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Abstract Interference mitigation has been identified as a
key challenge for emerging cellular technologies based on
Orthogonal Frequency Division Multiple Access (OFDMA),
such as LTE. In this context, static Intercell Interference Co-
ordination including Fractional Frequency Reuse (FFR) have
been adopted by mobile operators as a good alternative to
improve the Quality of Service (QoS) at cell edges. Never-
theless, recent results made evident the need for additional
research efforts as default FFR configurations only offer
tradeoffs in which spectral efficiency is severely penalized.
Moreover, the performance of such baseline designs has been
showed to be poor in realistic cellular deployments featuring
irregular cell patterns. This paper solves this problematic
by introducing a novel multiobjective optimization frame-
work based on evolutionary algorithms that jointly takes into
account system capacity, cell edge performance, and energy
consumption. With respect to important reference schemes,
the proposed algorithm succeeds in finding FFR configura-
tions achieving gains between 10% and 40% in terms of
system capacity while simultaneously improving cell edge
performance up to 70%.

Keywords Fractional Frequency Reuse, FFR, Long Term
Evolution, LTE, Multiobjective Optimization.

1 Introduction

One of the most important technical challenges of emer-
ging cellular systems, such as Long Term Evolution (LTE)
and LTE-Advanced (LTE-A), is to guarantee uniform levels
of Quality of Service (QoS) to their users [2]. Both LTE
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and LTE-A employ Orthogonal Frequency Division Multiple
Access (OFDMA) as access technology for the downlink
due to its flexibility for resource allocation [4], and because
OFDMA provides intrinsic orthogonality to the users within
the same cell, which translates into an almost null level of
intracell interference. However, Intercell Interference (ICI) re-
mains as an issue, and indeed, it is the main capacity-limiting
factor in OFDMA-based cellular networks, especially when
high frequency reuse (to achieve higher spectral efficiency)
is intended.

In order to deal with this problem, several approaches
have been proposed along the last few years including Inter-
cell Interference Coordination (ICIC). In addition, new and
more sophisticated strategies for future 4G and 5G networks
such as Coordinated Multipoint (CoMP) [21] and enhanced-
ICIC (eICIC) [20] are being extensively studied. Neverthe-
less, given the fast pace at which LTE has been deployed and
trialled [14], there is an increasing interest of mobile opera-
tors for feasible and effective schemes aiming at improving
the QoS of users close to cell edges.

Static ICIC including Fractional Frequency Reuse (FFR)
has been highly valued by mobile operators because these
schemes are easy to implement and there is no need for in-
tercell signaling overhead. In particular, FFR is well-known
for its ability to provide high levels of Signal to Interference
plus Noise Ratio (SINR) to cell edge users due to the higher
frequency reuse applied to them. However, the performance
of FFR in realistic deployments featuring irregular cellular
layouts is poor according to results reported in [15]. This
issue has been also pointed out in [6], where the authors
remarked the need for additional research efforts in this di-
rection since no simple reuse pattern can be easily derived
for such scenarios. Therefore, in order to make FFR really
attractive to mobile operators, it is a design requirement not
only mitigating Intercell Interference (ICI) at cell edges but
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Fig. 1 Operational principle of fractional frequency reuse.

also avoiding over-penalize the spectral efficiency. And lastly,
but not less important, to improve the energy efficiency [8].

In order to deal with these conflicting criteria, this article
introduces a novel multiobjective approach, based on the
evolutionary approach, aiming at optimizing FFR to make
it suitable for realistic deployments. The proposed scheme
allows simultaneous optimization of several metrics: spec-
tral efficiency and cell edge performance, while minimizing
the power expenditure. Basically, the solution optimizes the
operational parameters of FFR locally at each cell. The idea
is to compensate the irregularities of realistic deployments
by considering average propagation conditions of each cell
and its impact on the neighbor ones. The results show that
the proposed algorithm is effective, feasible, and it clearly
outperforms baseline designs and previous proposals.

The rest of the article is organized as follows: the next
section establishes the context of this study with an overview
of FFR and a description of the problem. Section 3 presents
related literature and remarks how the proposal presented in
this article advances the state of the art. The system model
and proposed framework, including an introduction to mul-
tiobjective and evolutionary optimization, are described in
Sections 4 and 5, respectively. The numerical results and eval-
uation setting are presented in Section 6. Section 7 includes
calibration, convergence and complexity aspects. Finally,
conclusions and future work close the paper in Section 8.

2 Background and Motivation

2.1 Fractional frequency reuse

The main target of FFR, as any other ICIC technique, is to
improve the radio channel quality of cell edge users. To do
this, FFR first classifies users according to their average ra-
dio channel quality (by means of a SINR threshold STH) as
inner (I ) or cell edge (E ) users, and next, it applies diffe-
rent frequency reuse factors and power levels to each group
in order to homogenize the SINR. In this manner fairness
among users is improved. It is worth mentioning that, accor-
ding to [17] and [26], the choice of STH has a great impact
on the performance of FFR. Figure 1 depicts the operational
principle of FFR: applying higher frequency reuse factor to
cell edge users. Note that, although this classification is usu-
ally regarded as a geographical distinction, in practice it is a

Fig. 2 Regular frequency reuse patterns in cellular networks.

radio condition given by SINR measurements based on pilot
signals. The parameters β and α control the bandwidth and
power allocated to each class of users, respectively.

In preliminary evaluations of FFR [28] (using 3rd Genera-
tion Partnership (3GPP) models, i.e., hexagonal layouts) only
baseline designs were employed1. As it will be shown shortly,
these approach is far from optimal in realistic deployments.

2.2 Performance on irregular layouts: an open issue

In order to better understand the origin of the problem ad-
dressed herein, it is required to remark the role of frequency
reuse on the capacity of cellular networks. To do this, an
illustrative analysis is provided. Figure 2 shows the typical
reuse pattern for different frequency reuse factors when a
regular/hexagonal cellular layout is considered. By taking
into account that, 1) channel gains are given exclusively by
propagation losses (inversely proportional to the distance to
the power of σ , the attenuation coefficient), 2) the effect of
the background noise is negligible, and 3) ε is a very small
number (ε ·R ≈ 0); it is easy to show that the expressions
corresponding to the SINR for a user xi (i = 1 for cell center
and i = 2 for cell edge) can be approximated to the following
expressions:
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1 Baseline designs refer to settings in which the operational para-
meters of FFR (STH,α and β ) are uniformly applied to all cells of the
network.
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(a) Cell center SINR (b) Cell center capacity (c) Cell edge SINR (d) Cell edge capacity

Fig. 3 Average quality at cell edge/center for different frequency reuse factors.

Thus, γ
rk
xi is the SINR of user xi subject to frequency reuse

factor k as a function of the propagation loss exponent σ .
From Figures 3a and 3b, it can be seen that the improvement
on the average quality experienced by central users due to
higher frequency reuse factors (3 and 7) does not compensate
the loss in terms of spectral efficiency. Hence, for central
users, a frequency reuse factor 1 is the best choice. On the
other hand, looking at Figures 3c and 3d, it is evident that fre-
quency reuse factor 3 is the best choice for cell edge users as
it maximizes capacity. Therefore, it can be concluded that for
regular layouts, in particular for tri-sectorial deployments, a
simple reuse pattern suffices to successfully tradeoff between
spectral efficiency and cell edge performance, i.e., full reuse
for central zones and reuse 3 for cell edges. The same rea-
soning can be applied to any other reuse pattern and network
geometry. From a practical perspective, this result is due to
the fact that in synthetic scenarios, sectors using the same
subbands are geometrically aligned, thus minimizing ICI.

Now, the attention is focused on realistic networks where
cellular layouts are irregular. In such scenarios, propagation
conditions vary significantly from cell to cell and the azi-
muths are not aligned. This results in very different amounts
of ICI at different cells. As a consequence, cell edges are very
dissimilar in terms of size and average SINR levels. Thus, it
can be thought that applying simple and/or regular resource
allocation patterns to realistic deployments leads to subopti-
mal performances as certain degree of local optimization
(at cell level) is required to compensate the differences pre-
viously explained.

In order to further support the previous reasoning, nume-
rical results obtained from LTE system level simulations are
provided. Figure 4 shows average figures corresponding to
spectral efficiency and percentile 5 of users’ rate (r) for LTE
trials conducted both in synthetic (Syn, perfectly hexagonal)
and realistic (Rea1 and Rea2) deployments after applying
FFR. The description of both simulation scenarios and the
LTE setting can be found in [16]. Note that in these trials,
common values for α , β , and STH are applied to all cells.
Main system parameters include:

– System bandwidth: 18 MHz,
– Available power per cell: 43 dBm,

Fig. 4 Performance of reference schemes in synthetic and realistic
scenarios.

– Users per cell: 45,
– Scheduling policy: Proportional fair.

These results basically show that while in synthetic cellular
layouts, baseline designs can effectively tradeoff between
spectral efficiency and cell edge performance with respect
to reference schemes, such as full reuse and hard reuse 3;
in case of cellular networks with irregular cell patterns, the
performance of FFR is far from optimal, and indeed, it is
strictly worse than full reuse both from efficiency and fairness
point of view. Therefore, and according to the conclusions
in [6], the need for optimization is established. In the next
section, a survey of related literature is presented aiming at
clarifying how the proposal presented herein advances the
state of the art.

3 Related Work

Up to now, a great interest have been placed on FFR, and con-
sequently, several improvements has been proposed. Repre-
sentative examples including [1,5,11,19,32,37] are basically
focused on small networks featuring hexagonal geometry.
These contributions propose different types of bandwidth
and power re-allocations operating at a very short time scale
under the assumption of full/perfect knowledge of users’
radio channels both in time and frequency, which is unfea-
sible in real systems. In addition, very often these dynamic
schemes are coupled to specific/complex short term resource
allocation policies to perform the final resource pairing to
users. In practical systems, such as LTE, scheduling is ven-
dor specific, and hence, it is desirable, as far as possible, to
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keep ICIC decoupled to other Radio Resource Management
(RRM) functionalities.

Therefore, in order to design feasible ICIC solutions, pro-
posed strategies should be 1) decoupled from other network
entities, and 2) focused on minimizing average interference
levels [35]. In real systems, small scale (short term) fading
effects [27] are managed by other functionalities, such as
instantaneous power control, adaptive channel state feedback
mechanisms, adaptive modulation and coding, and frequency
selective scheduling. To accomplish the previous target, FFR
should be mainly focused on the network-specific geometry
and average ICI conditions. Moreover, performance must be
analyzed from as many perspectives as possible, i.e., taking
into account several performance metrics to conveniently
assess existing tradeoffs.

To best of authors’ knowledge, one of the few works ful-
filling most of the previous design guidelines is the excellent
contribution done by Chen and Yuan in [6]. The approach fo-
llowed in [6] is generic enough in the sense that it 1) considers
realistic networks with irregular cell patterns, and 2) allows
a long term (average) characterization of the SINR based
on large scale fading effects. In [6], the performance metric
is defined as the sum of the contributions of every single
area element, and hence, the method does not rely on other
specific assumptions, such as a certain scheduling policy.
However, there are some aspects in [6] that can be improved.

1. The performance assessment is only based on one single
performance metric: the cell edge throughput. Although,
at a glance this metric could result adequate, in the par-
ticular context of FFR it has some drawbacks. First, the
definition provided by Chen and Yuan for this metric only
takes into account the pixels labeled as cell edge, i.e.,
the ones in which the pilot (wideband) SINR is smaller
than STH. A better approach for realistic networks is to
consider the whole network coverage area once FFR is
applied and then focus on the resulting achievable data
rate at pixel level, because, due to the change in the fre-
quency reuse factor and bandwidth for each zone, the
final distribution of achievable data rates at pixel level
does not necessarily match the corresponding SINR dis-
tribution [17]. Second, it is well-known the fact that cell
edge performance and overall spectral efficiency are con-
flicting objectives [25,26], and hence, in order to provide
a better overview of this tradeoff, both performance me-
trics must be jointly considered.

2. The algorithm proposed in [6] produces one single band-
width allocation subject to fixed network-wide values for
STH, β , and the number of subbands available for cell
edges K. However, mobile operators are more interested
in a set of FFR configurations rather than one single net-
work setting so that they can react effectively to network
dynamics, such as (repetitive) load variations. In addition,
it is also clear that defining common (global) parameters

clearly leads to suboptimal performances since in realis-
tic deployments cells are quite different in terms of ICI
and coverage; in fact, the algorithm proposed in [6] does
not give any clue about how to select such operational
parameters, and therefore, a large number of trials (to
account for different values of β and STH) needs to be
done in order to find useful FFR configurations.

Thus, in the light of these observations, this paper proposes a
novel FFR optimization framework for realistic networks fea-
turing irregular cell layouts. In order to address the previous
aspects and effectively deal with the nature of the problem
under consideration, the proposed algorithm is multiobjective
and it is based on the evolutionary approach [7]. In Section 5,
the rationale of this choice is provided. In this manner, FFR
design has been successfully addressed by means of a novel
framework which is unique in the sense that it:

– formulates the problem considering not only global net-
work wide design variables but also local ones in order to
take advantage of cell’s local features, and hence, achieve
better adaptability.

– generates, due to its multiobjective nature, a wide range
of FFR configurations providing more flexibility to ope-
rators to adapt their networks (without any computational
cost nor excessive intercell signaling) to time varying
conditions. These solutions represent FFR settings that
simultaneously optimize spectral efficiency and cell edge
performance, while reducing transmission power over the
air interface.

– introduces a compact mathematical formulation that can
be used to efficiently evaluate different configurations in
terms of any arbitrary set of performance metrics that can
also be defined by the mobile operator.

4 System Model

In this work, the downlink of an OFDMA based cellular
system composed of L cells is considered. The system band-
width, BSYS, is available at each cell and it is divided in
NSC allocable subcarriers spaced 15 kHz. The total available
power per cell is PCell

max . The coverage zone is composed of A
small area elements within which, the average received power
and SINR, are constant. The average received power in each
pixel (from each cell), the matrix RP ∈ RA×L, is computed
according to:

RP = G ·diag(pPS), (1)

where G ∈ RA×L corresponds to the Long Term Channel
Gain (LTCG) matrix containing large scale fading effects.
The vector pPS ∈ RL is the average pilot transmit power at
each cell. In practice, the matrix G is usually available from
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propagation studies required during the planning stage of the
network. A pixel a (ath row in RP) is served by cell l?, if:

l? = argmax
l

RP(a, l). (2)

Based on Equations 1 and 2, the binary coverage matrices S
and Sc ∈ RA×L can be obtained. Thus, if a pixel a is served
by cell l?, then S(a, l?) = 1. Sc is the binary complement
of S. The set of cells is divided in three subsets based on their
antenna azimuth ϕ . Therefore, a cell belongs to subset C j
( j ∈J = {0,1,2}) according to the following rule:

j =


0, for 0◦ ≤ ϕ < 120◦,
1, for 120◦ ≤ ϕ < 240◦,
2, for 240◦ ≤ ϕ < 360◦.

(3)

In the same manner, pixels are divided in three subsets A j
such that, a pixel is element of A j, if is served by a cell of
type j ∈J . Note that ∑∀ j∈J |A j|= A and ∑∀ j∈J |C j|= L.

5 Proposed Multiobjective Framework

From an operator’s perspective, FFR design and optimization
is a problem in which the interest is placed not only in guaran-
teeing certain levels of QoS to users but also in maximizing
spectral efficiency and, if possible, do it at the lowest cost.
Thus, designing a flexible scheme able to tradeoff among
these conflicting criteria is an important design target [15].
For this reason, the performance assessment is based on the
following criteria that need to be simultaneously satisfied:

1. Maximization of the average cell capacity: f1 [Mbps].
2. Maximization of the capacity of the worst percentile 5 of

the network coverage area (typically users at cell edge):
f2 [Mbps]. Note that the area corresponding to this per-
centile can be geographically distributed among the co-
verage of different cells.

3. Minimization of the transmission power: f3. By conside-
ring this metric, the proposed algorithm not only reduces
Operation Expenditures (OPEX) directly but also maxi-
mizes network energy efficiency [8].

5.1 Multiobjective optimization: a bird’s eye view

The task of joint optimization of the previous performance in-
dicators ( f1, f2, and f3) can be successfully addressed by
means of multiobjective techniques. Multiobjective Opti-
mization (MO) is the discipline focused on the resolution of
problems in which desirable solutions involve simultaneous
optimization of conflicting criteria or objectives [29].

The target of MO is to find a subset of good solutions
X ? from a set X , according to a set of criteria, F (|F |=
m≥ 2), typically expressed as mathematical functions, the
so-called objective functions. Thus, F = { fi : Rn→ R, i =

1, ...,m}, where fi represents the ith objective function. In
general, an optimal solution could imply the minimization
of one function fi ∈ F and the maximization of another
one f j ∈F , (i 6= j). Thus, the notion of optimality acquires
especial relevance in this context. An optimal solution is a
vector x? which optimizes each objective function f ∈F ,
i.e., f(x?) = [ f ?1 f ?2 · · · f ?m ].

Nevertheless, this situation rarely happens in practice
due to the conflicting nature of different criteria, and so,
additional elements need to be introduced. A central concept
of the theory of MO is the Pareto dominance [34]. A solution
x1 is preferred to (dominates in the Pareto sense) another
solution x2, (x1 � x2), if x1 is better than x2 in at least one
criterion and no worse with respect to the remaining ones.

x1 � x2 ⇔ fi(x1)≤ fi(x2), ∀i ∈ {1,2, ...,m} ∧
∃ j ∈ {1,2, ...,m} | f j(x1)< f j(x2).

Bearing in mind this important concept, it is possible to
formalize a definition of optimality. A solution x? is Pareto
optimal (and hence, element of X ?), if and only if, there
does not exists a solution x ∈X , such that x dominates x?.
The set X ? is called Pareto Front (PF).

x? ∈X ?⇔6 ∃ x ∈X | x? ≺ x.

5.2 Multiobjective problem formulation

In the context of the optimization framework presented in this
study, several network configurations featuring Pareto effi-
ciency with respect to f1, f2, and f3 are required to be found.
The optimization is performed by fine tuning the operational
parameters of FFR locally at each cell. To be more precise,
the main idea is defining cell edges independently at each cell
by means of cell local thresholds, i.e., Sl

TH, l = 1,2, · · · ,L,
subject to an additional network-wide design variable (β , see
Figure 1) that is applied uniformly to all cells. The parameter
β must be the same in each cell in order to guarantee full
reuse for central pixels and reuse 3 for cell edge zones. The
parameter α , is kept fixed as an input parameter applied to
the whole network. The reason is twofold. On the one hand,
the performance of FFR is basically independent of this fig-
ure as long as 1) it is applied globally in the network, and
2) average ICI levels are significantly higher than the noise
power, i.e., interference-limited systems [17], the case of
study herein. On the other hand, defining α as cell local de-
sign variable would duplicate the complexity of the problem
with marginal gains from the cell edge performance point
of view as this parameter only affects inner (I ) pixels. The
genotype (structure) of the solutions is shown in Figure 5.

Thus, the MO problem can be written as follows:

minimize f(x) = [ − f1(x) − f2(x) f3(x) ]T, (4)

subject to: Sl
TH = x(l) ∈ [Slow, Sup] ∀ l ∈ {1,2, ...,L},

β = x(L+1) ∈ [ βlow, βup ], Slow < Sup, βlow < βup ,
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Fig. 5 Genothype of individuals (FFR settings) used in this study.

where the constants: Slow, Sup, βlow, and βup are used to de-
fine the bounds of the design variables. f1, f2, and f3 co-
rrespond to the objective functions (performance metrics)
representing average cell capacity, cell edge performance,
and normalized energy consumption, respectively. The pa-
rameter α was selected considering a minimum received
power of −110dBm at each pixel.

5.3 Metaheuristics and evolutionary optimization

In FFR optimization, there are two aspects that must be
taken into account: 1) the nature of the problem, and 2) the
mathematical structure of the objectives functions previously
mentioned2. To be precise, the domain (search space) created
by the design variables is a n-dimensional space where n
is proportional to the number of cells, and whose objective
space (or image defined by the objective functions) is not only
highly non-linear, non-convex, but also full of discontinuities
and local optima [36]. In FFR optimization, discontinuities in
f1 and f2 occur, for instance, due to variations of STH, when
a pixel changes its classification from I to E , and vice versa.
Certain algorithms, such as Simplex [12], are susceptible to
be trapped in local optima, while other optimizations tech-
niques, such as Sequential Quadratic Programming based
methods [13], require convexity (a very strong assumption
for this problem) to guarantee convergence. Moreover, tradi-
tional constrained optimization, in which only one objective
function is optimized subject to a set of constraints on the
remaining ones, limits the visibility of the whole objective
space, and hence, the tradeoff between performance criteria
can not be analyzed completely as significant parts of the
whole Pareto Front are lost.

Summarizing, the problem of interest requires of an opti-
mization tool fulfilling the following set of features:

– It must be able to find good solutions by efficiently ex-
ploring the search space.

– It should be able to operate/handle efficiently multiple
criteria with a large number of design variables.

– Do not have strong requirements on objectives functions
such as linearity, convexity, or differentiability.

Multiobjective evolutionary algorithms (MOEAs) [7] fulfill
the previous requirements, and hence, its usage in FFR opti-
mization for large and irregular networks has been studied.

2 The definition and evaluation of the objective functions f1, f2, and
f3 is presented in Subsection 5.4.
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Fig. 6 Operational cycle of evolutionary algorithms.

MOEAs are a class of nature-inspired metaheuristics3 that
simulate the process of natural evolution, as it is illustrated
in Figure 6. In MOEAs, a population of individuals (candi-
date solutions) is iteratively modified by means of two basic
principles: selection and variation. While selection tries to
imitate the battle for reproduction among living beings, vari-
ation mimics their inherent ability of creating new (better
adapted) individuals through recombination and mutation. In
this study, a well-known MOEA has been employed: The
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [9].
This algorithm provides means to accomplish desired fea-
tures in the context of evolutionary optimization, such as
elitism, fast convergence, and good distribution. An in-depth
treatment of the matter can be found in [29] and [3].

5.4 Proposed algorithm

The proposed methodology is presented in Algorithm 1. In-
termediate steps are explained along the following points.

5.4.1 Average SINR evaluation (AvgSINR())

This function computes the average SINR matrix Ψ ′ ∈ RA×L

as follows:

Ψ
′ = [(S�G) ·pPS ]� [ [(Sc�G) ·pPS]⊕η ] , (5)

where�,�, and⊕ indicate Hadamard (pointwise) operations
and η is the noise power.

5.4.2 Type of server classification (TypeOfServer())

This function computes a vector t ∈ NA where each element
(representing one pixel) indicates the type of the serving
transmitter according to Equation 3.

5.4.3 Segmentation (Segmentation())

This procedure pulls out from G, S, Sc, and Ψ ′ the rows
whose corresponding value in t is equal to j,∀ j∈J . In other
words, once instructions 3-5 in Algorithm 1 are executed,
each one of these matrices is segmented in |J | submatrices

3 Metaheuristics are high level (generic) procedures that can be
applied to solve a wide range of optimizations problems [18, 22, 24].
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Algorithm 1: FFR Optimization.

input :
L, pPS, α , G, S, Sc, Slow, Sup, βlow, βup, η

vϕ ∈ RL: Azimuth vector
ONSGA-II: Set of calibration parameters.

output :
X ?: Pareto Front (nondominated solution);

// Step 1: Average SINR evaluation;
1 Ψ ′←AvgSINR(η ,pPS,G,S,Sc);

// Step 2: Type of server classification;
2 t←TypeOfServer(vϕ ,S);

// Step 3: Segmentation;
3 for each j ∈J do
4 {G j ,S j ,Sc

j ,Ψ
′
j }←Segmentation(t, j,G,S,Sc,Ψ ′);

5 end
// Step 4: Pareto front estimation;

6 X ?←NSGA(ONSGA-II);

(S j, Sc
j, G j, and Ψ ′j ), each of them having L columns but a

different number of rows, and so:

S j, Sc
j, G j, Ψ

′
j ∈ R|A j |×L, ∀ j ∈J . (6)

Function CharacPowFFR(·)

input :L, pSC
max, α

output :Pser, Pint

1 pE ← pSC
max, pI ← α · pSC

max;

2 Pser←

[
pE pE · · · pE

pI pI · · · pI

]T

3 Pbase
int ←

pE pI 0 pI 0 pI

0 pI pE pI 0 pI

0 pI 0 pI pE pI


4 Pint←

[
(Pbase

int )T
1 (Pbase

int )T
2 · · · (Pbase

int )T
L/3

]T

5.4.4 Pareto Front estimation

The estimation of the Pareto Front is done by means of the al-
gorithm NSGA-II (the function NSGA() in the pseudo-code
of Algorithm 1). In order to do that, NSGA() requires the
execution of two functions that are implicitly called when ob-
jective function values are calculated: CharacPowFFR()and
ObjFunc(). The Function CharacPowFFR()generates the
matrices (Pint ∈RL×6 and Pser ∈RL×2) used to compute SINR
values associated to data channels. It’s definition can be read
in the corresponding pseudo-code. In addition, the Function
ObjFunc() computes the vector f containing the objective
function values by means of matrix operations as shown in
the corresponding pseudo-code. In line 4 of ObjFunc(), the
Function Class()computes the binary classification matri-
ces C j ∈ R|A j |×2, ∀ j ∈J which indicate the class (either
I : for S ≥ STH, or E : for S < STH) to which each pixel be-
longs to. The Function RelCov(), in line 6, computes the

Function ObjFunc(·)

input :B, G, S, Sc, Ψ ′, Pser, Pint, β , α

output : f
1 sTH← x(0 : L−1);
2 B← [ ((1−β )/3) ·BSYS β ·BSYS ];
3 for each j ∈J do
4 C j ←Class(S j ,sTH,Ψ

′
j );

5 end
6 Φ ←RelCov(S1, . . . ,S|J |,C1, . . . ,C|J |);
7 f1← 0, f2← 0, r̂← [ ];

8 for each j ∈J do
9 P̃int← Pint( : , 2 j : 2 j+1 );

10 Ψj ←
[
[(S j�G j) ·Pser ]�

[ [
(Sc

j�G j) · P̃int

]
⊕η

]]
�C j ;

11 Λ j ←LinkPer(Ψj);
12 f1← f1 +

[
B ·
[
(Λ T

j ·S j)�Φ
]]
·1;

13 r←
[[

S j · (ΦT ·diag(B))
]
�Λ j

]
·1;

14 r̂← [ r̂ rT ];
15 end
16 f2← Percentile(r̂);
17 f3← ((1−β )/3)+(α ·β );
18 f← [ − f1/L − f2 f3 ]T;

matrix Φ ∈ R2×L containing the number of pixels classified
as E and I at each cell. In line 9, P̃int is created by selec-
ting two columns of Pint depending on the value of j, and
therefore, SINR values are computed in line 10. In line 11,
the Function LinkPer()computes, for each element of Φ , a
nondecreasing function of the SINR (the link performance
model). Shannon bound has been used:

Γ (S) = Log2(1+S) [bps/Hz] . (7)

The expression B ·
[
(Λ T

j ·S j)�Φ

]
∈ RL in line 12 co-

rresponds to a vector indicating the capacity in bps associated
to each cell of type j ∈J , and hence, the scalar f1 accu-
mulates the network capacity once the loop is completed.
In the same manner, the instructions in lines 13 and 14 sub-
sequently create a vector of A elements representing the
capacity of every single pixel in bps such that the Function
Percentile(), in line 16, gets the sum of the worst 5% of
the elements in r̂. Therefore, the capacity corresponding to
the worst percentile 5 of the network coverage ( f2) is ob-
tained. The normalized energy consumption f3 is computed
as a function of β and α as indicated in line 17.

6 Performance Assessment

6.1 Evaluation setting and benchmarks

A cellular network with system bandwidth BSYS = 5.4MHz
has been considered. The total available power per cell PCell

max
is equal to 43 dBm. The simulation scenario is a realistic
deployment covering the city of Vienna and its surroundings.
The digital elevation model and cell parameters have been
obtained from the MORANS initiative [33]. The cellular
layout is composed of L =60 tri-sectorial cells and the evalu-
ation area corresponds to a urban subarea of 2.75×2.625 km2
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Fig. 7 Realistic urban scenario employed as test case.

Table 1 Evaluation setting

Parameter Value

Population size 200
Max number of generations 2000

Crossover probability 1.0
Mutation probability 1/(L+1)
Design variables type Real variables

Slow/Sup [-4.0 3.0]
βlow/βup [dB] [0.3 0.5]

α / η / A 0.40 / -125 dBm / 288750
pPS 18.4 dBm

Fig. 8 SINR characterization of the simulation scenario.

with a pixel resolution of 5×5 m2. The propagation model
is the COST 231-Walfish-Ikegami, which is a fast empirical
prediction model for urban scenarios allowing an accurate
radio characterization of this type of environments. Figure 7
shows the cellular layout and the resulting propagation pat-
tern, for one site as reference. The list of calibration para-
meters (for NSGA-II) together with the simulation setting
are shown in Table 1. Recall that calibration and simulation
parameters depend, in general, on mobile operators’ prefer-
ences. Additional aspects about calibration and convergence
of NSGA-II for this particular problem are provided in Sec-
tion 7. Benchmarks can be classified in three groups:

1. Reference schemes: To put the results in perspective,
two generic (but highly important) reference schemes are
considered: Full Frequency Reuse and Hard Reuse 3, xFR
and xHR3, respectively.

(a) 3D view (b) 2D view ( f1 vs f2)

(c) 2D view ( f1 vs f3) (d) 2D view ( f2 vs f3)

Fig. 9 Representations of the Pareto front X ? and reference schemes.

2. Bandwidth proportionality: The schemes xi
SA corres-

pond to this approach. A common SINR threshold STH
guarantees that the number of users of each class (E and
I ) is proportional on average to its allocated bandwidth.
Figure 8 shows the required classification threshold for di-
fferent values of β . Implementation was done according
to the guidelines originally suggested in [15], but consi-
dering the cellular deployment (test case) used herein.

3. Subband Allocation: The schemes xi
SA correspond to

the best configurations found by means of the subband
allocation (local search) algorithm proposed in [6]. Note
that since this algorithm requires as input the number of
subbands for cell edges (K), β , and STH, a total number
of 160 trials4 were performed in order to find the FFR
configurations achieving best results with respect to each
performance metric.

The configuration and performance of the benchmarks are
shown in Table 2.

6.2 Numerical results

Figure 9 shows some representations of the resulting Pareto
front X ? (nondominated solutions) obtained through Algo-

4 The search space was obtained after an initial trial and error
procedure required to localize the region of interest, i.e., K × β ×
STHdB = {3,4}×{0.300,0.325,0.350, · · · ,0.500}×{−4,−3, · · · ,5}.
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Table 2 Reference schemes: configuration and performance.

xFR xHR3 x1
BD x2

BD x3
BD x4

BD x1
SA x2

SA x3
SA

β 0.50 0.40 0.33 0.25 0.35 0.35 0.40
STH [dB] -0.92 -0.08 0.69 1.92 2.00 1.00 0.00

K 3 4 4
f1 9.31 7.87 7.70 7.60 7.51 7.64 9.85 8.94 8.03
f2 8.38 5.38 8.16 7.84 7.65 7.26 5.5 7.03 8.35
f3 1.00 0.333 0.367 0.360 0.355 0.350 0.425 0.369 0.471

Fig. 10 Achievable gains.

rithm 1. Figure 9a corresponds to a 3D visualization of X ?.
However, in order to have an initial qualitative perspective,
2D profiles5 are shown in Figures 9b, 9c, and 9d. In these
profiles, the performance achieved by each benchmark is
indicated with red lines (see Table 2). Clearly, the proposed
algorithm always succeeds in finding FFR configurations
outperforming each benchmark (plotted in red) in at least one
pair of objective functions. Focusing first in the important
case of full reuse, xFR, Figure 9b indicates that no solution in
X ? is able to dominate xFR from the perspective of f1 and
f2, meaning that FFR only offers a tradeoff with respect to
full reuse; the same situation obtained in synthetic/hexagonal
grids. Recall that, the peformance of baseline designs was
strictly worse than full reuse in realistic deployments, see
Figure 4. However, by means of the FFR configurations
obtained through Algorithm 1, it is also possible to extend
the spectral efficiency vs. cell edge performance tradeoff even
to realistic deployments, as it has been shown herein. This
result clearly proves the effectiveness of Algorithm 1, which
makes possible to enhance the performance of FFR in real-
istic deployments, and even more, attain this tradeoff (with
respect to xFR) by saving some power over the air interface.

Therefore, in order to provide such quantitative perspec-
tive, Figure 10 shows the gains that can be obtained (with

5 Note that 2D profiles are generated by projecting the Pareto Front
onto the f1- f2, f1- f3, and f2- f3 planes. They are an alternative repre-
sentation providing better insights about the tradeoff between each pair
of objective functions.

respect to each benchmak) by the solutions in X ?. By analyz-
ing the 2D profiles and the information shown in Figure 10
jointly, the merit of the proposed framework with respect
to each benchmark can be clearly appreciated. For instance,
with respect to full reuse (xFR), Figure 9b shows that only
a tradeoff can be obtained, i.e., f1 and f2 can not be simul-
taneously improved by any configuration in X ?. However,
no matter which configuration is selected, the transmission
power is reduced up to 65% with respect to xFR. A similar
analysis also holds for the rest of benchmarks.

Note also that, the performance of xHR3 is, as expected,
poor in irregular layouts, thus confirming the results pre-
viously presented in Figure 4. Indeed, almost all the ele-
ments in X ? dominate xHR3 from the perspective of f1 and
f2, achieving gains of around 30% and 70% respectively.
However, xHR3 features the lowest energy consumption, and
hence, no solution achieves gains in terms of f3. Nevertheless,
as it can be seen in Figures 9c and 9d, the energy consump-
tion of the the elements of X ? is basically in the same order
of magnitude that xHR3, and hence, this marginal loss is com-
pensated by far through the gains in terms of f1 and f2.

Finally, the rest of baseline designs are all dominated, in
terms of all performance metrics, by a subset of elements in
X ?, meaning that there is no point in using these designs in
place of optimized FFR by means of Algorithm 1. Gains in
terms of f1 range from 10% to 45%, while the ones with re-
spect to f2 range from 10% to 30%. Therefore, as a result, the
effectiveness of the proposed scheme has been demonstrated
from the perspective of system level performance metrics.

Another important point of view is cell level performance.
Figure 11 shows the statistic of f1, f2, and f3 for the network
configurations in X ?. In addition, cell level version of these
metrics, f c

1 , f c
2 and f c

3 , are also shown. In order to simplify
the analysis and for the sake of clarity, the following discus-
sion is strictly focused on the important case of full reuse,
xFR. However, a similar analysis also holds for the rest of
benchmarks.

The results indicate that 43% and 20% of the elements
in X ? outperform xFR in terms of f1 and f2, respectively. In
addition, an average energy saving of 65% is also obtained.
Note that the distribution of f3 is the same as f c

3 . Moreover,
looking at f c

1 and f c
2 , it is clear that the proposed framework

brings to mobile operators a wide range of possibilities to
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Fig. 11 CDFs of system and cell level metrics.

automatically adapt the network to unbalanced traffic loads
conditions, thus taking advantage of the existence of cyclic
patterns. This behaviour could be used to apply different
solutions in X ? at different moments during the day. To
further justify this aspect, Figure 12 shows both system and
cell level performance of two configurations in X ?. It can
be seen how two different nondominated solutions result
in significantly different performances at cell level. This
nondomination relationship does not necessarily holds at
cell level because the multiobjective optimization procedure
(see Equation 4) is not defined over f c

1 , f c
2 , and f c

3 . Hence,
this variability can also be used for dynamic ICIC schemes.

The figure also indicates average values (red lines) in each
case. Note that, the upper solution, featuring a higher average
STH and β , favors spectral efficiency, while the one below,
with smaller β and average STH, achieves better cell edge
performance. This result is in line with previous conclusions
presented in [16] and [26]. Finally, it is worth saying that, in
cases where minimum performances are required at cell level,
the proposed framework allows 1) selecting (post-evaluating)
the elements of X ? whose objective function values at cell
level are within desired limits and/or, 2) adjusting the bounds
of design variables in order to modify the feasible set.

Therefore, as a preliminary conclusion, these results con-
firm that the proposed multiobjective scheme is able to opti-
mize the design of FFR and make it suitable for realistic de-
ployments for which only poor performances were reported.
In the next section, convergence properties, calibration guide-
lines, and complexity aspects are discussed.

7 Calibration, convergence, and complexity

An important element that must be introduced in order to
understand both calibration procedures and convergence pro-
perties is the notion of the quality associated to the set X ?,
i.e., how to measure the quality of a set of solutions? The
literature about this question is large and a compilation of

Fig. 13 Pictorial representation of the hypervolume indicator for the
case of two objective functions.

quality measures is certainly unaffordable. In this study, the
hypervolume indicator L [38] (Zitzler and Thiele, [39]) has
been used as criterion to measure the progress of the evolu-
tionary algorithm. This measure reflects the size of volume
dominated by the estimated Pareto Front. Formally, the L
metric is defined for a given set of nondominated points X ?

and a reference point xref ∈ Rm as follows:

L (X ?,xref) = Λ

( ⋃
x∈X

x̂|x≺ x̂≺ xref

)
, X ? ⊆ Rm, (8)

where Λ denotes the Lebesgue measure [30]. Note that xref
should be dominated by all elements of X ?. Since it has
been shown that maximizing the hypervolume measure is
equivalent to finding the Pareto set [10], higher values of
L indicate better convergence, and hence, the hypervolume
indicator can be used as criterion both for convergence and
calibration. Figure 13 shows a pictorial representation of the
meaning of the hypervolume indicator.

7.1 Calibration of NSGA-II for FFR optimization

An important issue in MOEAs is that a calibration process
is required for the parameters that control the algorithms.
The objective of this subsection is to give an insight into this
point and derive rules of thumb for an easy adjustment. It
is important to remark that the problem under consideration
is NP-hard, and therefore, optimality cannot be demonstra-
ted. However, the convergence properties of NSGA-II have
been widely studied [9] and it has been shown that NSGA-II
converges towards a set of high quality solutions as long as
an adequate calibration is previously performed [23]. Con-
vergence of NSGA-II depends on its operational parame-
ters, such as population size, number of generations, and
crossover/mutation probabilities. The following paragraphs
aim at highlighting some practical calibration guidelines:

– Population size: There is a general consensus about the
population size in approaches based on genetic algo-
rithms (such as NSGA-II). The range to consider during
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Fig. 12 Performance of two different nondominated solutions.

calibration is [20,200], and beyond 200, extra gains are
hardly achieved and the same global convergence is ob-
tained [31]. However, in some cases, such as the problem
addressed herein, increasing the population size has the
advantage of getting more network configurations at ex-
penses of an additional computational cost. Figure 14a
illustrates the selection of the population size. To do that,
the gain (with respect to a small population) in terms of
hypervolume achieved by larger populations is measured
and normalized by the associated computational cost, i.e.,
number of objective function evaluations. As a result, a
population size of 200 was used in this study.

– Genetic operators: Crossover is a fundamental process
when genetic algorithms preserve elitism because it guar-
antees exploring the search space in regions where good
solutions are more likely to be found, and hence, values
close to one are suggested in the related literature [9].
Mutation is another important source of diversity in evo-
lutionary processes. The mutation rate determines the
probability of mutating each gene. High mutation rates
would result in random search and the reference value
suggested in the literature is 1/n, where n is the number
of design variables [9]. In our case n corresponds to the
number of cells in the system, thus n = L+1. Figure 14b
illustrates the corresponding calibration procedure.

7.2 Convergence properties

To study the convergence of the algorithm NSGA-II, the evo-
lution of the hypervolume with the number of generations
is evaluated. In general, the number of generations depends
on a predefined termination criterion. In this study, the exe-
cution of NSGA-II finishes when the improvement of each
objective function is less than 0.001% after a block of 80
generations. As it can be seen in Figure 15, 1600 genera-
tions suffices to fulfill that strict condition. The figure shows

(a) Population size (b) Mutation rate

Fig. 14 Calibration of NSGA-II.

Hypervolume

f
1

f
2

Fig. 15 Convergence pattern of NSGA-II for the problem under con-
sideration.

the evolution of the normalized hypervolume and the evo-
lution of f1 and f2. Note that after only 80 generations, L ,
f1, and f2 reached more than 85% of their final value show-
ing the fast convergence, and hence, accurate calibration of
NSGA-II. Therefore, it can be concluded that after around
800 generations, the ratio between gains and processing cost
decreases very fast meaning that the algorithm has reached a
convergence state.
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7.3 Complexity and feasibility

To close this section, a complexity overview of the algo-
rithm employed herein is provided. The overall complexity
of the proposed scheme is governed by the complexity asso-
ciated to the evolutionary algorithm employed to obtain the
Pareto Front. According to [9], the complexity of NSGA-II
is O(MN2), where N and M correspond to the population
size and the number of objectives, respectively. Thus, the
computational complexity is mainly dominated by the com-
plexity of NSGA-II. Although, a priori, the complexity looks
restrictive, it is important to take into account some impor-
tant aspects. After one execution of Algorithm 1, the output
represent a big set of nondominated/high-performance FFR
settings. In order to establish some point of reference, note
that in case of Algorithm 1, the number of design variables is
equal to the number cells plus one (N = L+1). In practice,
it is important to take into account that behind the overall
complexity of the selected algorithm, another aspect that also
has a great impact on the computational cost both in terms of
processing and memory requirements is the evaluation of the
objective functions, which independently of the algorithm, is
always proportional to number of cells L, and the number of
area elements A. In this sense, another contribution of this
paper is the introduction of a novel matrix formulation to
efficiently characterize the coverage area in terms of SINR.

8 Conclusions and Future Work

A novel multiobjective algorithm has been proposed for
FFR optimization. The algorithm presented herein has been
designed to enhance the performance of FFR in irregular
macro/micro OFDMA cellular networks, in which the per-
formance of default FFR configurations is far from optimal.
Requiring only commonly available propagation information,
the proposed multiobjective algorithm allows mobile ope-
rators to suitably define performance metrics according to
their needs. The optimization strategy succeeds in finding
optimal FFR configurations enhancing simultaneously all
performance metrics with respect to an important group of
reference cases, and hence, demonstrating its effectiveness.
The main results can be summarized as follows:
1. A significant reduction of ICI in cell edge areas can be

achieved as the capacity of the worst percentile 5 of the
network coverage was improved. This is very important
since the main target of ICIC techniques is precisely to
improve the QoS at cell edges.

2. The relevance of the proposed scheme has been demons-
trated as the proposed algorithm is able to find a set of
FFR configurations outperforming the benchmarks in all
performance criteria or at least offering competitive trade-
offs. In addition, such set of solutions can be easily used
as knowledge for adaptive ICIC schemes.

3. Due to its flexibility, the proposed framework can be ex-
tended to fit additional operators needs such as additional
performance metrics or partial optimization, i.e., only
certain cells or coverage zones.

4. Potential future reserach lines include developing models
for irregular traffic distributions both in time and space
and integration of paremetric scheduling and resource
allocation policies.
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