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Abstract For the past ten years, many authors have focused
their investigations in wireless sensor networks. Different
researching issues have been extensively developed: power
consumption, MAC protocols, self-organizing network al-
gorithms, data-aggregation schemes, routing protocols, QoS
management, etc. Due to the constraints on data process-
ing and power consumption, the use of artificial intelligence
has been historically discarded. However, in some special
scenarios the features of neural networks are appropriate to
develop complex tasks such as path discovery. In this paper,
we explore and compare the performance of two very well
known routing paradigms, directed diffusion and Energy-
Aware Routing, with our routing algorithm, named SIR,
which has the novelty of being based on the introduction of
neural networks in every sensor node. Extensive simulations
over our wireless sensor network simulator, OLIMPO, have
been carried out to study the efficiency of the introduction
of neural networks. A comparison of the results obtained
with every routing protocol is analyzed. This paper attempts
to encourage the use of artificial intelligence techniques in
wireless sensor nodes.
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1 Introduction

In recent years technological advances have made the man-
ufacturing of small and low-cost sensors economically and
technically possible. These sensors can be used to mea-
sure ambient conditions in the environment surrounding
them. Typically, wireless sensor networks (WSNs) contain
hundreds or thousands of those sensors nodes. Due to the
sensor features (low-power consumption, low radio range,
low memory, low processing capacity, and low cost), self-
organizing network is the best suitable network architecture
to support applications in such a scenario. Goals like effi-
cient energy management [27], high reliability and availabil-
ity, communication security, and robustness have become
very important issues to be considered.

Many research centers worldwide (specially in Europe
and USA) have focused their investigations on this kind of
networks. Akyildiz et al. [2] and Karl and Willig [14] have
made great efforts to describe the state-of-the-art of this sub-
ject. One of the latest research lines in WSNs is called path
discovery. There are many approaches which deal with this
issue. However, due to the sensor constraints, the design of
the routing algorithm has to consider the quality of service
(QoS) provided to the applications, in order to improve the
related goals. In this sense, the use of distributed artificial in-
telligence (AI) techniques in WSNs offers an alternative way
to route data through the network. Typical applications like
monitoring and activity recognition can be enhanced with
this strategy. In this paper we present a new routing algo-
rithm which introduces artificial intelligence techniques to
measure the QoS supported by the network.

This paper is organized as follows: in Sect. 2, we relate
the main routing features that we should consider in a net-
work communication system. A description of the defined
network topology is given. Section 3 introduces the use of



Fig. 1 Event transmission from
a source to a sink

neural networks in sensors for determining the quality of
neighborhood links, giving a QoS model for routing proto-
cols. The performance of the use of this technique in existing
routing protocols for sensor networks is evaluated by simu-
lation in Sect. 4. Concluding remarks and future works are
given in Sect. 5.

2 Designing the network topology

The WSN architecture as a whole has to take into ac-
count different aspects, such as the protocol architecture;
Quality-of-Service, dependability, redundancy and impre-
cision in sensor readings; addressing structures, scalability
and energy requirements; geographic and data-centric ad-
dressing structures; aggregating data techniques; integration
of WSNs into larger networks, bridging different communi-
cation protocols; etc.

The protocol stack proposed by our research group is
based on the OSI model. In the lower layers we can use
the well known IEEE wireless sensor network standard
802.15.4 or our own protocol Arachne [6]. In the upper lay-
ers there are other protocols, such as transmission clock to
base station, ping, data aggregation, and our SIR protocol.

If an application is able to perform at an acceptable level
using data from a number of different sensors set, like a typ-
ical SCADA application [17], we would schedule the sets
so as to maximize the sum of the time that all sensor sets
are used. Acknowledging the impact that route selection will
have on the network lifetime, we could determine route se-
lection in conjunction with the sensor schedule. In general,
the routes should be chosen so that nodes that are more criti-
cal for use as sensors are routed around as often as possible.
Many authors have studied this problem [3, 20]. In this sec-
tion, we model this scenario in which sensors are working,
and in Sect. 3 we formalize the routing algorithm, SIR, pro-
posed to solve this problem.

Due to the desire to cover a large area, a communication
strategy is needed. There are many studies that approach the

problem of high connectivity in wireless ad hoc networks
[4, 9, 22, 25]. In our research we consider a random distrib-
ution of sensors, as depicted in Fig. 1.

In this scenario, every node has a radio transmitter power
and a radio receiver sensibility, which defines an average ra-
dio range. There are several network routing protocols pro-
posed for wireless networks that can be examined in the
context of wireless sensor networks. Two basic paradigms
are minimum-transmission-energy multi-hop routing proto-
col and direct communication. Under a direct communi-
cation protocol, each sensor sends its data directly to the
base station. If the base station is far from the nodes, direct
communication will require a large amount of transmitting
power from each node. This quickly drains the battery of the
nodes and reduces the network lifetime. Under a minimum-
transmission-energy routing protocol, the nodes route data
to the base station through intermediate nodes. Thus, some
nodes act as routers for others nodes’ data. The problem is
how to elect the intermediate nodes, i.e., the final objective
is to minimize the global energy consumption.

In general, routing in WSNs can be divided into flat-
based routing, hierarchical base routing, and location-based
routing. In this paper we study networks where all nodes
are supposed to be assigned equal roles or functionalities. In
this sense, flat-based routing is best suited for this kind of
networks.

Among all the existing flat routing protocols, we have
chosen directed diffusion and Energy-Aware Routing (EAR)
to evaluate the influence of the use of AI techniques.

In directed diffusion [11], sensors measure events and
create gradients of information in their respective neighbor-
hoods. The base station request data by broadcasting inter-
ests. Each sensor that receives the interest sets up a gradient
toward the sensor nodes from which it has received the in-
terest. This process continues until gradients are set up from
the sources back to the base station.

EAR [23] is similar to directed diffusion. Nevertheless it
differs in the sense that it maintains a set of paths instead
of maintaining or enforcing one optimal path at higher rates.



These paths are maintained and chosen by means of a certain
probability. The value of this probability depends on how
low the energy consumption that each path can achieve is.
By having paths chosen at different times, the energy of any
single path will not deplete quickly.

3 Introducing neurons in sensor nodes

The necessity of connectivity among nodes introduces the
routing problem. In a WSN we need a multi-hop scheme to
travel from a source to a destination. The paths that the pack-
ets have to follow can be established based on a specific cri-
terion. Possible criteria can be a minimum number of hops,
minimum latency, maximum data rate, minimum error rate,
etc. For example, imagine that all the nodes desire to have a
path to route data to the base station.1 In this situation, the
problem is solved by a technique called network backbone
formation.

Our approach to enhance this solution is based on the in-
troduction of artificial intelligence techniques in the WSNs:
expert systems, artificial neural networks, fuzzy logic and
genetic algorithms. Although there are many authors who
have proposed the introduction of different AI techniques
in several applications over WSNs [13, 24, 26], only a few
(e.g. [1]) have considered the possibility of implementing
an AI technique inside a sensor node. Due to the processing
constraints we have to consider in a sensor node, the best
suited, among all these techniques, is the self-organizing-
map (SOM). This kind of artificial neural network is based
on the self organization concept. A description of our SOM
approach is detailed in Sect. 3.3.

3.1 Network backbone formation

The network backbone formation is a problem that has
been studied in mathematics as a particular discipline called
Graph Theory, which studies the properties of graphs.

A directed graph G is an ordered pair G := (V ,A) with
V , a set of vertices or nodes, vi , and A, a set of ordered pairs
of vertices, called directed edges, arcs, or arrows.

An edge vxy = (x, y) is considered to be directed from x

to y; where y is called the head and x is called the tail of the
edge.

In 1959, E. Dijkstra proposed an algorithm that solved
the single-source shortest path problem for a directed graph
with nonnegative edge weights.

In our wireless sensor network we assume that all the
links are symmetrical, in the sense that if a node A can reach
a node B , then the node B can reach the node A. With these

1In WSN, we often consider two kind of nodes, base stations and sen-
sor nodes. There is usually only one base station.

Table 1 Network backbone formation algorithm

Step 1: Set up phase:

d(r) = 0

d(vi) =
{

wri if vi ∈ �(r)

∞ if vi /∈ �(r)

�p(vi) =
{

r if vi ∈ �(r)

0 if vi /∈ �(r)

Step 2: Find a vj ∈ T such as d(vj ) = min{d(vi)|vi ∈ T }
Do T = T − {vj }

Step 3: ∀vi ∈ T ∩ �(vj ) calculate ti := d(vj ) + wji

If ti < d(vi) do d(vi) = ti

Step 4: If |T | > 0 go to step 2

If |T | = 0 stop

kinds of links, we can model our network as an undirected
graph G := (V ,E).

We propose a modification on Dijkstra’s algorithm to
form the network backbone, with the minimum cost paths
from the base station or root, r , to every node in the network.
We have named this algorithm Sensor Intelligence Routing,
SIR [7]. In Dijkstra’s algorithm the graph has arrows and
in our modification the graph has edges. Every edge be-
tween nodes vi and vj has a weight, wij , and we assume
that wij = wji . The distance from the base station to a node
vi is named d(vi). The set of nodes which are successors
or predecessors of a node vi is denoted by �(vi), and can
be defined this way: �(vi) = {vj ∈ V | (vi, vj ) ∈ E}. If we
denote a path from the root node to a node vk by p, we can
define �p(vj ), if vj ∈ p, as the subset of nodes which are
predecessors or successors of node vj .

We also assume that V = {r, vi}i and that there is a sub-
set of V , T , defined as T := V − {r}. Furthermore, we can
denote T as the complementary set of T , T = {r}.

With this terminology, our algorithm can be described as
detailed in Table 1.

In the first step, every node is assigned an initial cost to
get to the sink. In the following steps this cost is updated
depending on the neighborhood. The algorithm ends when
there is no more possible updates.

3.2 Quality of service in wireless sensor networks

Once the backbone formation algorithm is designed, a way
of measuring the edge weight parameter, wij , must be de-
fined. On a first approach we can assume that wij can be
modelled with the number of hops. According to this as-
sumption, wij = 1 ∀i, j ∈ R, i �= j . However, imagine that
we have another scenario in which the node vj is located in a
noisy environment. The collisions over vj can introduce link
failures, increasing power consumption and decreasing reli-
ability in this area. In this case, the optimal path from node
vk to the root node can be p′, instead of p. It is necessary to



modify wij to solve this problem. The evaluation of the QoS
in a specific area can be used to modify this parameter.

The traditional view of QoS in communication networks
is concerned with end-to-end delay, packet loss, delay varia-
tion and throughput. Numerous authors have proposed ar-
chitectures and integrated frameworks to achieve guaran-
teed levels of network performance [5, 21]. However, other
performance-related features, such as network reliability,
availability, communication security and robustness are of-
ten neglected in QoS research. The definition of QoS re-
quires some extensions if we want to use it as a criterion to
support the goal of controlling the network. This way, sen-
sors participate equally in the network, conserving energy
and maintaining the required application performance.

What is sensor network QoS? Ranjit Iyer and Leonard
Kleinrock proposed in [12] a definition of sensor network
QoS based on sensor network resolution. They define res-
olution as the optimum number of sensors sending infor-
mation toward information-collecting sinks, typically base
stations. James Kay and Jeff Frolik defined sensor network
QoS in terms of how many of the deployed sensors are ac-
tive [15]. The same idea is discussed in [18] by Mark Perillo
et al., and in [19] by Veselin Rakocevic et al.

We use a QoS definition based on three types of QoS pa-
rameters: timeliness, precision and accuracy. Due to the dis-
tributed feature of sensor networks, our approach measures
the QoS level in a spread way, instead of an end-to-end par-
adigm. Each node tests every neighbor link quality with the
transmissions of a specific packet named ping. With these
transmissions every node obtains mean values of latency, er-
ror rate, duty cycle and throughput. These are the four met-
rics we have defined to measure the related QoS parameters.

Once a node has tested a neighbor link QoS, it calculates
the distance to the root using the obtained QoS value. The
expression (1) represents the way a node vi calculates the
distance to the root through node vj , where qos is a variable
whose value is obtained as an output of a neural network.
This tool is described in Sect. 3.3

d(vi) = d(vj ) · qos (1)

According to this strategy, data from source nodes travel
through dynamic paths, avoiding the region with the worst
quality of service levels.

3.3 SOM: self-organizing map

One of the most powerful mechanism developed in AI is the
Self-Organizing Map (SOM) model [16], created by Teuvo
Kohonen in 1982, at the University of Helsinki, Finland.

SOM is an unsupervised neural network. The neurons
are organized in an unidirectional two layers architecture
(Fig. 2). The first one is the input or sensorial layer, formed

Fig. 2 SOM architecture

by m neurons, one per each input variable. These neu-
rons work as buffers distributing the information sensed
in the input space. The input is formed by stochastic
samples x(t) ∈ Rm from the sensorial space. The sec-
ond layer is usually formed by a rectangular grid with
nx × n′y neurons.2 Each neuron (i, j) is represented by an
m-dimensional weight or reference vector called synapsis,
w′

ij = [w′
ij1,w

′
ij2, . . . ,w

′
ijm], where m is the dimension of

the input vector x(t). The neurons in the output layer—also
known as the competitive Kohonen layer—are fully con-
nected to the neurons in the input layer, meaning that every
neuron in the input layer is linked to every neuron in the
Kohonen layer. In SOM we can distinguish two phases, the
learning phase (also called training process) and the execu-
tion phase (also called mapping process).

The learning phase has a high computational cost. This
is the reason why the training process must be implemented
over a central data processing unit, such as a personal com-
puter (offline processing). Contrary to this, the execution
phase doesn’t imply a high computational cost, as we de-
scribe in Sect. 3.3.2. Thanks to this feature, this phase can
be implemented on every sensor node (online processing).
This is the main goal of our work.

3.3.1 Learning phase

In this phase, neurons from the second layer compete for
the privilege of learning among each other, while the correct
answer(s) is (are) not known. This implies that for a certain
input vector, there is only one neuron that gets activated. To
determine which neuron is going to be activated, the input
vector is compared with the vector that is stored in each of

2Although this architecture is the most customary in SOM, sometimes
it is used layers with only one dimension (linear neuron chain) or with
three dimensions (parallelepiped) [16].



the neurons, the so-called synaptic-weight-vectors. Only the
neuron whose vector most closely resembles the current in-
put vector dominates, d(w′

g,x) = minij {d(w′
ij ,x)}. Conse-

quently, the weights of the winning neuron and its neighbor-
ing neurons are updated by a neighborhood function. This
training is called competitive learning.

3.3.2 Execution phase

In this phase the weights are declared fixed.
First, every neuron (i, j) calculates the similarity be-

tween the input vector x(t), {xk | 1 ≤ k ≤ m} and its own
synaptic-weight-vector w′

ij . This function of similarity is
based on a predefined similarity criterion.

Next, it is declared a winning neuron, g = (g1, g2), with
a synaptic-weight-vector, w′

g , similar to the input x. Every
node implements a SOM as a C++ function (Table 2). The

Table 2 Implementation of the winning neuron election in C++
int WinnerNeuron(float ∗x)

{

float d2 = 0; % distance ˆ 2

float d[12];

% distance between input and

every neuron weight

for (int m = 0; m < 12; m++)

d[m] = 0;

for (int i = 0; i < 12; i++)

{

d2 = 0;

for (int j = 0; j < 4; j++)

{

float aux = IW[i][j] − x[j];

% IW[i][j] is the input weights matrix,

% obtained in the learning phase

d2 += aux∗aux;

}

d[i] = sqrt(d2);

}

float aux = d[0];

int neuron = 1;

for (int n = 0; n < 12; n++ )

{

if (aux > d[n])

{

aux = d[n];

neuron = n + 1;

}

}

return neuron;

}

SOM is formed by a set of clusters of neurons with sim-
ilar features. This set of neurons and its relationships are
described by a matrix (e.g. IW).

SOM gives an output denoted by qos. This value is re-
turned by a function � defined by the SOM user, according
to its aims. � depends on the winning neuron: qos = �(g).
In Sect. 4.3 we define this function.

4 Performance evaluation by simulation

Due to the desire to evaluate the SIR performance, we have
created three simulation experiments running on our wire-
less sensor network simulator OLIMPO [6]. Every node in
OLIMPO implements a neural network (SOM) running the
execution phase detailed in Table 2 (online processing). As
we can see in this table, the implementation of this algorithm
over a real node is easy to develop and it doesn’t imply a
high computational cost.

4.1 Radio channel analytical performance evaluation

In order to accurately model the sensor networks, the wire-
less channel is equipped with certain propagation models
which allows sensors to determine the strength of the in-
coming signal. These models are integrated in the channel
object of the simulation tool.

For the purpose of this research, the values shown in Ta-
ble 3 have been considered.

In this scenario, two sensor nodes attempting to establish
a radio communication link can be 218 meters separated.3 In
our simulations we have assumed that the distance between
every pair of sensor nodes is set up randomly, as shown in

Table 3 Values of radio communication parameters

Resonating frequency:† 869.85 MHz

Number of radio channels:† 1

Radio transmitter power: Pt = 5 mW

System loss L = 1

Modulation: FSK

Input noise power density Nin: −174 dBm/Hz

Communication bandwidth† B: 0.5%

Antenna gain:‡ Gr = 1, Gt = 1

Radio receiver sensibility: Ps = −101 dB

Path loss exponent: n = 2

Transmission rate, R: 4800 b/s

Noise figure (NF)dB: 10 dB

†
Based on licensed free standard ETSI EN 301 291

‡
Antennas are assumed to be omnidirectional

3According to free space propagation model [8].



Fig. 1. We have focused our simulation on a wireless sensor
network composed by 250 nodes.

4.2 Noise influence

Noise influence over a node has been modelled as an Ad-
ditive Gaussian White Noise, (AWGN), originating at the
source resistance feeding the receiver. According to the ra-
dio communication parameters detailed in Table 3 we can
determine the signal-to-noise ratio at the detector input
with (2), [8], S/Nd = 26.7 dB. This signal-to-noise ratio
can be expressed as an associated BER (Bit Error Rate).4

If S/Nd is less than 26.7 dB the receiver can not detect any
data on air. An increase of the noise can degrade the BER.
In another way, due to the relation between Eb/No and the
transmission rate (R), Eb/No = (S/R)/No, an increase of
R can also degrade the BER

(Ps)dBm = (Nin)dB + (NF)dB + (10 logB)dB + (S/N)d

(2)

To evaluate the effect of noise we have defined a node
state declared as failure. When the BER goes down below
a required value (typically 10−3) we assume that this node
has moved to a failure state. We measure this metric as a per-
centage of the total lifetime of a node. In Sect. 4 we describe
two experiments according to different percentages of node
failures.

4.3 SOM creation

Our SOM has a first layer formed by four input neurons, cor-
responding with every metric defined in Sect. 3.2 (latency,
throughput, error rate and duty cycle); and a second layer
formed by twelve output neurons forming a 3 × 4 matrix.

Next, we detail our SOM implementation process.

4.3.1 Learning phase

In order to organize the neurons into a two dimensional
map, we need a set of input samples x(t) = [latency(t),
throughput(t ), error-rate(t ), duty-cycle(t )]. These samples
should consider all the QoS environments in which a com-
munication link between a pair of sensor nodes can work.
In this sense, we have to simulate special ubiquitous com-
puting environments. These scenarios can be implemented
by different noise and data traffic simulations. In our re-
search we create several WSNs over OLIMPO with 250

4The minimum probability of bit error Pe,min, in a FSK system with
an adaptative filter at the radio receiver, is typically expressed in the

literature with the expression: Pe,min = 1
2 erf c(

√
Eb

No
), where Eb

No
=

(S/R)
No

= S
N

.

nodes and different levels of data traffic. The procedure to
measure every QoS link between two neighbors is detailed
as follows: every pair of nodes (e.g. vi and vj ) is exposed
to a level of noise. This noise is introduced increasing the
noise power density No in the radio channel in the proxim-
ity of a determined node. Hence, the signal-to-noise ratio at
the detector input of this selected node decreases and conse-
quently the BER related with its links with every neighbor
gets worse.

In order to measure the QoS metrics related with
every No, we run a ping application between a selected pair
of nodes (e.g. vi and vj ). Node vi sends periodically a ping
message to node vj . Because the ping requires acknowl-
edgment (ACK), the way node vi receives this ACK deter-
mines a specific QoS environment, expressed on the four
metrics elected: latency (seconds), throughput (bits/sec), er-
ror rate (%) and duty cycle (%). For example, for a noise
power density of No = −80 dBm/Hz and a distance of sep-
aration5 between node vi and node vj of 60 meters the QoS
measured in node vi and expressed in the metrics defined
is [0.58, 1440, 10.95, 2.50]. This process is repeated 100
times with different No and d . This way, we obtain a set of
samples which characterize every QoS scenario.

With this information, we construct a self-organizing
map using a high performance neural network tool, such
as MATLAB�, on a Personal Computer. This process is
called training, and uses the learning algorithm detailed in
Sect. 3.3. Because the training is not implemented by the
wireless sensor network, we have called this process offline
processing.

Once we have ordered the neurons on the Kohonen layer,
we identify each one of the set of 100 input samples with an
output layer neuron. According to this procedure, the set of
100 input samples is distributed over the SOM.

The following phase is considered the most difficult one.
The samples allocated in the SOM form groups, in such a
way that all the samples in a group have similar character-
istics (latency, throughput, error rate and duty cycle). This
way we obtain a map formed by clusters, where every clus-
ter corresponds with a specific QoS and is assigned a neuron
of the output layer. Furthermore, a synaptic-weight matrix
w′

ij = [w′
ij1,w

′
ij2, . . . ,w

′
ij4] is formed, where every synap-

sis identifies a connection between input and output layer.
In order to quantify the QoS level, we study the fea-

tures of every cluster and, according to the QoS obtained
in the samples allocated in the cluster, we assign a value be-
tween 0 and 10. As a consequence, we define an output func-

5Considering the free space propagation model, the power trans-
mitted from the source decreases according the expression Pr =
Pt [ λ

4πdL
]2GtGr , where Pr , is the radio power received at a distance

d from the transmitter; Pt is the transmitter signal power, Gt and Gr

are the antenna gains of the transmitter and the receiver respectively;
L (L ≤ 1) is the system loss and λ is the electromagnetic wavelength.



tion �(i, j), i ∈ [1,3], j ∈ [1,4] with twelve values corre-
sponding with every neuron (i, j), i ∈ [1,3], j ∈ [1,4]. The
highest assignment (10) must correspond to that scenario in
which the link measured has the worst QoS predicted. On
the other hand, the lowest assignment (0) corresponds to that
scenario in which the link measured has the best QoS pre-
dicted. The assignment is supervised by an engineer during
the offline processing.

4.3.2 Execution phase

As a consequence of the learning phase, we have declared an
output function, that has to be run in every sensor node. This
procedure is named the wining neuron election algorithm.

In the execution phase, we create a WSN with 250 nodes.
Every sensor node measures the QoS periodically running
a ping application with every neighbor, which determines
an input sample. After a node has collected a set of input
samples, it runs the wining neuron election algorithm. For
example, if a specific input sample is quite similar than the
synaptic-weight-vector of neuron (2,2), this neuron will be
activated. After the winning neuron is elected, the node uses
the output function � to assign a QoS estimation, qos. Fi-
nally, this value is employed to modify the distance to the
root (1). Because the execution phase is implemented by the
wireless sensor network, we have called this process online
processing.

4.4 Evaluating SIR performance

Our SIR algorithm has been evaluated by the realization of
three experiments detailed as follows:

4.4.1 Experiment #1: no node failure

The purpose of this experiment is to evaluate the introduc-
tion of AI techniques in a scenario where there is no node
failure. This means that no node has gone to a failure state
because of noise, collision or battery fail influence.

To simulate this scenario, a wireless sensor network with
250 nodes is created on our simulator OLIMPO. Node # 0
is declare as a sink and node # 22 is declared as a source. At
a specific time, an event (e.g. an alarm) is provoked in the
source. Consequently, the problem now is how to route the
event from the specified source to the declared sink.

As detailed in Sect. 2 we solve this problem with three
different routing paradigms: SIR, directed diffusion and
EAR. We choose two metrics to analyze the performance
of SIR and to compare it to others schemes. These metrics
are:

• Average dissipated energy. This metric computes the av-
erage work done by a node in delivering useful tracking

Fig. 3 Energy model

information to the sinks. This metric also indicates the
overall lifetime of sensor nodes.

According to the first energy consumption order model
proposed by Wendi Rabiner Heinzelman in the LEACH
protocol [10], we can assume the radio dissipates Eelec =
50 nJ/bit to run the transmitter or receiver or receiver cir-
cuitry, and εamp = 100 pJ/bit/m2 for the transmit amplifier
to achieve an acceptable Eb

No
(Fig. 3). This way, to transmit

a k-bit message a distance d using this radio model,6 the
radio expends:

ET x(k, d) = Eelec · k + εamp · k · d2 (3)

and to receive this message, the radio expends:

ERx(k) = Eelec · k (4)

We assume that the radio channel is symmetric, and that
our simulation is event-driven, that is, sensors only trans-
mit data if some event occurs in the environment. Due to
transmission distance from a sensor node to the base sta-
tion is large on a global scale, the transmission energy is
much more higher than the received energy. In this net-
work topology, as detailed in Sect. 2, the most energy-
efficient protocol is the minimum-transmission-energy.

• Average delay. This metric measures the average one-way
latency observed between transmitting an event and re-
ceiving it at each sink.

We study these metrics as a function of sensor network
size. The results are shown in Fig. 4.

6We assume the radio propagation model.



Fig. 4 Average latency and average dissipated energy in a scenario with no simultaneous node failure

Fig. 5 Average latency and average dissipated energy in a scenario with 20% simultaneous node failures

4.4.2 Experiment #2: 20% simultaneous node failures

The purpose of this experiment is to evaluate the introduc-
tion of AI techniques in a scenario where there is a 20% of
simultaneous node failures. This means that at any instant,
20% of the nodes in the network are unusable because of
noise, collision or battery failure influence.

To simulate these situations we create a WSN with 250
nodes. Amongst all of them, we select simultaneously the
20% of the nodes (50) to introduce one of the following ef-
fects:

• S/N ratio degradation. Due to battery energy loss, the ra-
dio transmitter power decays. Consequently, the S/N ra-
tio in its neighbors radio receivers is degraded, causing
no detections with a certain probability, P . In this situa-

tion, we can assume that the node affected by the lack of
energy is prone to failure with probability P .

• On many occasions, sensor nodes are exposed to high
level of noise, caused by inductive motors. Furthermore,
the radio frequency band is shared with other applications
that can interfere with our WSN.

As a consequence of introducing these effects, at any time
the 20% of nodes fail.

In these scenario we analyze the problem studied de-
scribed in experiment #1 with the three related paradigms.
The results are shown in Fig. 5. As we can observe, SIR ex-
hibits better results than EAR and directed diffusion. This is
due to the fact that both protocols do not consider the influ-
ence of the noisy environment. In the other hand, SIR eval-
uates the best path to the destiny according to the influence
of noise.



Fig. 6 Average latency and average dissipated energy in a scenario with 40% simultaneous node failures

4.4.3 Experiment #3: 40% simultaneous node failures

This experiment simulates a scenario with a 40% of simul-
taneous node failures.

As it is shown in Fig. 6, the effect of noise over the net-
work degrades the performance of EAR and directed diffu-
sion. However SIR, exhibits the best performance thanks to
its path management.

5 Conclusion and future works

After comparing the results obtained with every routing par-
adigm, we can conclude that the differences are important
when there is a significant percentage of node failures. Thus,
while the average delay goes up with the number of sensors
in directed diffusion and EAR, it maintains a low level of
delay in SIR. The cause of this effect can be found in the
fact that while directed diffusion and EAR elect the inter-
mediate nodes using rules based on the propagation of the
interest, SIR elects the intermediate nodes running an AI-
algorithm. Thus, the path created by SIR avoids the election
of intermediate nodes that are prone to failure because of
battery draining, interference or noisy environment. Further-
more, the average dissipated energy is less in SIR when the
number of nodes in the sensor goes up. We again find the
reason in the effect of the election of the intermediate nodes
in SIR. The use of AI in every sensor dynamically varies the
assignment of this node role, distributing the energy con-
sumption through the network. When the number of nodes
is increased, the number of possible paths is increased too.
Furthermore, when the percentage of node failures goes up
(from 20% to 40%) SIR becomes the best suited protocol for
these kinds of scenarios.

Although the results obtained with the inclusion of AI
techniques in WSN are important and encouraging, we must
take in account some relevant remarks:

• What is the price WSNs have to pay for introducing AI
techniques? Although the computational payment for im-
plementing the neural network in a sensor is inapprecia-
ble, as detailed in Table 2, the tradeoff associated with this
implementation is the increase of the overhead. However,
in typical SCADA applications, WSNs don’t have to as-
sist high level of data traffic. Consequently, the network
can support an increase on the overhead.

• Nodes failures can be provoked by the following reasons:
– Sensor battery draining.
– Noise originating at industrial environments.
– Interference in the sensor surroundings.
These phenomena provoke an influence on the average
dissipated energy.

• The use of a SOM on every sensor implies the distribu-
tion of the artificial intelligence over the network. Conse-
quently, this strategy enhances the scalability of the net-
work. Furthermore, it can be applied to scenarios with
multiple events, maintaining network performance.

• Although we have modelled different noisy scenarios, a
better study is needed of the physical channel in order to
make experiments in real environments.

In this sense, we have evaluated the QoS assignment
done by a sensor node over a real scenario. This scenario
was composed of two sensor nodes forming a radio link
and a station introducing different levels of noise. The re-
sults obtained validate the simulation results exposed in
Sect. 4.

SIR has been presented in this paper as an innovative
QoS-driven routing algorithm based on artificial intelli-
gence. This routing protocol can be used over wireless sen-



sor networks standard protocols, such as IEEE 802.15.4 and
Bluetooth�, and over other well known protocols such as
Arachne, SMACS, PicoRadio, etc.

The inclusion of AI techniques (e.g. neural networks) in
wireless sensor networks has been proved to be an useful
tool to improve network performances.

The great effort made to implement a SOM algorithm in-
side a sensor node means that the use of artificial intelligence
techniques can improve the WSN performance. According
to this idea, we are working on the design of new protocols
using these kinds of tools.
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