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Abstract Network Virtualization has emerged as a so-
lution for the Internet inability to address the required
challenges caused by the lack of coordination among
Internet service providers for the deployment of new
services. The allocation of resources is one of the main
problems in network virtualization, mainly in the map-
ping of virtual nodes and links to specific substrate
nodes and paths, also known as the virtual network
embedding problem. This paper proposes an algorithm
based on optimization theory, to map the virtual links
and nodes requiring a specific demand, looking for the
maximization of the spare bandwidth and spare CPU
in the substrate network, taking into account the band-
width demanded by the hidden hops when a virtual
link is mapped. The components of the virtual networks
(nodes and links) that do not ask for an specific demand
are then allocated following a fairness criteria.
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1 Introduction

The deployment of new Internet services is nowadays
being more and more difficult, the lack of cooperation
among stakeholders does not allow radical changes to
the Internet architecture [3,12,11,14]. This tendency is
called ossification.

Network virtualization has been proposed as the al-
ternative to face up ossification [12]. It allows multiple
heterogeneous networks to cohabit on a shared physical
substrate (SN)1.

A Virtual Network (VN) - sometimes also called
“Overlay Network” - consists of active and passive net-
work elements realized on top of a substrate network.
The active elements are called virtual nodes whereas
the passive elements are called virtual links. Virtual
nodes are interconnected through virtual links, forming
a network that can be represented by a graph, where the
virtual nodes are represented by the nodes in the graph
and the virtual links are represented by the edges.

An instance of such a VN then is realized through a
mapping of its elements to the substrate network. This
mapping defines the relationship of virtual network ele-
ments to their respective counterparts in the substrate
network. Several virtual nodes in the VN can corre-
spond to a single node in the SN (i.e. the mapping is
n : 1). Likewise, several virtual links (VL) can corre-
spond to a single link in the substrate network. This
n : 1 mapping is accomplished through resource shar-
ing, with the resource being CPU time and memory for
nodes and bandwidth for links.

This concept of virtual networks is realized in sev-
eral different implementations. Examples are Virtual

1 This paper will use indifferently the terms substrate network

and physical network
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Private Networks, Peer-to-Peer networks and networks
virtualized with System Virtualization.

In Virtual Private Networks (VPNs), a dedicated
(usually encrypted) Virtual Link is set up between two
routers, possibly spanning several physical links. VPNs
can be set up on different layers in the network stack,
with the IPSec implementation on the network layer
being one of the more popular ones [8].

In Peer-to-peer (P2P) overlay networks [13] an en-
tire network structure is created on top of an existing
network. P2P nodes correspond to Virtual Routers, set-
ting up Virtual Links between them, that do not reflect
the underlying network infrastructure, but rather the
logical grouping of nodes within the P2P network.

In networks virtualized with System Virtualization
[2], core routers host several operating systems with
routing functionality. The routers are interconnected
with Virtual Links that may again span several physical
links. This approach allows for easy management and
even mobility of Virtual Routers. Moreover, it becomes
possible to deploy different network protocols alongside
each other with the concept of system virtualization
providing a clear compartmentalization. Besides, net-
work virtualization provides reusable topology and an
energy efficient scheme. Fig. 1 is an example of this
implementation.
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Fig. 1 Example of a Virtual Network Mapped Over a Substrate
Network

The network embedding problem consists on the ef-
ficient mapping of a set of VN requests to substrate
nodes and links. We define a VN request as a set of vir-
tual nodes (with or without CPU requirements) that
must be mapped to a set of SN nodes (i.e. nodes from

the SN) with enough CPU resource to accomplish the
requirements, and a set of virtual links (with or with-
out bandwidth requirements) to be mapped to a set of
SN paths (i.e. paths from the SN) accomplishing the re-
quired bandwidth demands and the hidden hops (inter-
mediate substrate nodes) CPU demands. The network
embedding problem is computationally hard to solve,
as it will be shown in section 3, so the developed algo-
rithm should follow a heuristic to try to obtain a near
optimum value.

This problem turns out to be a form of the well
known Multicommodity-Flow problem (MFP). This pa-
per proposes an algorithm to solve the virtual network
embedding problem based in optimization theory. The
aim is to maximize the remaining SN resources (CPU
and Bandwidth) while mapping the virtual nodes and
links with specific demands. Apart from these demands
constraints, the virtual nodes and links might impose
more constraints, e.g. specific location in virtual nodes
and delay constraints in virtual links. When the virtual
nodes and links with specific demands are assigned, the
algorithm assigns, in an equal way, the remaining sub-
strate network resources to the virtual nodes and links
without specific demand requests.

The paper is organized as follows: Next section de-
scribes the optimization model proposed to efficiently
solve the embedding VN problem accomplishing the
constraints and looking for the maximization of the
spare bandwidth and spare CPU. Section 3 shows the
complexity of the raised problem. Section 4 presents the
heuristics used to solve the problem. Section 5 presents
an example of the algorithm and finally, conclusions and
future work are presented in section 6.

2 Optimization Model

2.1 Hypothesis

To accommodate a demand between two virtual nodes
inside a virtual network, up to now, only one path
is taken into account. This is often a realistic restric-
tion due to the used routing protocol, or simply an
explicit management requirement. However, multi-path
approaches have been proposed. In [16] the virtual link
demand is split among the possible paths, reducing, in
this way, the computational complexity of the problem.
Although this approach is computationally better, the
difficulty of its implementation is higher [7].

In our model, the relationship among the elements
of SN and VNs is as follows: One virtual router can be
mapped to only one physical router, while a virtual link
is represented by a path (group of consecutive links) in
the SN. We consider that a physical node is a hidden
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hop if it is part of a SN path mapped to a virtual link
(i.e. if it is an intermediate node in the SN path).

Besides the CPU demand of some virtual nodes, we
consider that each substrate node’s, acting as a hid-
den hop (intermediate node) in a substrate path, that
represents a virtual link, will have a CPU expenditure
because it has to be configured and it will have to cor-
rectly forward the packets passing through this virtual
link. The CPU resource that must be assigned to an
intermediate node is a function of the virtual link de-
mand. This resource expense had not been considered
in previous studies [16,17,10].

This model assumes that the virtual nodes are as-
signed (mapped) to specific substrate nodes before the
optimization process starts. This hypothesis is consid-
ered because we think that, for each virtual node, node
mapping might not be done taking into account all the
substrate nodes as potential candidates. At least, a vir-
tual node must be subject to location constraints, so the
potential candidates would be the nodes accomplishing
these constraints. This aspect has not been taken into
account in [10,17]. In future works, location constraints
will be studied to map the most suitable substrate node,
among a set of candidates, to a specific virtual node.
The first attempt to include location constraints in node
mapping can be found in [4].

The optimization model assumes virtual network re-
quest where there can be bandwidth and CPU fixed
demands for some virtual links and nodes, but also the
possibility that some other nodes and links do not ask
for any resources is contemplated. After the demanded
resources (bandwidth and CPU) in virtual links and
nodes are assigned; a fair allocation is made, with the
remaining resources, among the virtual links and nodes
with no resources demanded. This fair allocation lies in
allocates the shortest paths for the virtual links.

The required demand of the hidden hops and the
mapping of undemanded request had not been taken
into account in previous work [16,17,10,4]. These two
improvements helps to carry out a more realistic virtual
network mapping, because more virtual networks (even
those without explicit demand requests) can be mapped
taking into account the CPU demand of hidden hops.

2.2 Variables Definition

SN is represented by an undirected graph G(V, E), where
V is a set of elements called vertices and E is a set of el-
ements called arcs or edges, with one or more numbers
associated with each arc. Considering a ordered set of
vertices V1, V2, ..., Vn, Vn+1; a free of cycles directed path
(just path from now on) is any sequence of arcs ∈ E of
the following type: {(V1, V2), (V2, V3), ..., (Vn, Vn+1))}.

A virtual network is represented by the undirected
graph Gk(V k, Ek), where k is the identifier of the VN.
Each virtual network request is represented by the graph
Gk(V k, Ek), a group of variables h(ik, jk) representing
the bandwidth demand of the virtual link (ik, jk) ∈ Ek,
a variable cpu(ik) representing the CPU requirement of
the virtual node ik ∈ V k and a variable I(ik, jk) which
represents the CPU demand of every intermediate node
composing the substrate path that maps the virtual link
(ik, jk); this value can be given by the virtual network
requester, or can be calculated based on the bandwidth
demand h(ik, jk), Fig. 2 is an example of these requests
over a substrate network with the NSF topology.
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Fig. 2 Example of a Set of VN requests over a NSF Substrate
Network

If h(ik, jk) = 0 the virtual link (ik, jk) is not ask-
ing for a specific bandwidth demand, in the same way
if cpu(ik) = 0 the virtual node ik is not asking for a
specific CPU demand. The notation of the substrate
network variables is shown in Table 1, while variables
of each specific virtual network are deeply detailed in
Table 2.
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Table 1 Definition of Substrate Network’s Variables

Terms Definition

G(V, E) Undirected graph representing the substrate network

V Set of physical nodes (routers) belonging to the sub-
strate network

E Set of links belonging to the substrate network

(i, j) (i, j) ∈ E is the link from substrate’s node i to sub-
strate’s node j

V N Set of virtual networks, virtualized from the substrate
network

V Nk V Nk ∈ V N represents the virtual network number k

C(i) CPU capacity of the substrate network’s node i
B(i, j) Bandwidth capacity of the substrate network’s link

(i, j)

Table 2 Definition of Variables Specific of Virtual Network k

Terms Definition

Gk(V k, Ek) Undirected graph representing the virtual network
k

V k Set of virtual nodes (routers) belonging to the vir-
tual network k

a virtual node mapping is given by the following
function f(ik) ∈ V and ik ∈ V k, f(ik) has to fulfill
the CPU demand and location constraints

cpu(ik) CPU that must be assigned to the node ik ∈ V k of
the virtual network k

Ek Set of links belonging to the virtual network k

P (ik, jk) Set of cycle-free paths in SN connecting the sub-
strate nodes f(ik) and f(jk)

I(ik, jk) CPU requirement of a substrate node acting as in-
termediate (hidden hop) in a substrate path repre-

senting the virtual link (ik, jk)

dp(i) Assigned bandwidth to substrate node i ∈ V acting
as an intermediate node in path p ∈ P (ik, jk)

(ik, jk) (ik, jk) ∈ Ek is the link from virtual node ik to

node jk in the virtual network k.

This virtual link is given by the following function
g(ik, jk) ∈ P (ik, jk) and (ik, jk) ∈ Ek, g(ik, jk)
has to fulfill the bandwidth demand

h(ik, jk) Bandwidth that must be assigned (demand) to the

virtual link (ik, jk) of the virtual network k

bp(ik, jk) Allocated Bandwidth to the virtual link (ik, jk) in

the path p ∈ P (ik, jk) of the virtual network k

ρp(i, j, k) Binary variable
It is 0 → if the substrate link (i, j) in the virtual
network k, is not part of the path p for the virtual
link (ik, jk). It is 1 elsewhere

αp(ik, jk, l) Binary variable
It is 0 → if the substrate node l ∈ V in the virtual
network k, is not an intermediate node of the path
p for the virtual link (ik, jk). It is 1 elsewhere

2.3 Optimization Model Definition

The model aims to maximize the spare bandwidth and
CPU in the physical network, while the demands for
virtual nodes and links are fulfilled. Formally the opti-
mization model is the following:
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The objective is to find, for each virtual network,
the paths accomplishing the constraints that maximize
the objective function F (Equation (1)), representing
the sum of the spare bandwidth and spare CPU in the
substrate network. First group of constraints (2), (3)
are of capacity, they assure the sum of the bandwidths
and CPU, assigned to each virtual link and node, does
not exceed substrate’s link nor node capacity. Second
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group of constraints are related with demand (4), (5);
they assure that each virtual link obeys its demanded
bandwidth and each intermediate virtual node reaches
its CPU demand. Third set of constraints (6), (7) as-
sures the uniqueness of the chosen substrate path for
each virtual link. Last set of constraints (9) force vari-
ables to be greater or equal than zero.

3 Problem Complexity

The model exposed in the previous section may have
different degrees of complexity depending on the way
the allocation of the virtual link demands is approached.
To consider unique substrate path to transport a vir-
tual link demand is often a realistic restriction due to
the used routing protocol, or simply an explicit man-
agement requirement stipulating avoidance of packet
re-sequencing in receiving nodes. In the right side’s top
of Fig. 2 an example of an allocation using just one path
is shown. If this restriction is present in the problem,
it can be formulated as the unsplittable flow decision
problem (UFP) [9]:

INSTANCE: Graph G = (V,E), and edge capacity
B(i, j) for each (i, j) ∈ E, a set of demands T , where
h(s, t)) ∈ T is the demand between nodes s and t ∈ V .
We say that T is realizable in G if there exist a set of
paths P (s, t) such that s and t are the endpoints of each
path, and the following capacity constraint is met for
every edge:

∑
(s,t)∈T

∑
p∈P (s,t)

ρp(i, j)h(s, t) ≤ B(i, j) ∀(i, j) ∈ E (9)

where ρp(i, j) is a binary variable that is 1 if the
link (i, j) ∈ E is part of the path p between the nodes
(s, t), and 0 otherwise.

QUESTION: Is T realizable in G?
This problem is a generalization of the well known

Edge Disjoint Paths (EDP) decision problem, that was
shown to be NP-complete [6], that is why UFP is NP-
complete.

Fig. 3 shows a virtual network on top of a sub-
strate. There is a virtual network demand between vir-
tual nodes A and D. In the right side of the figure;
two methods to allocate the traffic are shown, in part
a, the bandwidth to fulfill the virtual link demand is
assigned to just one of the possible paths between this
pair of nodes. In the bottom of the figure (part b), the
allocation of bandwidth is made using all the possi-
ble paths between the substrate nodes. This approach
can be solved using the multi-commodity-flow problem

(MFP). Algorithms running in polynomial time that
solve MFP are available [1].
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Fig. 3 Different Strategies to Allocate Virtual Link Demands

4 Heuristics

In this section, we propose an algorithm to map a set
of virtual network requests (offline algorithm) trying to
maximize the spare bandwidth and spare CPU in the
substrate network. The algorithm takes into account
that each VL request mapped to a SN path uses cer-
tain CPU capacity in the intermediate path nodes; this
capacity could be calculated as a function of the virtual
link BW demand as well as a given parameter enclosed
in this demand.

The algorithm is divided in two different steps: firstly,
the algorithm maps the requests of each VN, both for
the virtual nodes and virtual links, that explicitly ask
their demands. In second place, the remaining resources
are distributed equally among the remaining virtual
nodes and links.

The second step of the algorithm, to allocate the
resources equally among the request without demand,
is divided in two parts; the virtual node mapping is easy
because we assume that each virtual node is already
mapped (f(ik) is known for ik ∈ V k∀k), the mapping
of a virtual link is performed by allocating the resources
to the shortest SN path.

The optimum solution to the first step of the al-
gorithm is computationally hard to solve as shown in
the previous section, so a heuristic solution is proposed
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to find a near-optimum result. This heuristic is mainly
based in an approximated greedy algorithm [15] pro-
posed to solve the Unsplittable-Flow problem, we make
few modification to adapt the algorithm to the mapping
problem.

4.1 Mapping of Demanded Virtual Nodes and Links

The algorithm to map the virtual nodes and links, of
all the virtual network requests asking for explicit de-
mand, uses a sub-algorithm to realize just one virtual
link mapping. For the mapping of virtual nodes, the
assumption that virtual nodes are already mapped is
done, that is, each VN k request provides f(ik) ∀ik ∈
V k.

We employ a small modification of the known greedy
algorithm (GA) [9] to look for the best substrate virtual
path for a single virtual link obeying the bandwidth
and CPU constraints. This algorithm uses the short-
est path, with hops number as metric, as the preferred
substrate path to map each virtual link. This decision is
made because when the shortest path is used, the spare
bandwidth and CPU of the SN is maximized, that is,
as the shortest path maps the required demands to less
resources (less physical links and nodes in the short-
est path), the remaining resources in the network are
maximized each time a shortest path is used.

Before presenting the algorithm that allocates a sub-
strate path for each virtual link, some temporary vari-
ables and functions are explained in detail.

The algorithm needs some entry parameters: the
graph G(V, E) representing the substrate network, as
well as the virtual nodes of the virtual link (ik, jk) that
have associated the bandwidth demand h(ik, jk) and
CPU demand I(ik, jk) ∀i ∈ V acting as an intermedi-
ate node belonging to the path between f(ik) and f(jk).
The function FIND-SP (n, ik, jk, G(V, E)) returns the
shortest path (in number of hops) number n between
the nodes f(ik) and f(jk) ∈ V accomplishing the CPU
and Bandwidth restrictions, this function is based on
the algorithm to find the k-shortest paths proposed in
[5]. HOPS(p) is a function that returns the number of
hops of a path p. MAX(Paths, bin) returns the max-
imum from a set of paths taking into account the bin
variable that can be BW or CPU, that is, if bin=BW
the chosen path will be the path with more remaining
bandwidth (sum of the remaining BW in all links). If
two (or more) paths have the same remaining band-
width, the one with higher spare CPU (sum of the re-
maining CPU in all nodes of the path) will be chosen.
If bin=CPU the opposite process is made. INTER(p)
returns a set containing the intermediate nodes of the
path p.

Algorithm 1 Greedy Algorithm to Map a Single Vir-
tual Link (GA)
Require: G(V, E), ik, jk, bin
1: Condition=TRUE, FT=TRUE, SP={∅}, paths={∅},

Counter=1, prevhops=0, Path

2: while Condition do
3: SP=FIND-SP(Counter,ik,jk,G(V, E))
4: if HOPS(SP) 6=0 then
5: if HOPS(SP) = prevhops or FT then
6: FT=FALSE, paths=paths+{SP}, pre-

vhops=HOPS(SP)
7: else

8: Condition=FALSE
9: end if

10: else
11: Condition=FALSE

12: end if
13: end while
14: if HOPS(SP) 6= {∅} then
15: Path=MAX(paths,bin)

16: for i ∈ INTER(Path) do
17: C(i) = C(i) − I(ik, jk)
18: end for
19: return Path

20: else
21: return 0
22: end if

The algorithm GA (Alg. 1) works by finding the
shortest path, with number of hops as the metric, ac-
complishing the bandwidth and CPU constraints. If
more than one shortest path is found, a path with more
remaining bandwidth or remaining CPU, based on the
bin variable, is chosen. When the path is chosen, the
algorithm proceeds to subtract the intermediate node
demand associated with the virtual link from the re-
maining CPU demand of each intermediate node.

The general algorithm (GAP-M) maps the virtual
links and nodes with explicit demands of one virtual
network request making use of the previous procedure
(GA) and uses the following temporary variables and
functions.

H and A are sets of unmapped and mapped (re-
spectively) connections of a specific virtual network.
SORT(B) returns the group of links ∈ B ordered in
decreasing order of demands h(ik, jk). FIRST(H) re-
turns the first item (ik, jk) ∈ Ek of H. SORTP(A) re-
turns the connections of A in decreasing order, tak-
ing into account the number of hops of each corre-
sponding SN path. REALLOCATE-RESOURCES(k)
updates the capacities of the substrate network (B(i, j),
∀(i, j) ∈ E and C(i),∀i ∈ V ) by reallocating them with
the mapped virtual links and nodes resources of the
virtual network k. The variable TOL (tolerance) is the
maximum number of times that the largest path is elim-
inated to allow the mapping of a request, that does not
fit in the physical network, due to the lack of resources.



7

Algorithm 2 Algorithm to Map a Virtual Network
(GAP-M)
Require: G(V k, Ek), G(V, E), TOL, bin
1: for Counter ∈ V k do
2: if C(f(counter)) ≥ cpu(counter) then

3: C(f(counter))= C(f(counter)) - cpu(counter)
4: else
5: GOTO 39
6: end if
7: end for
8: Path=0, A={∅}, B=Ek

9: H=SORT(B), (ik, jk)=FIRST(H), Path=GA(G(V,E),

f(ik),f(jk), bin)
10: if Path6= 0 then
11: g(ik, jk)=Path
12: for (i, j) ∈ g(ik, jk) do

13: B(i, j) = B(i, j) − h(ik, jk)
14: end for
15: H=H-{(ik, jk)}, A=A+{(ik, jk), Path}, GOTO 9
16: else

17: if H={∅} then
18: Mapping completed, Stop Algorithm
19: else
20: GOTO 22

21: end if
22: end if
23: for Counter=1 to TOL do

24: D= SORTP(A), (gk, hk)=FIRST(D)
25: H=H+{(gk, hk)}, A=A-{(gk, hk), Path}
26: for (i, j) ∈ g(gk, hk) do
27: B(i, j) = B(i, j) + h(ik, jk)

28: end for
29: Path=GA(G(V,E), f(ik),f(jk), bin)
30: if Path 6= 0 then
31: g(ik, jk)=Path

32: for (i, j) ∈ g(ik, jk) do
33: B(i, j) = B(i, j) − h(ik, jk)
34: end for
35: H=H-{(ik, jk)}, A=A+{(ik, jk), Path}, B=H,

GOTO 9
36: end if
37: end for
38: if Path=0 then

39: It is not possible to map Virtual Network k
40: REALLOCATE-RESOURCES(k)
41: return 0

42: end if

Algorithm GAP-M works by mapping each virtual
link, belonging to the virtual network. Virtual links are
mapped, one by one, in decreasing demand order. To
map each link, the algorithm GA (Alg. 1) is used. If
the mapping of a virtual link is not possible (GA re-
turns 0), the algorithm tries to look for the resources
needed to assign this requirement; the longest of the
mapped paths (already assigned to another virtual link)
is eliminated of the mapping because this path is more
likely to share substrate link and nodes with the cur-
rent request, and so, the resources are returned to the
substrate network variable and another try to map vir-
tual link is done. If even in this way the request can

not be mapped, the following mapped longest path is
eliminated and the same process is performed until the
virtual link is assigned or until a tolerance (TOL) value
of times is reached. This value is an algorithm input and
is thought to limit the number of mapping attempts of
a virtual link; if after TOL attempts, the mapping has
not been done, we consider that this virtual network
can not be mapped.

To map the set of VNs into the SN, the previous
algorithm (Alg. 2) must be called for each VN.

4.2 Mapping of Undemanded Virtual Nodes and Links

After the mapping of the request asking for a specific
demand, the second step in the algorithm is to assign
the remaining unconstrained demand in an equal way
among the requests that did not demand any resource.
To do the mapping, it is necessary to know, in first
place, if the physical nodes that correspond to the vir-
tual nodes (without demand), have non-zero CPU re-
maining capacity. To map a virtual link, the shortest
path with non-zero remaining capacity, both in virtual
links and nodes, is chosen.

The algorithm uses a new function SP-WR (G(V, E),
i, j) that returns the shortest path between i and j in the
graph G(V,E), this path must have non-zero remaining
bandwidth and CPU in each physical link (composing
the virtual one) and physical intermediate node, if this
condition does not apply the function returns 0.

Algorithm 3 Algorithm to Map Request Without De-
mand in a Virtual Network (UVL)
Require: G(V k, Ek), G(V, E)
1: for Counter ∈ V k do
2: if C(f(counter)) = 0) then

3: GOTO 16
4: end if
5: end for
6: U=Ek

7: (ik, jk)=FIRST(U), Path=SP-WR(G(V, E), f(ik), f(jk))
8: if Path 6= 0 then
9: g(ik, jk)=Path, U=U-{(ik, jk)}, GOTO 7

10: else

11: if H={∅} then
12: Mapping completed, Stop Algorithm
13: end if
14: end if

15: if Path=0 then
16: It is not possible to map Virtual Network k
17: return 0
18: end if

The mapping process finishes with the execution of
the UVL algorithm (Alg. 3) in each virtual network
request. In first place, the algorithm assures that each
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physical node corresponding with a virtual node of this
request, has remaining CPU capacity, if it is not the
case, the virtual network is not mapped. After that step,
the virtual link mapping is performed, the result of the
mapping is located in g(ik, jk), these variables indicates
the path each virtual link has been mapped to.

5 Example of Application

Fig. 4 shows an example with a simple SN topology
and three virtual network requests, two of them with
demands in each virtual node and link, the third re-
quest does not ask for any demand. This example is
presented to show how a network would behave follow-
ing the proposed algorithm. It will be easier for the
reader to understand how the mapping is carried out.

Substrate Node i ik

jk

i

C(i)

i j
B(i,j)

Substrate Link 

(i,j)

cpu(ik) Virtual Node

ik, where f(ik)= 

i

Substrate Linkik h(ik,jk)

I(ik,jk)

3

100

1 4

3 4

1 5

15

5

Substrate Network

12
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8

20 25

VN

Request #1

VN

Request #2

After VN 1 

mapping

3 4

1 5

15

5

20 25

After VN 2 

mapping

1 5

VN

Request #3

(without

demand)

VN

Request #2

VN

Request #3

(without

demand)

VN

Request #3

(without

demand)

1

2

3 5

4

250

100

2040 70
10

1

2

3 5

4

88
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92

2030 7010
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1

2

3 5

4

229

67

20
10 70

10

g(11,31)= {(1,2),(2,3)}

g(31,41)= {(3,4)}

g(32,42)= {(2,3),(1,2),(1,4)}

After VN 3 

mapping

83

1

2

3 5

4
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20
10 70

10

g(13,53)= {(1,3),(3,5)}

Fig. 4 Example of a Virtual Network Mapping Scenario

In this example, three virtual network request are
done to a substrate network that counts on 5 nodes
connected by 6 links. The information of each physical

node (node id i, remaining bandwidth capacity C(i))
and physical link (link remaining capacity, B(i, j)) is
shown in the figure. The virtual network requests con-
tains also all the needed information in each VN. It
is possible to see, for each virtual node being part of
V Nk, in Fig. 4; the node i to which each virtual node
ik is mapped (to facilitate the reading, f(ik) = i) and
the CPU demand cpu(ik), and for each virtual link, the
bandwidth demand h(ik, jk) and the CPU requirement
of the intermediate physical nodes I(ik, jk) that will
compose the SN path fulfilling the virtual link require-
ments.

Following the proposed algorithms, the process to
map the VN requests is as follows: Firstly, the 1st re-
quest is processed by GAP-M (Alg. 2), lets suppose
arbitrary values to TOL = 2 and bin=BW. The first
step of the algorithm is to subtract of the remaining
CPU in physical nodes, the amount of demand made
by the corresponding virtual nodes. The result is dis-
played in the drew SN after the VN 1 mapping. Nodes
1, 3 and 4 (nodes of the 1st VN request) new CPU ca-
pacity is the result of the subtraction of the virtual node
demand from the old capacity. Node 2 remaining CPU
decreases as well. In second place, the algorithm looks
for the virtual link request with the higher bandwidth
demand (h(ik, jk)), the result is the virtual link (1, 3)
with 20 units of bandwidth demand. In third place, a
proper path fulfilling the virtual link requirements is
searched, to find this path the GA (1) is invoked, this
algorithm returns a path accomplishing the bandwidth
and intermediate node CPU requirements. In this case,
the chosen path is g(11, 31) = {(1, 2), (2, 3)}, although
the shortest path between nodes 1 and 3 is direct (no
hops), it does not obey the BW requirements. So the
demanded bandwidth is subtracted from the remaining
bandwidth capacity of each physical link contained in
the substrate path. As this path contains an interme-
diate node (node 2), the CPU demand associated with
the bandwidth request is subtracted from the remain-
ing CPU capacity in this physical node. The case of
the second virtual link in the first request is easier to
solve. The shortest path between physical nodes 3 and 4
can accomplish the bandwidth and intermediate nodes
CPU’ demand, so the bandwidth demand h(31, 41) is
subtracted from the remaining bandwidth in this link
B(3, 4) and it is clear that g(31, 41) = {(3, 4)}. The re-
sult of this mapping is the substrate network shown in
Fig. 4 after “VN 1 mapping” arrow.

After the first virtual network is mapped, the same
algorithm is applied to the following VN request. The
2nd request is just of one link: (32, 42). So, as in the
previous request, the first step is to update the re-
maining capacities of the physical node. In this case,
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nodes 3 and 4 remaining CPU is updated. The second
step, with GA algorithm’s help, is to find the most ap-
propriate path for the unique virtual link request of
the request. Possible paths between these nodes are
({(3, 4)}, {(1, 3), (1, 4)}, {(2, 3), (1, 2), (1, 4)}), but the
only path obeying the bandwidth and CPU require-
ments is the largest g(32, 42) = {(2, 3), (1, 2), (1, 4)}, so
this is the chosen path to map the virtual link (32, 42),
and its bandwidth demand (h(32, 42)) is subtracted from
the bandwidth remaining capacity (B(i, j)) of each sub-
strate link composing the path. The CPU requirement
associated with the virtual link I(32, 42) is also sub-
tracted from the remaining CPU capacity of each in-
termediate node (nodes 2 and 1). After the successful
mapping of the VN 2 request, the resultant substrate
network is shown in Fig. 4 after “VN 2 mapping” arrow.

The last VN request does not ask for any demand
neither of virtual nodes nor of virtual links. So, as it is
shown in Fig. 4 the substrate network does not change
after the mapping of this request, the remaining re-
sources are available to be used by this VN. But it is still
interesting to know which is substrate path that will be
chosen to fulfill the demand of the unique virtual link
in the third VN request. This request among the sub-
strate nodes 1 and 5 is fulfilled, as it is stated in the al-
gorithm Alg. 3, using the shortest substrate path, with
non-zero remaining resources (BW and CPU), among
these nodes; in this case it is clear that the chosen path
is g(32, 42) = {(2, 3), (1, 2)}.

6 Conclusions and Future Work

The introduction of network virtualization would pro-
duce big changes in current network architecture. But it
sets out some problems, such as the mapping of virtual
networks in top of the substrate network.

We have proposed an optimization model contem-
plating the possibility of mapping virtual networks with
explicit bandwidth and CPU demands, but also with
the possibility of accept virtual links or nodes, or even
virtual networks, that do not ask for any demand. As
the problem is computationally hard to solve, we have
proposed an algorithm (heuristic) that tries to map in
first place, the virtual links and nodes that are ask-
ing for an explicit demand in each virtual network, this
mapping is done with the objective of maximize the
spare bandwidth and CPU resources in the substrate
network; the aim of this optimization objective is to
leave as much resources as possible, but obeying all the
demands, to distribute them among the remaining re-
quests (without explicit demands).

Previous studies in the embedding problem have
been focused in the mapping of VNs taking into ac-

count the demand in both, virtual link bandwidth and
virtual node CPU. CPU demand due the mapping of
a virtual links in the intermediate nodes (hidden hops)
of a substrate path, has not been taken into account
as an important parameter in the problem. It is logical
to think that some CPU is consumed by the interme-
diate nodes, because they will have to be configured to
process and forward the packets passing through that
virtual link. The proposed optimization model (and so
the algorithm) includes this important feature.

The proposed algorithm is based on a modified greedy
heuristic that can be improved, if the problem is set out
as a Multi-Commodity flow problem, and after solving
it, the application of rounding techniques might drive
us to more optimized solution taking into account the
constraint stating that just one SN path must be used
to map each virtual link.

An optimization objective that is energy-awareness
could be also interesting to obtain an embedding that
reduces the energy expense in the substrate network.
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