This illustrates in a different 

way how referees compare the claimed results with the tools used when 

validating proofs. 

Type 1 validation can be quite strong in the sense that referees by using this 

approach may become convinced of the general validity of a proof in spite of 

not fully understanding the proof or in spite of minor errors in the proof. 

Interviewee 1 stated that,  

Maybe there are some minor things in a proof that I sense are okay but 

where I don’t quite understand the details. I feel that the reason for my 

lack of understanding is my own ignorance because the proof looks pretty 

standard and I have seen other proofs that resemble it. […] Then I take it 

to be okay.  

Interviewee 3 noted that, “If I can see that a proof will work, but that there must 

be [an insignificant calculation error] somewhere […], then I may ignore this 

and not go through the calculations to try and find the error.”  

Checking a proof in broad outline against what the referee knows is sometimes 

not an immediate option, since the referee may not at all be able to see “what is 

going on” in some subproof. Examples can often help her with this. For 

example, Interviewee 2 said that,    

When I cannot immediately follow the chain of reasoning from A to B, I 

will use examples. I will typically start by choosing the simplest example I 

can think of and try to see whether the proof works in this case. If the 

answer is yes, then I might choose a more complex example, and then 

sometimes I come to realize what is going on from A to B. It also happens, 

of course, that it turns out not to be correct that B follows from A. Maybe 

I have found an example in which it does not hold.  

When he in this way comes to see what is going on from A to B, he sometimes 

proceeds to do a line by line checking of the subproof and sometimes not. This 

presumably depends on how well the claimed path from A to B fits into what 

he knows. 
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When the referee has checked the proof, in broad outline, against what she 

knows, she turns her focus to the parts that stand out as surprising or suspicious. 

The referee will typically check these more or less line by line and leave few or 

no untraversed gaps. When checking a subproof line by line, the referee will 

often find that the author has left too many enthymematic gaps, that the author has 

not provided enough detail for her to be able to follow every step of the proof 

as stated. Sometimes the referee will be able to supply the needed details herself. 

Sometimes she will not be able, in the limited time she has available, to provide 

the extra details. She will then typically remark on this in the referee report, 

writing something along the lines of, “I cannot see how you get from A to B, 

please provide more detail.” This leads to the eliminiation of enthymematic gaps 

in the proof. But what enthymematic gaps are acceptable in published proofs is 

really determined by something else, which is why we do not focus on 

enthymematic gaps in the present section. As mentioned in the introduction, 

and as will be described in detail in section 5, referees apparently follow the 

criterion that the gaps in the published proof should be rather easily traversable 

or seen to be traversable by a large majority of the relevant experts. This 

checkability criterion will generally place a stricter limit on enthymematic gaps 

than the expertise of the referee. In the rare case where the referee is less of an 

expert with respect to the topic of the proof than a large majority of the 

mathematicians in the specialized field, her limited expert experience will lay 

down a stricter limit than the checkability criterion. What makes this case 

particularly rare is that the journal editor will typically pick a referee that has 

published on a topic closely related to the topic of the submitted proof (Geist 

et al. 2010, pp. 160–161). 

Note that the above description of the refereeing process could help explain 

why published proofs often contain minor errors, but rarely critical or 

unrepairable errors (Davis 1972, pp. 260–262). These two characteristics of 

published proofs were mentioned by just over half of the interviewees when we 

brought up the topic of how mathematicians go about correcting errors in 

published proofs. That not every step of the proof is checked by the referee can 

help explain the abundance of minor errors. That the referee has checked the 

proof in broad outline against what she knows can help explain the lack of 

critical errors. This may in turn be part of the reason why mathematicians rarely 

publish errata (Grcar 2013). 
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4. Consequences for the Cartesian story 

Fallis’ paper on gaps addresses the question of when a mathematician is justified 

in believing that a mathematical proposition p is true. According to the 

traditional “Cartesian story” (Fallis 2003, pp. 46–47), she must have gone 

through the proof of p step by step. Fallis argues that this story fails as a 

descriptive account of when she is justified in a manner that is accepted by the 

mathematical community in believing that p; a mathematician can be justified, in this 

manner, in believing that p when there are gaps in the proof that neither she nor 

anybody else has traversed. It is in this context that he gives examples of proofs 

that are accepted by the mathematical community and that appear to have gaps 

in them that have not been traversed by anyone. 

Another reason why the Cartesian account is wrong is apparently that a 

mathematician can be justified in believing that p through testimony (Hardwig 

1991). We set that aside here and, like Fallis, focus on the question of when a 

mathematician is justified in believing that p from knowing a proof of p.  

If section 3 accurately describes how mathematicians typically validate proofs 

when acting as referees, it seems reasonable to suppose that mathematicians, 

whether or not they are acting as referees, typically validate proofs in this type 

of way.9 This means that they leave untraversed gaps in the proofs in either case. 

If this is true, a mathematician does not have to go through a proof of p step by 

step to be justified in a manner that is accepted by the mathematical community 

in believing that p, as Fallis also argues. Fallis thus ends his paper by stating that 

“the Cartesian story must be supplemented in some way” (2003, p. 64). The 

interviews suggest that we begin by supplementing the story with this: A 

mathematician can be justified in a manner that is accepted by the community 

in believing that p when she has validated a proof of p, although parts of the 

proof have been validated using Type 1 validation. Knowledge of other proofs, 

of how certain types of results can be proved in certain types of ways, can thus 

play a significant role in a mathematician’s being justified in believing that p from 

knowing a proof of p. 

This is relevant to the debate between formalists and their opponents on why 

mathematicians believe theorems. While the former hold that formal derivations 

underlying ordinary proofs, although usually not executed, are the reason why 

                                                 
9 Mathematicians may on average be less thorough when they are not acting as referees, 

since the interviews suggest that referees take the task of determining whether the 

submitted paper is sound very seriously (Andersen 2017). 
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mathematicians believe theorems, the latter reject or significantly weaken the 

role of formal derivations in the gaining of confidence in theorems (Pelc 2009, 

pp. 84–87). The discussion between Azzouni and Rav (Rav 1999; Azzouni 2004; 

Rav 2007) prominently exemplifies the debate. Azzouni writes that, “Ordinary 

mathematical proofs indicate (one or another) mechanically checkable derivation 

of theorems from the assumptions [of] those ordinary mathematical proofs” 

(2004, p. 105; emphasis in original). He defends the view that mathematicians 

essentially validate a proof by recognizing a mechanically checkable derivation 

indicated by the proof, which can be done without writing the derivation out. 

Some philosophers have convincingly argued against this view on a priori 

grounds, including Azzouni himself, who later changed his view (e.g., Azzouni 

2009; Pelc 2009; Tanswell 2015). My interviews appear to provide empirical 

grounds against it. For a mathematician to recognize the particular derivation 

claimed to be indicated by a proof, all the details of the proof should be 

important, but the interviews suggest that they are not all important in validating 

the proof; when a subproof is validated using validation by comparison, many 

details are unimportant. In addition, none of the interviewees brought up the 

concept of formalizability in any way. 

Müller-Hill (2009) has also written about formalizability and knowledge 

ascriptions in mathematics. She writes on the assumption that the following 

criterion is a good criterion for knowledge ascription in mathematics: (*) S 

knows that p if and only if S has available a formalizable proof of p (Müller-Hill 

2009, p. 21). Based on a questionnaire study of 76 mathematicians, she examines 

how the criterion must be interpreted to accord with how mathematicians 

ascribe knowledge to mathematicians. Later she conducted interviews with six 

mathematicians about the same subject. One of the questions she asked them 

was whether they believe that the proofs that are accepted by the mathematical 

community are formalizable (Müller-Hill 2011, pp. 305–346). They answered in 

the affirmative with the qualification “in principle.” This is an interesting result 

on its own. It provides some evidence that mathematicians believe that (*) is 

correct and is evidence that proofs are only acceptable to the community if they 

are believed to be formalizable in principle. But these data do not by themselves 

tell us about what a mathematician must do to come to know that p from 

studying its proof, which is the question we focus on here. Mathematicians may 

believe that the proofs that are accepted by the mathematical community are 

formalizable without this really playing a role in ordinary proof validation. 

Müller-Hill’s interview transcripts leave open the possibility that the concept of 

formalizability plays no important role in ordinary proof validation and are thus 

consistent with the results of our interviews. 
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5. Proof checkability and enthymematics gaps 

The interviews suggest that a referee checks a proof for “checkability” by the 

relevant experts, so when she checks the proof for correctness in the way 

described above, she also takes into account whether others would be able to 

check the proof for correctness in the same type of way. Hence, she does not 

only comment on the parts that she cannot follow herself, but also on parts that 

she believes will be hard for others to follow unless more information is 

provided. In doing so, she appears to be guided by the criterion that a large 

majority of the experts in the specialized field should be able to validate the 

proof within a reasonable amount of time.10 This criterion does not ask for the 

expert to be able to traverse any gap within a reasonable amount of time, but 

for her to be able to see that she could do so if she tried. The authors often, if 

not almost always, submit proofs that have unacceptable enthymematic gaps in 

them, presumably in part because of their being fully immersed in the topic. The 

journal referee represents the group of relevant non-immersed experts and aims 

to eliminate these gaps or to ensure that the author eliminates them. 

When Interviewee 3 told us about discussions he had with a collaborator about 

the appropriate level of detail in their joint work, he said that, “A proof should 

preferably be so detailed that maybe 80 percent of the people you meet at the 

specialized conferences can read and understand it.” He added, “In general I 

think you should strive to write a little bit more than what you yourself think 

necessary; since you are so immersed in the topic, you would otherwise 

presumably write a bit too little.” It is apparently not generally required that new 

PhD students should be able to read a proof within a reasonable amount of 

time. Interviewee 6 said that, “When I was a PhD student I thought, ‘Why do I 

have to sit here and struggle to understand these steps – why couldn’t the author 

just have written the argument out more!’” 

The checkability criterion plays different roles in the two types of validation. In 

the subproofs that are validated using Type 1 validation, or validation by 

                                                 
10 Kenny Easwaran (2009) offers an account of why mathematicians are generally 

unwilling to accept probabilistic proofs, but do accept proofs that skip steps and are 

long and complicated. (A probabilistic proof does not deductively establish its 

conclusion but establishes that there is some, often specifiable, high probability of the 

conclusion being true.) In a footnote, he states, referring to enthymematic gaps, that 

he thinks that “the sorts of proof gaps that are acceptable are the ones that relevant 

experts can see and still be convinced” by the proof (Easwaran 2009, p. 355). My 

interviews support this picture. 
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comparison, the criterion does not lead to the elimination of enthymematic 

gaps. When the referee validates a subproof by checking it in broad outline 

against what she knows, but does not believe that most of the other experts 

would be able to validate it in this way, it is unlikely that she will check the 

subproof line by line to ensure that they can become convinced in this way 

instead, especially given the limited time she has available. Rather, the referee 

will try to ensure that the paper enables them to check the subproof using 

validation by comparison. She can do so by asking the author to provide an 

introduction that describes the context of the part of the proof in question or 

to give more references to the literature in other ways. When we asked 

Interviewee 4 about the last referee report he had received, he said,  

The referee thought the context needed to be explained better. If the 

article had addressed a small group of experts, then they wouldn’t have 

bothered to read such explanation. They would know it already. But the 

article addressed two groups of experts, and you could say that both 

groups needed a bit more explanation; the experts in one group were not 

experts in the area of the other group and vice versa.  

When speaking in general terms about the feedback he had received from 

referees, he said, “Sometimes the referee will say that there is a lack of 

references,” among other things, “so the referee has probably done something 

similar to what I would have done: tried to place the proof in its context.” 

When the referee moves on to validate parts of the proof line by line, she will 

comment on the steps that she believes will be hard for experts to follow unless 

more details are provided. Thus, the checkability criterion does lead to the 

elimination of enthymematic gaps in the parts of the proof that are validated 

using Type 2 validation, line-by-line validation. For example, Interviewee 3 said 

that, “If I have thought for five minutes about one step and still cannot see what 

is going on, then it is probably a good idea to ask the authors to add an extra 

step in order to improve the readability.” When we asked Interviewee 2 about 

the last referee report he received, he told us that the referee had suggested that 

details be added in certain places. In explaining why he had chosen to follow 

this suggestion he said that, “When you have written an article, there are many 

things that you take to be obvious, and the referee may have had a point in 

saying that this here is not as obvious to the reader as it may be to you.” Later, 

when we were asking general questions, we asked him about what counts as an 

error or a shortcoming in a proof. He responded that,  
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There will be an error or a shortcoming in a proof if there is a lot for the 

reader to fill in, in order to get from A to B. […] As a referee, I have 

sometimes asked the author to fill in some details at a certain place simply 

because I haven’t found it reasonable that the reader should do so himself, 

or because I haven’t myself been able to see what the argument really was. 

In this way, the refereeing process limits the amount of enthymematic gaps in 

the surprising or suspicious parts of published proofs.11 We do not mean to say 

that this holds for every proof that has been subjected to peer review. It happens 

that a referee is very unthorough. Still, if referees typically proceed as described 

above, the refereeing process significantly limits the number of enthymematic 

gaps in the surprising parts of published proofs. 

Note that if an editor discovers that a referee has been unthorough, she may 

invite someone else to review the paper, but we do not know to what extent this 

is common practice. In general, we know very little about editor practices in 

mathematics. Geist, Löwe, and Van Kerkhove (2010) describe the results of a 

small questionnaire about the peer review process that they sent to editors of 

mathematical journals. Among other things, respondents were asked to pick one 

of these statements: “I think the referee should check a. all/b. some/c. none of 

the proofs in detail.” Six respondents selected option (a) and five respondents 

selected option (b). Option (c) was not selected by anyone. Respondents were 

also asked the following question: “What percentage of referees approximately 

do a good job checking the correctness of a paper’s claim?” The average of the 

answers was 52.3 percent. Thus, the responding editors believe referees should 

check all or some of the proofs in the submitted paper in detail and often 

experience that the referees do not do this. But we do not know how the editors 

react to this (e.g., to what extent they then ask someone else to referee the paper) 

or the level of their dissatisfaction. We also do not know to what extent the six 

editors that picked option (a) would be happy with referees that proceed as 

described above. 

The checkability criterion primarily tells us about enthymematic gaps, but by 

limiting the number of enthymematic gaps in published proofs, it also limits the 

number of untraversed gaps in published proofs; it limits the extent to which 

the referee and the author can leave untraversed gaps in the sequence of 

propositions they have in mind as being a proof. Although the referee must 

                                                 
11 At the same time, a referee may very well ask an author to provide less detail 

– i.e. to leave more enthymematic gaps – in the straightforward parts of a proof. 

We are grateful to a referee for pressing us to clarify our claim here.  
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often ask the author to provide more details in the proof as written, the author 

will often have gone through more details of the proof in her head than the 

referee has. Our point is just that there is a strict, discernible limit on how lax in 

their thinking the author and the referee can be when the referee proceeds as 

described above. 

 

6. Consequences for the nature of proof 

Contrary to what is commonly thought, A. C. Paseau (2016) argues that there is 

no epistemic value such that completely inferentially rigorous arguments have 

that value in virtue of being completely inferentially rigorous. Paseau’s paper 

concerns arguments in general, with a particular focus on mathematical proofs. 

When he speaks of completely rigorous mathematical proofs, he is not referring 

to formal proofs but to gapless proofs in Fallis’ sense, although he prefers to 

call them atomized proofs (Paseau 2016, pp. 178–181). Paseau writes that, “A 

positive formulation of our main point is that the ‘right’ amount of inferential 

decomposition is epistemically valuable, but that usually that right amount falls 

far short of atomization” (2016, p. 187). What the right amount is varies, of 

course, with the considered epistemic value. Our study suggests what the 

relevant epistemic value is when we are talking about proofs in mathematical 

journals, namely checkability by the experts, and how the right level of 

inferential decomposition falls short of atomization in this case. Given this 

value, the right level of decomposition depends on the relevant subcommunity 

and also varies across different parts of the proof, depending on whether they 

can be validated using validation by comparison.12 

As we have seen, the referee, who is not immersed in the topic of the proof like 

the author is, plays an important role in ensuring that the proof has “the ‘right’ 

amount of inferential decomposition.” The referee represents in a strong sense 

                                                 
12 This is a very partial response to the following remarks by Grice: “Finicky over-

elaboration of intervening steps is frowned upon, and in extreme cases runs the risk 

of forfeiting the title of reasoning. In speech, such over-elaboration would offend 

against conversational maxims, against (presumably) some suitably formulated maxim 

of Quantity. In thought, it will be branded as pedantry or neurotic caution. At first 

sight, perhaps, one would have been inclined to say that greater rather than lesser 

explicitness the better. But now it looks as if proper explicitness is an Aristotelian 

mean, and it would be good some time to enquire what determines where that mean 

lies” (Grice 2001, p. 16; quoted in Paseau 2016, p. 187).  
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the subcommunity of relevant experts; by checking the proof for checkability 

by the experts she speaks with the voice of the subcommunity. An experienced 

author will presumably have written and checked her proof with this voice in 

the back of her mind. During the refereeing process, she is directly confronted 

with it and will try to accommodate it. Contained in the published proof are the 

author’s responses to the responses of this voice to the author. In this sense, 

the proof can be said to consist in a dialogue between the relevant community 

and the author.  

The interviews thus provide evidence for Catarina Dutilh Novaes’ (2016, 2017) 

account of proofs as dialogues between what she calls Prover and Skeptic. On 

her account,  

A deductive proof corresponds to a dialogue between the person wishing 

to establish the conclusion […] and an interlocutor who will not be easily 

convinced and will bring up objections, counterexamples, and requests for 

further clarification. A good proof is one that convinces a fair but ‘tough’ 

opponent. Now if this is right, then mathematical proof is an inherently 

dialogical, multi-agent notion, given that it is essentially a piece of 

discourse aimed at a putative audience (Ernest 1994). (Dutilh Novaes 

2016, p. 2617) 

Later she writes: “Ultimately, most of the work is done by Prover, but Skeptic 

has an important role to play, namely to ensure that the proof is persuasive, 

perspicuous, and valid” (Dutilh Noaves 2016, p. 2618). 

Dutilh Novaes’ description of the role of Skeptic fits very well with the role of 

the referee as described above. The referee may herself be easily convinced of 

the validity of the proof, but as a representative of the experts she will not be 

easily convinced; she must become convinced that she would also be convinced 

of the validity of the proof if she were one of the other experts. This supports 

Dutilh Novaes’ emphasis on the audience and suggests that we speak, as we do 

above, of a published mathematical proof as a piece of discourse with the 

relevant audience, not only as a piece of discourse aimed at that audience. It 

seems that we may speak in this way of mathematical proofs in general. Other 

presentations of proofs, such as a blackboard presentation of a proof to a 

colleague or at a conference, also seem to be pieces of discourse with audiences, 

in virtue of the speaker preparing the proof for presentation with the particular 

audience in mind and making changes to the proof in response to questions and 

comments from the colleague or the conference attendees. In these cases, the 

amount of inferential decomposition will be smaller because the audiences are 
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smaller, but mainly because of the oral format (for an account of the difference 

in style between oral and written proof presentations, see Johansen and Misfeldt 

2016). Consequently, while Dutilh Novaes conceptualizes mathematical proof 

as a dialogue between Prover and Skeptic, whom she describes as fictitious 

(2016, p. 2618), we would rather conceptualize it as a dialogue between the 

author and an actual audience (be that a mathematical subcommunity as 

represented by a referee, the participants in a conference, or a colleague).     

 

7. Conclusion 

Through mathematicians’ refereeing practices we have examined the character 

of untraversed gaps and enthymematic gaps in published proofs. We found that 

referees use two methods of validation when reading proofs and that this is 

important to when these gaps are allowed in published proofs. Relatively many 

gaps are allowed in the parts of a proof that the referee can see and help others 

see fit right into the literature, since these parts are not validated through the 

checking of details, but by using what we have called Type 1 validation. By 

contrast, relatively few untraversed gaps and enthymematic gaps are allowed in 

the parts of the proof that the referee validates by checking them line by line. 

When subparts of these describe standard moves, relatively many gaps are again 

allowed. We have used these results to contribute to traditional discussions in 

the philosophy of mathematics. We have thus argued that a mathematician can 

become justified in believing that p through Type 1 reasoning and, like Dutilh 

Novaes (2016), that we should conceive of proofs as dialogues that provide an 

appropriate level of rigor. 

So far, we have not been concerned with the type of gaps that is Fallis’ main 

concern: universally untraversed gaps. We end by addressing these. As 

mentioned in section 5, the checkability criterion limits the number of 

untraversed gaps in published proofs by limiting the number of enthymematic 

gaps in published proofs. The checkability criterion thus also limits the number 

of universally untraversed gaps in published proofs. It is also worth noting that a 

proof will often continue to be checked after it has been published. The mere 

use of a result by others works as a checking mechanism. For example, a 

mathematician often does not have the option of using others’ results without 

studying their proofs. Some of the interviewees emphasized this. Interviewee 1 

stated that, “Maybe you want to fine-tune or generalize some of the arguments 

in the proof of the result, or something like that. In that case, you are 

automatically thrown into the proof. Sometimes you discover problems in the 
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proof, sometimes not.” This type of use of a result would likely require you to 

go through the proof very thoroughly. Also, if the use of the result leads to 

surprising or unreasonable results, mathematicians will read the proof again in 

search for errors. Some of the interviewees brought up this way of discovering 

errors in proofs (so does Devlin 2003). Hence, informal post-publication peer 

review is likely to further decrease the amout of universally untraversed gaps in 

the proof. When there are gaps in the proof that none of the readers have 

traversed, these mathematicians have at least partially independent evidence, 

based on their expert experience, that the gaps could be traversed if they tried 

(cf. Fallis 2003, p. 62; Paseau 2011, p. 145). This account suggests that 

universally untraversed gaps in published proofs are, while not necessarily few, 

quite innocent. 
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