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Abstract Teams of multiple mobile robots may communi-
cate with each-other using a wireless ad-hoc network. Fault-
tolerance in communication can be achieved by making
the communication network bi-connected. We present the
first localized protocol for constructing a fault-tolerant bi-
connected robotic network topology from a connected net-
work, in such a way that the total movement of robots is
minimized. The proposed distributed algorithm uses p-hop
neighbor information to identify critical head robots that
can direct two neighbors to move toward each other and
bi-connect their neighborhood. Simulation results show that
the total distance of movement of robots decreases signif-
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icantly (e.g. about 2.5 times for networks with density 10)
with our localized algorithm when compared to the existing
globalized one. Proposed localized algorithm does not guar-
antee bi-connectivity, may partition the network, and may
even stop at connected but not bi-connected stage. However,
our algorithm achieved 100% success on all networks with
average degrees ≥ 10, and over 70% success on sparse net-
works with average degrees ≥ 5.

Keywords Mobile sensors · Robot networks · Fault
tolerance · Distributed algorithm · Localized movement
control

1 Introduction

With significant advancements in robotics technology and
the emergence of a large number of applications for multi-
robot systems, the problem of coordinating between a group
of autonomous robots has become an issue of great impor-
tance. In such robot systems, coordination between individ-
ual robots is essentially accomplished through a wireless
ad hoc network. For example, coordination of robotic re-
lay stations was studied in [5] to maintain communication
between an explorer and a base station. Application of mo-
bile robotics is vast. Potential applications include military
missions, unmanned space exploration, and data collection
in sensor fields. But for such applications, coordination of
a robot team in pursuit of common task is essential. Exist-
ing algorithms for mobile robots coordination are suitable
for robots with no or very low failure rates. However, when
robots are susceptible to failures, as in many applications, it
is critical for robotic networks to incorporate the ability to
sustain faults and operate normally. Communication faults
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in robot networks can be caused by hardware damage, en-
ergy depletion, harsh environment conditions and malicious
attacks. A fault in a robot can cause stopping transmission
tasks to others as well as relaying data to sink. Data sent
by a robot will be lost if the receiving robot fails. So, a
communication link failure on a route requires data to be
re-routed. That is, in order to handle general communica-
tion faults, there should be at least two node-disjoint paths
between each pair of robots in the network. A network is
defined to be bi-connected if there exist two node-disjointed
paths between any pair of nodes in the network, i.e., the re-
moval of any node from the network leaves the network still
connected. Therefore, bi-connectivity is the basic require-
ment for design of fault-tolerant networks [9].

In this paper, we focus on mobile robot networks and
study movement control of robots to establish a fault-
tolerant bi-connected network. The robot network is as-
sumed to be connected, but not necessarily bi-connected.
Achieving connectivity in a disconnected network is diffi-
cult due to the lack of communication between the discon-
nected parts. However, if the network is already connected,
we can make it bi-connected (and thus fault-tolerant) by
movement of selected robots. Recent work in [2] has shown
that fault tolerance can be achieved through globalized robot
movement control algorithm. It is a centralized algorithm
that assumes one of robots or a base station has global in-
formation of the network. We focus on the localized version
of movement control algorithm for building a fault-tolerant
robot network. To the best our knowledge, this is the first
work on localized movement control for fault tolerance of
mobile robot networks.

The rest of the paper is organized as follows. Related
work is introduced in Sect. 2. We propose a localized move-
ment control algorithm to construct bi-connected mobile ro-
bot networks in Sect. 3. Results obtained from extensive
simulations are provided in Sect. 5 to show the effectiveness
of our algorithm. Finally we conclude our work in Sect. 6.

2 Related work

Many topology control algorithms have been proposed to
achieve network reliability in static networks [3, 4, 8, 12].
These algorithms cope with preserving fault tolerance by
selecting certain links to neighbors in an already well
connected network. The problem of adjusting the trans-
mit power of nodes to create a desired topology in multi-
ple wireless networks was studied in [10]. For static net-
works, two centralized algorithms were proposed to con-
struct connected and bi-connected networks while minimiz-
ing the maximal transmission power of nodes. Two distrib-
uted heuristics were further proposed for mobile networks.
The basic idea is to adaptively adjust node transmit power

according to topological changes and attempt to maintain a
connected topology with the minimum power. A more gen-
eral case for k-vertex connectivity of wireless networks was
studied in [7]. Both a centralized algorithm and a localized
algorithm were proposed. Both above works assumed that
nodes have uniform transmission range. That is, they fo-
cused on homogeneous networks. Topology control in het-
erogeneous wireless networks was discussed in [7]. Two
localized algorithms were proposed. It was proved that the
topologies generated by the proposed algorithms preserve
bi-connectivity of networks. An extension of cone-based
topology control algorithm was proposed in [1]. Each node
decides its own power based on local information about rel-
ative angle of its neighbors. It showed that a fault-tolerant
network topology is achievable and transmission power of
each node is minimized to some extent. The proposed al-
gorithm can be extended to 3-dimensions. All these works
on topology-control construct fault-tolerant networks by ad-
justing transmit power of nodes. Movement of nodes is not
a controllable parameter even in the works where mobile
networks are considered (except in [11] where only the base
station can move).

Significant amount of work has been done in coordinat-
ing teams of mobile robots or actors. However, little atten-
tion was paid to incorporate fault tolerance into these robotic
networks. For example, Dynia et al. [5] studied the problem
of maintaining communication between an explorer robot
and base station by moving other robots along the path.

Mobile robot network can be represented as a graph,
where each node is a mobile robot and each edge denotes a
communication link between a pair of robots. In a connected
graph, a node is called a critical node if the graph is discon-
nected without the node. There are no critical nodes in a bi-
connected graph. So, critical nodes are important in design-
ing movement control algorithms to achieve bi-connected
networks. Jorgic et al. [6] proposed an approach for local-
ized p-hop critical node detection. To find if a node is crit-
ical in the network, a sub-graph of p-hop neighbors of the
node is considered. From this sub-graph, the node itself and
all its incident edges are excluded. If this resulting sub-graph
of p-hop neighbors of a node is disconnected by excluding
the node, then the node is critical. Since only local topologi-
cal information is used, it is specified as p-hop critical node
as it may not be globally critical. However, all the globally
critical nodes are always p-hop critical for any value of p.
As seen in Fig. 1, the nodes A, B , and C are 2-hop critical
nodes in the given network. We can also notice that nodes
A and B in Fig. 1 are only 2-hop critical nodes and are not
globally critical. However, node C is globally critical in the
network and is also 2-hop critical. Experiments showed that
over 80% of locally estimated critical nodes and links are
indeed globally critical [6].

Our problem is most related to the problem discussed by
Basu and Redi [2], where movement control algorithms for
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Fig. 1 An example of a network containing critical nodes

fault-tolerant robot networks were proposed. In these algo-
rithms, each mobile robot was assumed to be aware of global
network topology. Based on the topological information, ro-
bots decide on their new position, which would thereby cre-
ate a fault-tolerant network. The goal of these algorithms
was to minimize the total distance traveled by all the ro-
bots. The authors further proposed an approximation algo-
rithm for two-dimensional cases. The basic idea was to di-
vide a network into bi-connected blocks. The network is a
block tree of these blocks. A block with maximum number
of robots acts as the root of the tree. Algorithm works it-
eratively merging the blocks to form a single bi-connected
block. Merging of the blocks is performed by block move-
ment where each leaf block is moved towards its parent. If
parent block is empty then leaf block is moved towards a
critical node. After each iteration, robot connectivity is re-
calculated and block tree is reconstructed as well. However,
the proposed algorithms require accurate and global infor-
mation of entire network. It is applicable to only small size
networks. For large scale networks, not only is global net-
work information hard to obtain and maintain, but also the
total distance of movements and the communication over-
head on robots increase rapidly.

3 Localized movement control

In this section, we propose a localized movement control
algorithm for fault tolerance of mobile robot networks. To
the best of our knowledge, it is the first localized movement
control algorithm to achieve bi-connected network topolo-
gies. For simplicity, we use a node to denote a mobile robot
for the rest of paper. We assume that all nodes in the network
have a common communication range r . We further assume
that each node has information of its p-hop neighbors. It can
be achieved by exchanging or relaying HELLO messages
periodically within p-hops. To reduce exchange packets and
collisions, we assume there is no RTS/CTS mechanism for
transmissions of control packets. The network is assumed to
be connected but not bi-connected. The problem of our con-
cern is to control movement of nodes, such that the network

becomes bi-connected. The objective is to minimize the total
distance moved.

The distributed algorithm is executed at each node and
starts as follows. At initialization stage, each node checks
whether it is a p-hop critical node [6]. We define the p-hop
sub-graph of a node as the graph which contains all nodes
that are within p-hops from the node and all corresponding
links. A node is said to be a p-hop critical node if and only if
its p-hop sub-graph is disconnected without the node. Since
each node is assumed to have knowledge of its p-hop sub-
graph, it is able to determine whether it is a p-hop critical
node. If a node finds itself a p-hop critical node, it broad-
casts a critical announcement packet to all its direct neigh-
bors.

To make the network bi-connected, all critical nodes
should become non-critical by movement of nodes. Note
that the movement of a node may create new neighbors, but
it may also break some existing links. Since a critical node is
the node that leaves its p-hop sub-graph disconnected with-
out itself, breaking some current links of a critical node may
cause disconnection of the network. However, for a non-
critical node, the network remains connected if one of its
current links is broken. Our basic idea of movement control
is to move non-critical nodes while keeping critical nodes
static (these nodes may later become non-critical). Depend-
ing on the number of critical neighbors of a critical node, we
have the following three cases:

1. A critical node that does not have any critical neighbors.
2. A critical node that has exactly one critical neighbor
3. A critical node that has two or more critical neighbors.

We now consider each of these cases separately and de-
scribe the behavior of our algorithm in each scenario.

3.1 Case I: Critical node without critical neighbors

In this case, a node finds itself a p-hop critical node and
does not receive any critical announcement packet from its
neighbors. Since it is a critical node, its p-hop sub-graph
can be divided into two (or more) disconnected sets (when
the node is excluded from the graph). The basic idea is to
select two neighbors from two such disjoint sets and move
them towards each other until they become neighbors. Sup-
pose distance between the two neighbors is d . Each node
should move (d − r)/2 directly towards the other node to
reach each other. To minimize the total distance of move-
ment of nodes, two neighbors with the minimum distance d

among all possible pairs in the two sets are selected. The
critical node sends these two neighbors a movement con-
trol packet containing their new locations. The two neigh-
bors move to their new locations once the movement control
packet is received. Note that a non-critical node may have
several critical neighbors and it may receive multiple move-
ment control packets from different critical nodes. Node IDs
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Fig. 2 Critical node without critical neighbor

are used to assign priorities to critical nodes. Therefore, if
a non-critical node receives more than one movement con-
trol packets, it always follows direction of the critical node
having the largest ID. Note that there is no RTS/CTS mech-
anism in the network. The critical nodes with smaller IDs
do not know and have no need to track the movement of
their non-critical neighbors after sending movement control
packets.

After movement of nodes, any node that loses a current
neighbor, or finds a new neighbor, broadcasts a topology up-
dated packet to its neighbors. This packet will be relayed
hop by hop to reach p-hops neighbors of the sender. Each
node receiving a topology update packet updates its p-hop
sub-graph and checks its new status. A new iteration of
movement control begins. The movement control algorithm
for case 3.1 is illustrated with the following example.

Consider the example shown in Fig. 2, where node 3 in
grey color is critical node and nodes 1, 2, 4, 5, 6, 7, 8 in white
color are non-critical nodes. Suppose p = 2 in this exam-
ple. Since node 3 is critical, its 2-hop sub-graph is divided
into two disjointed sets A = {1,2,4,5} and B = {6,7,8}.
Suppose distance of node 5 and 8 is the minimum among
all possible pairs in these two sets, i.e. d(5,8) ≤ d(x, y),
∀x ∈ A,y ∈ B . Node 3 computes new locations of node 5
and node 8 and sends movement control packets to them.
Final locations of node 5 and node 8 are shown in Fig. 2.

3.2 Case II: Critical node with one critical neighbor

In this case, there are two adjacent critical nodes and each
critical node has only one critical neighbor. Note that, in
such case, both nodes have non-critical neighbors, since oth-
erwise node without any non-critical neighbor will be left
with a single neighbor (the other critical node), which means
that it will not be critical in the first place, according to the
definition (which requires the existence of two disconnected
components of neighbors after the node is removed).

Suppose the two adjacent critical nodes are node 4 and
node 5, and ID of node 5 is larger than ID of node 4. Our
basic idea is to let the critical node with larger ID, node 5
in this case, select one of its non-critical neighbors to move
towards the other critical node, node 4. Similar to case 3.1,

Fig. 3 A critical node with only one critical neighbor

node 5 divides its p-hop sub-graph into two disjointed sets.
Node 4 is contained in one of the two sets. Node 5 searches
the other set and selects one of its non-critical neighbors
that is the nearest to node 4. Suppose distance between the
selected neighbor and node 4 is d . The selected neighbor
should move distance d − r to reach node 4 since criti-
cal nodes are not allowed to move, to avoid disconnection
of networks. Node 5 computes new location of its mov-
ing neighbor and sends it a movement control packet. The
neighbor moves to its new location after receiving the move-
ment control packet. Similar to case 3.1, node ID’s are used
to break the tie when a non-critical node receives multiple
movement control packets. After this move, one of critical
nodes may become non-critical, and in the next iteration the
movement control algorithm for case 3.1 may be applied.
Similar to case 3.1, topology update and checking status op-
erations will start after movement of nodes. The algorithm
for case 3.2 is illustrated with the following example.

Consider the example in Fig. 3, where nodes 4 and 5 in
grey color are critical nodes and nodes 1, 2, 3, 6, 7, 8 in white
color are non-critical nodes. Since ID of node 5 is larger than
ID of node 4, node 5 leads movement control. Suppose p =
2 again. Node 5 divides its 2-hop sub-graph into two disjoint
sets A = {1,2,3,4,6} and B = {7,8}. Suppose distance of
node 4 and 7 is the minimum among all neighbors in B.
That is, d(4,7) ≤ d(4, x), ∀x ∈ B . Node 5 computes new
location of node 7, and sends it a movement control packet.
Final location of node 7 is shown in Fig. 3.

Note that this movement may not resolve the problem
completely. For example, in this case node 8 may become
disconnected from node 7. However, this will be further con-
sidered in the next iteration of the same algorithm.

3.3 Case III: Critical node with several critical neighbors

In this case, some critical nodes have more than one critical
neighbor. Note that each node sends a critical announce-
ment packet to all its direct neighbors if it finds itself to
be a p-hop critical node. After that, all nodes in the net-
work know the status of their neighbors. We say that a crit-
ical node is available if it has non-critical neighbors and is
non-available otherwise. Thus available critical nodes have
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Fig. 4 Critical node with several critical neighbors

non-critical neighbors that are able to move without causing
partitioning. An available/non-available critical node broad-
casts an available/non-available announcement packet to its
neighbors. A critical node declares itself a critical head if
and only if it is available and its ID is larger than the ID
of any available critical neighbor, or has no available criti-
cal neighbors. Our basic idea for general cases is to use the
pair wise merging strategy. Simulation results show that this
strategy can efficiently and quickly construct a bi-connected
network. Each critical head selects one of its critical neigh-
bors to pair with. Any criterion for selecting will work. To be
deterministic, we decide that available critical neighbor (if
any) with largest ID is selected, or otherwise non-available
critical neighbor with the largest ID. Then the movement
control algorithm for case 3.2 is called for each pair to com-
pute the new topology.

Consider the example in Fig. 4, nodes 1, 2, 3, 4, 5, 6 in
grey color are critical nodes (dashed block with a node is
sub-graph of this node). Among these critical nodes, only
nodes 1, 5, 6 are critical heads. Node 1 becomes a critical
head since node 3 is non-available. Finally, there are three
pairs: (1,3), (5,4) and (6,4), dominated by nodes 1, 5, and 6,
respectively. Each critical head in a pair calls the movement
control algorithm for case 3.2 to merge the pair. Note that
some nodes may receive several new neighbors at once, like
node 4 in this example.

One can expect that the network density would increase
after merging. Pair-wise merging continues until all criti-
cal nodes become non-critical, i.e., the network becomes
bi-connected. Note that a critical head dominates a pair to
merge at each time. No action will be taken if there are no
critical heads in the network. So the question that we need
to answer is, whether there always exist critical heads in a
network that is connected but not bi-connected.

Lemma 1 Any globally connected network has globally
non-critical nodes.

Proof The proof is by contradiction. Let us assume, on the
contrary, that all nodes in the connected graph G are glob-
ally critical nodes. Thus, for any node v of graph G, the
removal of v partitions G into at least two disjoint compo-
nents. We define N(v,G) as the number of nodes in the

Fig. 5 Node v1 partitions the graph into two disjoint components, one
of which must be strictly smaller than G1

smallest component by removing v from graph G. Sup-
pose v0 is the node whose removal results in the smallest
component, i.e. N(v0,G) ≤ N(v,G) for any v ∈ G. Let
G1 denote the smallest component after removing v0 (see
Fig. 5). That is, N(v0,G) = |G1|. We arbitrarily select one
of v0’s neighbors in G1, say v1. Note that v1 is critical
node. Removing v1 results in at least two disjoint compo-
nents. One of these components that contains v0 is guaran-
teed to contain all nodes in (G \ G1). It is because G1 and
((G \ G1) \ {v0}) are two disjoint components, and there is
no edge between v1 and any node in G \ G1 \ {v0}. There-
fore, the number of nodes in the component that contains
v0 is at least |G \ G1|. It means that any other component
that does not contain v0 has a size smaller than |G1|. That
is, N(v1,G) < |G \ (G \ G1)| = |G1| = N(v0,G). It con-
tradicts the assumption that N(v0,G) ≤ N(v,G) for any
v ∈ G. �

Note that this theorem is not valid if applied to p-hop
criticality. That is, there are connected networks without any
p-hop non-critical nodes. Consider a large ring for example.
All nodes in this ring are globally non-critical. However, for
small p (less than half ring size), all nodes are critical, and
thus such rings do not have p-hop non-critical nodes.

Theorem 1 If the network is globally connected but not bi-
connected then it has a p-hop critical head for sufficiently
large p.

Proof Since the network is not bi-connected, it has globally
critical nodes. Each globally critical node v has N(v,G) as
defined in the proof of Lemma 1. Let v0 be such a node
which minimizes N(v,G). Let G1 denote the smallest com-
ponent after removing v0 (see Fig. 5). We arbitrarily select
one of v0’s neighbors in G1, say v1. We observe that v1 is
not a globally critical node. Otherwise, following the proof
of Lemma 1, we will get a contradiction. Therefore v1 is
globally non-critical-node, and thus p-hop non-critical for
sufficiently large p. Then v0 is p-hop critical head and the-
orem is proven. �
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Note that, however, Theorem 1 may not be true when p

is a fixed small number. Consider, for example, two large
rings with a single common node v0. The network is not bi-
connected because of node v0. However all nodes are p-hop
critical and therefore none of them is available, and the net-
work does not have critical heads.

3.4 An example

We now present a concrete example to illustrate the pro-
posed algorithm. For this example, we use a small field of
size 20 m × 20 m with only 12 mobile nodes. The nodes
were placed randomly, until we obtained a connected but not
bi-connected network. The initial locations of the robots is
shown in Fig. 6(a). Notice that there are three critical nodes
(marked with a darker color) in this example, nodes 0, 4
and 9. Each of these nodes has only non-critical neighbors
(i.e. Case I applies here). Thus, according to our algorithm,
each of these critical nodes asks some of their neighbors to
move to new locations. Node 0 asks node 5 and node 7 to
move towards each-other, node 4 asks nodes 3 and 10 to
move towards each other, and node 9 asks nodes 2 and 11
to move towards each other. Thus, after the first iteration,
nodes 4 and 9 are no longer critical, but node 5 becomes crit-
ical due to its movement (see Fig. 6(b)). At this stage, there
are two critical nodes (nodes 0 and 5) connected to each
other. In the next iteration, node 5 (which is the larger one in
the pair) asks one of its neighbors (node 1) to move toward

node 0 converting it into a non-critical node (Fig. 6(c)). Fi-
nally in the third iteration, the only remaining critical node
(node 0) asks its two non-critical neighbors (nodes 6 and 7)
to move towards each other, and now the network becomes
fully bi-connected as shown in Fig. 6(d). Thus, the algorithm
achieves bi-connectivity in only three iterations (in this ex-
ample) and in each iteration only a few nodes are moved.

4 Maintaining connectivity

As seen in the example from the last section, the move-
ment of robots may sometimes break existing links in the
network. The important question is whether such move-
ments can cause the network to become disconnected. No-
tice that, in our algorithm, we move only non-critical. Con-
trolled movement of a single non-critical node will never
cause disconnection of the network. However, the network
may be disconnected when multiple non-critical nodes move
concurrently. For example consider the network represented
by the graph G in Fig. 7.

Here node 3 and node 4 are connected by a path of p − 1
hops (shown as a dashed line in the figure). Note that nodes 3
and 4 are globally critical and thus would be identified as
p-hop critical nodes. For p ≥ 2, nodes 5 and 6 are identified
as non-critical. For p ≥ 3, nodes 1 and 2 are also identi-
fied as non-critical. This may not be immediately evident,

Fig. 6 An illustrative example
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Fig. 7 The simultaneous movement of node-1 and node-2 disconnects
the graph G

but can be easily verified. Consider for example the p-hop
neighborhood of node 1 (with p ≥ 3). Notice that there are
two distinct paths of length at most p from node 1 to node 4.
In other words, there are cycles within the p-hop neighbor-
hood subgraph of node 1. All the neighbors of node-1 are
part of some such cycle. Thus, node 1 identifies itself as lo-
cally non-critical. A similar case holds for node 2.

Let us assume that p ≥ 3 and consider how our algorithm
behaves in this case. According to our algorithm, node 3
which is critical will ask the non-critical nodes 1 and 5 to
move towards each other. Similarly node 4 which is also crit-
ical may ask nodes 2 and 6 to move towards each-other. Each
of these movements in itself will not cause disconnection of
the network. However if nodes 1 and 2 both move at the
same time (i.e. in the same iteration) then the links between
the subgraph G′ and these two nodes (nodes 1 and 2) would
be simultaneously broken. Thus, the subgraph G′ would be
disconnected from the rest of the graph.

A cut in a connected graph G is a set of edges C =
{e1, e2, . . . , et } such that G \ C is disconnected. To prevent
the network from becoming disconnected, we need to ensure
that all edges belonging to a cut are not simultaneously bro-
ken. Note that when the nodes have only p-hop information,
it is not possible to identify the cuts in the network. A node
can only identify the local cuts in the p-hop subgraph. How-
ever, all local cuts are not global cuts for the network.

Lemma 2 Any global cut in a graph includes at least one
p-hop local cut, for any value of p.

Proof Suppose G is graph having a global cut C = {e1, e2,

. . . , et } which divides the graph into two components G1

and G2 (see Fig. 8). Let u be a vertex in G1 incident to
edge e1. Consider the set Cu of edges in the p-hop neigh-
borhood of u that belong to C. Note that Cu forms a local

Fig. 8 The cut in the graph G divides it into subgraphs G1 and G2

cut in the p-hop neighborhood subgraph of u i.e. Cu is a
p-hop local cut. However, Cu is a subset of C by definition.
This proves the result of the lemma. �

Based on the above result, one approach to guarantee
connectivity would be to ensure that no local cuts are bro-
ken during the movement. Thus, whenever a critical node
decides to ask some robot to move, it would first have to
communicate and obtain a permission from all other nodes
in the p-neighborhood before asking any robot to move. For
example, in Fig. 7, node 3 needs a permission from node 4
before asking robot 1 to move. So, there would be a large
communication overhead for each decision taken by a robot.
For instance, for a network of average degree 10 and p = 3,
a node needs to communicate with 1000 nodes before reach-
ing any decision. Further this approach does not guarantee
the progress of the algorithm. We thus use a much simpler
algorithm where each node takes a decision based on the
available local information without any further communica-
tion. This algorithm does not guarantee preservation of con-
nectivity in all cases, but it is much more efficient. In fact,
it is hardly possible for any localized algorithm to maintain
connectivity while moving nodes, without incurring signifi-
cant communication costs. However, it is encouraging that,
in our simulations, the proposed localized algorithm was al-
ways successful on construction of bi-connected network
topologies, provided that the initial network was sufficiently
dense.

5 Performance analysis

We tested the performance of our algorithm in a simulated
environment and analyzed its efficiency with respect to the
distance traveled metric. We also performed comparisons
with the existing algorithm that uses global information [2]
henceforth called the globalized algorithm. In all our simula-
tions, the proposed algorithm was 100% successful, achiev-
ing bi-connectivity of the network within a few iterations, in
most cases.
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5.1 Simulation environment

The results presented in this paper are based on simulations
performed at the application layer, assuming an ideal MAC
layer underneath, with no communication loss and instanta-
neous delivery of messages. In the following, we use n to
denote the size of the network i.e. the number of nodes in
the network. The network density d is measured as the aver-
age degree of a node in the network. It depends both on the
network size and on the area of the sensing field. For most of
the experiments, we maintained network density of d ≈ 10
(i.e. an average of 10 neighbors per node). We performed
experiments varying the number of nodes in the sensor field
while scaling the sensor field size accordingly. We consid-
ered sensor fields with an area from 300 m2 (for n = 10)
to 3000 m2 (for n = 100) and the communication range of
all the nodes were set to 10 m. Nodes were placed randomly
within the sensor fields, at the rate of 1 node per 30 m2 which
ensures an average of around 10 neighbors per sensor node.
We also evaluated the performance of our algorithm for var-
ious values of p, by varying the knowledge range of the ro-
bots while keeping the network size fixed. Finally we also
performed some simulations on networks of smaller densi-
ties. This was done by scaling the area of the sensing field
while keeping the network size constant.

The networks used in the simulations were generated by
randomly placing nodes within the sensing field. From such
randomly generated networks, we selected the ones which
were connected but not bi-connected and this set of networks
were used in our experiments. For each experiment and each
set of parameters, we executed the algorithm on 100 differ-
ent networks and the averaged results are presented below.
We assumed that each mobile robot has initial knowledge of
its own position and can obtain information from its p-hop
neighbors. We also assumed that a robot can freely move

from one position to another within the sensor field (i.e.
there are no physical obstacles in the sensor field).

5.2 Effect of knowledge range

The value of p affects the performance of our algorithm to
a great extent. If p is small, each node has knowledge about
its immediate neighborhood only. Many nodes which are not
globally critical may be identified as critical nodes within
the p-hop neighborhood.

This results in some unnecessary movement of robots
which may be avoided by increasing the knowledge range
(i.e. increasing p). We tested our algorithm for various val-
ues of p ranging from 2 to 6, on networks obtained using the
method described above. Other parameters were kept same
as mentioned in Sect. 5.1. Thus, we used networks on size
n = 10 to n = 100, keeping the network density reasonably
fixed at d ≈ 10.

The simulation results for various values of p are shown
in Fig. 9. The figure also show the number of nodes that
were identified as critical at the beginning of the algorithm.
As expected, using a larger p-value increases the efficiency
of the algorithm because less nodes are identified as critical
(see Fig. 9(b)) and thus, the algorithm makes less movement.
However notice that the amount of communication between
nodes grows as a factor of Δp as the value of p increases
(where Δ is the average degree of the network). Thus, we
would like to choose a value of p which is as small as possi-
ble, without compromising too much on the efficiency of the
algorithm in terms of the movement of robots. The results
obtained from simulations show that there is large difference
in efficiency of the algorithm when using 2-hop information
as compared to the case when p ≥ 3. So, it is best to use
the value of p = 3 to optimize both the amount of move-
ment and the amount of communication performed during
the algorithm.

Fig. 9 Total distance traveled and number of critical nodes of our protocol for various values of p and n, for d = 10



A localized algorithm for bi-connectivity of connected mobile robots 137

Fig. 10 Comparison of the two algorithms in networks of various sizes (but constant network density d = 10). (a) Average case, (b) Worst case

5.3 Comparison with the globalized algorithm

We now present results of comparison between the perfor-
mance of our algorithm with that of the globalized algo-
rithm. For these set of experiments, we used the value of
p = 3 which gives the best results, as mentioned in the pre-
vious section. As before, we considered networks of size
n = 10 to n = 100, with constant network density of 10. In
each case, we executed both the globalized algorithm and
our localized algorithm (with p set to 3) on the same set of
networks obtained using the method described above. Fig-
ures 10(a) and (b) show the average and worst case behav-
ior of the two algorithms, in terms of the distance traveled
metric. Our proposed algorithm outperforms the globalized
algorithm significantly in all cases. In our algorithm, in each
iteration, individual nodes are moved towards each other in-
stead of moving blocks of nodes together as in the case of
the globalized algorithm. This results in great performance
improvement as can be seen from the simulation results. No-
tice that, since our algorithm uses only local information to
identify the critical nodes, it would identify more nodes as
critical nodes as compared to the globalized algorithm. Fig-
ure 11 shows the average values for the number of nodes that
were initially identified as critical by our localized algorithm
using local information up to p = 3 hops. This compares fa-
vorably with the actual number of critical nodes for the same
networks as computed by the globalized algorithm. In other
words, our localized algorithm did not identify too many
globally non-critical nodes as critical, which suggests that
using only local information is not too harmful in general,
for identifying critical nodes.

5.4 Performance on sparse networks

When the network is sparse, distances between the robots
are larger. So, robots are expected to move more for sparser

Fig. 11 Critical node identification by the two algorithms in networks
of various sizes

networks. We performed some experiments to test how our
algorithm scales to this situation. We created networks of
various densities ranging from 5 to 12 and compared the per-
formance of the two algorithms on these networks. For this
set of experiments, the network size was fixed at n = 100
and the area of the sensor was scaled appropriately to ob-
tain networks of various densities. All other parameters were
same as before. The value of p was set to 3, as explained
earlier.

Unfortunately our localized algorithm was not always
successful for sparse networks (i.e. for networks with av-
erage degree less than 10). Figure 12 shows the success rate
of our algorithm on networks of different densities. The al-
gorithm was tested on 100 randomly generated connected
but non-bi-connected networks (for network densities d = 5
to 12) and we counted the number of times our algorithm
was successful in achieving biconnectivity within 50 itera-
tions. As shown in the figure, the algorithm was success-
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ful for all test runs on networks with average degree 10 or
more. It is encouraging to see that even for the sparsest net-
works studied (d = 5), the algorithm succeeded in 74% of
the cases.

In terms of the distance traveled metric, our localized al-
gorithm still outperforms the globalized algorithm on the
successful runs. Figure 13 shows the distance traveled by
the robots during successful executions of our algorithm as
compared to those for the globalized algorithm executed on
the same set of networks. As the network becomes sparser,
the values for the distance traveled metric increases drasti-
cally as shown in Fig. 13(a). The same results are shown at
a different scale in Fig. 13(b) to highlight the fact that differ-
ences in performance of the two algorithms are still signifi-
cant if we consider only the dense networks (e.g. for d = 10,
the globalized algorithm performs 2.5 times worse than our
localized algorithm). These experimental results show that
our algorithm is more efficient than the globalized algorithm

Fig. 12 Percentage rate of success of our algorithm on networks of
various densities (but fixed size n = 100)

in all cases (considering only the successful runs). In fact for
sparse networks (i.e. network densities 5 or 6), there is a sig-
nificant improvement in the performance of our algorithm
with respect to the globalized algorithm.

6 Conclusions and future work

In this paper, we proposed a localized movement control al-
gorithm to construct a fault-tolerant mobile robot network.
We presented simulations results to show the effectiveness
of our algorithm and its efficiency in terms of success rate
and the total distance traveled by the robots. The simulations
results for randomly generated connected networks show
that our localized movement control algorithm significantly
outperforms its globalized counterpart. It is interesting to
note that, in most cases, the use of local information (in
fact, information about 3-hop neighbors only) is sufficient
to convert the network to a bi-connected one in an efficient
manner. Thus, global information about the network is not
necessary to achieve bi-connectivity. The results shown in
this paper are for networks obtained by randomly scattering
robots on fixed region and then selecting those which sat-
isfy the condition of connectivity and non-bi-connectivity.
On this class of graphs, the proposed algorithm was success-
ful in the construction of bi-connected topologies in most
cases, while failing only for a few sparse graphs.

In future, we would like to identify the classes of net-
works for which our algorithm fails and propose improve-
ments to deal with these difficult cases. An interesting open
problem is to determine if there exists any localized algo-
rithm that guarantees bi-connectivity starting from any con-
nected network.

The localized algorithm proposed in this paper achieves
fault-tolerance by converting a connected network to bi-
connected one. In case the original network is disconnected,

Fig. 13 Comparison of the two algorithms in (a) networks of various densities (b) networks of high density only
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the algorithm can be used to make each connected compo-
nent fault-tolerant. However, the problem of constructing a
connected and fault-tolerant network starting from a discon-
nected network is much more difficult and would be consid-
ered in the future.

We are also investigating on applications of mobile ro-
bots in (possibly heterogeneous) sensor networks, as data
collectors and actors. In these applications, sensor field cov-
erage is an important metric for the algorithm and would
be the topic for future work. In particular, both globalized
and localized algorithms may suffer from tendency of mo-
bile robot to bi-connect by moving toward the center of the
network. This may leave border area in sensor networks
unattended by any robot. Therefore, another criterion will
be added in the future research, the preservation of area
coverage and certain functionalities, while attempting to bi-
connect.
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