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Abstract Vehicular Ad Hoc Network (VANET) is an
emerging field of technology that allows vehicles to com-

municate together in the absence of fixed infrastructure.

The basic premise of VANET is that in order for a vehi-

cle detect other vehicles in the vicinity. This cognizance,

awareness of other vehicles, can be achieved through
beaconing. In the near future, many VANET applica-

tions will rely on beaconing to enhance information

sharing. Further, the uneven distribution of vehicles,

ranging from dense rush hour traffic to sparse late night
volumes creates a pressing need for an adaptive bea-

coning rate control mechanism to enable a compromise

between network load and precise awareness between

vehicles. To this end, we propose an intelligent Adap-

tive Beaconing Rate (ABR) approach based on fuzzy
logic to control the frequency of beaconing by taking

traffic characteristics into consideration. The proposed

ABR considers the percentage of vehicles travelling in

the same direction, and status of vehicles as inputs of
the fuzzy decision making system, in order to tune the

beaconing rate according to the vehicular traffic char-

acteristics. To achieve a fair comparison with fixed bea-

coning schemes, we have implemented ABR approach in

JIST/SWANs. Our simulation shows that the proposed
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1 Introduction

The number of vehicles contending for space in ex-

isting transportation systems is growing rapidly. This

abrupt growth of vehicles has made driving unsafe and

hazardous. Thus, existing transportation infrastructure
requires improvements in traffic safety and efficiency.

To achieve this requirement, Intelligent Transportation

Systems (ITS) have been considered to enable diverse

traffic applications such as traffic safety, cooperative

traffic monitoring and control of traffic flow. These traf-
fic applications can become realities through emerging

VANET because vehicular network is considered as a

network environment of ITS. In addition, in the near

future more vehicles will be embedded with wireless
communication devices such as Wireless Access in Ve-

hicular Environment (WAVE) [1]. When vehicles are

equipped with WAVE, they can synchronize and hand-

shake via beacons. In this way, a vehicle exchanges bea-

con messages periodically, sharing its mobility charac-
teristics with its neighbours, thereby building coopera-

tive awareness.

However, rapid changes in traffic density from sparse

to heavy, as well as periodic beaconing between vehi-
cles, can cause the wireless channel between vehicles to

promptly become congested, resulting in a high degree

of performance degradation of vehicular network [2], [3].
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The reason for this channel congestion is that each ve-

hicle periodically broadcasts beacons at a fixed rate.

This also leads to high channel overloading and hence

packet loss. In short, the higher the frequency of beacon

rate, the higher the bandwidth overload in dense traffic
conditions [4].

On the other hand, the solution to channel over-

loading does not involve simply reducing the frequency

of beacon generation. As the frequency of beacon gen-
eration is reduced, the error will increase between the

current physical position and the last reported position.

For instance, in geographical routing protocols, reduc-

ing beacon rate would lead to the inaccuracy of the
exchanged position coordinates between vehicles. This

would negatively affect the performance of routing pro-

tocols. In short, reducing the beacon rate leads to the

exchange of out-of-date information.

From the brief discussion above, it is obvious that

there is a pressing need to consider a conditional up-

date approach in which a vehicle adapts its beacon rate

when there is considerable variation in its neighbour

vehicles mobility/traffic characteristics. Therefore, mul-
tiple parameters, like vehicular mobility characteristics

and status of vehicle, have been utilized to design an in-

telligent ABR approach to control beaconing rate. This

is because a fixed beacon rate can not tackle both band-
width consumption and accuracy of vehicle status due

to rapid changes in vehicular traffic conditions. There-

fore, an intelligent ABR approach in vehicle-to-vehicle

communication has been developed to tune the beacon-

ing rate in response to changing vehicular traffic char-
acteristics. The contributions of this study can be sum-

marized as follows:

1. In dense traffic conditions, a low beacon rate is re-

quired to reduce overload on the network (with ac-
ceptable information awareness) whereas in sparse

traffic conditions, a higher beacon rate is required

to increase the cooperative awareness (with accept-

able beaconing load) between vehicles. Therefore, in

contrast to all previous works, we proposed an intel-
ligent ABR approach based on fuzzy logic to tackle

the aforementioned issues.

2. We perform simulations to show the effect of traffic

density, number of emergency vehicles and shadow-
ing lossy channel on the proposed approach.

In addition, the proposed adaptive approach has

been modeled and simulated using JIST/SWANs [5]

simulation tool for performance evaluation. Likewise,

the fuzzy logic decision making algorithm -which is in-
tegrated with the ABR approach- is implemented in

java language. Moreover, in this article we use the term

vehicle and node interchangeably.

The rest of the paper is organized as follows: Sec-

tion 2 provides an overview of the current state of the

arts. The proposed intelligent ABR approach and the

designed fuzzy inference system are discussed in section

3, followed by performance validation and evaluation in
section 4, where we highlight the feasibility of our ap-

proach by utilizing a real city map, traffic characteris-

tics of vehicles and a realistic wireless channel. Finally,

section 5 concludes the paper and discusses future di-
rections.

2 Related Work

The problem of beaconing adaptation has been studied
in various prospects in VANET. Transmission power

control and beacon rate control are two main examples

of adaptation approaches. The authors in [3], [6] and [7]

have proposed adaptation approaches to tune transmis-

sion power with varying vehicular densities. That is, the
purpose is to reduce transmission power in dense vehic-

ular scenarios and hence improve fairness. In addition,

adaptation of beaconing can be done by controlling the

beacon rate in order to tune it with uneven distribution
of vehicles. In this study, we consider the adaptation

approach to beacon rate control.

In [8], van Eenennaam et al. proposed an architec-

ture to adapt network and MAC-layer parameters in or-

der to mimic the configuration parameters. This adap-
tive approach can tune MAC layer configurations and

beaconing properties to optimal values in the vehicular

scenarios. However, vehicular networks are dynamic, as

evidenced by dense rush hours and sparse late night
traffic conditions. In designing their model, the afore-

mentioned authors did not take these factors into con-

sideration.

The adaptation of beacon rate is also considered

in [9] and [10]. The proposed beacon rate adaptation is
based on differences in predicted positions. In their pre-

diction scheme, all vehicles are embedded with modified

Kalman estimators to provide continuous estimates of

existing positions. This position estimate can be ob-
tained via the last beacon message, enhancing posi-

tional accuracy between two sequential beacons. More-

over, the prediction scheme requires that the next bea-

con message is triggered based on a vehicle’s current

position and an estimated position. Once the vehicle
determines a change in its physical position, it triggers

the next beacon message. In this way, vehicles indepen-

dently estimate the duration of the next beacon mes-

sage. However, rapid topology changes of vehicles and
mobility traffic characteristics were not considered.

In [11], Fukui et al. proposed a beacon adaptation

scheme which considers the distance travelled by ve-
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hicles. Moreover, vehicles independently determine the

number of lanes the current road has, and the higher

the number of lanes, the lower is the beacon rate. In ad-

dition, another beacon adaptation technique is based on

packet loss rate. But, changing beacon rates based on
multi lane is unfair because multi lanes do not directly

imply higher traffic density. Further, the accuracy of

information has not been considered.

The authors in [12] first studied the adaptation of
beacon rate in order to compromise between informa-

tion accuracy and bandwidth consumption. After anal-

ysis of the parameters which affect the beacon rate, they

proposed a scheme to adapt beacon rate according to

the VANET traffic behaviour. In their study, however,
intelligently combined traffic parameters like direction,

density and status of a vehicle have been neglected.

Moreover, their study is based on theoretical analysis.

The different adaptive beaconing approaches men-
tioned above have their own drawbacks, thus there is

an imperative need to design an approach which can

fulfill the need for the exchange of information accu-

rately coupled with low bandwidth consumption. To

this end, we propose an intelligent ABR approach to
dynamically adapt beacon generation frequency accord-

ing to the traffic density, vehicle direction and status

(emergency or non-emergency) of vehicle. More pre-

cisely, the proposed ABR is based on the percentage
of vehicles moving in the same direction and status of

vehicle (the status of a host vehicle or a vehicle itself)

on the road. The reasoning behind this parameter se-

lection is demonstrated in sections (3.1.1) and (3.1.2).

3 Proposed Intelligent Adaptive Beaconing

Approach

The designed ABR approach is adopted for Vehicle to

Vehicle (V2V) communication systems in which vehi-
cles communicate without the presence of infrastruc-

ture. The approach is used to tune the frequency of

beacon generation with traffic context in VANET. We

assume that all vehicles are equipped with wireless ra-
dio communication devices in order to facilitate com-

munication with other vehicles. Similar to existing work

on VANET, we assume that all vehicles are equipped

with a Global Positioning System (GPS) receiver that

provides vehicle position information. We also assume
that different types of vehicles are deployed in the urban

area to account for the presence of both emergency and

non-emergency vehicles. Since vehicles on the roads are

susceptible to unusual situations, the presence of emer-
gency vehicles is a reasonable assumption.

Instead of simply broadcasting beacons in a fixed

time interval, we propose a VANET friendly adaptive

approach to control beacon rate. Whenever a vehicle re-

ceives a beacon message from its neighbours, the vehicle

checks the percentage of directional neighbour vehicles

and its emergency status. After collecting this informa-

tion, it triggers the fuzzy inference system (it is run
distributedly by every node upon receiving a periodic

beacon message) to calculate the value of the required

Beacon Rate (BRr). The new value of Beacon Rate

(BRn) is then calculated based on the following equa-
tion:

BRn = BRc + γ(BRr − BRc) (1)

Where BRn is the new value of beacon rate, BRc

is the current value of beacon rate, BRr is the re-

quired beacon rate which is the output of fuzzy in-

ference system. Further, γ is the weight factor which

is used to sustain the value of BRn. If the value of
γ = 0, BRn = BRc i.e. it negates the effect of bea-

con rate adaptation. On the other hand, γ = 1 leads

to an abrupt increase/decrease of beacon rate. This

would cause transient channel congestion/accuracy re-

duction. In the simulator, through trial and error, we set
this value at 0.45. After obtaining the new beacon rate

value, we can determine the value of Beacon Interval

Time (BIT) (Algorithm 1), enabling the next beacon

to be scheduled in BIT seconds. Moreover, the value of
required beacon rate depends upon the designed fuzzy

inference system. In the next section, the design of the

fuzzy inference system is illustrated.

Algorithm 1 Beacon Interval Time Adaptation

Initialize BRc

if Beacon message is received then

Find percentage of same directional neighbour vehicles
Find its own emergency status
Trigger Fuzzy Inference System
get the value of BRr

BRn = BRc + γ(BRr − BRc)
BRc = BRn

BIT = 1

BRc

Output the value of BIT

end if

3.1 Design of Fuzzy Logic Decision Making System

As stated earlier, vehicles can travel at very high speeds,
and traffic densities frequently change from sparse to

dense and vice versa. Therefore, many criteria can dy-

namically change the beacon interval.



4 Kayhan Zrar Ghafoor et al.

Fig. 1: Fuzzy logic components (fuzzification, inference

engine and defuzzification) to generate the required

beacon rate (BRr).

Artificial intelligence based decision making systems,

such as fuzzy logic, perform well in pattern classifica-

tion and decision making systems [13]. Accordingly, a
fuzzy logic system has been utilized in the proposed in-

telligent ABR approach. Fuzzy logic is a decision mak-

ing process based on input membership functions and a

group of fuzzy rules. This is similar to the way the hu-
man brain operates, which simulates the interpretation

of uncertain sensory information [14]. Here it is applied

to control the beacon rate based on intelligently com-

bined metrics (percentage of the same directional vehi-

cles and their emergency/nonemergency status). In this
case, the vehicle does not know which value of beacon

rate is suitable for the current vehicular situation, so

fuzzy is a promising solution for this uncertain type of

problem.
As demonstrated in Figure 1, the fuzzy inference

system consists of fuzzification, inference engine and

defuzzification. The first step in designing a fuzzy in-

ference system is to determine input and output vari-

ables, and their fuzzy set of membership functions. This
is followed by designing fuzzy rules for the system. Fur-

thermore, a group of rules are used to represent infer-

ence engine (knowledge base) for articulating the con-

trol action in linguistic form. The input parameters of
the fuzzy inference system are elaborated in the next

sections.

3.1.1 Emergency Status of Vehicles

In a real heterogeneous vehicular environment, differ-
ent kinds of vehicles, with different kinds of status, are

communicating with one another. During unusual traf-

fic conditions, some vehicles may travel on the road with

Fig. 2: This vehicular scenario demonstrates the emer-

gency(vehicle number 6)/normal (remaining vehicles)

vehicles status and percentage of the same directional
vehicles.

emergency status (e.g. ambulance, fire truck, police car,

or it can be any vehicle in an emergency situation such
as failing brakes). These vehicles should diffuse their

emergency status to their neighbours abruptly, and with

a high degree of accuracy. Thus, increased beacon rate

is very crucial for these types of vehicles, even under

congested traffic conditions. These vehicles need to be
able to inform neighbour vehicles to clear the road, with

extra cooperative accuracy. On the other hand, normal

vehicles follow their usual beaconing rate based on mo-

bility characteristics. Figure 2 shows the common ve-
hicular scenario in which the emergency vehicle is in-

cluded.

3.1.2 Percentage of Directional Vehicles

In the previous section, we mentioned a vehicle param-

eter known as emergency status. Beaconing frequency
control depends upon the vehicles current status and

the traffic condition of neighbour vehicles. This sec-

tion elaborates the latter (percentage of directional ve-

hicles). Mobility characteristics like direction, velocity,

and traffic density are very important parameters to
consider when adapting beacon rate in VANET. The

reasons of this are summarized as follows. First, vehi-

cles on the road travel in constrained directions, thus

vehicle beacon rate adaptation should take both di-
rections into consideration. For instance, in a vehicu-

lar scenario with two way traffic, and vehicles moving

in one direction have congested traffic conditions, they

should reduce beacon rate, whereas vehicles moving in

the other direction may vary their own beacon rate.
Second, the velocity of vehicles and traffic density are

implicitly interrelated to one another. This relationship

is clearly known in traffic flow theory as in [15] Kerner

states that the vehicles average velocity decreases as
a result of increasing vehicular traffic density. There-

fore, the percentage of vehicles travelling in the same

direction is considered as an input as this parameter
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implicitly combines direction of vehicles, traffic density

and velocity of vehicles.

In Figure 2, vehicles 1,2,3,4 and 5 are moving in

the same direction, while 6,7 and 8 are travelling in

the opposite direction. If vehicle 1 wants to find the
percentage of neighbour vehicles in the same direction,

it can perform the following calculation:

PDN =
NND

TNN
(2)

where PDN is the percentage of the same direction

neighbour nodes, NND determines the number of the

same direction neighbour nodes and TNN is the total

number of neighbour nodes. Thus, the value of PDN for

vehicle one is 0.5715, which means that this percentage
of vehicles is moving in the same direction. In this way,

this percentage implicitly considers combined direction,

traffic density and velocity. Additionally, a vehicle can

calculate its relative direction with other vehicles when
its own and neighbours direction are known. For exam-

ple: IF vehicle a is moving in (dxa, dya) direction and

vehicle b is moving in (dxb, dyb) direction we can cal-

culate the bearing angle (σ) between a vehicle and its

neighbour as follows:

cosσ =
dxa · dxb + dya · dyb

√

dx2
a + dy2

a ·

√

dx2

b
+ dy2

b

(3)

3.1.3 Fuzzification of Inputs and Outputs

The two input parameters to be fuzzified are the Per-
centage of Directional Neighbour Vehicles (PDN) and

Vehicle Status (VS), as illustrated in Figure 3. The

membership functions named Sparse,MDense and VDen

se are used to represent the PDN. The selection of PDN
membership functions can be derived based on experi-

ence as well as trial and error of the application require-

ment, thus the range begins at (0) and ends at (1). The

reasoning behind this range is that a node might not

have any same directional neighbour node (0) or all ve-
hicles are moving in the same direction (1). When vehi-

cles are in motion, the value of PDN may vary between

its minimum and maximum value. Thus, the value of

beacon rate is adapted in response to this percentage
variation intelligently combined with the status of ve-

hicles.

In addition, the VS fuzzy variable is represented as

sharp/discrete values because status of vehicles is ei-

ther emergency or non emergency. The discrete value
representation of fuzzy variables is possible in fuzzy in-

ference system. In [16], Myllyniemi et al. proposed a

fuzzy logic system to tune the data rate, and in their

Table 1: Knowledge structure based on fuzzy rules

IF THEN
Rule Perce.ofDirec. V ehicleStatus BRr

1 Sparse Emerg. VHigh
2 MDense Emerg. High
3 VDense Emerg. Medium
4 Sparse NEmerg. Medium
5 MDense NEmerg. Low
6 VDense NEmerg. VLow

study, discrete value representation has been used as a

fuzzy variable. In our fuzzy inference system, we utilize
the membership functions Emerg and NEmerg to repre-

sent the emergency/non emergency status of vehicles.

As demonstrated in Figure 3, there is no intersection

between Emerg and NEmerg at the x- axes, thus it is
a discrete representation of VS fuzzy variable.

The output beacon rate is configured to a range be-

tween (1 to 10 beacon/second); the greater this value,
the lower the duty cycle time for beacon generation.

In addition, triangular functions are used as member-

ship functions as they have been extensively used in

real-time applications due to their simple formulas and

computational efficiency. It is worth mentioning that
the wise design of the membership function has a pos-

itive impact on the fuzzy decision making process per-

formance.

3.1.4 Fuzzy Inference Engine

The fuzzy inference engine is a group of rules devel-

oped using expert knowledge. We have designed the

knowledge based rules that connect the inputs and the

outputs based on a careful understanding of the philos-
ophy behind vehicular network behaviour. The fuzzy

inference system is designed based on 6 rules which are

presented in Table 1. In order to demonstrate the cor-

rect operation of our designed system, one rule is used
to show how the inference engine works and the outputs

of each rule are combined for generating the fuzzy de-

cision [14]. Consider a rule If (PDN is Sparse) and (VS

is NEmerg) then (BR (beacon/second) is Medium) as

an example of calculating output of the specified rule.
In our fuzzy inference system, in the case where PDN

is 0.206 and VS is 0.532, the beacon rate is 5.22 bea-

con/second.

In order to calculate beaconing intervals based on

Algorithm 1, let us assume that the value of BRc is 4.7

beacon/second and the output crisp value of fuzzy infer-

ence system for BRr is 5.22 beacon/second. The value
of the new beacon rate (BRn) is equivalent to 4.934

beacon/second. After taking the reciprocal of BRn, the

duty cycle of the new beacon interval becomes 0.2027
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Fig. 3: Fuzzy membership functions for inputs (Vehicle Status (VS) and Percentage of Directional Neighbour

vehicles (PDN)) and output (Beacon Rate (BRr)) variables.

second. The vehicle has this beacon interval because of

its non-emergency status and the sparse distribution of

neighbour vehicles in the vicinity zone. It means our
fuzzy inference system uses a tradeoff decision between

parameters (VS and PDN) to adaptively tune the bea-

con rate. This output is obtained by using Mamdani’s

fuzzy inference method [14]. Furthermore, Figure 4 de-

picts the correlation behaviour between input and out-
put variables. The trend shows that the value of out-

put beacon rate increases when the value of PDN is

between 0 to 0.2 as well as VS between 0 to 0.5. This

is because of the emergency status of the vehicle and
the lower percentage of directional neighbour vehicles

(upper dark red part). Thus, our fuzzy inference system

could increase beacon rate as traffic density decreases

(velocity increases) or vice versa.

3.1.5 Defuzzification

Defuzzification refers to the way a crisp value is ex-

tracted from a fuzzy set value. In our fuzzy decision
making, we take the centroid of area strategy for de-

fuzzification. This defuzzifier method is based on equa-

tion 4, as follows:

R =

∑

AllRules

xi × β(xi)

∑

AllRules

β(xi)
(4)

Fig. 4: Correlation between inputs (PDN and VS) and output (BRr).
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Fig. 5: Suffolk city map integrated with JIST/SWANs

(vehicles are travelling on the roads of the city).

where R is used to specify the degree of decision

making, xi is the fuzzy variable and β(xi) is its mem-
bership function. Based on this defuzzification method,

the output of the beacon rate is changed to the crisp

value.

4 Performance Evaluation

4.1 Simulation Setup

In this section, we present the simulation setup to val-

idate and evaluate the proposed approach. We have

modeled and simulated the intelligent ABR approach
with the scalable and reconfigurable JIST/SWANs. To

simulate the designed fuzzy logic, we have modified

the implemented fuzzy inference system in [17], then

integrated with JiST/SWANs. Also, these simulations
were executed on a Pentium(R) Dual-Core CPU 2.70

GHz and 2 Gb personal computer with installed Java

j2sdk1.6.0 − 18. All simulation parameters are illus-

trated as follows:

Physical Layer: In order to model the wireless

channel, we utilized 2-ray ground reflection model and
shadow fading model (see section 4.2.2). Furthermore,

each vehicle has a radio coverage range of 200 meters.

Mobility Model and Vehicular Scenario: To

model the urban vehicular scenario, we used the realis-

tic STreet RAndom Waypoint mobility model (STRAW)

[18]. The STRAW has an efficient car following tra-

jectory, lane changing model and real-time traffic con-
troller over Suffolk city (Figure 5) map imported from

the TIGER/LINE database [19]. Furthermore, we set

the maximum speed of vehicles at 21 m/s. The simula-

tion area is set at 750 × 940 meter (Suffolk city area),
the maximum node density on the simulation area is

200 and 10 % or 20 % of 200 nodes selected as emer-

gency vehicles.

Media Access Control (MAC) and Network

Layer: The IEEE Standard 802.11 distributed coordi-

nation function (DCF) has been used to simulate the

MAC layer of the protocol stack. The channel band-

width used in our simulation is 3 Mbps. To store pack-

ets waiting for channel access, we used interface queue

between MAC and Logical Link Control layer (LLC)
with maximum 25 packets.

Traffic Model: The traffic source of the simulation

is Constant Bit Rate (CBR) with a value of 36 kbps,

which is based on UDP packet generation traffic. The

number of vehicles that transmit packets is 5. During
the simulation, the transmitted packet size is fixed on

1000 bytes.

Simulation Time: The total simulation time is 160

seconds. We set the settling time to 30 seconds at the

beginning of simulation to remove the effect of transient
behaviour on the results. The total simulation time also

included 30 seconds of stop sending packets from the

end of the simulation. Further, it is worth mentioning

that each point in the performance figures exemplifies
the average of 10 simulation runs. The 95 % of Confi-

dence Interval (CI) has been calculated for the collected

performance metrics, unless they are (CI) profoundly

small.

Performance Metrics: The following metrics are
considered in our performance evaluation: Beaconing

Load (BL) is measured as the amount of beaconing

packet traffic in bit/second that a node is able to re-

ceive during a time period t. More precisely, the BL
is mainly measured as a function of traffic density and

beacon rate. Further, a vehicle can calculate its BL by

summing up its transmitted beacon message with all

received beacon messages from vehicles within its cov-

erage. Probability of Cooperative awareness (PA) is de-
fined as the probability of beacon messages received by

a node in the past second. More specifically, this metric

is measured by calculating the distance of a node to the

neighbour nodes within its coverage [20]. Thus, it de-
pends upon the frequency of beacon transmission and

the distance between vehicles which are within the same

radio range. End-to-end delay is defined as the time du-

ration subjected by all packets that are transmitted by

the source and successfully reach at the destination.

4.2 Simulation Results

As mentioned earlier, we have evaluated our intelligent

ABR approach based on various parameters. By vary-
ing the simulation parameters, we studied different ex-

periments such as the effect of traffic density, the num-

ber of emergency vehicles and shadow fading.
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Fig. 6: demonstration of beaconing load variation with

increased traffic density.

4.2.1 Impact of Traffic Density (Percentage of

Directional Vehicles) with (10 % - 20 %) of

Emergency Vehicles

First, we conducted our experiment based on 10 % of

emergency vehicles. Figure 6 shows the increasing ef-

fects of traffic density on the Beaconing Load (BL) for

the proposed ABR approach and fixed beaconing rate
scheme (BRs are 1 and 6 beacon/second). Initially, at

the scarce scenarios, the BL has values of 100, 350 and

498 kbps of BR=1, BR=6, and ABR respectively. Since

BRc of ABR is 9, it starts with a larger BL compared

with the other fixed beaconing schemes. Notice that
the BL trends of BR=1 and BR=6 are increasing pro-

portionally as traffic density increases in the network.

This is no surprise, since the frequency of beaconing

is fixed as well as vehicular traffic density is increased,
hence it causes more beaconing load in the network.

On the contrary, as the number of node increases from

50-200, the BL trend of our ABR approach intelligently

tunes with the traffic density until it reaches 400 kbps

at 200 nodes. With increasing traffic density, the final
destination of ABR is 400 kbps, which is lower than

the starting point of 498 kbps. This observation proves

that beaconing frequency generation has a higher im-

pact than traffic density on the BL. This observation
is accordant with analysis depicted in [12]. One thing

that is noteworthy is the fact that there is a flip of BL

(at 680 kbps) when traffic density varies from 102 to

128, and this is due to emergency vehicles maintaining

their position accuracy.

By looking at Figure 7, which illustrates the effect

of increasing traffic density (50-200) on the PA be-
tween vehicles, we observe that the trend of BR=1 and

BR=6 are increasing in proportion to traffic density. It

is a well known fact that increased traffic density leads

to increased of cooperative awareness between vehicles

within the same radio coverage [12]. This is due to the

short distance between neighbour nodes in the vicinity

zone as well as fixed BR on a specified value. On the

other hand, our ABR approach consistently tunes the
PA between vehicles with traffic density. Initially, the

ABR approach starts from 0.46, and this value is then

smoothly reduced to 0.32 at approximately 104 nodes

of traffic density. This is because the value of BR is re-
duced adaptively with traffic density. However, we note

a transition toward increasing PA values at a traffic

density of 123 nodes. As it can also be seen, when the

number of nodes is 50 or 200, the value of PA is 0.46 or

0.4467 respectively. This behaviour is due to reducing
the frequency of beacon generation as the number of

node increases. In addition, the impact of changing the

beacon rate on probability of awareness is more effec-

tive than increasing traffic density.

Overall, in Figure 6, at fixed BRs (1 and 6 bea-

con/second), the observed BL trends are increasing while

ABR approach is consistently tuning itself with the ve-

hicular environment characteristics. The performance
of ABR shows an average bandwidth gain of 380.2858

kbps over fixed beacon rate at maximum 200 nodes,

with a travel speed 18 meter/second. In Figure 7, we

have demonstrated that although the number of nodes

is increased in the simulation field, the trend of PA is
reduced to 0.4467.

In the second round of the experiment, we increase

the generation ratio of emergency vehicles to (20 %).

Figure 8 illustrates the BL versus traffic density. Since
fixed BRs generation does not depend on the emer-

gency status of vehicles, it remains on the same trend.

In comparison with 10 % emergency vehicle generation,

the ABR approach suffers from BL on the average of
24.9843 kbps. However, the ABR still has lower BL

Fig. 7: The probability of cooperative awareness varia-

tion with increased traffic density.
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Fig. 8: Beaconing load with respect to traffic density for

different value of fixed beaconing and ABR approach.

compared with fixed beaconing schemes. Recall that the

ABR approach is based on the fuzzy inference system
and one of the inputs is emergency status of vehicles. As

the status of a vehicle is changed to emergency, its BL

increases to maintain fresh knowledge status between

neighbouring vehicles.

Now considering the PA metric, since emergency

vehicles need high accuracy of neighbour nodes, it in-

creases the BR and yields higher cooperative awareness.
By looking at Figure 9, where the probability of aware-

ness is plotted versus traffic density, we observe that

precisely this is occurring. For all traffic densities (50-

200), we notice an increase (compared with Figure 7)
of the PA.

Fig. 9: Probability of awareness between vehicles with

respect to traffic density.

4.2.2 Impact of Channel Shadowing with 10% of

Emergency Vehicles

In this section, we wanted to observe the performance
of ABR approach under log-normal shadowing channel

model. Thus, we use the same simulation settings as

shown before, modeling the channel as a lossy chan-

nel by using log-normal shadow fading. Shadowing ef-
fect states that received signal power fluctuates in the

presence of an object which obstructs the propagation

path between transmitter and receiver. The received

power fluctuates with ”log-normal” distribution about

the mean distance-dependent value [21]. The shadowing
model is given by:

PL(d)[dB] = PL(d0) + 10 × log
d

d0

+ Xσ (5)

Where PL(d) is the path loss at distance d between

transmitter and receiver, PL(d0) is the average path

loss at a reference distance is (d0), n is the path loss
exponent and Xσ is a zero mean Gaussian distributed

random variable with standard deviation σ. The val-

ues of path loss exponent n=2.8 and reference distance

d0=0.4 are used for the shadowing propagation model.

To evaluate the proposed ABR approach with different
channel conditions, we set the shadow standard devia-

tion σ to 2 and 8.

Figures 10 and 11 illustrates the impact of differ-

ent standard deviation (σ=2 and 8) on the BL and PA

respectively. Figure 10 shows that the proposed ABR
approach with higher σ (8) offers lower BL than the

small value of σ. Recall that a node can find BL by

summing up all received beacons from neighbour nodes

with its own transmitted beacon messages, combined

with the fact that shadowing increase packet loss in the

Fig. 10: Correlation between beaconing load and traffic

density for different channel losses.
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Fig. 11: Probability of awareness with respect to traffic

density for σ = 2 and 8.

network by increasing link error rate. Therefore, we be-

lieve that this is due to increased beacon message losses

that are transmitted from neighbour nodes. In addition,

the beacon message is a broadcast traffic service, hence
it cannot be retransmitted [22]. Accordingly the BL is

reduced. Also, the average number of beacon messages

that are lost due to channel shadowing is 69.39 kbps

(this value is determined by calculating the difference

of average beacon loss when σ is equal to 8 and 0).

Similarly, in Figure 11, the ABR approach with lower

σ (2) performs better than the one with higher σ. The

reason for this is the larger the σ of the Gaussian dis-
tributed variable X , the greater the error prone chan-

nel. This lossy channel leads to high beacon message

losses in the network and hence outdated information

about neighbour nodes. Therefore, when σ is 8, the ve-
hicles have lower cooperative awareness than σ is equal

to 2.

Fig. 12: Average end-to-end delay with respect to traf-

fic density for the proposed ABR and BR=9 (10% of

emergency vehicles and two ray are utilized).

Finally, Figure 12 illustrates the average packet de-

lay as a function of vehicular density, with two ray

ground model channel for ABR approach and fixed bea-

coning (BR=9) scheme.

Figure 12 confirms that our ABR approach offers

lower average packet delay in comparison with constant

beaconing scheme (BR=9). We coin the reasons why

ABR approach has lower average packet delay. First,

the ABR reactively tunes the beacon rate with traf-
fic density and status of vehicles, hence it can reduce

the overhead on the wireless channel between vehicles,

which results in an increased opportunity for channel

access and yields less delay. Second, at high network
density (124-200 nodes), we can clearly see that the av-

erage delay per packet is higher. This is because the

number of MAC layer collision increases when the net-

work density increases. Moreover, in the fixed beacon-

ing scheme, the trend of delay is higher due to high bea-
con processing delay 1. Third, the ABR reduces packet

loss due to collision or propagation, leading to smaller

time duration for data transmission.

In addition, since the average time required by the
fuzzy inference system to change the beaconing rate

is 5.46 ms (this time tightly depends upon computer

performance), its low computation time and overhead

makes the proposed adaptive beaconing approach in ve-

hicular networks feasible. Moreover, advances in chip
manufacturing technology have made it practical to em-

bed fuzzy decision making systems in hardware chips.

Therefore, it is feasible that the implementation of our

fuzzy logic based ABR approach, from software and
hardware perspectives, promises to be of low complex-

ity.

5 Conclusions

In this article, we proposed a fuzzy logic based adaptive

beaconing rate control approach called ABR to tune
the frequency of beaconing rate in response to vehicular

traffic characteristics. This adaptive feature of the ABR

approach makes it suitable for rapid arrival and depar-

ture characteristics of vehicular networks (sparse and

dense scenarios). Simulations using a realistic city sce-
nario have shown that the ABR approach- in contrast

to a fixed beaconing scheme -compromises between bea-

coning load and cooperative awareness in different ve-

hicular densities and emergency ratios. That is, we also
showed that beaconing load is reduced on the cost of

cooperative awareness between vehicles, if channel error

is considered. We are currently working to optimize- us-

1 This is the time spent in contention or accessing the chan-
nel.



A Fuzzy Logic Approach to Beaconing for Vehicular Ad hoc Networks 11

ing swarm intelligent techniques- the membership func-

tions of fuzzy variables to tune their fuzzy set with high

dynamic vehicular networks.
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