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Abstract

The process of completing, correcting and prioritising speci�cations is
an essential but very complex task for the maintenance and improvement
of software systems. The preservation of functionalities and the ability
to accommodate changes are main objectives of the software development
cycle to guarantee system reliability. Logical theories able to fully model
such processes are still insu�cient. In this paper we propose a full for-
malisation of such operations on software systems inspired by the AGM
(Alchourrón-Gärdenfors-Makinson) paradigm for belief revision of human
epistemic states. We represent speci�cations as �nite sets of formulas
equipped with a priority relation that models functional entrenchment of
properties. We propose to handle speci�cation incompleteness through
ordered expansion, inconsistency through ordered safe contraction and
prioritisation through revision with reordering, and model all three in an
algorithmic fashion. We show how the system satis�es basic properties
of the AGM paradigm, including Levi's and Harper's identities. We o�er
a concrete example and complexity results for the inference and model
checking problems on revision. We conclude by describing resilience and
evolvability of software systems based on such revision operators.

1 Introduction

The process of designing software starts usually from a list of requirements, in-
tended as properties expressing desires of a stakeholder concerning the software
to be developed. Given a certain domain knowledge, the requirements are meant
to be implemented and satis�ed by corresponding speci�cations, intended as
properties of the system.1 The notion of reliability for software systems has been

1For these standard meanings, see [53].
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mainly formulated in terms of continuity of correct service and is an attribute of
dependability along with availability, maintainability, safety and security. Soft-
ware reliability is heavily complicated by change in the life-cycle of computing
systems. The process of modifying or re-de�ning systems speci�cations is re-
quired by increasing architectural complexity of the actual implementations,
or improving software quality. In either case, �software maintenance has been
regarded as the most expensive phase of the software cycle.�2 A considerable
amount of research has already been dedicated to the understanding, planning
and execution of software evolution, in particular for requirements evolution,
see e.g. [22]. Typically, this occurs as part of the late life-cycle of the system
and it is dictated by

� architectural degeneration, i.e. the violation or deviation of the architec-
ture, increasing with changes being made to the original, see e.g. [21, 41];

� �exibility requirements, i.e. the system property that de�nes the extent
to which the system allows for unplanned modi�cations, see e.g. [46];

� requirements prioritisation, i.e. the design choice which de�nes the rele-
vance of corresponding functionalities, and in turn their resilience in view
of future changes, see e.g. [24, 25].

In this context, the persistence of service delivery when facing changes is re-
ferred to as resilience and it is combined with correct evolvability, as the ability
to successfully accommodate changes, see [35]. They can be taken as building
blocks for de�ning and proceduralising a notion of reliability for software sys-
tems. The laws of software evolution for computational systems linked to a real
environment [37, 38] express the importance of an appropriate understanding of
software change. Change classi�cation schemes, assessing the impact and risk
associated with software evolution, present challenges [42] which include inte-
gration in the conventional software development process model. This, in turn,
means that a model of software change at design and implementation stages is
essential to assess and anticipate errors and to determine system's reliability in
view of threats to functionalities. Late life-cycle misfunctions, where the system
produces negative side-e�ects absent in other systems of the same type, require
corrective changes after testing on the actual code (i.e. excluding model-based
testing). Disfunctions, where the system is less reliable or e�ective than one
expects in performing its function are more likely to be assessed at early stages,
where perfective changes result from new or changed requirements, see [40, 49].3

A third classi�cation is that of adaptive changes, where the system or its en-
vironment are evolving.4 The understanding, modelling and development of a
theory for software evolution are thus crucial tasks [42].

Let us consider a concrete example, extracted from [55, sec.2]:

2[52, p. 32].
3For the de�nitions of misfunctions and disfunctions in software systems, see [26].
4Here we explicitly ignore the other classi�cation, namely preventative changes.
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Consider the requirements engineering process involved in developing
a wordprocessor.The initial problem statement only speci�es that this
wordprocessor is intended to be used by children. Two assumptions
may be made immediately that are related to the domain knowledge
and usability. Firstly, since all word processors by default have a
spell check functionality, we may specify a requirement for existence
of a spelling check function. Secondly, since it is intended for use by
children, we may add a set of requirements for the ability to change
the colour of screen and text etc. These assumptions are added to
the initial statement to represent our current state of belief about
the software we are to develop and are then presented to the prob-
lem owners for validation. They, in turn, con�rm that spell check
is indeed a requirement but since they will only have monochrome
terminals available there is no need for colour change. So we need
to revise our set of beliefs to contract those requirements related to
colour.

Besides requirements evolution, such a revision may also be induced at a
lower level of abstraction. Consider the formulation of a speci�cation satisfying
given requirements, and an implementation thereof. The speci�cation can be
seen as a model of the physical artefact. When the latter violates some of the
properties expressed by the former, a revision of the examined system in one of
the above mentioned ways becomes necessary. Consider the following variant of
the above case:

The initial problem statement only speci�es that this wordprocessor
is intended to be used by children. Two assumptions may be made
immediately that are related to the domain knowledge and useability.
Firstly, since all word processors by default have a spell check func-
tionality, we may specify a requirement for existence of a spelling
check function. Secondly, since it is intended for use by children, we
may add a set of requirements for the ability to change the colour
of screen and text etc. These assumptions are added to the initial
statement to represent our current state of belief about the software
we are to develop. The system is then developed accordingly, but the
functionality to change the colour of the screen is not implemented.
We extract the speci�cation of the current implementation and com-
pare it with the intended one. We notice the two are not logically
equivalent, hence we wish to modify the latter to accomodate the re-
quired change. We consider this a perfective change. In the new
implementation, the developers add the ability to insert graphs and
�gures. Again, a speci�cation may be extracted and compared to the
intended one: as the product is intended for children, the new func-
tionality is considered super�uous and we wish to remove it. We
consider this a corrective change. In the next development cycle, the
functionality to spellcheck is made dependent on the ability to switch
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languages: for each language, an appropriate spellcheck is developed.
The comparison with the intended model shows the logical di�erence,
but it also indicates the dependency of a required functionality from
a non-required one. The model is changed to acommodate the lat-
ter, in order not to loose the former. We consider this an adaptive
change.

Despite the triviality of the above example, it seems clear that the above opera-
tions, possibly automatically performed, would be a signi�cant aid to the process
of software evolution. Even more so, if the products under considerations are no
longer word-processor, but safety-critical systems, where the removal operation
might induce signi�cant e�ects.5

One way to account for corrective, perfective and adaptive changes on an
implementation diverging from the speci�cation is to treat them similarly to
change operations in scienti�c theories. In particular, in this paper we de�ne
formal operations inspired by the AGM belief change theory, see [2]. This area
at the intersection of software engineering and theory change has been only very
little explored: the only approach explicitly based on AGM is to be found in
[55], o�ering a framework to reason about requirements evolution in terms of
belief change operations. In [16], belief revision is used to deal with change
propagation in model evolution. In [44], Booth's [9] negotiation-style for belief
revision is used to model change from current to to-be system requirements,
aiming at some form of compromise based on prioritisation. AGM belief revi-
sion has been investigated for logic programming under answer set semantics in
[19, 20]. While notoriously a number of methods in software engineering have
focused on developing implementation from speci�cations [51, 1], our analysis
concentrates on the modelling of perfective, corrective and adaptive changes to
design new speci�cations from early (incorrect) implementations that are the
object of change. Here the passage from model to implementation to new model
is crucial.

The case under consideration can be reformulated as follows in the process
of software development. We start with Sm, intended as a speci�cation for a
software system: translated in an abstract formal model, this is considered as
a logical theory, i.e. a set of formulas closed under logical consequence, i.e.
where all the properties implied by the formulas should be considered valid. An
implementation of Sm will be denoted by I. This actual artefact will have its
own formal model, possibly automatically extracted, and it will be denoted by
Si. This new model cannot be treated as a logical theory, because it will verify
only a �nite number of formulas. Therefore, Si needs to be considered as a
base. Assuming a discrepancy is found between the intended model Sm and Si,
some change is performed on the latter to obtain a new speci�cation S ′m.6 This

5For another example of software uninstall operations where dependencies a�ect system
e�ciency and reliability, see [47]. A more realistic and complex example of speci�cation
revision in view of inconsistent implementation is presented below in Section 4.

6Notice that a Software Engineer might be interested only in the evolution of I, while we
explicitly address the speci�cation evolution in terms of the logical change of the system to
be re�ected in the corresponding theory.
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dynamics, which can be labelled Speci�cation Evolution, is illustrated in Figure
1. To model this process concretely, we start with considering Sm as a software
theory, i.e., the deductive closure of a (�nite) set of formulas, each representing
a property of our system. Our aim is to de�ne some operation that allows
the construction of a new theory from the previous one by performing some
perfective, corrective or adaptive change. In order to manipulate such a theory
in an algorithmic fashion and de�ne concrete operations, we deal with a �nite
base Si representing the software system which o�ers a syntactic representation
of the theory Sm and is not logically closed. In other words, we assume that
the speci�cation of any however large software and its manipulation should be
accounted for in terms of a �nite representation. This concrete formulation of
the speci�cation evolution is labelled System Change and it is illustrated in
Figure 2.

We consider the computational aspect of the operators introduced in this
paper, i.e. the computational complexity of reasoning with the operators. In
literature, there are mainly two questions assuming a �nite propositional lan-
guage as in this paper:

� Inference. Given a knowledge base Si, a new formula φi and a query
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ψj (represented as propositional formulas), decide whether ψj is a logical
consequence of Si ∗ φi, the revised knowledge base. (Here ∗ is interpreted
as a revision operator.) The complexity of this problem was �rst studied
by Eiter and Gottlob [23].

� Model checking. Given a knowledge base Si, any such knowledge base can
be equivalently represented by the set of its models, denoted as M(Si).
A model M is supported by the knowledge base Si i� M ∈ M(Si), i.e.,
M |= Si. The model checking problem is thus to decide whether a model is
supported by the revised base. Formally, given a knowledge base Si, a new
formula φi, and a model M (represented by a valuation of propositional
letters), decide whether M ∈M(Si ∗ φi).

In AI literature, the complexity of various belief revision and update operators
has been extensively studied by Liberatore and Schaerf [39]. We show that for
our revision operator with reordering, the inference problem is in co-NP, whereas
the model checking problem is in the second level of the polynomial hierarchy,
i.e., ΣP

2 .
The rest of this paper is structured as follows. In section 2 we introduce

our formal machinery. In Section 3 we formulate our de�nitions of expansion,
safe contraction and revision for system evolution and o�er their algorithmic
translations. In Section 4 we present a notorious example of a broken algorithm
and its redesign through the operators introduced in this paper. In Section 5 we
present the complexity results. In Section 6 we o�er resilience and evolvability
properties on our theory. We conclude with remarks on future research.

2 Preliminaries

The alphabet of a propositional formula is the set of all propositional atoms
occurring in it. A valuation of an alphabet X is a truth assignment to all the
propositional letters inX. An interpretation of a formula is the truth assignment
when the valuation to the atoms of its alphabet is given. A modelM of a formula
φi is an interpretation that satis�es φi (written M |= φi). Interpretations and
models of propositional formulas will usually be denoted as sets of atoms (those
which are mapped into true). A theory T is a logically closed set of formulas.
An interpretation is a model of a theory if it is a model of every formula of the
theory. Given a theory T and a formula φi we say that T entails φi, written
T |= φi, if φi is satis�ed by every model of T .

We consider a software theory as the deductive closure of a �nite set of
formulas Sm = Cn(Sm) where Sm = {φ1, . . . , φn}, i.e. Sm := {φi | Sm |= φi},
where each φi expresses a speci�c behaviour that the intended software system
Sm should display. In the following we will use respectively theory and system
to refer to these two distinct formal objects. The consequence relation � for Sm
is classical with the following essential properties:7

7We do not require the theory of interest to be neither complete (in the sense of satisfying
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1. Sm � >

2. Sm � (φi → φj) and Sm � φi, implies Sm � φj

3. Sm � φi implies Sm 2 ¬φi

� intuitively re�ects property expressiveness: φi � φj says that a property
speci�cation φi holding for a system Sm induces property speci�cation φj in the
corresponding theory Sm.

We call functional entrenchment an ordering φi ≤ φj which says that φi is at
least as embedded as φj in view of the functionalities of the system. This means
that the satis�ability of functionality φj might depend or be less essential than
the satis�ability of functionality φi. Another way to present the intuitive mean-
ing of the entrenchment relation φi ≤ φj in the context of software systems is to
say that one would prefer to remove �rst φj than φi. Functional entrenchment
is de�ned by two properties:

1. Transitivity: if φi ≤ φj and φj ≤ φk, then φi ≤ φk;

2. Dominance: if φi � φj , then φi ≤ φj ;

An argument about the utility of such an entrenchment is the following: assume
we have a set {p, q} where the two formulas are unrelated and not ordered by
any preference; assume that for some reason we are required to remove from
that set the formula (p ∨ q) and its consequences; in this situation we would be
forced to obtain the empty set as a result of the contraction operation, as either
formula in the current set implies (p∨ q); on the other hand, obviously, it would
be enough to remove either one of the two formulas p or q, if there was some
priority order de�ned over them to allow us choosing.

We now refer to the system Si = {φ1, . . . , φn} as a knowledge base, i.e. a
set of formulas not closed under logical consequence. Recall that this is due
to the need of representing a model of a physical implementation I in some
concrete programming language of the corresponding theory Sm. We say that
Si is consistent if there exists a model for Si. Let now (Si, <) denote a �nite set
of formulas with a partial order. When referring to the model abstracted from
Si we shall use Si in order to denote Cn(Si, <). If Si is not a faithful translation
of Sm (and hence of its theory Sm), in the sense of either not satisfying some
property included in Sm, or satisfying some contradictory property or re�ecting
an undesired functional entrenchment, we then wish to perform changes.

For our complexity results we assume familiarity with basic concepts of com-
putational complexity, and we use standard notations of complexity classes. In
particular, the class P denotes the set of problems whose solution can be found
in polynomial time by a deterministic Turing machine, while NP denotes the
class of problems that can be solved in polynomial time by a nondeterministic

∀φ,Sm � φi or Sm � ¬φi) nor compact. Completeness is too-strong in view of the system
being under-de�ned with respect to the alphabet of all possible properties; compactness is
trivial in the �nite setting of the system.
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Turing machine. The class co-NP denotes the set of decision problems whose
complement is in NP. We also use higher complexity classes de�ned using or-
acles. In particular PA (NPA) corresponds to the class of decision problems
that are solved in polynomial time by deterministic (nondeterministic) Turing
machines using an oracle for A in polynomial time.

3 Change operations

A change operation is triggered by some φi satisfying one of the following con-
ditions:

� Incompleteness handling: Sm � φi and Si 2 φi, i.e. the implementation
does not satisfy one of the intended functionalities;

� Inconsistency handling: Sm 2 φi or Sm � ¬φi and Si � φi, i.e. the
implementation satis�es a functionality not intended by the model, or one
whose negation was intended by the model;

� Priority handling: Sm � {φi ≤ φj} and Si � {φj ≤ φi}, i.e. the implemen-
tation satis�es a di�erent functional entrenchment than the one intended
by the model.

Each of these three cases expresses a form of inconsistency between bases. Au-
tomatic techniques for inconsistency checking of systems are available both
through theorem proving and model checking, also within the AGM paradigm,
and widely reported in the literature, [33, 13, 50, 54, 30]. Formal operations can
be de�ned on Si so that either the current input in the implementation becomes
valid for the model; or the speci�cation that makes our current input invalid
is removed; or the order of the base is changed, in combination with the other
operations.

� In the �rst case, Si is changed to include φi: we indicate the result of this
change as expansion. This formal operation re�ects the implementation
of a new functionality and hence quali�es as a perfective change.

� In the second case, Si is changed to remove φi (under a complete sys-
tem, which we do not assume, this implies inclusion of ¬φi in Si): we
indicate the result of this revision as contraction. A contraction opera-
tion should aim at removing the least expressive properties to induce a
minimal loss of functionalities; at each stage of the implementation con-
sistency is preserved. This formal operation re�ects the removal of an
undesired functionality (error �xing) and hence quali�es as a corrective
change. Such change operation in software design and system evolution
should be de�ned in view of resilience, intended as the maximal preserva-
tion of functionalities not related to the removed property.
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� We call instead adaptive change the category of modi�cations that result
from a required novel priority ordering in the system so as to make one
property safer from future corrective changes. This can be de�ned as
a combination of corrective and re-ordered perfective changes and it is
related to system evolution.

In all cases, a new model S ′m is obtained, from which a new implementation can
be formulated.

We formalize perfective, corrective and adaptive changes respectively in
terms of expansion, safe contraction and revision with a reordering operation:
these operations are formally de�ned from the next subsection, and they mod-
ify existing well-known operation from the AGM paradigms to be adapted to
prioritised bases. Expansion + is rather easy to associate to functionality ex-
tension. Safe contraction − has had only little attention in the large literature
in epistemic logic using the AGM paradigm, but it appears essential to the issue
of property resilience in system evolution and it also satis�es the criteria of a
minimal contraction operator, hence ensuring that as little as possible is lost.
Finally, we consider an operator � which is de�ned to satisfy as much as possible
the standard AGM revision ∗ postulates and additionally makes the property
object of the operation safer from future contraction operations. This recalls
operations of preference change, e.g. in [5] where preferences are treated as a
special kind of theory, and minimal change contraction and revision operations
are de�ned. Safe contraction de�ned over bases exists already from the litera-
ture [27], where it is called minimal contraction and our postulates for ordered
safe contraction match those o�ered there. An e�cient form of AGM belief con-
traction (linear time) satisfying all but one of the AGM postulates is de�ned in
[6] for a realistic rule-based agent which can be seen as a reasoner in a very weak
logic (but still over deductively closed sets of beliefs). More importantly, we use
such operations to de�ne property and system resilience and o�er a de�nition
of system evolution.

In view of our application, some of the properties of the AGM paradigm need
to be re-designed, in virtue of the fact that revision operations are not de�ned
on theories but rather on �nite bases. This has the advantage of being com-
putationally far more appealing. Moreover, a relevant addition in our model
is the use of an entrenchment relation to de�ne a functional priority relation
over the properties of the system and to dictate both removal and reordering.
Notice that functionality prioritisation and its mapping to sub-characteristics
(induced in our model by a relation between the inference relation and the order-
ing) is proposed and implemented also in structured methods for architectural
evolvability in industrial setting, see e.g. [10].

3.1 Ordered Expansion

The process of designing a piece of software can be seen as moving from an
empty set of functionalities (the trivial system speci�cation, i.e. one that im-
plements no operations) to one that includes some property speci�cations. This
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1 PROCEDURE Expansion(Si, <, φi)
2

3 Ξ := {};
4 FOR each φj ∈ Si

5 IF φi |= φj

6 THEN Ξ := Ξ ∪ {φj};
7 ENDIF
8 ENDFOR
9

10 RETURN(Si ∪ {φi}, < ∪{(φk, φi), (φi, φj) | φj ∈ Ξ, φk ∈ Si \ Ξ})
11 ENDPROCEDURE

Figure 3: Algorithm for Ordered Expansion

process is akin to an expansion of the software model abstracted from the trivial
implementation Si = ∅ with respect to a new functionality φi. This is denoted
by (Si)

+
φi
. In general, the expansion operation is intended in the following as

adding a new functionality that has the least entrenchment with respect to the
existing ones. This can be informally justi�ed by considering the new property
as the weakest one, in view of the fact that its e�ect on the system is still un-
known. This general rule is obliterated only in the case when the expansion
formula validates a formula already in the base, in which case the functional
entrenchment requires to insert it directly before that in the order. This means
we need to compute such set in order to position our expansion formula.

De�nition 1 (Ordered Expansion) We �rst de�ne

Ξ = Si ∩ Cn(φi)

where Cn(φi) = {ψ | φi |= ψ}. Our ordered expansion is denoted as

S′m = (Si)
+
φi

:= (Si ∪ {φi}, <′) where

<′=< ∪{(φk, φi), (φi, φj) | φj ∈ Ξ, φk ∈ Si \ Ξ}

In Figure 3 we provide an explicit algorithm (in pseudocode) to compute the
result of the safe ordered expansion operator.

Example 1
{p < q}+(q∨r) = (p < q < (q ∨ r)) (1)

Example 2
{p < (q ∨ r)}+q = (p < q < (q ∨ r)) (2)

Let us explain the Example 2 step by step: given a base with functionalities
expressed by formulas p and q ∨ r, where the latter is less entrenched than
the former (e.g. because it depends from it), we wish to add a functionality
expressed by formula q: then we simply add it to our speci�cation, but its
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positioning in the functional entrenchment requires it comes between p and
q ∨ r, because q � q ∨ r.

Software system creation has then a starting point Si 2 φi, for any φi. Any
expansion operation after the �rst one should preserve consistency in Si. Other-
wise, each expansion by φi needs to be accompanied by the implicit elimination
of the contradictory ¬φi from the list of feasible property descriptions according
to Si. Hence, each non-consistent expansion requires a minimal set of contrac-
tion operations.

3.2 Ordered Safe Contraction

We now consider contracting Si in view of a system functionality φi. We denote
this by (Si)

−
φi
. In general, the contraction operation is intended in the following

as removing the minimal number of functionalities that have the least entrench-
ment with respect to the existing functionalities in order to remove the property
φi at hand. This can be informally justi�ed by considering the contraction as
removing the least entrenched or essential properties. In order to de�ne a proce-
dure for this, we require to compute both the set of properties that are implied
by and that imply the contraction formula. This does not amount to compute
the entire consequence set of Si (i.e. Si), but rather to perform a membership
check for the contraction formula, to identify whether it implies or is implied
by one of the formulas in the base. Then we identify among these the minimal
ones in the entrenchment. The resulting operation is also expressive about the
properties that are safe with respect to the contraction and the output of our
procedure is still taken to be a (contracted) base.

De�nition 2 (Ordered Contraction) We �rst de�ne

Ξ = Si ∩ (Cn(φi) ∪ Cn(φi))

where Cn(φi) = {ψ ∈ Si | φi |= ψ} and Cn(φi) = {ψ ∈ Si | ψ |= φi}. We then
have a sequence of subsets of Ξ, i.e., (Ξi)i≥0, inductively de�ned as follows:

Θ0 = Ξ

Ξi = {ψ | ψ is a minimal element of Θi wrt. <}

Θi+1 = Θi \ Ξi

Note that as Ξ is �nite, we have that there is some n such that Ξ =
⋃n
i=0 Ξi.

We then de�ne

k0 = min{k | Si \
k⋃
i=0

Ξi 6|= φi}

and

(Si)
−
φi

:= (Si \
k0⋃
i=0

Ξi, <
′) where <′= (<�

Si\
⋃k0

i=0 Ξi
)

where � indicates a projection function.
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1 PROCEDURE SafeContraction(Si, <, φi)
2

3 Ξ := {};
4 FOR each φj ∈ Si

5 IF φj |= φi or φi |= φj

6 THEN Ξ := Ξ ∪ {φj};
7 ENDIF
8 ENDFOR
9

10 i := 0; Θ := Ξ;
11 DO
12 Ξi = ∅;
13 FOR each ψk ∈ Θ
14 IF ψk is a minimal element of Θ with respect to <
15 THEN Ξi := Ξi ∪ {ψk};
16 ENDFOR
17 i := i+ 1;
18 Θ := Θ \ Ξi

19 WHILE Θ 6= ∅;
20

21 k := 0; S
′
i := Si;

22 WHILE (S
′
i |= φi) DO

23 S
′
i := S

′
i \ Ξk;

24 k := k + 1;
25 ENDWHILE
26

27 RETURN (S
′
i , {(φk, φj) | φj < φk and φj , φk ∈ S′i}).

28 ENDPROCEDURE

Figure 4: Algorithm for Ordered Safe Contraction

This de�nition expresses the content of the new system as obtained by a
function from the current Si to a new base whose models do not imply φi. In
Figure 4 we provide an explicit algorithm (in pseudocode) to compute the result
of the safe contraction operator.

Example 3
{p < q < r}−(q∨r) = {p} (3)

Example 4
{p < (q ∨ r) < r}−r = {p} (4)

Example 5
{p < (q ∨ r) < r}−r∧p = {p < (q ∨ r)} (5)

Let us explain the Example 5 step by step: given a base with functionalities
expressed by formulas p, q ∨ r and r, in this functional entrenchment order,
we wish to remove the combination of functionalities p and r, i.e. their logical
conjunction: in this case, we are not required to remove both functionalities, but
just one of them (as we do not wish to eliminate both, but their combination);
then we induce a contracted base with the minimal removal required, hence
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preserving as much as possible the functionalities. The result removes r, which
is the least entrenched functionality.

Note that by our de�nition of ordered safe contraction the preference is
always to remove formulas that express less entrenched functionalities. This
might appear counter-intuitive, for example in the case where the less entrenched
functionalities is the result of a combination of several components, and therefore
its loss might potentially result more impactful than the removal of a more
entrenched, but less complex functionality. Note that if to express the case
of composed functionalities of a given degree we use logical conjunction, our
ordered safe contraction will only require the removal of a component, rather
than of the whole set of functionalities. The following is a variant of Example
5 which illustrates this case:

Example 6
{p < (q ∨ r) < (r ∧ s)}−r∧s∧p = {p < q < s} (6)

Note that the choice of which component to preserve in this case is purely
contextual and it might be dictated by applications, as it might a�ect other
functionalities: here the choice of preserving s means we need to modify also
q∨ r. Di�erent is the case where a complex functionality is expressed by logical
disjunction or implication:

Example 7
{p < (q ∨ r) < (r ∨ s)}−(r∨s)∧p = {p < q} (7)

Example 8

{p < (q ∨ r) < (r → s)}−(r→s)∧p = {p < (q ∨ r)} (8)

Here the contraction operation is costly because we are forced to loose the
whole complex functionality, and in the Example 7 even to weaken the additional
functionality expressed by q ∨ r. It is only with the more complex operation
of revision with reordering introduced in the next subsection that this problem
can be avoided.

From the de�nition of safe contraction and properties of the consequence
relation over the contraction formula, the following can be proven about Si (i.e.
referring to the closure of Si):

Lemma 1 ([3]) (Si ∩ Cn(¬φi)) ⊆ (Si)
−
φi
.

Proof 1 Suppose φj ∈ Si, ¬φi � φj and φj /∈ (Si)
−
φi
. Then (¬φi < φj) and

there is some minimal Si \Ξi � φi. Take Si \Ξj = Si \Ξi \ {φj} then Si \Ξi =
Si \ Ξj ∪ {φj} and Si \ Ξj ∪ {φj} � φi. Since by assumption ¬φi � φj, then
¬φj � φi and so Si \Ξj ∪ {¬φj} � φi, but this contradicts the minimality of Ξi.
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In the context of Software Engineering, a contraction operation should aim
at removing the least expressive properties to induce a minimal loss of function-
alities. We capture this formally by the functional entrenchment ordering < on
properties, similarly to what is done with epistemic entrenchment [28]. Hence,
in a contraction process, one starts removing from the last element in the order
to preserve as much as possible the operational properties of the system. Among
the di�erent (although in some ways related, see [4]) contraction functions, safe
contraction is a natural candidate for the contraction on a �nite set of property
speci�cations under this ordering preserving system functionalities:

De�nition 3 (Safe Contraction) A property φj is safe with respect to (Si)
−
φi

if and only if φi 2 φj.

AGM revision is usually characterized by Gärdenfors postulates. These are
modi�ed as follows: the closure postulate is missing, provided the output of
our procedure is again constrained to be a base; and the recovery postulate is
missing, as the result of ordered contraction followed by ordered expansion does
not necessarily returns the original order of the base. The resulting postulates
match those in [27]:

1. Inclusion: (Si)
−
φi
⊆ Si

2. Vacuity: (φi /∈ Cn(Si))→ ((Si)
−
φi

= Si)

3. Success: (φi /∈ Cn(∅))→ φi /∈ Cn((Si)
−
φi

)

4. Extensionality: (φi ≡ φj)→ (Si)
−
φi

= (Si)
−
φj

Proposition 1 Safe contraction satis�es (1)-(4).

Proof 2 Similar to the one in [3], except for Success :

1. For Inclusion: immediate from the de�nition of (Si)
−
φi

from Si and Ξ.

2. For Vacuity: if φi /∈ Cn(Si), there is no Ξi such that Ξi � φi, hence every
φj ∈ Si is safe in (Si)

−
φi
.

3. For Success: Assume that (φi /∈ Cn(∅)) and (Si)
−
φi

� φi; then there is

(Si \
⋃k0
i=0 Ξi, <

′) � φi and because Ξi is �nite and < is non-circular, there
is a minimal element Ξi � φj for which one of the following holds:

� φj = φi: then because (Si \
⋃k0
i=0 Ξi, <

′) � φj it must be safe in (S)−φi
;

but by construction φj cannot be safe in (Si)
−
φi

because Ξi � φi and
φj = φi;

� φj < φi: because (Si \
⋃k0
i=0 Ξi, <

′) � φj it must be safe in (S)−φi
, but

by Dominance φj � φi and so φi should be safe in (Si)
−
φi
, but cannot

be;
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� φi < φj: because (Si \
⋃k0
i=0 Ξi, <

′) � φj it must be safe in (S)−φi
, but

by Dominance φi � φj, and because φi cannot be safe in (Si)
−
φi
, so is

not φj.

4. For Extensionality: if Cn(φi) ≡ Cn(φj), then (Si \
⋃k0
i=0 Ξi, <

′) ≡ (Si \⋃k0
i=0 Ξj , <

′), hence (Si)
−
φi

= (Si)
−
φj

Along the lines of the interpretation of < in terms of security and reliability
in [3], if the consequence relation � for Si is intended to describe speci�cation
expressiveness, then the more it can be logically inferred from a property, the
more expressive that property is. In turn, our safe contraction module < makes
more expressive properties safer, removing �rst those with the least inferential
impact. This justi�es our Dominance axiom; with Transitivity, the following
continuing conditions hold [3]:

Proposition 2 (Continuing Down) If φi < φj, and φk � φj, then φi ≤ φk,
for all φi,j,k ∈ Si.

This is shown easily by Dominance and Transitivity. It means that if φi is more
functionally entrenched than φj and φk induces φj , then φi is also at least as
functionally entrenched as φk.

Proposition 3 (Continuing Up) If φi � φj, and φi < φk, then φj ≤ φk, for
all φi,j,k ∈ Si.

Again shown by Dominance and Transitivity. This says that if a property
φi induces φj and is also as functionally entrenched as φk, then φj is also as
functionally entrenched as φk.

3.3 Revision with reordering

In the standard literature on belief revision, revision is understood as the opera-
tion of adding new information to a knowledge base because of new information
received about the world. In the following we analyse a revision induced by a
new formula that requires to be prioritised over the existing ones. Intuitively,
this is the case of a new property that we want to maximally protect from any
later contraction. We obtain this by an operator that satis�es all properties of
the AGM revision, and additionally re-de�nes the partial order in the base.

De�nition 4 (Revision with reordering)

(Si)
�
φi

= (((Si)
−
¬φi

)+
φi
, <′) where <′=< ∪{(φi, φj) | φj ∈ ((Si)

−
¬φi

)}.

Below we provide an explicit algorithm (in pseudocode) to compute the
result of the revision operator. As expected, we shall call the expansion and
safe contraction procedures de�ned in the previous algorithms.
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1 PROCEDURE Revision(Si, <, φi)
2

3 S
′
i := (SafeContraction(Si, <, ¬φi))

4 DO Expansion(S
′
i , <, φi))

5

6 RETURN S′i+1 = {(φi, φj) | φi < φj for each φj ∈ S′i}).
7

8 ENDPROCEDURE

This procedure de�nes an AGM revision operator ∗, in that it satis�es the
Levi's identity, with the additional property that the revised base has acquired a
new priority relation <′. Note that while expansion only performs a reordering
if the added functionality implies some functionality present in the older base,
by placing the former before the latter, revision with reordering ensures this
happens (because it is de�ned in terms of expansion) but additionally prioritise
the new functionality over any other unrelated one. To see this, consider the
following three examples, one for each possible position of the contracted formula
relatively to <:

Example 9

{p < q}�¬p = (({p < q}−p )+
(¬p))

<′ = {¬p < q} (9)

Example 10

{p < q}�¬q = (({p < q}−q )+
(¬q))

<′ = {¬q < p} (10)

Example 11

{p < q < r}�¬q = (({p < q < r}−q )+
(¬q))

<′ = {¬q < p < r} (11)

Let us explain the Example 11 step by step: given a base with functionalities
expressed by formulas p, qr and r, in this functional entrenchment order, we
wish to perform ordered revision by ¬q. The following is the ordered series of
changes:

{p < q < r}�¬q =

({p < q < r}−q = {p < r}

({p < r})+
(¬q) = {p < r < ¬q}

({p < r < ¬q})<
′

= {¬q < p < r}

In the �rst step, we remove q from the base, which is con�icting with the de-
sired new functionality; in the second step, we add the new desired functionality
¬q; in the third step we reorder the base, bringing up the new functionality in
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the order over any other functionality p, r which has survived the initial removal
operation (and preserving the order among them).

For the case illustrated above in Example 8 of a complex functionality ex-
pressed by logical implication, the operation of revision with reordering gives us
the possibility to remove a higher ordered functionality and to preserve a lower
ordered but more complex one:

Example 12

{p < (q ∨ r) < (r → s)}�¬((r→s)∧p) = {(r → s) < (q ∨ r)} (12)

Ordered revision also satis�es the following:

Proposition 4 (Harper's Identity)

(Si)
−
φi

= Si ∩ (Si)
�
¬φi

This equation identi�es the contraction operation with the intersection of
the original base with the revised one. To show this, we refer to the result of
the identities above using their example number:

Example 13
(6) ∩ {p < q} = {q} = {p < q}−p (13)

Example 14
(7) ∩ {p < q} = {p} = {p < q}−q (14)

Example 15

(8) ∩ {p < q < r} = {p < r} = {p < q < r}−q (15)

An informal way to justify this is as follows: a minimal revision (Si, <)∗¬φi

should keep the di�erence between the revised base and the original base min-
imal, i.e. keep as much as possible in common; hence, the contextual overlap
among the two will be as large as it can be while conforming with ¬φ; this
makes the intersection (Si, <) ∩ (Si, <)∗¬φi

a plausible candidate for a minimal
contraction of Si on φi. In turn, this con�rms that our contraction is indeed a
minimal change operator. As � can be de�ned in terms of − and +, it preserves
the Gärdenfords postulates.

4 Example

It has been recently shown that some implementations of the Mergesort algo-
rithm are broken, including the Timsort hybrid algorithm [29]. We present here
brie�y the speci�cation evolution from the broken implementation to the �xed
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speci�cation, with remarks adapted to our analysis. The main loop of Timsort
is presented in Figure 5.

1 do {
2 int runLen = countRunAndMakeAscending(a, lo, hi, c);
3 if (runLen < minRun)
4 {
5 int force = nRemaining <= minRun ? nRemaining : minRun;
6 binarySort(a, lo , lo + force, lo + runLen, c);
7 runLen = force;
8 }
9 ts .pushRun(lo, runLen);

10 ts .mergeCollapse();
11 lo += runLen;
12 nRemaining ?= runLen;
13 }
14 while (nRemaining != 0);
15

16 assert lo == hi;
17 ts .mergeForceCollapse();
18 assert ts . stackSize == 1;

Figure 5: Main loop of Timsort

Consider this system speci�cation as our Sm, whose theory is Sm. This loop
will satisfy an instance with stackSize= 4, which we refer to as our formula
φi. We now consider a Java implementation I of the above theory and the
resulting system Si, which will have a corresponding formulation of φi above,
namely of the loop with stackSize= 4: Si will hence include a disjunctive
formula (to mimic the while loop) where each element is an implication with
the antecedent assigning a value size to the stack and to the length of the run,
and the consequent executing the merge:

φi = {(stackSize, runLen == 4→ mergeCollapse())∨
(stackSize, runLen == 3→ mergeCollapse())∨
(stackSize, runLen == 2→ mergeCollapse())∨

(stackSize, runLen = 1→ assert ts.stackSize == 1)}

The implementation is presented in Figure 6. In this implementation, it is the
case that Si 2 φi after violation of the invariant ArrayIndexOutOfBoundsException
in pushRun, see [29].
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1 private void mergeCollapse() {
2 while (stackSize > 1) {
3 int n = stackSize − 2;
4 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1]) {
5 if (runLen[n − 1] < runLen[n + 1])
6 n−−;
7 mergeAt(n);
8 } else if (runLen[n] <= runLen[n + 1]) {
9 mergeAt(n);

10 } else {
11 break;
12 }
13 }
14 }

Figure 6: Java implementation of Timsort

In order not to loose generality, one does not want to just remove φi.
Hence one must individuate some φj < φi and proceed to revise the model
Si 7→ S′i . We �rst proceed by contraction S′i = (Si)

−
φj

and then formulate some

φk and proceed by expansion S′′i = (S′i)
+
φk
. Our φj is now identi�ed as the

mergeAT(n) commands obtained by the satis�ed if clauses. This will match
the mergeCollapse() commands on lines 10 and 17 of the Timsort loop.

φj = {((stackSize > 0 ∧ stackSize[n]−−2)→
(((runLen[n− 1] <= runLen[n] + runLen[n + 1])∧

(runLen[n− 1] < runLen[n + 1]))→
[n− 2] ∧ mergeAT(n)∨

(runLen[n] <= runLen[n + 1])→
mergeAT(n)))}

We then proceed with formulating φk as OR clauses in the if else loops;

φk = {((¬((stackSize, runLen > 1) ∨ (runLen[n] <= runLen[n + 1]))∨
((runLen[n− 1] <= runLen[n] + runLen[n + 1]) ∧ mergeCollapse())∨

assert ts.stackSize == 1))}

�nally, φj is again added S′′′i = (S′i)
+
φj
. The resulting new implementation is

shown in Figure 7. Notice that with respect to φj , a reordering in the functional
entrenchment is also taking place.
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1 private void newMergeCollapse() {
2 while (stackSize > 1) {
3 int n = stackSize − 2;
4 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1] ||
5 n−1 > 0 && runLen[n−2] <= runLen[n] + runLen[n−1]) {
6 if (runLen[n − 1] < runLen[n + 1])
7 n−−;
8 } else if (n<0 || runLen[n] > runLen[n + 1]) {
9 break;

10 }
11 mergeAt(n);
12 }
13 }

Figure 7: New Java Implementation

5 Model Checking

In this section, we consider the complexity of the model checking and inference
problems for the change operations introduced in Section 3, along the line of
[39] and [23]. We will mainly focus on the revision with reordering introduced
in Section 3.3, as this is the most interesting one. Its de�nition subsumes the
safe contraction, while the expansion is trivial.

We �rst examine the model checking problem. Recall that we are given a
knowledge base (Si, <) where Si is given as a set of propositional formulas and
< is the associated order over Si, a model M which is given as a valuation,
a formula φi which is to be updated with respect to Si, the model checking
problem determines whether M |= (Si)

�
φi
.

Proposition 5 The model checking problem is in co-NP.

Proof 3 We �rst check whether M |= φi, which can be in done in polynomial
time. (As a matter of fact, it is in ALOGTIME, which is a uniform version of
NC1, so probably much lower than P.) If the answer is negative, we conclude
that the model is not supported by the revision. Otherwise we proceed to check
whether M |= SafeContraction(Si,¬φi). To this aim, we �rst compute Θ =
{ψi ∈ Si |M |= ψi}.

Recall that for the safe contraction, we order the formulas in Si in the way
such that

� Si =
⊎i
k=1 Sk, i.e., a disjoint union of Sk's for k = 1, . . . , i, and

� for all 1 ≤ j ≤ k, Sj is the set of minimal elements of Si \
⋃

1≤k≤j−1 Sk.

As a more succinct notation, we usually write S1 < S2 < · · · < Sm. The
partition can be obtained by standard topological sorting in polynomial time. Let

K = min{` |
⋃

`≤k≤m

Sk ⊆ Θ}.
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If K = 1, then clearly M |= SafeContraction(Si,¬φi) and we are done. We then
assume that K > 1. In this case we claim that

M |= SafeContraction(Si,¬φi) i�
⋃

K−1≤k≤m

Sk |= ¬φi.

To see this, supposeM |= SafeContraction(Si,¬φi), i.e. SafeContraction(Si,¬φi) ⊆
Θ. Note that, according to the de�nition of K,

⋃
K−1≤k≤m Sk 6⊆ Θ. It follows

that
SafeContraction(Si,¬φi) (

⋃
K−1≤k≤m

Sk,

and thus

SafeContraction(Si,¬φi) =
⋃

j≤k≤m

Sk for some j ≥ k.

According to the de�nition of safe contraction, we have that⋃
K−1≤k≤m

Sk |= ¬φi.

For the other direction, suppose that
⋃
K−1≤k≤m Sk |= ¬φi. According to the

de�nition of K, it must be the case that

SafeContraction(Si,¬φi) ⊆
⋃

K≤k≤m

Sk ⊆ Θ

which implies that M |= SafeContraction(Si,¬φi). We observe that checking⋃
K−1≤k≤m Sk |= ¬φi amounts to checking the validity of the formula∧

ξ∈
⋃

K−1≤k≤m Sk

ξ =⇒ ¬φi,

which can be done in co-NP. This gives a co-NP algorithm for checking M |=
SafeContraction(Si,¬φi). Overall, we have a co-NP algorithm for checking
M |= (S)�φi

. This completes the proof.

Below we give an example to show that the order associated with the knowl-
edge base has to be considered during model checking, because with di�erent
orders the results vary.

Example 1 (Order matters) Given Si = {p, q}, φi = ¬(p ∧ q) and M(p) =
1,M(q) = 0. Obviously M |= φi. If we have p < q, then the revision would be
{q, φi}. If p and q are unordered, then the revision would be {φi}. In the former
case, M 6|= {q, φi} while in the latter case, M |= {φi}.

A decision algorithm for the model checking problem is presented in Figure
8.

We now turn to the inference problem. Again we focus on the revision with
reordering. Formally, we are given a knowledge base (Si, <), two formulas φi
and φj where φi is to be updated wrt Si, the inference problem determines
whether (Si)

�
φ |= φj .
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1 PROCEDURE ModelChecking(M , (Si, <), φi)
2

3 IF M |= φi RETURN FALSE
4 ELSE
5 Θ := {ψi ∈ Si |M |= ψi}
6 FOR d FROM 1 TO m
7 IF

⋃
d≤k≤m Sk ⊆ Θ

8 THEN BREAK ENDIF
9 ENDFOR

10 IF d == 1
11 THEN RETURN TRUE
12 ELSE RETURN

⋃
d≤k≤m Sk |= ¬φi

13 ENDIF
14 ENDIF
15 ENDPROCEDURE

Figure 8: Model checking algorithm

Proposition 6 The complexity of satis�ability checking is in Σp
2 , i.e., NPNP.

Proof 4 As in the proof of Proposition 5, we �rst compute Θ = {ψi ∈ Si |
M |= ψi}. Recall that for the safe contraction, we order the formulas in Si in
the way such that

� Si =
⊎i
k=1 Sk, i.e., a disjoint union of Sk's for k = 1, . . . , i, and

� for all 1 ≤ j ≤ k, Sj is the set of minimal elements of Si \
⋃

1≤k≤j−1 Sk.

We observe that (Si)
�
φi
|= φj i� there exists some d such that

(i)
⋃
d≤k≤m Sk ∪ {φi} |= φj, and

(ii)
⋃
d≤k≤m Sk 6|= ¬φi.

The �only if � direction is trivial, as according to the de�nition of safe con-
traction,

SafeContraction(Si,¬φi) =
⋃

K−1≤k≤m

Sk

such that SafeContraction(Si,¬φi) 6|= ¬φi and SafeContraction(Si,¬φi)∪{φi} |=
φj.

For the �if" direction, assume such d exists, then it must be the case that⋃
d≤k≤m

Sk ∪ {φi} ⊆ SafeContraction(Si,¬φi)

because of (ii), and we must have that

SafeContraction(Si,¬φi) ∪ {φi} |= φj

because of (i). Now note that both (i) and (ii) can be checked in co-NP and
NP respectively, we can easily obtain an NPNP algorithm, which completes the
proof.

A decision algorithm for the inference checking problem is presented in Fig-
ure Fig. 9.
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1 PROCEDURE InferenceChecking((Si, <), φi, φj)
2

3 Θ := {ψi ∈ Si |M |= ψi}
4 FOR d FROM 1 TO m
5 IF

⋃
d≤k≤m Sk ∪ {φi} |= φj ∧

⋃
d≤k≤m Sk 6|= ¬φi

6 THEN RETURN TRUE
7 ENDIF
8 ENDFOR
9 RETURN FALSE

10 ENDPROCEDURE

Figure 9: Inference algorithm

6 Remarks on Resilience and Evolvability

In the introduction we have suggested that the concept of reliability for software
systems can be de�ned in terms of notions of resilience and evolvability.

Resilience for a computational system re�ects its (graded) ability to preserve
a working implementation under changed speci�cations. The above analysis of
software theory change allows us to provide a precise de�nition of resilience in
the presence of removal or failure of certain components. In the literature on
software change, this process corresponds to preservation of behavioural safety
by speci�cation approximation, see e.g. the taxonomy o�ered in [12]. Various
attempts have been made to formalise perseverance of validity under change.
The most common one encountered in this research area is that of system ro-
bustness. One (older) interpretation is given in terms of the inability of the
system to distinguish between behaviours that are essentially the same, see [45].
More recently, the term resilience has been used to refer to the ability of a sys-
tem to retain functional and non-functional identity with the ability to perceive
environmental changes; to understand their implications and to plan and enact
adjustments intended to improve the system-environment �t [17].

Evolvability is the ability to successfully accommodate changes, the capac-
ity to generate adaptive variability in tandem with continued persistence [15]
and more generally the system's ability to survive changes in its environment,
requirements and implementation technologies [14]. The crucial need to ac-
commodate changes in requirements and corresponding intended functionalities
with the least possible cost while maintaining architectural integrity has been
stressed since [48]. Our analysis of resilience and evolvability has focused on
functional entrenchment and the change in view of prioritised functionalities.

In view of the operation of ordered contraction, resilience of functionali-
ties in a software system can be de�ned by functional entrenchment via logical
consequence:

De�nition 5 (Property Resilience) Consider property speci�cations φi, φj ∈
Sm and a relevant implementation Si. Then φi is resilient in (Si)

−
φj

i� φj 2 φi.

This holds immediately by De�nition 3. Generalising, one can say that a soft-
ware system speci�cation Si is resilient with respect to a property speci�cation
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φi if the latter is safe in any contracted subsystem that preserves minimal func-
tionalities of Si. System resilience as the resistance to change of property spec-
i�cations (as in De�nition 5) can be essential to determine system antifragility.
Software antifragility has been characterized as self-healing (automatic run-time
bug �xing) and adaptive fault-tolerance (tested e.g. by fault-injection in pro-
duction) [43]. An inferential notion of resilience helps characterizing a certain
degree of fault-tolerance; the latter is considered strictly intertwined with self-
healing properties: while not all fault-tolerant systems are self-healing, one can
argue that self-healing techniques are ultimately dependable computing tech-
niques [34]. Our resilient core, intended as the persistence of service delivery
[35] in view of functionalities contraction, allows to determine the adaptation
required by changes in terms of valid and invalid properties of its contractions
and can anticipate results of its expansions. In particular, given the non-resilient
part of the system, it is possible to establish which properties will still be instan-
tiated in any subsystem. In this sense, resilience is a function of dependability
between functionalities, expressed as an inferential relation.

Proposition 7 (Accountability) For any φj ∈ Ξi as per De�nition 2 such
that φj is minimal w.r.t φi < φj, then (Si)

−
φi

2 φj. For any φj ∈ Ξi as per

De�nition 2 such that φj is not minimal w.r.t φj < φi, then (Si)
−
φi

� φj.

This holds immediately by De�nition 2, Dominance and De�nition 3. Further-
more, we have quali�ed our ordered revision operator as a function of evolvable
software systems. In the context of prioritised functionalities, we have more
precisely formulated evolvability as the property of a software to be updated
to ful�ll a newly prioritised set of functionalities. This allows to deal explicitly
with one of the main problem of architecture design, [11]. The advantage of
our analysis is again based on the relation between the priority order and the
inferential relation, as expressed by the Dominance property. This can be useful
to guarantee a prevision property on formulas a�ected negatively by a revision
operation:

Proposition 8 (Prevision) For any properties φi, φj ∈ Si such φi < φj, there
is always a S′i = (Si)

�
φk

such that φi becomes an element w.r.t. < exposed to a
further contraction.

This holds by Dominance and De�nition 4. In other words, revision with re-
ordering (i.e. a novel prioritisation of evolvable sub-characteristics for a system)
always implies the possibility of building a system with a module including a
previously safe property which is no longer safe to future contractions.

In view of such prevision property, one can re-factor the impact of evolvabil-
ity on sub-characteristics, in order to know how much a novel prioritisation will
make the system exposed. To do so, it is su�cient to consider:

1. the cardinality of the consequence set of each property | Cn(φi) |;

2. an order on their sizes, denoted by ≺;
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3. and a preference weighting on selected revisions, denoted by l.

De�nition 6 (Preference on Revision) Consider a system Si := {φi < φj <
φk < · · · < φn}, such that φi 2 φj and φj 2 φk. Then (Si)

�
¬φj

l (Si)
�
¬φk

i�

| Cn(φj) |≺| Cn(φk) |.

In other words, if a reorder revision should be selected between two options
which do not have a logical relation, the impact of the removed properties in
the system should be taken into account in terms of the respective consequences
on the models. Note that preference on revision requires to move our analysis
from the speci�cation base Si to the model Sm.

Software tools based on either theorem proving or model checking techniques
can implement this theory to several aims. In view of Property Resilience from
De�nition 5 and Proposition 7, it is possible to express direct and indirect
dependency relations between software packages in the presence of uninstall op-
erations. A similar task is performed proof-theoretically by a natural deduction
calculus with an explicit notion of trust in [47]. More importantly, it will be pos-
sible to provide information as to the resulting state of the system after uninstall
operation have been performed, anticipating possible resulting unstable condi-
tions and the eventual impossibility of the system to perform critical operations.
The utility of Proposition 8 in combination with De�nition 6 is again in view of
assessing the state of the system in the presence of uninstall operations, by an-
ticipating which functionalities may result threatened and establishing removal
options of minimal impact on the system among possible ones. Although the
present work does not aim at the development of any such tool, we believe that
a solid theoretical basis to this aim is a valuable contribution.

Di�erent authors have quanti�ed software maintenance between 40% and
> 90% of build costs, depending on the software project considered, project
development methodology used and best practices applied. A checklist used to
explore the realism and accuracy of maintenance requirements (see for example
[32]) should include, among others, the following questions:

1. Which parts of the system will be preserved and allow incremental main-
tenance?

2. Are healthy chunks of the original code being rewritten or changed?

3. Which pieces of software will need (non-incremental) maintainance?

4. Can you assess which (non-incremental) maintainance operations are the
least invasive on the current system?

We believe our formal model can be used to provide answers to such questions,
and thus be of further help to the constraints of software maintenance costs.
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7 Conclusion

We have presented a software theory change inspired by techniques used in belief
revision theory. We have highlighted how operators on contraction, expansion
and revision with reordering over a base with functional entrenchment allow
to identify resilience and evolvability properties for software systems. We have
moreover identi�ed the complexity of such operations and gave a real case sce-
nario on a recent example of a broken algorithm. Future research will focus
on enhancements of this model that can be of further interest to the software
engineering community, e.g. by operations of multiple contraction and selective
revision. From the conceptual point of view, the interest is in the modelling of
anti-fragility properties for software systems in the light of revision and update
operations.
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