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Abstract

We study an Adaptive Window Protocol (AWP) with general gese and decrease profiles in the
presence of window dependent random losses. We derive dysséste Kolmogorov equation, and then
obtain its solution in analytic form for particular TCP vienss proposed for high speed networks, such
as Scalable TCP and HighSpeed TCP. We also relate windowt@&mlunder an AWP to workload

process in queueing systems; this observation gives us @aveympare various AWP protocols.

. INTRODUCTION

Over the years, the transmission control protocol (TCP)H&$ satisfactorily handled the
majority of reliable data transfers in the Internet. The T&gorithm probes the network for
the bandwidth that it can obtain. The sender transmits albfalso called as window) of
data packets, which, if successful, are acknowledged bydbeiver. The sender interprets the
successful reception of packets as a sign of available baltidwand reacts by transmitting
packets at a higher data rate. When the total input rate toé¢twork exceeds the capacity,
the network reacts by dropping some of the packets. The gassful transmission of packets
causes the sender to reduce its transmission rate. Thisesbuaprobust algorithm has performed
quite well in networks with low bandwidth. However, the Imtet itself has grown and evolved
during this time. The present versions of TCP were designkdnwthe available bandwidth
in the Internet was significantly smaller than the availdid@dwidth today. The low available
bandwidth led to a window increase algorithm which was corsee and not fast enough to
make efficient use of the large available bandwidth.

The inablility of the present versions of TCP to rapidly atthigh transmission rates has
resulted in several proposed modifications - examples declHdighSpeed TCP [7], Scalable
TCP [6], Westwood+[], CuBIC, and FAST. Data transfer praiscoperating in these networks
are expected to maintain a very high window size (i.e., a ligta transmission rate). Most
of the proposals therefore suggest a window increase #igonvhich is faster and a decrease
algorithm which is less conservative than the present TOR@&rative study of such protocols is
an important issue. The analytical models can give insigitsthe behaviour of these protocols.
The study could also include, for example, conditions unvdeich two AWPs behave similarly.

Since it is always desirable to use a protocol which is easiemplement and does not have
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many parameters to be tuned, such a study will provide sonteljues on the TCP version to
employ.

The TCP versions (presently deployed, and the new propgosaits be coarsely classified in
two categories. The classification is based on signals waiehinterpreted as congestion. The
“loss-based” algorithms interpret only packet losses gassbf congestion. Examples of TCP
versions in this category are Tahoe, New Reno, SACK (whiehpaesently deployed), Scalable,
and HighSpeed TCP (both of which proposed enhancementgddition to packet losses, the
“delay-based” algorithms also use variations in the rounul delay to estimate the available
bandwidth. TCP Vegas, FAST and Westwood+ are examples ddydwmsed” protocols.

In this paper, we aim to study analytically the behaviour ofass of “loss-based” algorithms.
The “loss-based” algorithms can be described by the iner@dgorithm (when there are no
packet losses) and the decrease algorithm (which is in nsgpm a packet loss). Therefore, the
building blocks for modelling a “loss-based” algorithm d@®increase and decrease algorithms,
and the packet loss characteristics in the network. Thegtdag&ses in the network are frequently
modelled as independent of the current transmission ratéovever, at high transmission rates
the probability of a packet loss due to link layer errors @aample, errors due to imperfections
in the fiber optic cables) is high. Since TCP is unable to mlggtish between the various causes
of packet loss and interprets every loss/drop as a sign ofesiion, it becomes necessary
to consider a packet loss probability which depends on tleegmt transmission rate. Another
reason for considering window dependent loss rate is tHewolg. The loss process seen by
a TCP sender may have its origin in deliberate marking/dragppwing to some active queue
management (AQM) scheme employed in the network, in corggestsses, or in link errors.
The rate of receiving such a signal will depend on the windogcess itself (see [8] for related

discussion). Hence in our study, we consider a general 8tatelow) dependent loss rate.

A. Analytical models for "loss-based” TCP algorithms

In this section we briefly describe the various models thatehlbeen used to study the
performance of the TCP algorithm. A detailed literatureeevis also presented in [8].

Modelling and analyzing a large network with multiple flovgsguite involved. The first efforts
in modelling of TCP were directed towards a single connectigth a large amount of data to

send P]. The connection was subject to independent packet losssgid approximation of the
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discrete window process. This resulted in an elegent “seaquare-root” relation between the
throughput and the packet loss probability. The distridoutf the fluid approximation was also
provided. The model did not consider neither time-outs noeciver limitation on the sender’s
window size. However, the stochastic modelling of the losxess and the fluid approximation
of the window size process became the basis for other modethvincorporated the time-outs
and receiver limitation [8],7], [?].

The contribution (and organization) of this paper is asoiof.

« In Section Il, we give a characterization of a general AWH igentify the various quantities
that determine the performance of such protocols. Kolmmgequations for the stationary
probability measure are then derived.

« In Section Ill, we give conditions under which two AWPs haetated stationary distribution.
Furthermore, we demonstrate that the window process und&uléiplicative decrease
protocol is also related to the workload process in a queusiystem with workload
dependent service and arrival rates.

. In Sections IV and V, we solve the Kolmogorov equations talgtthe performance of
recently proposed TCP modifications (Scalable TCP [6] arghHpeed TCP [7]). In these
sections, we consider two different forms of loss rates:stamt and linear. The analysis
also provides insights into the sensitivity of system pemiance to the parameters of the
AWP employed.

« In Section VI, we compare simulations results with the ressaf Sections Ill, IV and V.

There is a vast amount of literature on TCP modeling, and &eyngt to cite even a moderate
part of it would be lengthy enough. For an extensive litexatsurvey on TCP modeling the

reader is refered to [8].

I[l. THE MODEL

We consider an AWP controlled persistent file transfer ovedrdernet (bottleneck) link. For
applications using HighSpeed and Scalable TCP, this litikygically be a very high bandwidth-
delay product link. We assume that the connection is longighdo see a stationary regime and
that its throughput performance is governed by the steaaty segime (see [4] for justification
of this assumption). Applications using HighSpeed TCP andldble TCP typically transfer

very large volume files. Therefore, studying persistenhdfers is justified and important in
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such cases. We model the loss process as a Poisson process tmite varying intensity that
depends on the instantaneous window size of the AWP [8]. lhesses could be owing to
congestion losses, random link losses or some deliberateepearking/dropping by the router
buffer using an AQM. As is common in related studies ([1], [&]), we consider the evolution
of window as an infinitely divisible fluid. Details of the mddare given below.

Let z;, denote the window size of the AWP at time instar{hote that we are not specifying
the initial window sizex, here, thus assuming a stationary window process). We nogthe
description of the window evolution. In the absence of lesshe window increase in time

interval [t,t + A] is given by,
T = T+ f(2) A+ 0(A), 1)

where f(-) is a function bounded below by some positive quantity. We alssume that there
is a lower bound on the window size, denotedahy;,.

The increase in window cannot continue forever becausesdraying to congestion or channel
losses or AQM marking can occur at random instants intirhet N(¢) be the counting process
corresponding to the loss events, i.&.(t) — N(t — u) is the number of losses in time interval
(t —u, t]. In what follows, we assume thaf(¢) is a Poisson process with time varying intensity.
Further, we assume that the instantaneous rate oiVitt¢ process depends only on the current
window size,z,, of the connection. LeA(z) be the rate of théV(¢) process when the window
size,x;, is x. Each loss results in a window reduction (this is because ag¥mes that each
packet drop/mark corresponds to a congestion event in ttveorld. Under the fluid model, it
is standard to assume that this window reduction is refleatedn instantaneous jump in the
process. The assumptions imply tla{N(t+ A) — N(t) =1} =1 - P{N(t+ A) — N(t) =
0} = AMa)A+o(A). Thus, for small, if N(t+A)—N(t) = 1, the window is instantaneously
reduced as

zera = Glur) +o(A), )
for some continuous functioty(-) such thatG(z) < = and G(zin) = Tmin- We assume that

G(-) is such that ifz; < z, then eitherG(z,) < G(xg) or G(x1) = G(z2) = Tpin. The

1Congestion losses occur also when the window size reackegréctical limit of the total round trip pipe size (sum of the
linki bandwidth-delay product and the router buffer). Thispect of congestion losses will be addressed later in dutos.

For presentation of the basic model, we assume here that ihe&o upper bound on the values that the window can take.
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assumption of continuity o7(-) implies that the set(z) = {u > = : G(u) < x} is connected.
Define alsoH (z) = sup{u > z : G(u) < x} = sup s(x); we will also use the notatioty*(z)

to meanH (x). Note here that, unlike [4], we are assuming t4t) is a deterministic function.
This is true in new versions of TCP which decrease the windbw@st once in a round trip
time. Similar modeling assumption for decrease is also nmadi], [1]. The above continuous-
time evolution model can be obtained from a discrete-tim@wgion using the approach of [8].

For convenience, the approach is outlined in Appendix .

A. Incorporating a Bound on the Window Size

The window evolution process described above does notpocate any bound on the maxi-
mum allowed window size. In practice, however, there willdmeupper bound/ on the window
size that the AWP is allowed to use. This bound usually iseeitihe receiver's advertised
window (which is the maximum number of packets that the raegientity’s receive buffer can
accommodate) or the total round trip pipe size. The behafitre AWP under these two bounds
is very different. In the first case where the window is restéd by the receiver's advertised
window M, the window size stays at this value until a loss event takeasepWhile in the second
case wheré\/ represents the round trip pipe size, reaching this limiltesn an instantaneous
congestion loss and the window size is reduced. Howevergdime loss rate is assumed to be
function of window size alone, it follows that we can studg gecond case via the first case (for
details, see [4] which also addresses this issue for a qunistss rate). Hence in what follows
we will restrict ourselves to the case whelé represents the window limitation owing to the
receiver’'s advertised window.

Assume that the range of the values of the window processvigladi into the intervals
between point$H’ (x,.i, ), H ™ (2min)] Where H7 is j—fold composition of  (-) with itself and
let HO(z,mn) 2 Tmin- Consider anM such thatM = H™(z,,;,) for somem > 1. Note that,
under our choice of\/, Hi(z,,:,) = G™9(M) with G 2 M and G' = G(G'~1). Under the
above definitionsy € [G',G""'] = H(x) € [G"',G""?]. The case where such am does not
exist, i.e., H™™' < M < H™ for somem, is not possible since the definition 6f(-) depends
on z,,;,, and M implicitly, and it ensures that(G™ ') = x,.,;, SO thatH™ = M.

We consider a further modification in the evolution of the eow procesqz;}; this is shown

in Figure 1. For this modified process, the window size is wmioied. However, whem > G°,
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Fig. 1

EVOLUTION OF THE TRANSFORMED WINDOW PROCES$;E,5}.

we assume that the loss rate is constant and equa(@) and that the window increase is
linear, i.e.,f(z) = 1 for z > G°. We also assume that if a loss event takes place when:?,
the window is dropped t&:' = G(M) = H™ (z,.:»). The evolution of the modified process
for z < G° is unchanged, i.e., a loss event occurs with rete;) and the window is dropped
to G(z;) in case of a loss event when < G°. Thus, the modified process has the following

evolution: the increase profile is given by
TN = Ty + Af(.ﬁl}'t) + O(A)

Losses occur according to a Poisson process of xate A G°) and the window reduction in

case of a loss event in time interval ¢t + A) is
TN = G(I’t N GO)

Remark If the window size is bounded (as the case will be in the reshisfpaper), so i\(-).

In this scenario, it is sometimes convenient to assume HeaptocessV(¢) is actually derived
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from a standard Poisson proces§) of unit rate so that a jump i (¢) results in a jump in

)\(xt)
sup, A\(z

N(t) only with probability

B. Performance Measure

There can be various performance measures of interest inathiext of the problem under
consideration. Most prominent of these (and the one mosfuéetly used in literature) is
the expected window size. However, finding only expecteddawn size may not give much
information about the window process itself. An analysistfe performance of an AWP should
also consider the stationary window size distribution.His paper we are interested in obtaining

the stationary window size distribution of the AWP.

C. The Kolmogorov Equations

Let 7(x) be the density function anti(z) be the distribution function of the (modified)
process (note that we are suppressing the dependengé loare.).
Let, for a fixedt, [t,t + A] be a small time interval. When the process is in equilibritime,

probability of upcrossing levet during [t,¢ + A] is
P{z; € (x — Af(x),z)} P{no loss duringt,t + A]} = w(2)Af(z)(1 — A(z)A) + o(A)
Similarly, the probability of downcrossings is

/:O Pla, € (u,u+ du)INGOA = /:O T (WAGO)duA + o(A) r> G,
/j Plas € (u,u+ du)IA(uh GOA = /'OO T(WA(u A CO)dud +o(A) G' <z < G,

=z

+ € (uy,u+ du) JA(u)A = mT(u)A(u)dul + o(A) Tnin < < G

In the steady state, the probability of up-crossing is etmué#hat of down-crossing. Thus, letting
A — 0, we obtain
© T (WAG)du = N(GO)TT(z), x> G,
fa)m(x) = { [ r(wA(w)du+ MGG, G <z <G,
S ()N (w)du, Tin < v < GL.

Using integrating factor method for the Kolmogorov equatfor z > G°,
I1¢ ( ) HC(GO) —X( GO)(mfGO)’ T > GO,
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The basic idea involved in solving the Kolmogorov equatiobsained above is to use the
knowledge of)A(-) to obtainw(z) for z € [G', G°]. Now, one can findr(z) for z € [G""!, G7]
from the knowledge ofr(z) for z € [G?, G*"']. In this process, since we need to integrate over
different regions, integration constants appear naturélese integration constants are computed
using continuity offI(-) at the boundarie&. Clearly, the form ofr(-) will depend on that of
A(+) and of H(-).

In this paper we will be working with a bounded window progeasd when we write
Kolmogorov equations for different protocols, we will novg the detailed equations as done
above. We will ignore the boundary conditions at the uppedt Bower bounds for sake of

presentation.

[1l. RELATIONS BETWEEN TWO SYSTEMS OFWINDOW EVOLUTION

We now consider two systems,and 2, having their own increase profile, decrease profile
and loss rates denoted By(-), G;(-) and \(+), respectively; € {1,2}. We provide a condition
under which these two systems have related stationary pildapalistribution. Assuming that
Gi(z) = Go(z) = G(z), ¥V x, and that in both the systems the upper bound on the window is

the same (and is equal /), the Kolmogorov equations for the two systems are
G~ (@)

fi(x)mi(x) :/ i (w)7m;(u)du,

U=x

fil@) Ni(@)mi(z) /’Gl(x) Ailwmi(u)

where E[\(X)] = [, \i(z)m;(z)dz is the expected loss rate iff system. It is clear from the
i () _ folz) i A1(z)mi(2) Az (2) (%)

above set of equations that ﬁ(Tc) = () Vz, the functions B (0] and Bl both

being probability density functions integrating to unigye equal for each. Thus,

Theorem 1:If two AWP controlled window evolutions are such that bothvédaame drop

profile and both have the same ratio of increase profile todke ttate for allz, then

n@)  dele) o falo)
@~ n@ SRy

B (X)]
E2 (X))

This result is important as it gives us a way to analyse onésysising the analysis of the

where(C =

other related system. We use this result in Section IV-B whwee use the observation that an
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AIMD protocol with constant loss rate and an MIMD protocoltlviinear loss rate satisfy the
requirement of Theorem 1 as for the first (AIMD) systéiir) = o and A\(x) = A while for the
second (MIMD) systeny(z) = ax and \(x) = Az and both have same multiplicative decrease
factor. Since the analysis for the first system is known fr@tj) ve use it to find stationary
distribution for the MIMD protocol with linear loss rate.

In the special case where both the system use multiplicdtroeease profile with a constant
decrease factg¥, we can get some more detailed equivalence between twedelgstems. This

is done next.

A. A Queueing Model for Multiplicative Decrease Protocols

Consider an AWP with a constant multiplicative decreastofas. Introduce the transformation
2z = InM — Inx;. We are assuming that is unbounded, i.e., that,,;, = 0; we can do this
since we can use standard approach ([2, Chapter 14]) tossn#lg case wherg is bounded
by In M — Inz,,, from that wherez; is unbounded. The evolution of the processnow is
as shown in Figure 2. It is evident from the transformatios &so visualised in the figure),
the multiplicative decrease of the processpresents itself as aonstantincrease ofln 3 in
the evolution ofz; process. The evolution of, process suggests that can be thought of as
workload process of a queue for which the service requir¢roérthe customers is constant
(—In ). If the increase profile and loss rate for process aref(-) and A(-), then in thez;
process, the customer arrival rate§\V/e=**) and service rate |§% both depending on
the workload process;. Thus we get a queueing system with constant service reqgeirss
and state dependent service rates and arrival rates. Thenabion leads us to the following
theorem.

Theorem 2:Consider window evolutions in the two systemsnd 2 introduced above, both

with same multiplicative decrease profile.{{% = Q((i)) then the distribution of window size
just before loss instants samein both the systems.

Proof The logarithmic transformation introduced above maps the system into queueing
systems with constant service requirements. The proof tbbows from [9, Theorem 3.3]

which says that for two queueing systems with same servigairement distribution, if the

ratio of the two arrival rates is same as that of their servates for any workload, then the

stationary distribution of the workload process seen jgdote an arrival is same for both the
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Fig. 2

THE ORIGINAL WINDOW EVOLUTION (TOP) AND ITS TRANSFORMATION TO THE WORKLOAD PROCESS IN A QUEUE

(BOTTOM).

system. The proof follows from the relation between the l@e in window process and the
arrival rate in the queueing system and that between theaser profile in the window process
and the service rate in the queueing system. °

Applying this result to the two systems satisfying the abowadition where the first one is
AIMD with constant loss rate and the second one is MIMD witielr loss rate, we see that
the stationary distribution of the window process just befand hence just after) loss instants
is same. Thus, the standard AIMD protocol with constant lass is same as MIMD protocol
with linear loss rate in the sense that the distribution ef window sizes just before losses are
the samefor the two.

Further, since Theorem 2 is valid for any two AWPs satisfyiihg required conditions, it is
seen that if for one of the AWPs the loss rate is constant, &&TR property implies that the
stationary (time average) distribution of the window simethe system with constant loss rate
is same as the window size distribution just before lossestirer of the system.

Theorem 3:Consider window evolutions in the two systemsnd 2 introduced above, both
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with same multiplicative decrease profile.{lﬁ% = {Z((i)) then the time average distribution of

window sizer;(-) in the two systems is related by

n(@) 1) ale)
m@ - Chie - @

with TI¢(-) denoting the complementary distribution function.

A1 (M)TIS (M)
X2 (M)TI5 (M)

Proof Follows from [9, Theorem 3.1] which states that the two quegieystems if the ratio

where(C =

of the two arrival rates is same as that of their service riteany workload, then the density
corresponding to the time average stationary distributibthe two systemssz(z) and m(2)

are such thatr,(2)ry(z) = Cma(2)ri(2) wherer;(-) is the service rate in thé”" system and

C = g;ggg The proof follows from the relation between the loss ratevindow process and the
arrival rate in the queueing system and that between theaser profile in the window process
and the service rate in the queueing system. °
Remark It is important to note that the window process with a loweuitd of 1 and an upper
bound of M < oo is always ergodic in the case of multiplicative decreaserélgm. This is
because for any bounded loss rate and positive increasdeprib® window process$z;} is
irreducible. However, if we assume,;, = 0, then the corresponding unbounded transformed
gueueing process need not always be ergodic. Thus, we catwayts use the truncation method
of [2] mentioned above. Hence it becomes necessary to dudvddtailed Kolmogorov equations
for each case. This remark is, in particular, relevant fa& tase where the AWP follows a
multiplicative increase multiplicative decrease alduritand the loss rate is constant. For this
case the transformed processis just the workload process of an M/D/1 queue. However we
can not use this approach far> —In 8 owing to the above mentioned reason.
Remark The process; EM-uz always represents the workload process in a queue with state
dependent arrival rate, service rate and service requiteme
Remark The results of this section indicate that if the losses commfan AQM scheme, then
there are many AWP-AQM pairs (i.ef(-) and A(-)) which have the same drop profilé&/(-))
and have similar performance (in the sense of Theorem 1)eM@r, if the decrease profile
is fixed to be a multiplicative one, we see that all these AWPNMApairs havesamewindow
distribution before drop instants (Theorem 2).

Having made the relation between the evolution of the wingoacess of the AWP and the

workload process in a queueing system, we now proceed t@ $bk Kolmogorov equations
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considering specific forms of th&(-) and H(-) functions. As remarked above, analysing the
gueueing system does not provide us with the stationaryilaision for all the possible values
of the involved parameters. This makes it necessary to sh&/&olmogorov equations for each
instance of the problem.

Till now the development did not consider exact form of loager\(-) and AWP. In the
following sections we consider specific forms xf-) to find the stationary window size distri-
bution and work out the solution of Kolmogorov equation feveral available TCP versions.
We first analyse, under constant and linear loss rates, [Beal&€P [6] which represents a class
of MIMD protocols; this is done in Section IV. We then considiee situation of constant and
linearly increasing loss rates for HighSpeed TCP [7] in BecV.

We remark here that a linear loss rat¢y) = Az is suitable for the cases where, like NewReno
version of TCP, only one window reduction takes place ireesipe of the number of losses in a
round-trip time and each packet is dropped with a fixed priibalsSince high speed networks
are expected to have most of the losses coming from link llgses, assuming a fixed packet

drop probability (which may also include congestion lo¥sgseasonable, and important.

V. MIMD P ROTOCOLS WITHBOUNDED WINDOW (SCALABLE TCP)

For the case of MIMD protocols, Scalable TCP being an impbreaample of such protocols,
the window evolution is described as follows. In case of rsslm intervalt, ¢t + A], the window
increases to

Tepn = (2 + oA+ o(A)) A M, 3)

for somea > 0 and an upper boundl/ on the window size. In case of a loss in interjiat + A],
the window decreases to
T = (633}) vV 1+ O(A),

wherel > ( > 0 is the multiplicative decrease constant. The natural loaerind ofx; > 1

packet applies.

A. Constant Loss Rate

It is clear now that the transformatiory — loéT“ = y; results in the proces$y,} having

linear increase profile. The transformed window after a gt in intervalit, ¢t + A] is given
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by
Yera = (e — 0)" +0o(A),

whered = k’—g() > (. The transformed procegsg; } can in itself be viewed as window evolution
under another AWP for whichy,,;, = 0 andH (y) = y+6. Clearly, one can obtain the stationary
distribution for the original procesgr;} from that of {y,}, hence it is enough to solve for the
stationary distribution of the proceds;} in order to get that for the procegs;}. Hence, in
the rest of this subsection we will work only with the procdgs}. As will be seen next, the
Kolmogorov equations for this process have some speciattsite which makes it easier to
solve.

Now, from the construction of the (virtually) bounded prssef Section II,G° = M = mf
andG! = (m — )0, G(u) = (u — 0)*. This system has simple up and down crossing rates for
0<y<(m-—1)8,

y+6

nly) = A wlwdu,

=Y
I'(y) = My +6) - 1(y)),
wherer(-) andIl(-) are the density and distribution functions respectivelytfe {y;} process.
Defining, for conveniencd],(y) = I1(k0 + y) for 0 <y < 6, we have
Proposition 1: For0 <k <m —1 and0 < z <6,
m—k—1 ()\ZL‘)

Z HkJrj ]'
Proof: See Appendix . °
Proposition 2: The constant$If(0) are given by

m—3

I, (0) = (@™ = 6i(m — 1)+ 3 (- S§¢S<Z><am“—¢l<m—z—1»+

(—=1)"*(a — b)pm—2(m — 2)] "
and for0 < k <m — 2,

M (0) = T,y (0)[(@™ ™" = gu(m =k — 1)) + (=1)" " *(a — b)pm-r—2(m — k — 2)

LY () S (@ = gy (m— k— L= 1))].

s=1 l=s
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with a = ¢* and ¢, (1) defined recursively asj,(0) = 0 and

I=j
Gin(l) =D di(s)gi(l —s), j>1.
Proof: See Appendix . = o

logM
o Yt

corresponds to the workload process of an M/D/1 queue witbumded workload capacity of

Remark For the above case whete,;,, = 1, the evolution of proces‘é’i—M - loéT“ =

ligc% and service requirement of for each customer. This is a system similar to that of [10]
with a difference that the model of [10] assumes that theornet that can make the workload
to exceed a certain fixed threshold is lost. While in our casdh @ customer is not completely
lost but is admitted with a service that makes the workloant@ss equal to the threshold. Thus
the above result is of independent interest in queueingryheo

Remark We can also easily incorporate another valuéef z,,;, # 1 in the above analysis.
As mentioned in Section IlI-A, if we assume tha,;,, = 0, the transformatiories! — losz:
corresponds to the workload process of a classical M/D/LiguEor this case the moments and
the stationary window size distribution are well known.

1) MIMD with Unbounded Window: A D/M/1 Queudssuming that)/ = oo, i.e., there
is no bound on the window size, we can not use the results fliooveadirectly in this case.
Another approach to obtain the stationary distributig) is to look at the proces§y,,,n > 0}
embedded just after the loss instants of the transformezkpsowith linear increase profilgy; } .
Let {a,,n > 0} denote the time between two successive losses. Khgh,is a continuous state

space Markov chain which is given by the recursive equation

Yn+1 = (yn + a, — 0)+ (4)

We note that the loss process is exponentially distributed with raté. Equation 4 is the
same as the recursive equation for the workload in/a//1 queue with interarrival timé and
mean service timé. The steady state distribution of P(y,, < y) can be obtained as [11]

51

A

wheres; is the root of the equation+ A = \e*/? in Re(s) < 0. The stability condition for the

Plyn >y) = (1 =), ®)

workload process of this D/M/1 queue (and, equivalently,tfee window size proces§y;}) is

1
0> 5.
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In order to obtain the distribution at a random arrival instave note that the window size

just before loss instany,, ,, is given by

yr7+1 = Yn + Qp.

Sincea, s are exponentially distributed with parameter

Py >y) = A/ Py, >y —a)eda
0

(9] "y
= )\/ e da + /\/ Py, >y —a)e da
Y 0

v
= e M4 A(1- ﬂ)e’sly/ e~ Aslegq
A 0

= e Y,

Using PASTA property, the window size distribution at a ramdtime is the same as that seen

by the loss arrivals. Sincg = 22, the window distribution at any random time is

«

Plxy >z)=2"= (6)

Remark This approach can also be used for bounded window process loks rate is large

enough so that the bound is attained with negligible prditabi

B. MIMD Protocols with Linear Loss Rates
For the case of MIMD protocols, the window evolution is désed as follows. In case of no
loss in intervallt, t + A], the window increases to (assuming no upper bound on windzey s
Tipn = Xy + arA + o(A), (7
for somea > 0. In case of a loss in intervat, ¢ + A], the window decreases to
Tipn = (B1) V1+0(A),

wherel > ( > 0 is the multiplicative decrease constant. The natural lobarnd ofz; > 1
packet applies.

The window is bounded below by a constraintagf;, packet. The window evolution under
such scenario is depicted in Figure 3. The figure shows tleatvihdow starts evolving from an
initial value of 1 packet. There are some multiplicative decrease of windomgwo random

losses. The vertical axis is shown to be divided into varimtisrvals I, = (B7F, 37%-1. Here
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Multiplicative Decrease

Fig. 3

WINDOW EVOLUTION UNDER MIMD PROTOCOL LIKESCALABLE TCPWITH A LOWER BOUND ON WINDOW SIZE.

£ < 1 is the multiplicative decrease factor. The significancehw#fse regions is that if a loss
event occurs when the window size is in interval, then the reduced window is in regidp.
The upper bound on is M = =™ for somem.

For this case the following Kolmogorov equations can be iobthfor z < 31,

m(x)ax = /

U=x

z

" (u)Audu,

u=

whereq is as in Equation 7. Denote now, by an abuse of notaﬁOﬁ,g. The above Kolmogorov

equation is then

==

m(x)x :/ ’ 7 (u) Audu.
Proposition 3: The steady state probability density function of the windore under linear
loss rate is given by, if: € I,,_i, k > 2,

Az

eﬁi—l

k
m(z) = MPy Y k)

= ap!

) are some constants obtained by normalisifig to get a probability measure arfdl,

Herec,;

is the probability mass at/.

Proof: See Appendix for expressions fét, and cﬁ’“). °
One is often interested in finding the moments of the windoacess. This can be obtained

easily without need to compute the coeﬁicieq@ as follows. We assume here tha},;,, = 0

and M = oo; this is expected to approximate the case when the upperaver lbounds are
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not attained frequently. The Kolmogorov equation obtaiabdve is multiplied byz'=t, 7 >0

to obtain

m(x)r! = ;15]‘—1/.“:E 7(u) \udu

x

= /.Oo m(x)aldr = /OO a:j_l/u:ﬁ 7(u) Aududz
T =0 U

=T

E[X) = /OO /u 2/ drm (u) \udu
u=0 Jzr=pLu

1
=X = T
Jj+1r ] i _ j! .

thus we get all the moments of the window size distributiore e from the above that the

tail of the window size distribution is exponentially decay and that all the moments exist.

V. HIGHSPEED TCP

HighSpeed TCP (HSTCP, [7]) updates the window in a rourglime according to the
following rules: In case of no loss in a round-trip time dgrwwhich the window size wag, the
window is incremented by a window dependent quantity, desthetw), so that the new window
size isw + a(w), and in case of a packet drop on a round-trip time, the windodecremented
by a window dependent factéfw) so that the new window size {d — b(w))w. The window

size is bounded by two values andw, and

_2w?b(w)p(w)
= T )
b(w) — 11;);(5&)) (b — br) + by,
log(%
p) = exp (15((#)) og(2) + logm)) ,

whereb, = b(wy,), by = b(w;), p = p(w;) andpy, = p(wy,) are design parameters.

It is suggested in [7] to seb;, = 31 andp, = }U—g Note that
1
p(w) = vw" (8)

where

S

:)
)

log(
a log(

2|

T (9)

T
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and

v = %}, b(w) = Alog(w) + B
by, — by
log(”;‘;’l’)’ I og(wi)

Sinceb, < b, A < 0 and sincew;, > w;, p, < p; = p < 0. We observe that, iz represents

the round-trip time, then

2w THb(w)v
2 — b(w)

This equation shows the importance of parameten understanding the behavior of HSTCP.

w(t+ R) =w(t)+a(w(t)) = w(t) + (10)

For example,

o i = —2 implies that HSTCP is similar to the standard AIMD algoritlwih TCP where in
each round-trip time, the window is incremented by a smallevdin this caseff(b% ~
vb(w)).

e i1 > —2 gives us a protocol whose window increment increases wighwiimdow, for
example, taking: = —1 implies that HSTCP is similar to Scalable TCP in behaviocsin
now the increment is approximately linear in window size.

This observation suggests need for care in tuning the HST&Rnpeters. It also implies the
possibility of existence of a choice of € (—2,—1) which is neither as aggressive as Scalable
TCP nor conservative as standard TCP. Now we analyse HSTSIPnasy thatA ~ 0 so that
the decrease factor is constant. Since the form of fundtjor) is a design choice (see [7]), this
form of b(w) can be chosen for simplicity of implementation. Further, thus choice ofb(w)

we can find the stationary window size distribution for thetpcol for different values of:

using the following method.

A. Constant Loss Rate

First observe that fob(w) = B, the increase profile of the protocol f§w) = %“’;“ and
assuming a constant loss ratéw) = A, the Kolmogorov equations are
wBwW*tH %
W(w)% - / " dm(u)du
which is rewritten as

2uv Bw?*tH B
mﬂ'(ﬂ)) = /u:w’YT(U)dU. (11)
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We now introduce a transformation, similar in spirit to wheds done in Section IV-A. This
requires splitting the possible values @finto various regions and using separate transforms in
each of these:

. p < —1: Define the proces$y,} whose value at instaritis
B AB — 2)
B 2wB(1 + p)w; ™
where, since: < —1, the procesgy;} is also non-negative. Now, the Kolmogorov equation

Yt

for the transformed proceds;} is
#y) = [ #u)du.
u=y
« = —1: corresponds to Scalable TCP, a case we have already studied
. p> —1: Define the proces$y,} whose value at instaritis
B A2 — B)
~ wB(1+ pw
where, since: > —1, the procesgy;} is also non-negative. Now, the Kolmogorov equation

Yt

for the transformed proceds;} is

#(y) = / ! #(u)du.

:yB(1+lL)
A further transformation ofy — 2z = yB!'*# gives another protocol for which the Kol-
mogorov equation is
.ny(leu)
B*a(y) = / A (w)du.
u=y

The end process thus obtained can be thought of as windowtewolunder standard AIMD

algorithm of TCP where the increase profil;) and the multiplicative decrease factor are

« f(z) =1 and multiplicative decrease factor 5 '**) < B < 1 wheny < —1,

« f(z) = B and multiplicative decrease factor B'+# < 1 when0 >y > —1,
and the loss rate seen by the process is constant, of unitimdependent of the process. The
closed form solution for the standard TCP controlled windawelution with constant loss rate

is known from [4] as this corresponds to the case of AIMD peotowvith constant loss rate.
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B. Linear Loss Rate

We now consider the case where the loss rate seen by the wipdmess depends linearly
on the process, i.eA(w) = Aw. The Kolmogorov equations for this system are

WBWH ¥
% = /B Aum(u)du

Defining another probability measuféw) by the transformation

m(w)

_ wr(w)
w0 = YW

on lines similar to that of Section 1ll, we see that the abownkogorov equation becomes

w

Qv BwltH _ /B
- 7(w) =
(2—-B) u

Which is of the form of Equation 11 with + p replacing2 + p. Thus the method used to

7(u)du.

=w

solve Kolmogorov equations 11 can be employed here as wepaiticular, the above system
of equations can be transformed to the one satisfied by sthAMD protocol and results
from [4] can be invoked.

Remark The analysis of this section assumes that the multipliead®ecrease factor is constant,
equal to B. Though this assumption restricts the range of parameteicefi we can make in
order to tune HSTCP, the analysis gives important insightts dynamics of HSTCP controlled
window evolution, for example, the importance of parameteAn approximation similar to
ours has also been used in [13] to study router buffer bebhawinder HSTCP controlled data

transfer.

VI. NUMERICAL RESULTS

We obtained time average density of the window process fist[14] simulations for AIMD
protocol with constant loss rate and MIMD protocol with lamdoss rate. The multiplicative
decrease facto = 0.5 for both the protocols and the loss rate, for AIMD protocol was
set to either0.005 or 0.008. The MIMD protocol had an increase profile @f,(x) = 1.01z as
in Scalable TCP while the AIMD protocol haf},(z) = 1. The loss rate for MIMD protocol
was A(z) = A,z where )\,, was chosen so that the conditions of Theorem 1 were satisfied.
This requirement is satisfied X,, = 0.01),, i.e., \,, = 0.00005 or 0.00008. Figure 4 gives the
function ,, (z) for MIMD and “/«£7(2) where( is 2=£=Xl with £,,[X] being the expected
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Fig. 4
COMPARISON OF TIME AVERAGE DISTRIBUTION FORMIMD WITH LINEAR LOSS RATE AND FORAIMD WITH CONSTANT

LOSS RATE

window size for MIMD protocol obtained from simulation. Thiesults are as predicted by
Theorem 1, i.e.m,(z) = %’:[X}, Vz. For the same experimental setup, we also obtained
the distribution of window sizes just before losses. Thailtssare plotted in Figure 5 which
shows that, in agreement with Theorem 2, this distributsosame for the two systems. Now, we
compute the numerical values from our analysis of SectieB B&hd compare it with simulation
results of Figure 4 for MIMD with linear loss rate. Figure 6vgs the comparison between
analysis and simulations. Since the density function isaaly plotted in Figure 4, here we plot
the (E[X™])= vs.n for 1 < n < 10. The analysis and simulations are seen to match well for
smaller values of (< 6); the small discrepancy for large valuesrottould be owing to finite
simulation run-length.

Figure 7 gives complementary distribution function of thatisnary window process for
HSTCP assuming that the multiplicative decrease fattor) is fixed to a constant valu®.

Recall the parameterd, B, i and v of Section V. We fixA = 0, B = 0.125 and v so that
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Fig. 5
WINDOW SIZE DISTRIBUTION JUST BEFORE LOSS INSTANTS FORIIMD WITH LINEAR LOSS RATE AND FORAIMD WITH

CONSTANT LOSS RATE

2By
2—B

results for values of the parameter= —0.9,—1.0, —1.2. In order to do this, we varied the

0.01 so that the case gf = —1 corresponds to the Scalable TCP [6]. The plot shows

parameterg, andp, accordingly. The figure also gives numerical results from amalysis of
Section V. It is observed from the figure that one can appratenany increase function only
by varying 1 while keeping the multiplicative drop factdr(w) constant. This simplifies the
algorithm as now there are not many independent design ehaind, moreover, the analysis of
Section V combined with that of [4] provides closed form fesor the stationary distribution.
We also note that the distribution is very sensitive to thieieaf the parameten.
VIlI. CONCLUSION

We considered a general congestion control protocol wittate slependent loss probability.
The Kolmogorov equations satisfied by the window evolutiowler this general setting were
obtained. These equations were solved for specific TCP mmgations of Scalable TCP

and HighSpeed TCP under constant and linear loss rate aisaspvarious transformations

DRAFT



24

700

Sim, p=0.00008  + ' ! ! '
Anal, p=0.00008 < ual
600 |- Sim, p=0.00005 * O 1
Anal, p=0.00005 O = *
(] *
L | * _|
500 _ ” %
* X
= X
:f'/ 400 | = < + _
= b %
'._% 300 ™ * -
~—" B X
x
200 x —
X
100 —
O 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
n
Fig. 6

FIRST10 MOMENTS FORMIMD WITH LINEAR LOSS RATE.

introduced provided us with many equivalence relations.stiVgignificant being that of the
relation between window evolution and the workload process finite capacity queueing
system with state dependent service and arrival rates atateadependent deterministic service
requirement.

We have assumed that the loss raté,), is a given function. This may be the case in the
applications using AQM schemes and where congestion laasesare. This may also be the
case when using very high speed links so that the packetslasse round trip time are due to
link layer losses. However, when most of the losses are owangpngestion losses, it appears
to be more realistic that the form of(-) will itself be determined by the AWP. Also, it is
possible that, like in model of [12], the loss process) may itself be a stochastic process.
These considerations are topic of further research.

In the analysis of HSTCP we have chosen a multiplicative e algorithm with window
independent decrease factor. We now aim at using some apyations for the evolution of the

window process using the drop profile suggested in [7]. I1i$® anportant to study an optimal
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WINDOW SIZE DISTRIBUTION FORHSTCPWITH LINEAR LOSS RATE.

choice of the parameter that controls the behaviour of HSTCP.

APPENDIX

Consider an application using a general Adaptive Winodwtdea. The evolution of the

window size{z;,t > 0} at the end of the round trip times (RTT) is as follows:
2(t + RTT) = (x(t) + I (z)) L@w)=0p + (@) + L(z(t) — D(@(t) + r(z@) L@w)=1}-

Here,

« RTT is the round trip time (assumed to be constant, correspgndiits average value).

« L(z) is a{0,1} valued random variable which is there is no loss in an RTT starting
with a window size ofr and takes value of when there is a loss in an RTT starting with
window size ofz. It is assumed that some form of the distributionidf) is given to us.
An example of distribution of.(-) is that P(L(xz) = 1) = 1 — P(L(x) = 0) = pz as used
in [8].
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« I(z) is the amount by which the window size increases in event ofose in an RTT
starting with a window size of. For the congestion avoidance phase of standard TCP,
I(z) = 1. In this work we are assuming thé{z) << z. Note that this assumption need
not be valid in general, for example in case of slow start plesstandard TCH(z) = x.
However, in the protocols studied in this paper, this is edl&ue.

« D(z) is the amount by which the window is reduced in case of an evkatloss when
window size isz. Note thatD(z) is not the window reduction in event of a loss in an
RTT starting with a window of z. For the congestion avoidance phase of standard TCP,
D(x) = 0.5z.

« r(z) is such thatr + r(x) < x + I(x) is the window size at the instant of detection of loss
event. In general;(x) will be a random variable over the intervidl, I(z)].

« [;(x) is theincreasein window size due to positive acknowledgements in an RTTteNo
that /;(z) is a random variable over the intervél 7(x)]. I;(x) = I(x) in the event of no
loss.

To avoid consideration of randomnessrifx) and [;(x), we have neglected(z) completely in

the evolution (see [8] which also makes such an implicit aggion in the evolution equation).
This can also be justified using our assumption that) << x. We will also assume that
I)(xz) =~ I(z). This is true in the situation when not many packets are losini RTT. Hence we

get the following approximation for the window evolutionenRTTs,
2t + RTT) = (x(t) + L(x()) (1 = r@e=1y) + (@) + 1(z(t)) = D(@(6)) [{L@w)=1)-

This evolution equation coincides with the approximatiérj8 when we assumé(z) = 1 and
D(z) = 0.5z. We then obtain,

2t + RTT) — a(t) = I(2(t)) + D(x()) [zwoy-y-

Normalizing time by RTT, and observing théf;.«)-1; is a {0,1} valued random variable,
we Following the approach of [8], we approximate the distiitn of L(x(¢)) by that ofd N (t),
where {N(t),t > 0} is a Poisson Process with a time varying stochastic ratetibmdahat

depends on the value of the window sizg). We get the stochastic differential equation

dx(t) = I(z(t))dt + D(x(t))dN(t).
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It is seen that the Kolmogorov equation can be written askfarm — 2:

I(y) = AMa(y) — Hi(y))
d%ﬂk(y)&y = XMy (y)

y
ML (y) = A _0+6A“1H;§+1(u1)du1+ﬂk(0)

y
= )\ 0 6>\u1Hk+1(U1)dU1 +Hk(0)
u1=0+

Yy u1l
— {A / 0 eA“2ﬂk+2(u2)du2+Hk+1(0)} duy + T, (0)
u2=0+

w1=0+
Y ul u2
= A )\/ )\/ GAUSHk+3<U3)dU3 -+ Hk+2<0)] dUQ + Hk+1(0) dU1
u1 =0+ u2=0-+ u3=0-+
+11;(0)
A u i1 i1 bYNY
=\ /y / ' .. / e)‘“inH(ui)dui . cdusduy + Z H]H_j(O)Mfor k+1<m-—1.
u1=04+ Jus=0+ u; =0+ =0 ]'

In particular, fori = m — k — 1, we get

Ay _ m—k—1 [ “ tm—k—2 AUy — 1
e Hk<y) = )\ e e Hm,1<um,k,1)dum,k,1 e du2du1
u1=04+ Jus=0+ Upy—f—1 =04+

m—k—2 7
+ > Hk+j(0)(>j]fy,)- (12)
j=0 :

For (m — 1)0 < y, the up and down crossing rates are equated as follows:

'y = A 7(u)du

u=y-+

M'(y) = A1-T(y))

Ii(y) = A1 = Ihna(y))
G%Hm_l(y)e)‘y = eV
Y
I, 1 (y)e™ = AeMdu + I, (0)
u=0

= N —1+11,,(0).
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Substituting this in Equation 12, we get,
e)‘ka(y) = Nk 1/ / / o eNm—k=tdy, 1. dugdug
u1=04+ Jua= 0+ U — —1=04+
Ly Ay Q)
H 0
+ 23 SEA i al Py o

—k—1 j
— eV (1- Hk+j(0))(Aj?/!) . (13)

Now, noting thatll,(0) = I1,_,(#) and thatlI(0) = II,(0) = 0, and integrating the above, we
get a value oflI((m — 1)#). T1(0) = I1o(0) = 0 because in any visit to this point, the window
instantaneously attains a positive value with probabilityecause of constant window increase
rate and since otherwise we would require uncountably mamgsBn instants occurring in a
continuum of time.

The original system of MIMD can be obtained by the reversadi@mation. Proposition 1
thus follows. o

We know from Equation 13 that

m—k—1 j
)
M (y E:Hm;(ﬁ) k<m—2

Let £}, = HC(O). From continuity ofII(-), it follows that

Fk+1 — 1 - Hk+1(0) — 1 - Hk(@)

Thus,
m—k—1 j
AL
M = FkJer
=0 J
m—k—1 b
= F, = aFjpa— Y, FkJera E<m—2,
= :

whereb = \d anda = ¢’. The above relation can be applied again to get

m—k—1 b]
Fp = aFyi— Y, Frvj—
=1 J:
m—k—2 j m—k—1 j
v b
= CEQFHQ—G Z Fk+1+j._'_ Z Fk+j7
j=1 J: j=1 J:

-1 m—k—1-—s
b
— aleH—Za Z F,Hsﬂj', I<m-—-k—1,(k+1—-1<m-—2)
s=0
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where g, (1) 2

m—k—2

am—k‘—lFm_l _ as

£k

mleml_ Fk

k-
Z
m—k—1
>
=1

m—k—1
a" "R, — Z Fraoa(1)
=1

(am—k—l

o1(m—k—1))

v
st
++]j'

b

a

2
Fro (1)

)

=1

b). Using Equation 14 again, we get, fbr<m — 3,

m—k—[—1

m—k—2
Fo= (@ —m—k—=1))Fpa— Y a1(D(a
=1
m—k—[—2
Z Fioi4501(5)]
s=1
m—k—2
= Fpal(@™™* 7 =gim—k—=1) = > eu(D)(@"
=1
m—k—2 m—k—[1—2
»1(1) Z Fry14501(5)
=1 s=1
m—k—2
= Fpal(@™ " —dim—k—=1)— Y (D@
=1
m—k—3 m—k—[—2
¢1(l) Z Fk+l+s¢1(8)
=1 s=1
m—k—2
= Fual(@ ™ = di(m —k—1)) - O Ci—
m—k—2 -
Fk+lz¢1 (I = s)pi(s)
=2
m—k—2
_ Fm_l[(am—k—l _¢1(m_k_ 1)) o Z ¢1(l)(am k—1—1
=1
m—k—2
Fi192(1)
=2
m—k—2
= Fua(@" ™ = di(m —k - 1)) - O
=1
m—k—2

Sa(D](a™ 7 -

gbl(m —k—-1- 1))Fm—1 -

_k—

29

(14)

22:1 al% is independent ok. Note thatp,(1) = b, implying F,,,_» = F,,,_1(a —

—Gu(m—k —1—1))Fpy —

T —pm—k—-1-1))]+

-2

Fii4501(5)]
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m—k—2
= Fua@ T = gim— k1)) = S Gi@ T = g m— k=1 — 1)) +
=1
m—k—2 m—k—2 m—k—[—2
S(@ T — g m— k=11 = > 6al) X Frarrsta(s)
=2 =2 s=1
m—k—2
= Fual(@ ™ =dilm—k=1) = > 0@ —gi(m—k-1-1))+
=1
m—k—2 m—k—3 m—k—[—2
Go(D)(a™ M =i (m —k —1—1))] - G2(l) D Frrrsti(s)
=2 =2 s=1
m—k—2
= Fual(@ "t = di(m -k 1)) - G1(D) (@™ =gy (m —k =1 - 1)) +
=1
m—k—2 m—k—2
Go(D)(a™ 1 = pi(m— k=1 -1))] - Flet Z Pa2(l = ) (s)
1=2 =3
m—k—2
= Fual(@ ™ =ditm—k=1) = > 0@ —gi(m—k-1-1))+
=1
m—k—2 m—k—2

Go(1) (@™ — gy (m — k=1 —1)) Z Fres(l)

j m—k—2
— Fal@ T = gilm— k- 1)+ Y1 S GO @ = gy — k- 1))+
s=1 l=s
m—k—2
(=17 > Fengjm(), j+1<m—k—2
I=j+1
m—k—3 m—k—2
= Fual(@ ™ =dilm—k=1))+ Y (=1)° > o()(@" " —gi(m—k—1-1)]+
s=1 l=s
(_1)mik72Fm—2¢m—k—2(m — k- 2)
m—k—3 m—k—2
= F = Fpal(@™ " = gim—k—1)) + (=1 > oD@ = gi(m =k —1—1)) +
s=1 l=s

(=1)"™ " 2(a = b)pm—k—2(m — k — 2)].
Here,

¢j+1(l) Z%l—sqﬁl() j>1.

The above expression fdf is valid for k£ < m — 2 if we define¢y(0) = 0. Now, sinceF;, = 1,

we see that
1 = Ep (@™ = ¢ (m—1))+ Z 1)* 3 os()(@™ " = gi(m—1-1)) +
(=)™ 2(a = b)pm—a(m — 2)]
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m— 3 m—2

Fooa = [(@ —¢i(m—1)) + )° Z ds() (@™ —gr(m—1—1)) +

5:1

(=)™ *(a = b)pm-—2(m — 2)]

This proves Proposition 2. °

Forx € I,,_x, kK > 2, We get the following Kolmogorov equation

fu%:xw(u))\udu 2 € L, k> 2,
m(x)r =
JM- w(u)dudu + PyAM x € Ly .

Let E[X] = [M, n(x)zdz + Py M. Dividing both sides of the above Kolmogorov equation by

E[X] and definingf (z) = 48 and Py, = 224, we get

BlX]
) Jile 7 (u)Adu 2 € Ly, k> 2,
7(x) = e
fu T ( ))‘du+P]M>\ ZEEIm_l.

This is the Kolmogorov equation for AIMD protocol under ctargt loss rate analysed in [4].
The difference is that here the slope of linear increase ity umstead of the parameter in [4].
We know from [4] that the solution to above Kolmogorov eqoasi is (the complementary

distribution function)

~ icgk))\
M
= ﬁz—l
where
(k—1)
B =
41 1 o ﬁ_l
and -
C( AMBE i (k=1) ,~AMpH— ch) _AMBk- 1
=1
and
_ k—i
Py = [ Ek) AMB ]
=1
Hence, forz € 1,,,_y, N
k ( )\ 6 ﬁ27
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and

[1°(x) = /M m(u)du + Py

U=x

M gr—1
- / m(w)du + TIE(MB)

U=x

C

_ k ))\ MBk-1 —l‘ﬁ
= PuEIX)Y S5 [ e (M)
=1

U=x

k

E (k)
- A A MM
= PyFE[X] — (0, —, —
; ﬁz 1 ﬁz 1 ﬁz k
. N EeN L MA M
I (Mﬁk) = PME[X]; Bi-1 F(ﬁiflfk’ﬁifk

Where I'(0,a,b) = [, e%dt is the difference of the upper incomplete Gamma functions,
(0,a,b) = T(0,a) —T'(0,b) whereI'(0,a) = [, <~dt. Now,

(
(

)+ (M BF)

)+ II(MBF ).

M(MB) = PyE[X]cVAT(0, MAS, MA) + Py
E[X]

= PyE[X]AVAD(0, MAS, M) + pMT'

Thus we findII¢(M3*), k > 1 in terms of E[X] since we know the other quantities in the
above expressions. Now, sin€E(1) = II°(M ™) = 1, we get the value o[ X], hencer(-)

for all values ofz. Proposition 3 thus follows.
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