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Abstract We propose a probabilistic, energy-aware,

broadcast calculus for the analysis of both connectiv-

ity and energy consumption of MANETs. The seman-

tics of our calculus is expressed in terms of probabilis-

tic automata driven by schedulers to resolve the non-

deterministic choice among the probability distributions

over target states. We first develop a probabilistic ob-

servational congruence together with a bisimulation-

based proof technique. Then we define an energy-aware

preorder semantics. The observational congruence al-

lows us to verify whether two networks exhibit the same

observable probabilistic behaviour in terms of connec-

tivity, while the preorder makes it possible to evaluate

the energy consumption of different, but behaviourally

equivalent, networks. We show our calculus at work

both by modelling the Location Aided Routing (LAR)

protocol for large MANETs and by evaluating the en-

ergy cost of a Go-Back-N protocol with respect to a

Stop-And-Wait in a network with mobility.

Keywords Manets, Process Algebras, Energy Con-

sumption, Performance Evaluation

1 Introduction

Mobile ad-hoc networks (MANETs) are collections of

mobile devices communicating with each other through

wireless links without a pre-established networking in-

frastructure. Free node mobility is a main feature of
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DAIS, Università Ca’ Foscari Venezia, via Torino 155, 30172
Mestre Venezia, Italy
Tel.: +39 041 2348411 Fax: +39 041 2348419
E-mail: {marin,srossi}@dais.unive.it

such networks: each device in a MANET can move au-

tonomously in any direction, and therefore its links to

other devices may change frequently. These changes in

the network topology can cause the nodes to continu-

ously enter and exit each other transmission area and

hence highly dynamic routing algorithms are needed

to ensure the network connectivity. Moreover, mobile

devices often have strict requirements on the energy

consumption because their expected life-time usually

depends on the energy stored in a battery or other ex-

haustible power sources. For these reasons, the com-

munication protocols must face the problem of pro-

viding good connectivity among the network devices

while maintaining good performances both in terms of

throughput and energy conservation (see, e.g., [40,46,

38]). For larger networks in which some of/all the nodes

are aware of their relative or absolute geographical posi-

tion, e.g., thanks to a Global Positioning System device

(GPS), the routing protocols may exploit this informa-

tion in order to improve the efficiency of packet delivery

by controlling the flooding process (see, e.g., [22,43]).

Drawing on earlier work on the subject [11,14,25,

29], in the present paper we introduce a calculus to

provide a formal basis for the analysis of connectivity

and the evaluation of energy consumption in MANETs.

The definition of a general formalism allowing for

both qualitative (connectivity) and quantitative (power

consumption and throughput) analysis is a challenging

topic of research. Indeed, general purpose formalisms

for concurrency (e.g., Petri nets) do not deal with the

mobility of the devices in a natural way, and hence they

do not allow for a modular and hierarchical descrip-

tion of mobile systems. In [5] we presented a calculus

with non-atomic output and input actions to capture

the presence of interferences caused by the simultane-

ous transmission of two (or more) nodes. The calculus
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of [5] is targeted at the evaluation of the level of inter-

ference in mobile ad hoc networks, while any quanti-

tative assessment of energy consumption is considered.

Here we present a calculus, named Probabilistic EBUM,

for formally reasoning about Energy-aware Broadcast,

Unicast and Multicast communications of mobile ad-

hoc networks. This is an extension of the EBUM cal-

culus presented in [14,12,13] where probability distri-

butions are used to describe the movements of nodes.

Like its predecessor [14,5], our calculus is built around

nodes, representing the devices of the systems, and lo-

cations, identifying the position cells across which each

device may move inside the network. Node mobility is

governed by probability distributions. Instead, wireless

synchronizations are non-deterministic, and controlled

by sequential processes inside the nodes. Our calculus

allows us to model the ability of a node to broadcast

a message to any other node within its physical trans-

mission range, and to move in and out of the trans-

mission range of other nodes in the network. Broad-

cast communications are limited to the transmission

cell of the sender, while unicast and multicast commu-

nications are modelled by specifying, for each output

action, the locations of the intended recipients of the

message. The idea of using location-based destination is

motivated by the need of efficiently modelling large net-

works with location-based routing, such as the ones pre-

sented in [22,43], and of comparing their efficiency with

respect to standard routing algorithms based on flood-

ing. Nevertheless, the routing based on the knowledge

of the node’s destination address (but not its physi-

cal location) can still be implemented in our calculus

by specifying the intended recipients’ addresses as part

of the message content. This reflects the actual imple-

mentation of wireless protocols in which messages are

broadcast and then filtered by the recipient devices ac-

cording to the (MAC) address specified in the header

of the packet. Another important feature of the Prob-

abilistic EBUM calculus is the possibility for a node to

control its transmission power. This is modelled by al-

lowing nodes to modify the transmission radius of their

communications through internal actions.

The Probabilistic EBUM calculus deals with both

non-deterministic and probabilistic choices. Its seman-

tics is inspired by Segala’s probabilistic automata [39]

driven by schedulers to resolve the nondeterministic

choice among the probability distributions over target

states. In this paper we define a probabilistic obser-

vational congruence in the style of [30] to equate net-

works exhibiting the same probabilistic connectivity be-

haviour. As in [13,12], and in contrast to [29], the no-

tion of observability is associated with nodes listening

at specific locations in the network, so as to allow a

fine grained analysis of connectivity at different areas

within a network. We give a coinductive characterisa-

tion of observational congruence based on a labelled

transition semantics. This is a bisimulation-based proof

technique in the form of a probabilistic labelled bisimi-

larity which is shown to coincide with the observational

equivalence. We also introduce energy-aware preorders

over networks to measure the relative energy cost of

different, but behaviourally equivalent, networks. We

show our framework at work on the analysis of two

case-studies. The first one consists in modelling the Lo-

cation Aided Routing (LAR) protocol [22]: we study

how the performances of this protocol vary depending

on the characteristics of the specific network, e.g., node

density, topology changes and power capacity of the de-

vices. In the second case-study we compare the perfor-

mances, in terms of energy consumption, of an aggres-

sive protocol for reliable communications (Go-Back-n)

and a slower protocol (Stop&Wait).

This paper is an extended and improved version of

[11]. The main novelties concern the extension of the

calculus through the channel restriction operator (νc)

over networks. From a semantic perspective, it simply

plays the role of a CCS-style hiding operator, but it is

useful to specialise the verification method to some spe-

cific class of contexts. Moreover, we define a new equiv-

alence relation that is parametric to a restricted set of

executions for a given network: our new definition of

probabilistic barbed congruence allows us to study the

performances of networks focusing the attention only

on specific restricted behaviours, abstracting out all the

executions that are unrealistic or that are simply non

interesting for the aims of the analysis. We also de-

fine the labelled semantics which is proved to coincide
with the probabilistic observational congruence. This

provides the basis for powerful, both inductive and co-

inductive, proof techniques. Finally, the analysis of the

LAR protocol using our Probabilistic E-BUM calculus

is totally new.

Related work. Probabilistic models are nowadays widely

used in the design and verification of complex systems.

In the following we give an overview of the formal frame-

works for mobile ad-hoc and sensor networks.

Song and Godskesen [41] propose a probabilistic

broadcast calculus for mobile and wireless networks with

unreliable connections. The peculiarity of this calculus

is the introduction of a probabilistic mobility function

to model the mobility of nodes. Recently, in [42] the

same authors propose a new version of their calculus

built upon a stochastic mobility function to model the

stochastic changes of connectivity. As in our works [12,

11,14] broadcast actions are associated with the loca-



Connectivity and Energy-aware Preorders for Mobile Ad-Hoc Networks 3

tions of the intended recipients of the message. How-

ever, differently from our calculus, in [42] any notion of

transmission radius is introduced and any performance

analysis is considered.

Palamidessi et al. in [17] define the Probabilistic Ap-

plied π-calculus: this is a probabilistic extension of Ap-

plied π-calculus [1], where both non-deterministic and

probabilistic choices are modelled. The authors define

both a static equivalence, and an obervational congru-

ence based on the notion of probabilistic barb, which

describes the probability, for a given system, to perform

a certain observable action. As in our calculus, in order

to solve the non-determinism, schedulers (also called

polices, or adversaries) have been introduced. They are

modelled as functions mapping states into probability

distributions. Differently from our work, their semantic

is not parameterized over restricted sets of schedulers.

Merro et al. introduce aTCWS (applied Timed Cal-

culus for Wireless Systems) [28]: a timed broadcasting

process calculus targeted at security analysis of wireless

networks with fixed nodes communicating at the same

transmission power and aver the same transmission fre-

quency. The connectivity of the network is expressed by

associating with each node a tag containing the list of

all its neighbours. The timed model adopted by this cal-

culus is known as the fictitious clock approach, and it is

based on clock synchronization of nodes. A probabilis-

tic version of TCWS has been introduced in [26]. The

main feature of this calculus is the presence of a sim-

ulation up to probability which allows one to compare

networks which exhibit the same behaviour up to a cer-

tain probability. The main limitations of such calculus

are the absence of mobility and of multiple frequencies.

In [8] Hennessy and Cerone propose a calculus to

model the high-level behaviour of Wireless Systems (i.e.,

MAC-layer protocols). This calculus is characterized by

a two-level structure: on one hand, it models both prob-

abilistic and non-deterministic processes behaviour, as

well as communications through a fixed set of channels;

on the other hand, the topology is expressed through an

undirected graph where each edge represents the direct

link between a pair of network nodes. Neither a no-

tion of distance nor of transmission radius has been in-

troduced. Furthermore, modelling communication links

with an undirected graph presupposes that all nodes use

the same fixed radius to communicate, an assumption

that is not realistic for MANETs, which include differ-

ent kinds of devices, with different physical structure

and power resources.

De Nicola et al. introduce StoKlaim [9]: a stochastic

process algebra, whose underlying processes are Con-

tinuous Time Markov Chains, allowing one to describe

random phenomena regarding mobile wireless networks.

As far as performance evaluation is concerned, Hill-

ston et al. introduce the process algebra PEPA [19]

which has been designed for modelling systems com-

posed of concurrently active components which co-operate

and share resources. The authors also provide a tool,

the PEPA Workbench [15], which allows a practical use

of this process algebra in many applications concerning

software architecture and communication protocols.

Bernardo et al. introduce EMPAgr [4], an extended

Markovian process algebra including probabilities, pri-

ority and exponentially distributed durations. Its pe-

culiarity is the possibility of modelling both exponen-

tially timed and immediate actions, whose selection is

controlled by a priority level associated with them.

Other frameworks for performance modelling based

on Petri Nets and queueing networks fall short of ac-

counting for node mobility while maintaining a good

accuracy in specifying the protocol design [31,3].

As far as energy consumption is concerned, several

papers address the problem of studying the energy con-

sumption of a specific communication protocol for wire-

less networks. For instance, in [46] the authors define a

Markov Reward process (see, e.g., [35]) modelling some

protocols for pairwise node communications. A steady-

state quantitative analysis is then derived and hence the

average performance indices computed. In [2] Bernardo

et al. present a methodology to predict the impact of

the power management techniques on a system func-

tionality and performance. In [40] the authors define

a set of metrics on the energy consumption which are

then estimated through simulation and show how some

changes in the protocols can improve the efficiency.

With respect to the above mentioned works, the model

we propose here aims at providing a common frame-

work for both qualitative and quantitative analyses.

Concerning the problem of routing in mobile ad-

hoc networks, several different solutions have been pro-

posed. Usually, routing protocols are classified in proac-

tive and reactive. While proactive protocols continually

exchange routing information about all the nodes, (see,

e.g., DSDV [34] and WRP [32]), the reactive protocols

update the routing table of each node only on-demand

(see, e.g., the AODV [36], TORA [33] and DSR [20]).

Although proactive routing reduces the latency in send-

ing out packets, due to the continuous up-to-date of

the routing tables, reactive routing are more efficient in

terms of resource usage, since they update the route ta-

bles only on-demand. When dealing with mobile ad-hoc

networks the most common strategy is to use hybrid

protocols, where both the proactive and the reactive

approach coexist in order to provide a good trade-off

between latency and overhead.
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Plan of the paper. Section 2 introduces the Probabilis-

tic E-BUM calculus and its observational semantics. In

Section 3 we present the LTS semantics and define a la-

belled bisimilarity which is proved to coincide with the

observational congruence of the unlabeled semantics. In

Section 4 we show how to exploit the LTS semantics for

measuring the energy consumption of ad-hoc networks

and comparing the average energy cost of networks ex-

hibiting the same connectivity behaviour. In Section 5

we analyse the LAR protocol, comparing it with the

simple flooding algorithm usually adopted in reactive

routing. Section 6 carries out a quantitative and qual-

itative comparison of the Stop&Wait and Go-Back-N

protocols under a specific scenario. Finally, Section 7

concludes the paper.

2 The Calculus

We introduce the Probabilistic EBUM calculus, an ex-

tension of EBUM (a calculus for Energy-aware Broad-

cast, Unicast, Multicast communications of mobile ad-

hoc networks) [13] that models mobile ad-hoc networks

as a collection of nodes, running in parallel, and using

channels to broadcast messages. Our calculus supports

multicast and unicast communications. Moreover, it al-

lows us to model the possibility for a node to control

the energy consumption by choosing the transmission

radius for its communications.

Syntax. We use letters c and d for channels; m and n for

nodes; l, k and h for locations; r for transmission radii;

x, y and z for variables. Closed values contain nodes,

locations, transmission radii and any basic value (e.g.,

booleans, integers, ...). Values include also variables. We

use u and v for closed values and w for (open) values.

We write ṽ, w̃ for tuples of values. We write Loc for the

set of all locations.

The syntax of our calculus is shown in Table 1. This

is defined in a two-level structure: the lower one for

processes, the upper one for networks. Networks are

collections of nodes, devices running in parallel and us-

ing channels to communicate messages. As usual, 0 de-

notes the empty network and M1|M2 the parallel com-

position of two networks. We denote by
∏
i∈IMi the

parallel composition of the networks Mi, for i ∈ I. We

denote by n[P ]l a network node named n, located at

the physical location l, and executing the process P . In

(νc)M , the channel c is private with scope M , and we

say it is bound in M : we denote by fc(M) the set of

channels which are not bound in M . We remark that in

our calculus channels are distinct from values and can-

not be transmitted; furthermore, given the structure of

the syntactic productions, channels may not be dynam-

ically created and thus (νc)M simply plays the role of

a CCS-style hiding operator1. We denote by N the set

of all networks.

Processes are sequential and live within the nodes.

Process 0 denotes the inactive process. Process c(x̃).P

can receive a tuple w̃ of (closed) values via channel c

and continue as P{w̃/x̃}, i.e., as P with w̃ substituted

for x̃ (where |x̃| = |w̃|, and | · | denotes the length of

the tuple). In the process c(x̃).P , the variables in x̃ are

said to be bound in P . Process c̄L,r〈w̃〉.P can send a

tuple of (closed) values w̃ via channel c and continue

as P. The tag L is used to maintain the set of physical

locations of the intended recipients: L = Loc represents

a broadcast transmission, while a finite set of locations

L denotes a multicast communication (unicast if L is a

singleton). We remark that L is not a set of names, but

it is a set of locations. This is due to the fact that we are

interested in analyzing ad-hoc routing protocols where

the devices are aware of their location and messages

are routed efficiently by exploiting such information. If

one wish to specify the final destination by means of

the physical address of the device, then this should be

encoded in the tuple representing the transmitted mes-

sage, therefore resembling the role of the headers in the

real implementation of the transmission protocols. The

tag r represents the transmission radius of the sender:

the choice of specific transmission ranges may depend

on varoius parameters, and is left to the process run-

ning inside the transmitter node. We assume that the

transmission radius of a communication cannot exceed

the maximum transmission radius associated with the

sending node. Syntactically, tags L and r associated

with an output action on a channel c may be variables,

but they must be instantiated when the output prefix

is ready to fire. Process [w1 = w2]P,Q behaves as P if

w1 = w2, and as Q otherwise. We write A〈w̃〉 to denote

a process defined via a (possibly recursive) definition

A(x̃)
def
= P , with |x̃| = |w̃| where x̃ contains all chan-

nels and variables that appear free in P . We identify

processes up to α-conversion and we assume that there

are no free variables in a network. We write cl for c{l},

c̄L,r〈w̃〉 for c̄L,r〈w̃〉.0, 0 for n[0]l and [w1 = w2]P for

[w1 = w2]P,0.

Nodes cannot be created or destroyed, and move au-

tonomously. Node connectivity is verified by looking at

the physical location and the transmission radius of the

sender: a message broadcast by a node is received only

by the nodes that lie in the area delimited by the trans-

1 Since channels represent radio frequencies, they are all
public and may not be hidden in practice. Indeed, the use of
the hiding operator is only meant to specialize the verification
method to some specific class of contexts as we will see later.
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Networks Processes

M, N ::= 0 Empty network P, Q, R ::= 0 Inactive process

|M1|M2 Parallel composition | c(x̃).P Input

| (νc)M Restriction | c̄L,r〈w̃〉.P Output

| n[P ]l Node (or device) | [w1 = w2]P,Q Matching

| A〈w̃〉 Recursion

Table 1: Syntax

mission radius of the sender. We presuppose a function

d(·, ·) which takes two locations and returns the dis-

tance separating them (function d can simply be the

Euclidean distance between two locations, or a more

complex function dealing with potential obstacles).

Each node n is associated with a pair < rn,J
n >,

where rn is a non negative real number denoting the

maximum transmission radius that n can use to trans-

mit, while Jn is the transition matrix of a discrete time

Markov chain: each entry Jnlk denotes the probability

that the node n located at l may move to the location

k. Hence,
∑
k∈Loc Jnlk = 1 for all locations l ∈ Loc and

nodes n. Static nodes inside a network are associated

with the identity Markov chain, i.e., the identity ma-

trix Jnll = 1 for all l ∈ Loc and Jnlk = 0 for all k 6= l.

We denote by µnl the probability distribution associated

with node n located at l, that is, the function over Loc

such that µnl (k) = Jnlk, for all k ∈ Loc2. We will model

the probabilistic evolution of the network according to

these distributions.

Probability distributions for networks. Let n be a node

of a network M and l its location. We denote by M{n :

l′/l} the network obtained by substituting l by l′ inside

the node n and by JMKµnl the probability distribution

over the set of networks induced by µnl and defined as

follows: for all networks M ′,

JMKµnl (M ′) =

µnl (l′) if M ′ = M{n : l′/l}

0 otherwise

Intuitively, JMKµnl (M ′) is the probability that the net-

work M evolves to M ′ due to the movement of its

node n located at l. We say that M ′ is in the sup-

port of JMKµnl (M ′ ∈ spt(JMKµnl )) if JMKµnl (M ′) 6= 0.

We write JMK∆ for the Dirac distribution on the net-

work M , namely the probability distribution defined

as: JMK∆(M) = 1 and JMK∆(M ′) = 0 for all M ′ such

that M ′ 6= M . Finally, we let θ range over the set of

probabilities {µnl |n is a node and l ∈ Loc} ∪ {∆}.

2 Notice that Jn is a matrix, while µnl is a function.

Example 1 (Probability distributions) Consider the net-

work M defined as

n1[c̄L,r1〈ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 | m[c(x̃).P3]k

where two mobile nodes, n1 and n2, communicate with

a static receiver node m. Both nodes n1 and n2 move

back and forth between the two locations l1 and l2 ac-

cording to the probability distribution defined by the

discrete time Markov chain with the following transi-

tion matrix

J =

∣∣∣∣1− p p

q 1− q

∣∣∣∣ ,
where 0 < p, q < 1. The probability distribution of the

network induced by the movement of node n1 is

JMKµn1
l1

(M ′) =


1− p if M ′ = M

p if M ′ = M{n1 : l2/l1}

0 otherwise.

Similarly for the second node we have

JMKµn2
l2

(M ′) =


1− q if M ′ = M

q if M ′ = M{n2 : l1/l2}

0 otherwise.

while for the static receiver we have

JMKµmk (M ′) =

1 if M ′ = M

0 otherwise.

Note that JMKµmk = JMK∆. ut

Reduction semantics. The dynamics of the calculus is

specified by the probabilistic reduction relation over net-

works (−→), described in Table 3. As usual, it relies on

an auxiliary relation, called structural congruence (≡),

which is the least contextual equivalence relation sat-

isfying the rules defined in Table 2. The probabilistic

reduction relation takes the form M−→JM ′Kθ denoting

a transition that leaves from network M and leads to a

probability distribution JM ′Kθ.
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n[0]l ≡ 0 (Struct Zero)

n[[v = v]P,Q]l ≡ n[P ]l (Struct Then)

n[[v1 = v2]P,Q]l ≡ n[Q]l v1 6= v2 (Struct Else)

n[A〈ṽ〉]l ≡ n[P{ṽ/x̃}]l if A(x̃)
def
= P ∧ |x̃| = |ṽ| (Struct Rec)

M |N ≡ N |M (Struct Par Comm)

(M |N)|M ′ ≡M |(N |M ′) (Struct Par Assoc)

M |0 ≡M (Struct Zero Par)

(νc)0 ≡ 0 (Struct Zero Res)

(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)

(νc)(M | N) ≡M | (νc)N if c 6∈ fc(M) (Struct Res Par)

Table 2: Structural Congruence

Rule (R-Bcast) models the transmission of a tuple

of messages ṽ to the set of locations L using channel c

and transmission radius r. Indeed, nodes communicate

using radio frequencies that enable only message broad-

casting (monopolizing channels is not permitted). How-

ever, a node may decide to communicate with a specific

node (or group of nodes), this is the reason why we de-

cided to associate with each output action a set of tar-

get locations. The cardinality of this set indicates the

kind of communication that is used: if L = Loc then

the recipients set is the whole network and a broad-

cast transmission is performed, while if L is a finite set

(resp., a singleton) then a multicast (resp., a unicast)

communication is done. Notice that L does not play

a role in a synchronization reduction, as messages are

broadcast and observable (and received) by any active

receiver in range. On the other hand, we use L to fine-

tune our notion of observation in the definition of barb.

Moreover, the index set I in rule (R-Bcast) could be

empty, because the output is a non-blocking action, i.e.,

it could be applied even if no nodes are ready to receive

the transmission. A radius r is also associated with an

output action on channel c, indicating the transmission

radius required for that communication which may de-

pend on the energy consumption strategy adopted by

the surrounding protocol.

Rule (R-Move) deals with the possibility for a node

to move within the network. A node n located at l and

executing a move action will reach a location with a

probability described by the distribution µnl that de-

pends on the Markov chain Jn statically associated with

n. Movements are atomic actions: while moving, a node

cannot do anything else. In our model, due to the inter-

leaving nature of the calculus, only one node can move

at each reduction but this does not mean that only

one node can move at a time. Indeed, as usual in in-

terleaving semantics, concurrent events are represented

by sequentiality and non-determinism. Rules (R-Par),

(R-Res) and (R-Struct) are standard.

Since we are dealing with a probabilistic reduction

semantics, which reduces networks into probability dis-

tributions, we need a way of representing the steps

of each probabilistic evolution of a network. Formally,

given a network M , we write

M−→θN

if M−→JM ′Kθ and N is in the support of JM ′Kθ. Fol-

lowing [17], an execution for M is a (possibly infinite)

sequence of steps M−→θ1M1−→θ2M2.... We write ExecM
for the set of all possible executions starting from M ,

last(e) for the final state of a finite execution e, ej for

the prefix M−→θ1M1...−→θjMj of length j of the execu-

tion e of the form M−→θ1M1 · · · −→θjMj−→θj+1
Mj+1 · · · ,

and e↑ for the set of e′ such that e is a prefix of e′. The

symbol −→
∗

denotes the transitive and reflexive closure

of −→.

Observational semantics. Following a standard prac-

tice, we formalize the observational semantics for our
calculus in terms of a notion barb, that provides the ba-

sic unit of observation [30]. As in other calculi for wire-

less communications, the definition of barb is naturally

expressed in terms of message transmission. However,

the technical development is more involved, as our cal-

culus presents both non-deterministic and probabilistic

aspects, where the non-deterministic choices are among

the possible probability distributions that a network

may follow and arise from the possibility for nodes to

perform movements according to the associated discrete

time Markov chain.

We denote by behave(M) = {JM ′Kθ |M −→ JM ′Kθ}
the set of the possible behaviours of M . In order to solve

the non-determinism in a network execution, we con-

sider each possible probabilistic transition M −→ JM ′Kθ
as arising from a scheduler (see [39]).

Definition 1 (Scheduler) A scheduler is a total func-

tion F assigning to a finite execution e a distribution

JNKθ ∈ behave(last(e)).
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(R-Bcast)
n[c̄L,r〈ṽ〉.P ]l |

∏
i∈Ini[c(x̃i).Pi]li−→Jn[P ]l |

∏
i∈Ini[Pi{ṽ/x̃i}]liK∆

where 0 < r ≤ rn, ∀i ∈ I.d(l, li) ≤ r, ri > 0 and |x̃i| = |ṽ|

(R-Move)
n[P ]l−→Jn[P ]lKµnl

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ

(R-Res)
M−→JM ′Kθ

(νc̃)M−→J(νc̃)M ′Kθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 3: Reduction Semantics

Let Sched be the set of all schedulers. Given a net-

work M and a scheduler F , we define the set of execu-

tions starting from M and driven by F as:

ExecFM = {e = M−→θ1M1−→θ2M2... |
∀j, Mj−1 −→ JM ′jKθj , JM ′jKθj = F (ej−1)

and Mj is in the support of JM ′jKθj}.

Given a finite execution e = M−→θ1M1...−→θkMk

starting from a network M and driven by a scheduler

F we define

PFM (e) = JM ′1Kθ1(M1) · ... · JM ′kKθk(Mk)

where ∀j ≤ k, JM ′jKθj = F (ej−1). We define the prob-

ability space on the executions starting from a given

network M as follows. Given a scheduler F , σFieldFM
is the smallest sigma field on ExecFM that contains the

basic cylinders e ↑, where e ∈ ExecFM . The probabil-

ity measure ProbFM is the unique measure on σFieldFM
such that ProbFM (e ↑) = PFM (e). Given a measurable

set of networks H, we denote by ExecFM (H) the set of

executions starting from M and crossing a state in H.

Formally, ExecFM (H) = {e ∈ ExecFM | last(ej) ∈ H for

some j}. We denote the probability for a network M to

evolve into a network H, according to the policy given

by F , as ProbFM (H) = ProbFM (ExecFM (H)).

The notion of barb introduced below denotes an ob-

servable transmission with a certain probability accord-

ing to a fixed scheduler. In our definition, a transmission

is observable only if at least one location in the set of

the target locations is able to receive the message.

Definition 2 (Barb) LetM ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|M ′),
with c /∈ d̃. We say that M has a barb on a chan-

nel c at locations K(6= ∅), denoted M ↓c@K , if ∃K ⊆
L such that d(l, k) 6 r for all k ∈ K.

Definition 3 (Probabilistic Barb) A networkM has

a probabilistic barb with probability p on a channel c to

the set K of locations, according to the scheduler F ,

written M⇓Fp c@K, if ProbFM ({N |N ↓c@K}) = p.

Intuitively, for a given network M and a scheduler

F , if M⇓Fp c@K then p is the positive probability that

M , driven by F , performs a transmission on channel

c and at least one of the receivers in the observation

locations is able to correctly listen to it.

In the following, we introduce a probabilistic ob-

servational congruence, in the style of [17], which is

parametric to a restricted set of schedulers. This al-

lows us to ignore unrealistic schedulers like, for exam-

ple, schedulers giving priority to communication actions

over movements, thus canceling the effects that nodes

mobility has on the network behaviour.

In order to define a congruence relation among net-

works, we have to select a set of schedulers guarantee-

ing that, for each behaviour a network can exhibit, the

same behaviour can be exhibited by the network in the

presence of any possible context. Hereafter, a context is

a network term with a hole [·] defined by the following

grammar:

C[·] ::= [·] | [·]|M | M |[·] | (νc)[·].

The following definition allows us to select the set

of schedulers preserving the contextuality, once we have

fixed the particular behaviour we want to capture.

Definition 4 Given a scheduler F ∈ Sched, we denote

by FC the set of schedulers F ′ such that ∀M0, ∀e ∈
ExecFM0

of the form

e = M0 −→θ1 M1 −→θ2 M2... −→θh Mh,

∀ context C0[·] and ∀e′ ∈ ExecF ′

C0[O0] with M0 ≡ O0 of

the form

e′ = C0[O0] −→θ′1
C1[O1] −→θ′2

C2[O2]... −→θ′k
Ck[Ok],

there exists a monotonic surjective function f from [0−
k] to [0− h] such that:

(i) ∀i ∈ [0− k], Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θ′j = θf(j) if Mf(j−1) −→θf(j)
Mf(j).

Given a subset F ∈ Sched of schedulers, then we

define FC =
⋃
F∈FFC .
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(Output)
−

c̄L,r〈ṽ〉.P
c̄L,r ṽ−−−→ P

(Input)
−

c(x̃).P
cṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′ A(x̃)

def
= P

A〈ṽ〉 η−→ P ′

Table 4: LTS rules for Processes

Example 2 Let M0 ≡ m[c̄L,r〈v〉.P ]l and F ∈ Sched

such that

M0 −→∆ M1 ∈ ExecFM ,

with M1 ≡ m[P ]l.

First notice that F ∈ FC , since we can take the

empty context C[·] ≡ [·] and the identity function f

such that f(i) = i for all i ∈ [0−1]. In this case C[Mi] ≡
Mi for i ∈ {0, 1} and the property of Definition 4 is

satisfied.

Let now considerN0 ≡ n[c(x).Q]k such that d(l, k) ≤
r. All the schedulers allowing M0 and N0 to interact are

in FC . Indeed, consider F1 ∈ Sched such that, by ap-

plying rules (R-Bcast),

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with N1 ≡ n[Q{v/x}]k, and consider also F2 such that,

by applying rule (R-Par)

M0 | N0 −→∆ M1 | N0 ∈ ExecF2

M0|N0
.

Both F1 and F2 satisfy the properties of Definition 4,

hence F1, F2 ∈ FC .
Now consider again the network N0.

Let e′ = n[c(x).Q]k −→µnk
n[c(x).Q]k′ 6∈ ExecFN0

, then

∀F̄ ∈ Sched such that e′ ∈ ExecF̄N0
, F̄ 6∈ FC since F̄

does not satisfy the conditions of Definition 4. ut

Now we are able to introduce our equivalence rela-

tion.

Definition 5 Given a set F ∈ Sched of scehdulers,

and a relation R over networks:

– Barb preservation. R is barb preserving relative to

F if MRN and M⇓Fp c@K for some F ∈ FC implies

that there exists F ′ ∈ FC such that N⇓F
′

p c@K.

– Reduction closure. R is reduction closed relative to

F if MRN implies that for all F ∈ FC , there ex-

ists F ′ ∈ FC such that for all classes C ∈ N/R,

ProbFM (C) = ProbF
′

N (C).

– Contextuality. R is contextual if MRN implies that

for every context C[·], it holds that C[M ]RC[N ].

Our probabilistic observational congruence with re-

spect to a restricted set F of schedulers is defined as

the largest relation as follows.

Definition 6 (Observational Congruence) Given

a set F of schedulers, the probabilistic observational

congruence relative to F , written ∼=Fp , is the largest

symmetric relation over networks which is reduction

closed, barb preserving and contextual.

Two networks are related by ∼=Fp if they exhibit

the same probabilistic behaviour (communications) rel-

ative to the corresponding sets of intended recipients. In

the next section we develop a bisimulation-based proof

technique for ∼=Fp .

3 A Bisimulation-based Proof Technique

The proof of relation ∼=Fp may be a hard task. In

this section we propose a co-inductive proof technique

that allows for an algorithmic decision of ∼=Fp .

Labelled Transition Semantics. We define a LTS seman-

tics for our calculus, which is built upon two sets of rules:

one for processes and one for networks. Table 4 presents

the LTS rules for processes. Transitions are of the form

P
η−→ P ′, where η ranges over input and output actions

of the form:

η ::= cṽ | c̄L,rṽ.

Rules for processes are simple and they do not need

deeper explanations. Notice that such rules do not rely

on any probabilistic notion since processes only have

deterministic transitions.

Table 5 presents the LTS rules for networks. Transi-

tions are of the formM
γ−→ JM ′Kθ, whereM is a network

and JM ′Kθ is a distribution over networks. Probabilities
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(Snd)
P

c̄L,r ṽ−−−→ P ′

n[P ]l
cL!ṽ[l,r]−−−−−→ Jn[P ′]lK∆

(Rcv)
P

cṽ−→ P ′

n[P ]l
c?ṽ@l−−−−→ Jn[P ′]lK∆

(Bcast)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ N
c?ṽ@l′−−−−→ JN ′K∆ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−−→ JM ′|N ′K∆
N |M

cL!ṽ[l,r]−−−−−→JN ′|M ′K∆

(Obs)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r} K = R ∩ L, K 6= ∅

M
c!ṽ@K/R−−−−−−→ JM ′K∆

(Lose)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆
M

τ−→JM ′K∆
(Move)

n[P ]l
τ−→ Jn[P ]lKµnl

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ
N |M

γ−→JN |M ′Kθ

(Res)
M

γ−→ JM ′Kθ Chan(γ) 6= c

(νc)M
γ−→ J(νc)M ′Kθ

Table 5: LTS rules for Networks

are used to model the mobility of nodes. Tag γ is de-

fined as follows:

γ ::= cL!ṽ[l, r] | c?ṽ@l | c!ṽ@K / R | τ.

Rule (Snd) models the sending of tuple ṽ through

channel c to a specific set L of locations with trans-

mission radius r, while rule (Rcv) models the reception

of ṽ at l via channel c. Rule (Bcast) models the broad-
cast message propagation: all the nodes lying within the

transmission cell of the sender may receive the message,

regardless of the fact that they lie in one of the loca-

tions in L. Rule (Obs) models the observability of a

transmission: every transmission may be detected (and

hence observed) by any recipient lying in one of the ob-

servation locations within the transmission cell of the

sender. The label c!ṽ@K/R represents the transmission

of the tuple ṽ of messages via c: the set R is the set of

all the locations receiving the message, while its subset

K contains only the locations where the transmission

is observed. Rule (Lose) models message loss. As usual,

τ -transitions are used to denote non-observable actions.

Rule (Move) models migration of a mobile node n from

a location l to a location k according to the probability

distribution µnl , which depends on the Markov chain

Jn statically associated with n. Rule (Res) models the

standard channel restriction, where Chan(γ) = c if γ

is of the form c?ṽ@l or cL!ṽ[l, r] or c!ṽ@K / R, and

Chan(τ) = ⊥. Finally, (Par) is standard.

Relating the LTS and reduction semantics. We prove

that the LTS-based semantics coincides with the reduc-

tion semantics and the notion of observability (barb)

given in the previous section.

We first prove that if M
γ−→ JM ′K∆, then the struc-

ture of M and M ′ can be determined up to structural

congruence.

Lemma 1 Let M be a network.

1. If M
c?ṽ@l−−−−→ JM ′K∆, then there exist n, x̃, a (possibly

empty) sequence d̃ such that c /∈ d̃, a process P and

a (possibly empty) network M1 such that

M ≡ (νd̃)(n[c(x̃).P ]l|M1)

and

M ′ ≡ (νd̃)(n[P{ṽ/x̃}]l|M1).

2. If M
cL!ṽ[l,r]−−−−−→ JM ′K∆, then there exist n, a (possibly

empty) sequence d̃ such that c /∈ d̃, a process P , a

(possibly empty) network M1 and a (possibly empty)

set I, with d(l, li) ≤ r ∀i ∈ I, such that:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|
∏
i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[P ]l|
∏
i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Proof The proof follows by induction on the transition

rules of Table 5. ut
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Now we show that the structural congruence re-

spects the transitions of Table 5.

Lemma 2 If M
γ−→ JM ′Kθ and M ≡ N , then there

exists N ′ such that N
γ−→ JN ′Kθ and M ′ ≡ N ′.

Proof The proof is derived by induction on the depth

of the inference M
γ−→ JM ′Kθ. ut

The following theorem establishes the relationship

between the reduction semantics and the LTS one.

Theorem 1 (Harmony) Let M be a network.

1. If M −→ JM ′Kθ then there exist N ≡ M and N ′ ≡
M ′ such that N

τ−→ JN ′Kθ.

2. M ↓c@K if and only if there exist ṽ, R ⊇ K and

N ≡M such that N
c!ṽ@K/R−−−−−−→.

3. If M
τ−→ JM ′Kθ then M −→ JM ′Kθ.

4. If M
c!ṽ@K/R−−−−−−→ JM ′K∆ then M −→ JM ′K∆.

Proof See Appendix. ut

Probabilistic labelled bisimilarity. Based on the LTS se-

mantics, we define a probabilistic labelled bisimilarity

that is a complete characterisation of our probabilistic

observational congruence. It is built upon the following

actions:

α ::= c?ṽ@l | c!ṽ@K / R | τ.

Again, we write M
α−→θ N if M

α−→ JM ′Kθ and N

is in the support of JM ′Kθ. A labelled execution e of a

network M is a finite (or infinite) sequence of steps:

M
α1−→θ1 M1

α2−→θ2 M2...
αk−−→θk Mk .

With abuse of notation, we define ExecM , last(e), ej

and e ↑ as for unlabeled executions. Moreover, we de-

note by lbehave(M) the set of all possible behaviours of

M , i.e., lbehave(M) = {(α, JM ′Kθ) |M
α−→ JM ′Kθ}. La-

belled executions arise by resolving the non-determinism

of both α and JMKθ. As a consequence, a scheduler3

for the labelled semantics is a function F assigning a

pair (α, JMKθ) ∈ lbehave(last(e)) with a finite labelled

execution e. We denote by LSched the set of all sched-

ulers for the LTS semantics. Given a network M and a

scheduler F , we define ExecFM as the set of all labelled

executions starting from M and driven by F .

From a modelling point of view, we want to distin-

guish networks that differ for some observable actions,

therefore ignoring internal computations of the nodes.

Formally, this means that we are interested in weak ob-

servational equivalences, that abstract over τ -actions.

Hereafter, we introduce the notion of weak action.

3 With abuse of notation, we still use F to denote a sched-
uler for the LTS semantics.

Definition 7 (Weak Action) We denote by =⇒ the

transitive and reflexive closure of
τ−→ and by

α
=⇒ the

weak action =⇒ α−→=⇒. We denote by
α̂

=⇒ the weak

action
α

=⇒ if α 6= τ , and =⇒ otherwise.

We denote by ExecFM (
α

=⇒, H) the set of executions

that, starting from M , according to the scheduler F ,

lead to a network in the set H by performing
α

=⇒. More-

over, ProbFM (
α

=⇒, H) = ProbFM (ExecFM (
α

=⇒, H)).

Since we want our bisimilarity to be a complete

characterisation of our notion of behavioural equiva-

lence, which has been defined with respect to a re-

stricted set of schedulers F ⊆ Sched on the reduc-

tion semantics, we have to define the set of schedulers

F̂ ∈ LSched for the LTS corresponding to F .

Definition 8 Given a scheduler F ∈ Sched, we denote

by F̂C ⊆ LSched the set of schedulers F̂ ∈ LSched such

that ∀M0, ∀e ∈ ExecF̂M0
:

e = M0
α1−→θ1 M1...

αk−−→θh Mh

∃F ′ ∈ FC , a context C0 and e′ ∈ ExecF ′

C0[O0] with O0 ≡
M0 such that

e′ = C0[O0] −→θ′1
C1[O1]... −→θ′k

Ck[Ok]

and there exists a monotone surjective function f from

[0− k] to [0− h] such that:

(i) ∀i ∈ [1− k] Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θf(j) = θ′j if Mf(j−1)

αf(j)−−−→θf(j)
Mf(j).

For a given a set F ⊆ Sched of schedulers, we define

F̂C =
⋃
F∈F F̂C .

Example 3 Consider the networks M0 and N0, and the

schedulers F and F1 introduced in the Example 2. If

we take F̂1 ∈ LSched such that

M0
cL!v[l,r]−−−−−→∆ M1 ∈ ExecF̂1

M0
,

then, since

M0 −→∆ M1 ∈ ExecFM0

the conditions of Definition 8 are satisfied by taking

the empty context C[·] = [·] and the identity function

f(i) = i for i ∈ {0, 1}. Hence F̂1 ∈ F̂C .
Moreover, if we consider F̂2 ∈ LSched such that

N0
c?v@k−−−−→∆ N1 ∈ ExecF̂2

N0
,

since

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with F1 ∈ FC , by considering the contexts Ci[·] ≡Mi | ·
for i ∈ {0, 1}, and the identity function f(i) = i for

i ∈ {0, 1} we get F̂2 ∈ F̂C too. ut
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The following proposition holds.

Proposition 1

1. SchedC = Sched.

2. ŜchedC = LSched.

Proof The first statement follows straightforwardly from

Definition 4. To prove the second statement observe

that: ∀F ∈ LSched, ∀M0 ∈ N and ∀e ∈ ExecFM0
of the

form

e = M0
α1−→θ1 M1...

αk−−→θk Mk

it is always possible to find a context C0[·] and a sched-

uler F ′ ∈ LSched such that e′ ∈ ExecF ′

C0[M0] with

e′ = C0[M0]
τ−→θ1 ...C1[M1]...

τ−→θk Ck[Mk].

By theorem 1, ∃F ′′ ∈ Sched such that e′′ ∈ ExecF ′′

C0[M0]

with

e′′ = C0[M0] −→θ1 ...C1[M1]... −→θk Ck[Mk],

meaning that F ∈ ŜchedC as required. ut

In the following we give the definition of probabilis-

tic labelled bisimilarity relative to a given set of sched-

ulers. In the definition below input actions are treated

differently from output and silent actions. This is due

to the fact that in our model the input is not an observ-

able action, hence two systems are considered equiva-

lent even if they do not have the same behaviour in

terms of transmission receptions.

Definition 9 (Probabilistic Labelled Bisimilarity)

Let M and N be two networks. An equivalence relation

R over networks is a probabilistic labelled bisimulation

relative to F if MRN implies: for all scheduler F ∈ F̂C
there exists a scheduler F ′ ∈ F̂C such that for all α and

for all classes C in N/R it holds:

1. if α 6= c?ṽ@l then

ProbFM (
α−→, C) = ProbF

′

N (
α̂

=⇒ C);
2. if α = c?ṽ@l then either

ProbFM (
α−→, C) = ProbF

′

N (
α

=⇒, C) or

ProbFM (
α−→, C) = ProbF

′

N (=⇒, C).

Probabilistic labelled bisimilarity, written≈Fp , is the largest

probabilistic labelled bisimulation relative to F over

networks.

A complete characterisation. In this part, we finally

prove that our probabilistic labelled bisimilarity is a

complete characterisation of the probabilistic observa-

tional congruence of Definition 6.

We first state the following proposition.

Proposition 2 Let M and N be two networks. If MRN
for some bisimulation R w.r.t F , then for all schedulers

F ∈ F̂C there exists a scheduler F ′ ∈ F̂C such that for

all α and for all classes C in N/R it holds:

1. if α 6= c?ṽ@l then

ProbFM (
α̂

=⇒, C) = ProbF
′

N (
α̂

=⇒ C);
2. if α = c?ṽ@l then either

ProbFM (
α̂

=⇒, C) = ProbF
′

N (
α

=⇒, C) or

ProbFM (
α

=⇒, C) = ProbF
′

N (=⇒, C).

Proof The proof follows by induction on the length of

the weak transition
α̂

=⇒. ut

We can now prove that our bisimilarity is a proof

method for our observational congruence, i.e., that ≈Fp
is contained in ∼=Fp .

Theorem 2 (Soundness) Let M and N be two net-

works and F ⊆ Sched. If M ≈Fp N then M ∼=Fp N.

Proof See Appendix. ut

Finally, we prove that the observational congruence

is contained the labelled bisimilarity.

Theorem 3 (Completeness) Let M and N be two

networks and F ⊆ Sched. If M ∼=Fp N then M ≈Fp N.

Proof See Appendix. ut

The following result is a consequence of Theorems 2

and 3.

Theorem 4 (Characterization) For every set F ⊆
Sched, ∼=Fp =≈Fp .

4 Measuring Energy Consumption

In this section, based on the LTS semantics, we define a
preorder over networks which allows us to compare the

average energy cost of different networks but exhibiting

the same connectivity behaviour relative to a specific

set of schedulers F . For this purpose we associate an

energy cost with labelled transitions as follows:

Cost(M,N) =


r if M

cL![l,r]−−−−→ JNK∆
for some c, L, ṽ, l

0 otherwise.

In other words, the energy cost to reach N from M in

one single step is r if M can reach N after firing on

a channel of radius4 r regardless of the message being

transmitted is observable or not (or even lost). In the

same way, if

e = M0
α1−→θ1 M1...

αk−−→θk Mk

4 Note that considering the radius of the communication
channel as the energy cost of the transmitted data is standard
[45,6].
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is an execution then

Cost(e) =
∑k
i=1Cost(Mi−1,Mi).

LetH be a set of networks, we denote by PathsFM (H)

the set of all executions from M ending in H and driven

by F which are not prefix of any other execution ending

in H. More formally,

PathsFM (H) = {e ∈ ExecFM (H) | last(e) ∈ H and

∀e′ such that e is a prefix of e′, e′ 6∈ PathsFM (H)}.

Now, we are ready to define the average energy cost

of reaching a set of networks H from the initial network

M according to a scheduler F .

Definition 10 Let H be a set of networks. The av-

erage energy cost of reaching H from M according to

scheduler F is

CostFM (H) =

∑
e∈PathsFM (H)Cost(e)× PFM (e)∑

e∈PathsFM (H)P
F
M (e)

.

Basically, the average cost is computed by weight-

ing the cost of each execution by its probability accord-

ing to F and normalized by the overall probability of

reaching H. The following definition provides an effi-

cient method to perform both qualitative and quanti-

tative analyses of mobile networks.

Definition 11 Let H be a countable set of sets of net-

works and let F ⊆ Sched a set of schedulers. We say

that N is more energy efficient than M relative to H
and F , denoted

N v〈H,F〉 M,

if N ≈Fp M and, for all schedulers F ∈ F̂C and for all

H ∈ H, there exists a scheduler F ′ ∈ F̂C such that

CostF
′

N (H) ≤ CostFM (H).

5 Analysis of a location based routing protocol

In this section we consider a network of nodes with

mobility and using the Location Aided Routing pro-

tocol (LAR) [22]. LAR aims at reducing the number

of the packet floods with respect to what is observ-

able in other protocols such as the AODV [36]. This is

achieved by assuming that the nodes are aware of their

own absolute or relative positions, e.g., because they are

equipped with a GPS device [21] or because they are

able to derive their distances from a set of fixed nodes.

With respect to the analysis of LAR presented in [5],

here we consider a quantitative approach that allows us

to study the energy efficiency of LAR with respect to

AODV under different scenarios. In order to carry out

this comparison, we encode the AODV and LAR models

described by means of the process calculus that we have

defined into a PRISM program [23] and we perform a

statistical model checking to estimate the energy con-

sumptions of the protocols. We also prove that AODV

and LAR are behaviourally equivalent, i.e., under the

modelling assumptions, a packet is correctly delivered

by AODV if and only if it is correctly delivered by LAR.

Protocol Description. In very large mobile networks us-

ing flooding strategies such as in an AODV style [36]

may be very expensive in terms of number of sent pack-

ets and hence of node energy consumption. LAR re-

duces the effect of flooding by guessing the possible lo-

cation of the destination node. The guess can be driven

by several factors, such as the knowledge of the destina-

tion node’s location in the latest communication joint

with some assumptions on the node’s maximum move-

ment speed. In this section, we show our framework at

work on a simplified version of the LAR protocol, and

prove that, under mild assumptions on the node mobil-

ity, it is equivalent to the flooding algorithm in terms of

the probability of discovering a path. Although it is not

possible to establish a general energy-aware preorder

between the two protocols, we carry out a statistical

model checking to compare some instances of mobile

networks.

Simple flooding. The LAR protocol extends the route

discovery based on flooding by exploiting information

about locations within the network. The simplest route

discovery algorithm based on flooding consists of three

simple packets: request, reply and error [44], which are

forwarded within the network. They are structured as

follows:

– Route Request packet (RREQ) has the form:

(S,Bid,D, seq#S , hop counter) ,

where S is the permanent source address, Bid is the

Request Id (unique identifier), D is the permanent

address of the destination, seq#S denotes the se-

quence number of the source, and hop counter is

the number of hops to reach the destination (which

is initially set to 0 and then incremented at each

request forwarding).

– Route Reply packet (RREP) has the form:

(S,Bid,D, seq#D, hop counter, Lifetime) ,

where S, Bid and D are as above, seq#D is the

sequence number of the destination, hop counter

is the number of hops to reach the destination and

Lifetime is the duration of the route validity.
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Fig. 1: Expected and Request Zones in the LAR protocol

– Route Error packet (RERR) has the form:

(S,D, seq#D) ,

where S, D and seq#D are as in the previous case.

In flooding algorithms, a node looking for a path to a

given destination, simply broadcasts a RREQ within

the network. Having sent the packet, the node sets a

timeout to manage the cases when the destination does

not receive the request, or the reply packet is lost. If the

timeout expires, the node broadcasts a new request, us-

ing a different sequence number to avoid loops. When

the destination finally receives the RREQ, it immedi-

ately sends back the corresponding RREP, using uni-

cast communication, i.e., each intermediate node for-

wards the RREP using the information in its routing

table. When, during a communication, a node realizes

that a link failed, it broadcasts a RERR and each node

will update its routing table.

Exploiting location data: the LAR policy. LAR modifies

the flooding algorithm by directing the propagation of

the discovery packets to a particular network area based

on the expected locations of the destination node which

are called Expected Zone. This is determined by using

the information that the source has previously collected

about the destination location. If node S knows that the

destination node D was located at location l1 at epoch

t, and it moves with a speed v, then it can calculate the

circle area centered at l1, with radius v(t′ − t), where

t′ is the current epoch. If S does not know anything

about D, then the Expected Zone coincides with the

entire network.

The Request Zone is the network area that the source

defines to specify a candidate route to the destination.

An intermediate node forwards a route request only if

it is within the Request Zone. There are different ways

to define a Request Zone: usually choosing a smaller

area reduces the message overhead (because it reduces

the number of forwarded packets), while a larger area

reduces the latency of the route discovery because the

network finds a path with higher probability.

LAR behaves similarly to the simple flooding, with

the difference that a node that is not inside the Re-

quest Zone does not forward the request. LAR can use

two different policies for determining the Request Zone:

we focus on the first of such policies, known as LAR

Scheme 1.

LAR Scheme 1 uses a rectangular Request Zone, de-

pending on the position of the source with respect to

the Expected Zone. In particular, the Request Zone will

be the smallest rectangle containing both the Expected

Zone and the position of the source node, as shown in

Figure 1.

Let (XS , YS) and (XD, YD) the Cartesian coordi-

nates of S and D, and R the radius of the Expected

Zone. If S is outside the Expected Zone, the coordi-

nates of the rectangle area are:

A: → (XS , YD +R) B: → (XD +R, YD +R)

C: → (XD +R, YS) D: → (XS , YS)

If S falls inside the Expected Zone, the coordinates

of the rectangle area are:

A: → (XD −R, YD +R) B:→ (XD +R, YD +R)

C: → (XD −R, YD −R) D: → (XD +R, YD −R)

When S broadcasts its request, it includes the co-

ordinates of the Request Zone rectangle (see Figure 1).

Once an intermediate node receives a RREQ, this is

discarded if its location does not fall within the rect-

angle specified in the packet. To take into account the

location measuring error, a positive value e is added to

the radius of the Expected Zone, consequently enlarging

also the Request Zone.
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(a) Flooding Area (b) Location-Aided Routing Area

Fig. 2: Topology of the network

Modelling the network. We encode the simple flooding

and the LAR protocols using our calculus. We consider

a 80×100 metres area of 35 mobile nodes. We omit the

implementation details about how the Expected Zone

and Request Zone are determined according to the spec-

ifications of LAR Scheme 1.

We use the following auxiliary functions to simplify

the protocol specification:

– gps: returns the actual geographical position of the

node executing the process (by means, e.g., of GPS

technology);
– dist(l): returns the distance from location l and the

location of the node executing the process;
– self: returns the name (permanent address) of the

node executing the process;
– geq(k, l) = true if k ≥ l, false otherwise;
– inside(s,A) = true if s ∈ A, false otherwise;
– unable(n) = refreshes the route table, removing the

existing path to n;
– find path(n) = true if there exists a valid path

for n in the route table of the node executing the

process;
– newBid: generates a new unique Bid identifier for a

packet;
– lastBid: returns the latest generated Bid identifier;
– control(Bid) = true if the request associated with

Bid has been already received by the node executing

the process.

Each node maintains a routing table containing infor-

mation about the paths to the other nodes in the net-

work. Each entry has the following form:

(d, seq#d, next hopd, hopcountd, locd, vd, timeout)

where d is the destination name, seq#d is the sequence

number of the route to d, next hopd is the name of the

next node to reach d, hopcountd is the number of hops

to reach d, locd is the last location known for d, vd
is the average speed of d and timeout is the timeout

associated with the entry.

The nodes’ request table contains the list of all the

requests already processed by the node so that loops

during the route request forwarding are avoided. For

the sake of simplicity, we assume that all the nodes

share a common transmission radius r = 15 metres.

Let us now consider

N = (νc)(n[P ]l |
∏

i∈I
ni[Q SIMPLE]li)

where a node n (whose location vary among the set

{16, 23, 30}) broadcasts a route request using the simple

flooding algorithm to find a path to n7 (located at 14,

as shown in Figure 2 (a)) in the network
∏
i∈Ini, and

M = (νc)(n[P ]l |
∏

i∈I
ni[Q LAR1]li)

which is the same network but with nodes in I using the

LAR protocol (Scheme 1) instead of the simple flooding

algorithm.

Each node ni moves according to the following ma-

trix Jni :
lni kni

lni 0.2 0.8

kni 0.8 0.2

where lni and kni are adjacent locations in the trans-

mission area, as shown by the arrows in Figure 2 (b).

The process executed by node n simply broadcasts a

RREQ packet for node n7 and waits for a RREP packet

until a timeout expires. The timeout is modelled using

the operator ⊕ that behaves as the non-deterministic

choice and can be implemented in our calculus by means

of the parallel composition and the restriction operator
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Q X = c(x1, x2, x3, x4, x5, x6, x7).

[x1 = rreq]([control(x3) = false]([x4 = self]

c̄next hopx2
,r〈(rrep, s, Bid, d, seq#s, hop counter)〉.Q X,RREQ X〈x̃〉), Q X),

[x1 = rrep]([x2 = self]ūdgps,r〈x2, x3, x4, x5, x6, x7〉,
c̄next hopx2

,r〈(rrep, s, Bid, d, seq#s, hop counter)〉.Q X),

[x1 = rerr]unable(x4).Q X,Q X

RREQ SIMPLE〈(rreq, s, Bid, d, seq#s, hop counter)〉 =

[find path(d) = true].

c̄next hopd,r
〈(rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,

c̄Loc,r〈(rreq, s, Bid, d, seq#s, (hop counter) + 1)〉.Q SIMPLE

RREQ LAR1〈(rreq, s, Bid, d, Request Zone, seq#s, hop counter)〉 =

([inside(gps, Request Zone) = true](

[find path(d) = true]

c̄next hopd,r
〈(rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,

c̄Request Zone,r〈(rreq, s, Bid, d, Request Zone, seq#s, (hop counter) + 1)〉)).Q LAR1

Table 6: Process specifications used in the case study of Section 5

in the standard way. In case of timeout, a new RREQ

is sent. Let

P = c̄Loc,r〈(rreq, n, newBid, n7, Request Zone,

seq#n, 0)〉.P ′
and

P ′ = P ⊕ c(x1, x2, x3, x4, x5, x6, x7).[x1 = rrep]

[x2 = n][x3 = lastBid]

[x4 = m][geq(hop countn7
, x7)]

ōkgps,r〈route found〉.P ′

where x7 = hop count in the RREP packet received.

Once a route is found, n broadcasts on channel ok a

packet that signals this event. Therefore, we consider

that the two networks are probabilistically equivalent

with respect to their ability to find a route to n7 if

we observe this transmission with the same probabil-

ity. Notice that, the output on channel c will not be

observed by any location because we want to allow the

route discovery packets used in the two networks to be

arbitrary different.

Hereafter, we use X ∈ {SIMPLE,LAR1} to de-

note the simple flooding or LAR Scheme 1. The sub-

process RREQ SIMPLE and the RREQ LAR1 are

defined as shown by Table 6.

In order to compare the behaviour of the protocols,

we focus our attention on the following restricted set

F ⊆ Sched of admissible schedulers such that:

1. the timeout for a RREQ identified by Bid occurs

when in the networks there are no packets related

to Bid;
2. nodes’ movements are allowed after every transmis-

sion;

Condition 1 on F is a requirement inherited by the

protocol design; the timeout is usually set by knowing

the physical dimension of the network. Roughly speak-

ing, we aim at preventing that in the analysis we con-

sider unrealistic schedulers that always choose the time-

out option too quickly and hence a route to the desti-

nation is never found and those schedulers that wait for

an answer indefinitely long. Condition 2 is needed be-

cause we do not want to consider those schedulers that

never allow for node movements.

The following proposition states that the AODV

and LAR protocols are equivalent from a functional

point of view. It holds for all networks M and N im-

plementing the LAR and AODV protocols as described

adove with arbitrary number of nodes, locations and

node distances provided that the DTMC modelling the

mobility is ergodic on the set of locations.

Proposition 3 (Functional equivalence of LAR

and AODV) Let M , N , be two networks implementing

the LAR and AODV protocols, respectively. Let M =

{M̄ : M −→
∗
M̄} ∪ {N̄ : N −→

∗
N̄} and the set of ad-

missible schedulers F be defined as above. A sufficient

condition for N ≈Fp M is that the Markov chains Jni

associated with the mobile nodes ni (i ∈ I) are ergodic.
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Fig. 3: Plot of the expected energy cost in terms of sent packets per succesfull transmission.

Fig. 4: Estimates of the expected energy cost in terms

of sent packets per succesfull transmission.

Proof We have to find a relation containing the pair

(M,N) that is a probabilistic bisimulation relative to

F . Let us consider Zi ∈ {RREQ,Q}, P̄ ∈ {P ′ : P −→
∗

P ′} and

R = {(n[P̄ ]l |
∏
i∈Ini[Zi SIMPLE]li , n[P̄ ]l |∏

i∈Ini[Zi LAR1]li) :

N −→
∗
n[P̄ ]l |

∏
i∈Ini[Zi SIMPLE]li}.

In order to prove that R ⊆≈Fp we have to show that,

for all pairs (N̄ , M̄) ∈ R and for all schedulers F ∈ F̂C
there exists a scheduler F ′ ∈ F̂C such that for all α and

for all classes C in N/R it holds:

1. if α 6= c?ṽ@l then

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(
α̂

=⇒ C);
2. if α = c?ṽ@l then either

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(
α

=⇒, C) or

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(=⇒, C).

We start from τ actions and consider N̄
τ−→ JN̄ ′Kθ.

Then, ∀C ∈ N/R, we have:

ProbN̄ (
τ−→, C) =

∑
N̂∈spt(JN̄ ′Kθ)∩CJN̄

′Kθ(N̂).

If the action is due to the application of rule (Move)

we are done, because, for each pair (N̄ , M̄) ∈ R, M̄

can perform exactly the same movements as N̄ , hence

there will exists F ′ ∈ F̂C such that: ProbF
N̄

(
τ−→, C) =

ProbF
′

M̄
(
τ−→ C), and we are done.

If the action is the result of the application of rule

(Lose), by applying rule (Bcast) backwardly we get

N̄
cK !ṽ[l,r]−−−−−→ JN̄ ′K∆.

If l ∈ Request Zone then we are done, because,

analysing of the process P LAR1 with respect to the

process P SIMPLE we realize that the protocol pack-

ets are forwarded exactly in the same way inside the

RequestZone.

If l 6∈ Request Zone, then M̄ 6 cK !ṽ[l,r]−−−−−→ because the

routing protocol packets are forwarded only inside the

Request Zone. However, this does not mean that M̄

will not reach an equivalent state with the same prob-

ability. By the initial hypothesis that all the Markov

matrices are ergodic, M̄ can enter the Request Zone

with probability 1, send the message, and come back to

the previous location again with probability 1, and we

get ProbF
N̄

(
τ−→, C) = 1 = ProbF

M̄
(=⇒, C) as required.

As concerns the input and the observable actions the

proof is trivial, since the input actions are the same for

both protocols, and we applied the restriction to chan-

nel c, hence the only observable output is the trans-

mission of route found through the channel ok by the

node n, which behaves in the same way for both proto-

cols. ut

Given that the two networks M and N defined at

the beginning of this section are functionally equiva-

lent, we compare their energy efficiency by simulation.

In order to carry out the simulations we resort to the

statistical model checker implemented in PRISM [23].

This technique is commonly used when dealing with

models with large state spaces. The simulation model

for the PRISM has been automatically generated by the

tool introduced in [24].

We have compared the two different networks with

the sender node n located in each of the locations in

the set {16, 23, 30}.
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The simulations have been performed with an av-

erage of 10000 independent experiments, a maximum

confidence interval width of 1% of the estimated mea-

sure based on 95% of confidence.

The plot (see Figure 3) shows the relation among

the distance between sender and receiver and the en-

ergy consuption of AODV and LAR expressed in terms

of number of sent packets for each succesfull transmis-

sion. For larger distances, since a larger Request Zone

is involved, using LAR protocol still requires a large set

of nodes to forward the message, while for smaller dis-

tances the improvement brought by the protocol is more

evident, since the Request Zone is smaller, drastically

reducing the number of retransmissions. This supports

the intuitive idea that LAR protocol is useful especially

in the cases where the expected distance between the

sender and the receiver is small.

In Figure 4 we show the numerical comparison be-

tween the LAR protocol and the AODV for the consid-

ered scenarios.

6 Analysing the SW-ARQ and GBN-ARQ

Protocols

In the following we briefly recall the salient features

of SW-ARQ and GBN-ARQ protocols. In SW-ARQ

protocol, the sender pushes a packet into the channel

with a delay that is given by ratio between the packet

size and the channel bandwidth (pushing time). Once

the packet is in the channel we observe two delays: one

is that required to reach the destination and the other

one is that required for the acknowledge packet (ACK)

to go back to the transmitter. The sum of the two is

known as the round trip time. In SW-ARQ protocol

the sender sends a packet only once the acknowledge

of the previous one has been received. If the round trip

time (or an upper bound) is known by the protocol de-

signer, a possible error in the transmission is detected

by a timeout mechanism, i.e., if the sender does not re-

ceive an ACK from the receiver before a deadline, then

it assumes that an error occurred and sends again the

same packet. If the round trip time is much higher than

the pushing time, then SW-ARQ protocols are very in-

efficient and exploit only a minimal part of the channel

capacity. With respect to SW protocols, GBN takes ad-

vantage of the pipelining of the packets, i.e., a sequence

of n packets can be sent without receiving any confir-

mation. This widely used technique is known to highly

improve the throughput of the sender, but it is expen-

sive from the energy consumption point of view (see,

e.g., [27]) since correctly received packets may be re-

quired to be resent. Indeed, once the sender realizes that

a packet p has not been received (using a timeout), it

has to resend all the packets already sent starting from

p. In this way, it can be shown that throughput is re-

ally improved and the protocol can use the full channel

capacity.

Assumptions on the models. In this case study, we con-

sider a single transmitter node using ARQ-based error

recovery protocol to communicate with a receiver node

over a wireless channel. Transmissions occur in fixed-

size time slots whose size is the time required by the

sender to push a packet into the channel. We assume

the round trip time to be a multiple of the time slot. For

both SW and GBN protocols, the transmitter continu-

ously sends packets until it detects a transmission error.

Notice that although in actual implementations of the

ARQ protocols errors are usually detected by means of

a timeout mechanism, in this context we use negative-

acknowledge (NACK) feedbacks which simplify the pro-

tocol encoding and are equivalent for the analysis pur-

poses if we assume to know the number of slots that the

round trip time consists of. Here, we consider an error-

free feedback channel 5 and assume that the ACK or

NACK of each transmitted packet arrives at the sender

node one slot after the beginning of its transmission

slot. Therefore, the feedback of a packet is received ex-

actly after its transmission for the SW-protocol and

in case of a failure (NACK), the packet is automati-

cally resent. Instead for the GBN protocol, a feedback

for the ith packet arrives exactly after the transmis-

sion of the (i + n − 1)th packet and in case of a fail-

ure the transmission restarts from the ith packet. We

model both SW-ARQ and GBN-ARQ-based protocols

for a communication channel of capacity n = 3 in our

framework. Observe that in this way we do not take

into account the round trip time for SW-ARQ proto-

cols, however this does not affect the analysis that we

will carry out later, i.e., the expected energy cost for

each packed correctly received. We consider a unique

static receiver rec < 0, I > where I denotes the iden-

tity matrix. We model the transmitter as a mobile node

send(< r, Js >) whose reachable locations are l1, which

represents the “good state” of the channel, where the

receiver lies within the transmission radius of the chan-

nel and l2 the “bad state”, where the destination is

no longer reachable (see Figure 5). The mobility of the

sender is modelled by the two state Markov chain with

the following transition probability matrix

Js =

∣∣∣∣ p 1− p
1− q q

∣∣∣∣ ,
5 A very standard assumption [27].
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Fig. 5: Topology of the network and mobility of the sender

where p and q are the probabilities of the stability of

the node in two successive time slots in its good and

bad states, respectively.

Modelling the Protocols In our analysis, we assume that

the energy consumption of the feedback messages is

negligible. Therefore, they are sent over channels with

zero radius. For this reason the static receiver rec is

located at l1, i.e., at the same location of the sender

in its good state, so that the feedback will be received

with no cost. Note that the sender still transmits over

channels with radius r and thus it consumes an amount

of energy equal to r for each fired packet.

The process executed by rec, the receiver node, is

the same for both protocols and modelled as the process

REC〈i〉 = c(i)(x).c̄l1,0〈ACK(i)〉.REC〈i+ 1〉

which, upon receiving packet pi over the channel c(i),

sends ACK(i) over the channel c and waits for the next

packet on c(i+1).

For each channel c(i), we use a static auxiliary node

bi(〈0, I〉) located at l2, the bad state of the sender, cap-

turing bad transmissions over c(i). It executes the fol-

lowing process which upon receiving packet pi over the

channel c(i), sends NACK(i) over the channel c:

BAD〈i〉 = c(i)(x).c̄l2,0〈NACK(i)〉.BAD〈i〉.

Now we introduce the full model of the protocol

GBN-ARQ.

We start by modelling its sender node. Recall that,

as a simplifying assumption, the channel capacity is 3.

It executes the following process:

GB〈i〉 = c̄
(i)
l1,r
〈pi〉.c(x1).c̄

(i+1)
l1,r
〈pi+1〉.c(x2).

c̄
(i+2)
l1,r
〈pi+2〉.c(x3)[x1 = NACK(i)]GB〈i〉,

SEND〈i+ 3, x2, x3〉

where the process SEND is defined as follows.

SEND〈i, x, y〉 = c̄
(i)
l1,r
〈pi〉.c(z).

[x = NACK(i− 2)]GB〈i− 2〉,
SEND〈i+ 1, y, z〉.

Though that the feedback of a packet is received

after the transmission of its two successors, for practi-

cal reason, we read a feedback of a packet right after

sending it. Indeed, since we do not want feedback to

be costly, both sender and receiver must be located at

the same place when the feedback is sent. However, the

sender node will verify it only after having sent the fol-

lowing two packets.

Recall that the receiver node in our modelling above,

reads each packet pi on its specific channel c(i). Thus,

in the GBN, if the transmitter sends p1 while being in

its good state, then moves to bad and sends p2 and fi-

nally moves back to the good state and sends p3, then

the later packet will not be read by the receiver as it is

blocked on c(2). Then, the firing on c(3) is lost and this

models the fact that packets sent after a bad packet is

just a wasting of energy. But since the sender process

GB〈i〉 is blocked on the feedback channel c, we intro-

duce a static auxiliary node lose(〈0, I〉) located at l1
and executing the process:

WAST = c̄∅,0〈LOST 〉.WAST

Now on to the SW-ARQ-based protocol. This is very

simple since it always sends one packet and waits for

its feedback. The sender process is defined as follows.

SW 〈i〉 = c̄
(i)
l1,r
〈pi〉.c(x).

[x = NACK(i)]SW 〈i〉, SW 〈i+ 1〉.

The full protocols are then modelled as the network

GBN = (νc(1), c(2)...)(send[GB〈1〉]l1 |
rec[REC〈1〉]l1 | lose[WAST ]l1 |∏
i≥1 bi[BAD〈i〉]l2)
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Fig. 6: Description and example of the network communications

and

SW = (νc(1), c(2)...)(send[SW 〈1〉]l1 |
rec[REC〈1〉]l1 |

∏
i∈I bi[BAD〈i〉]l2).

Measuring the Energy Cost of the Protocols. This sec-

tion analyzes the energy consumption of the above ARQ-

based protocols. In order to compare the observational

behaviours of the protocols, we assume that the com-

munications over the feedback channel are observable

for any observer node located at l1. Thus the protocols

are equivalent with respect to a set of schedulers F if for

all schedulers F in F driving one of the protocols, there

exists a scheduler F ′ in F driving the other one such

that both protocols correctly transmit the same pack-

ets with the same probabilities. Therefore, we consider

the following set of schedulers denoted Falt which:

1. always alternates between sending packets and node’s

movement so that at each interaction of the trans-

mitter with the channel, the later can be either good

or bad;
2. gives priority to acknowledgment actions (ACK and

NACK) to model the standard assumption of an

error-free feedback channel;
3. allows interaction with the outside environment only

through its observable actions so that we capture

exactly the observable behaviour of the protocol.

Notice that the assumptions on the schedulers would

be stricter if one desires to carry out an analysis of

the throughput. Under these assumptions, we can prove

the following results which shows that, the SW-ARQ

protocol is more energy efficient of the GBN-ARQ one.

Proposition 4 GBN ≈Faltp SW .

Proof We give here a sketch of the proof. For each

sender’s window size we will choose, the only observ-

able actions are the acknowledgments sent by the static

node rec. All other actions are silent, since we apply

the restriction on each c(i). For all i ≥ 1 rec[REC〈i〉]l1
sends the acknowledgment ACK(i) if and only if the

relative packet pi has been correctly received, hence,

all the executions performed by GBN and SW are of

the form:

=⇒ c!ACK(1)@{l1}/{l1}−−−−−−−−−−−−−→=⇒ c!ACK(2)@{l1}/{l1}−−−−−−−−−−−−−→=⇒ ...

Since the number of transmissions performed by the

sender do not affect the probabilities, the bisimulation

between the two different protocols can be proved. ut

We compare their energy efficiency in the context of

the set H = {Hk | k ≥ 1} where Hk means that all the

packets up to k have been correctly transmitted and is

defined as Hk = H1
k ∪H2

K where

H1
k = {M |M ≡ send[c̄

(k+1)
l1,r

〈pk+1〉.P ]l1 |
rec[REC〈k + 1〉]l1 | loose[WAST ]l1 |∏
i≥1 bi[BAD〈i〉]l2}

for some process P and

H2
k = {N |N ≡ send[SW 〈i+ 1〉]l1 |

rec[REC〈k + 1〉]l1 |∏
i∈I bi[BAD〈i〉]l2}.

Then, we compute the energy consumption of the

protocols assuming that we start by a move action at

the good state so that the first message could be lost if

it moves to the bad state6. The results are summarized

6 The analysis for the other case is similar.
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(a) SW protocol (b) GBN protocol

(c) costGBN (p, q)− costSW (p, q)

Fig. 7: Energy cost functions for SW and GBN and their comparison.

in the following propositions and illustrated in Figure

7.

Proposition 5 If q 6= 1 then for all F ∈ Falt,

CostFSW(Hk) =

(
1 +

1− p
1− q

)
kr.

Proposition 6 If q 6= 1 then for all F ∈ Falt,

CostFGBN(Hk) =

kr
(
p+ (p−1)

(−1+q)(1+p2−q+q2−p+2pq) ·
1−2p2+2p2q+4q−4q2+2q3+2p−6pq+4pq2

−p2+p2+(−p+pq)(−1+2q)+q(2+−2q+q2)

)
.

These results can be derived by applying the Chapman-

Kolmogorv’s forward equations to compute the proba-

bility of consecutive failures in the sending of the same

packet. Each of these failures (except the first) causes

the waste of a number of sent packets equals to the win-

dow size. It can be observed that the number of wasted

windows has a geometric distribution. Then, the mean

of total packets sent to obtain a success, can be straight-

forwardly derived.

To conclude this section, we note that while both

protocols increasingly enjoy bad performance in term of

energy consumption when the channel deteriorates, i.e.,

when q is increasing (see Figures 7-(a) and 7-(b)), the

GBN protocol deteriorates faster. Indeed, as illustrated

by Figure 7-(c) as the channel deteriorates the addi-

tional energy required by GBN protocol to correctly

transmit the same number of packets increases to infi-

nite. Thus, the gain of having a high throughput results

in a very high energy consumption.

Finally we can conclude that the GBN protocol is

much more energy consuming than SW.

Theorem 5 It holds that SW v〈H,Falt〉 GBN.

Proof The proof follows straightforwardly from Propo-

sitions 4, 5 and 6.

7 Conclusion

Ad-hoc networks is a new area of mobile communi-

cation networks that has attracted significant attention

due to its challenging problems. The main goal of our

work is to provide a formal model to reason about the

problem of limiting the power consumption of commu-

nications while maintaining acceptable performances.

Indeed, one of the most critical challenges in managing

mobile ad-hoc networks is actually to find a good trade-

off between network connectivity and power saving.

Even though not all the devices have the ability

of adjusting their transmission power, modern tech-

nologies are quickly evolving, and there exist devices

that are enabled to choose among two or more differ-

ent power levels. For this reason many researches have

proposed algorithms and protocols with the aim of pro-

viding a way to decide the best transmission power for
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node communications in a given network [7,37], or to

develop energy-aware routing protocols [10,16].

In this paper, we presented the Probabilistic EBUM

calculus which, due to its characteristics of modelling

broadcast, multicast and unicast communications and

also modelling the ability of a node to change its trans-

mission power in accordance with the protocol it is ex-

ecuting, results to be a valid formal model for the anal-

ysis, evaluation and comparison of energy-aware proto-

cols and algorithms specifically developed for wireless

ad-hoc networks. The model we presented can clearly

be extended with different metrics for measuring, e.g.,

the level of interference or the number of collisions and

losses. Moreover, it provides a basis for the definition

of other verification techniques, like e.g., bisimulation-

based preorders, in the style of [18], which integrate

both observational properties and quantitative ones.
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Appendix

This supplement contains the proofs of some of the results
presented in the paper.

Proof of Theorem 1

1. The first part is proved by induction on the reduction
M −→ JM ′Kθ.
Suppose that M −→ JM ′Kθ is due to the application of the
rule (R-Move). It means that M ≡ M ′ ≡ n[P ]l, for some
name n, location l, some (possibly empty) process P , and
θ = µnl . We simply apply (Move) to obtain:

n[P ]l
τ−→ Jn[P ]lKµn

l

.

Suppose that M −→ JM ′Kθ is due to the application of the
rule (R-Par) with M ≡M1 |M2, M ′ ≡M ′1 |M2 and:

M1 −→ JM ′1Kθ
M1 |M2 −→ JM ′1 |M2Kθ

.

By induction hypothesis there exist N ≡M1 and N ′ ≡M ′1
such that N

τ−→ JN ′Kθ, then by applying rule (Par) we get:

N
τ−→ JN ′Kθ

N |M2
τ−→ JN ′ |M2Kθ

,

and the statement follows since by applying the rules of
structural congruence we have N | M2 ≡ M1 | M2 ≡ M
and N ′ |M2 ≡M ′1 |M2 ≡M ′.
Suppose that M −→ JM ′Kθ is due to the application of the
rule (R-Res) with M ≡ (νc)M1 and M ′ ≡ (νc)M ′1 for some
channel c and some networks M1 and M ′1, then

M1 −→ JM ′1Kθ
(νc)M1 −→ J(νc)M ′1Kθ

.

By induction hypothesis there exist N ≡M1 and N ′ ≡M ′1
such that N

τ−→ JN ′Kθ, then by applying rule (Res), since
Chan(τ) 6= c we get:

N
τ−→ JN ′Kθ

(νc)N
τ−→ J(νc)N ′Kθ

,
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and the statement follows since by applying the rules of
structural congruence we have (νc)N ≡ (νc)M1 ≡ M and
(νc)N ′ ≡ (νc)M ′1 ≡M ′.
Suppose that M −→ JM ′Kθ is due to the application of the
rule (R-Bcast). Then
M ≡ n[c̄L,r〈ṽ〉.P ]l |

∏
i∈I ni[c(x̃i).Pi]li ,

M ′ ≡ n[P ]l |
∏
i∈I ni[Pi{ṽ/x̃i}]li

for some name n, channel c, location l, radius r, some set
L of locations, some tuple ṽ of messages, some (possibly
empty) process P , some (possibly empty) set I of net-
works. By applying the rules (Snd), (Rcv), | I | times the
rule (Bcast) and, finally the rule (Lose), we obtain
n[c̄L,r〈ṽ〉.P ]l |

∏
i∈I ni[c(x̃i).Pi]li

τ−→Jn[P ]l |
∏
i∈I ni[Pi{ṽ/x̃i}]liK∆,

as required.
Finally suppose that the reduction M −→ JM ′Kθ is due to
an application of rule (R-Struct):

M ≡ N N−→JN ′Kθ N ′ ≡M ′

M−→JM ′Kθ
.

By induction hypothesis there exist N1 ≡ N and N2 ≡ N ′
such that N1

τ−→ JN2Kθ. The statement follows since by
applying the rules of the structural congruence we have
M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2.

2. The second part of the theorem follows straightforwardly
from Lemma 1 and the definition of Barb.
⇒ If M ↓c@K , by the definition of Barb:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l | M1), for some n, ṽ, L, r,

some (possibly empty) sequence d̃ with c /∈ d̃, some
process P and some (possibly empty) network M1,
with K ⊆ {k ∈ L such that d(l, k) ≤ r} and K 6= ∅.
By applying the rules (Snd), (Par) and (Res):

n[c̄L,r〈ṽ〉.P ]l
cL!ṽ[l,r]−−−−−−→ Jn[P ]lK∆

M
cL!ṽ[l,r]−−−−−−→ J(νd̃)(n[P ]l |M1K∆)

;

then we can apply rule (Obs):

n[c̄L,r〈ṽ〉.P ]l |M1
c!ṽ@K/R−−−−−−−→

Jn[P ]l |M1K∆,
where R = {l′ ∈ Loc : d(l, l′) ≤ r}, and K ⊆ L ∩ R as
required.

⇐ If M
c!ṽ@K/R−−−−−−−→ JM ′K∆, because M

cL!ṽ![l,r]−−−−−−→ JM ′K∆,
by applying Lemma 1 there exist n, some (possibly
empty) sequence d̃ such that c /∈ d̃, some process P ,
some (possibly empty) network M1 and a set I, such
that ∀i ∈ I with d(l, li) ≤ r:
M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|∏

i∈I ni[c(x̃i).Pi]li |M1)
and
M ′ ≡ (νd̃)(n[P ]l| ∏

i∈I ni[Pi{ṽ/x̃i}]li |M1).
Since K 6= ∅, by applying the definition of barb we
conclude M ↓c@K .

3. The third part of the theorem is proved by induction on
the derivation M

τ−→ JM ′Kθ.
Suppose that M

τ−→ JM ′Kθ is due to an application of the
rule (Move), i.e., M ≡ n[P ]l, M ′ ≡ n[P ]l, for some name n,
some (possibly empty) process P , some location l, θ = µnl
and

n[P ]l
τ−→ Jn[P ]lKµn

l

,

hence , by applying (R-Move) we get:

n[P ]l−→Jn[P ]lKµn
l

.

If M
τ−→ JM ′Kθ is due to an application of (Lose):

M
cL!ṽ[l,r]−−−−−−→ JM ′K∆
M

τ−→JM ′K∆
,

for some channel c, some set L of locations, some tuple
ṽ of messages, some location l and radius r. By applying
Lemma 1, there exist n, ṽ, a (possibly empty) sequence d̃
such that c /∈ d̃, a process P , a (possibly empty) network
M1 and a (possibly empty) set I with d(l, li) ≤ r ∀i ∈ I
such that:
M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|∏

i∈I ni[c(x̃i).Pi]li |M1)
and
M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|∏

i∈i ni[Pi{ṽ/x̃i}]li |M1).
Finally, by applying rules (R-Bcast), (R-Res) and (R-

Struct) we get M −→ JM ′Kθ.
Suppose that M

τ−→ JM ′Kθ is due to the application of
(Res) with M ≡ (νc)M1 and M ′ ≡ (νc)JM ′1Kθ, for some
channel c and for some networks M1 and M ′1. Then we
have:

M1
τ−→ JM ′1Kθ

(νc)M1
τ−→ J(νc)M ′1Kθ

.

By induction hypothesis M1 −→ JM ′1Kθ, hence, by applying

rule (R-Res) we get (νc)M1 −→ J(νc)M ′1Kθ.
Finally, suppose that M

τ−→ JM ′Kθ is due to the applica-
tion of (Par) with M ≡M1 |M2, M ′ ≡M ′1 |M2 and

M1
τ−→ JM ′1Kθ

M1|M2
τ−→ JM ′1|M2Kθ

.

By induction hypothesis M1 −→ JM ′1Kθ, hence, by applying

rule (R-Par) we get M1|M2 −→ JM ′1|M2Kθ.
4. The last part of the theorem follows from the definition of

barb and Lemma 1. Formally, since M
c!ṽ@K/R−−−−−−−→ JM ′K∆

because M
cL!ṽ[l,r]−−−−−−→ JM ′K∆ for some location l, radius r

and set L of intended recipients, by applying Lemma 1,
there exist n, a (possibly empty) sequence d̃ with c /∈ d̃, a
process P , a (possibly empty) network M1 and a (possibly
empty) set I such that:
M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l |∏

i∈I ni[c(x̃i).Pi]li |M1)
and
M ′ ≡ (νd̃)(n[P ]l |

∏
i∈I ni[Pi{ṽ/x̃i}]li |M1).

Then, by applying the rules (R-Bcast), (R-Par) and (R-
Res) we get:
(νd̃)(n[c̄L,r〈ṽ〉.P ]l |

∏
i∈I ni[c(x̃i).Pi]li |M1)

−→ J(νd̃)(n[P ]l |
∏
i∈I ni[Pi{ṽ/x̃i}]li |M1)K∆,

and, by applying (R-Struct), we obtain M −→ JM ′K∆, as
required.

ut

Proof of Theorem 2

We have to prove that ≈Fp is:

1. probabilistic barb preserving
2. reduction closed
3. contextual.
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1. To prove that the probabilistic labelled bisimilarity ≈Fp
is barb preserving we have to show that if M ≈Fp N then, for
each scheduler F ∈ FC , for each channel c and for each set K
of locations such that M⇓Fp c@K, there exists F ′ ∈ FC such

that N⇓F
′

p c@K.

Assume that M⇓Fp c@K for some F ∈ FC . Then, by Defi-

nition 3 we have ProbFM (H) = p, where H = {M ′ : M ′ ↓c@K}.
We can partition H into a set of equivalence classes with re-
spect to ≈Fp . Formally, ∃J such that H ⊆ ∪j∈JCj , and ∀j ∈ J
we have Cj ∈ N/ ∼=Fp and H ∩ Cj 6= ∅. Hence:

ProbFM (H) =
∑
e∈ExecF

M
(H)P

F
M (e) =

∑
j∈JProb

F
M (Cj) =

p.
By Theorem 1 and by Definition 8 there exists F̂ ∈ F̂C such
that ∀j ∈ J:

ProbFM (Cj) = ProbF̂M (=⇒, C′j)
where C′j = Cj ∪ {M̂ | ∃M̂ ′ ∈ Cj and M̂ ≡ M̂ ′}.

Now, since ∀M̂ such that M̂ ≡ M̂ ′ ∈ Cj , by applying rule

(R-Struct) and by Definition 4 M̂ ∼=Fp M̂ ′, we get {M̂ : M̂ ≡
M̂ ′ ∈ Cj} ⊆ Cj , that means C′j = Cj ∀j ∈ J. Hence we get:∑

j∈JProb
F
M (Cj) =

∑
j∈JProb

F̂
M (=⇒, Cj).

Since M ≈Fp N , there exists F̂ ′ ∈ F̂C such that, by Proposition
2, for all j ∈ J:

ProbF̂M (=⇒, Cj) = ProbF̂
′

N (=⇒, Cj).
We then have:

p =
∑
j∈JProb

F̂ ′
N (=⇒, Cj).

Again, by Theorem 1, Proposition 2 and Definition 4, there
exists F ′ ∈ FC such that for all j ∈ J:

ProbF̂
′

N (=⇒, Cj) = ProbF
′

N (Cj) and

p =
∑
j∈JProb

F̂ ′
N (=⇒, Cj) =

∑
i∈JProb

F ′
N (Cj) = ProbF

′
N (H),

i.e., N⇓F
′

p c@K as required.

2. To prove that probabilistic labelled bisimilarity ≈Fp is

reduction closed, we have to show that if M ≈Fp N , then for
all F ∈ FC , there exists F ′ ∈ FC such that for all classes
C ∈ N/ ∼=Fp , ProbFM (C) = ProbF

′
N (C).

By Theorem 1 and by Definition 8 we deduce that ∃F̂ ∈
F̂C such that ProbFM (C) = ProbF̂M (=⇒, C′), where C′ = C∪{M̂ :

M̂ ≡ M̂ ′ ∈ C}, but since ∀M̂ such that M̂ ≡ M̂ ′ ∈ C, by
applying rule (R-Struct) and by Definition 4 M̂ ∼=Fp M̂ ′ we

get {M̂ : M̂ ≡ M̂ ′ ∈ C} ⊆ C, i.e., C′ = C.
By Proposition 2 we have that ∃F̂ ′ ∈ F̂C such that ProbF̂M (=⇒

, C) = ProbF̂
′

N (=⇒, C).
Finally, by Theorem 1 and by Definitions 8 and 4, ∃F ′ ∈

FC such that ProbF̂
′

N (=⇒, C) = ProbF
′

N (C), as required.
3. In order to prove that probabilistic labelled bisimilarity

≈Fp is contextual we have to prove that, if M ≈Fp N :

1. M | O ≈Fp N | O ∀O ∈ N .

2. (νd)M ≈Fp (νd)N ∀d ∈ C.

Case 1.
Let us consider the relation

R = {(M | O,N | O) : M ≈Fp N}.

We prove that for all scheduler F ∈ F̂C there exists a
scheduler F ′ ∈ F̂C such that for all α and for all classes C in
N/≈Fp :

1. if α = τ then
ProbF

M|O(
τ−→, C) = ProbF

′
N|O(=⇒, C).

If P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō
and P̄ ≈Fp Q̄. But then there exists D ∈ N/ ≈Fp such that
D = {P̄ : P̄ | Ō ∈ C}. Now we have three cases to consider:

(i) if M | O τ−→ JM | O′Kθ because O
τ−→ JO′Kθ the proof is

simple, because for all M̄ in the support of JM | O′Kθ
such that M̄ ∈ C, it holds that M̄ ≡M | O′′ and, since
M ≈Fp N , N | O′′ ∈ C too, by definition of R. By Def-
inition 4 there exists F̄ ∈ FC such that, by applying
rule (R-Par) to the reduction O −→ JO′Kθ, N | O −→
JO′ | NKθ ∈ ExecF̄N|O. By Theorem 1 and by Definition

8 ∃F ′ ∈ F̂C such that ProbF̄
N|O(C) = ProbF

′
N|O(=⇒, C),

hence ProbF
M|O(

τ−→, C) = ProbF
′

N|O(=⇒, C) as required.

(ii) If M | O τ−→ JM ′ | OKθ because M
τ−→ JM ′Kθ, by Defi-

nition 8 there exists a scheduler F1 ∈ F̂C such that
ProbF

M|O(
τ−→, C) = ProbF1

M (
τ−→,D). But since M ≈Fp

N , there exists F2 ∈ F̂C such that ProbF1

M (
τ−→,D) =

ProbF2

N (=⇒,D). For each execution:

N
τ−→θ1

...
τ−→θk Nk ∈ Exec

F1

N (=⇒,D),
there exists a scheduler F̄ ∈ FC such that
N −→θ1

N1... −→θk Nk ∈ Exec
F̄
N .

By Definition 4, since FC captures the interactions of
N with any context, ∃F̄ ′ ∈ FC such that, by applying
rule (R-Par) to each step in e:

N | O −→θ1
... −→θk Nk | O ∈ Exec

F̄ ′
N|O.

By Definition 8 we finally get F ′ ∈ F̂C such that:
ProbF2

N (=⇒,D) =

ProbF̄N (D) = ProbF̄
′

N|O(C) =

ProbF
′

N|O(=⇒, C).

(iii) If M | O τ−→ JM ′ | O′K∆ due to a synchronization be-
tween M and O, then there are two cases to consider.

If M
cL!ṽ[l,r]−−−−−−→ JM ′K∆ and O

c?ṽ@k−−−−→ JO′K∆, for some
tuple ṽ of messages, channel c, locations l, k and ra-
dius r, such that d(l, k) ≤ r, we can apply rule (Obs)

obtaining M
c!ṽ@K/R−−−−−−−→ JM ′K∆ for some R = {l′ |

d(l, l′) ≤ r} with k ∈ R and K = L ∩ R. Therefore,
by Definition 8 there exists F1 ∈ F̂C such that:

ProbF
M|O(

τ−→, C) = ProbF1

M (
c!ṽ@K/R−−−−−−−→,D).

Since N ≈Fp M , there exists F2 ∈ F̂C such that

ProbF1

M (
c!ṽ@K/R−−−−−−−→,D) =

ProbF2

N (
c!ṽ@K/R

=⇒ ,D),

where each execution e belonging to ExecF2

N (
c!ṽ@K/R

=⇒
,D) is of the form

e = N
τ−→θ1

N1
τ−→θ2

...Ni−1
c!ṽ@K/R−−−−−−−→∆

Ni
τ−→θi+1

... N ′,
with k ∈ R, and, by applying rule (Obs) backwardly,

Ni−1
c!ṽ[l′,r′]−−−−−−→∆ Ni for some l′ and r′ such that d(l′, k) ≤

r′. We can apply rule (Bcast) obtainingNi−1 | O
c!ṽ[l′,r′]−−−−−−→∆

Ni | O′ without changing the probability. Finally if we
take F ′ ∈ LSched which applies rule (Lose) to the out-
put action, we obtain the required result:

ProbF2

N (
c!ṽ@K/R

=⇒ ,D) = ProbF
′

N|O(=⇒, C).
We have finally to prove that F ′ ∈ F̂C . We start by
the consideration that, by Definition 1, for any exe-

cution of the form
α

=⇒ in F̂C , where α is a silent or an
output action there exists a correspondent reduction
in FC . Since by Definition 4, for any context, there
exists a scheduler in FC mimicking the behaviour ex-
hibited by N when interacting with the given context,
we can affirm that ∃F̄ ∈ FC such that ExecF̄

N|O con-

tains all the reductions corresponding to the execu-
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tions of ExecF
′

N|O. Hence, by Definition 8, F ′ ∈ F̂C , as

required.

If M
c?ṽ@k−−−−→ JM ′K∆ and O

cL!ṽ[l,r]−−−−−−→ JO′K∆, for some
message ṽ, channel c, locations l, k and radius r, such
that d(l, k) ≤ r, then by Definition 8 ∃F1 ∈ F̂C such
that:
ProbF

M|O(
τ−→, C) = ProbF1

M (
c?ṽ@k−−−−→,D),

and, since M ≈Fp N , there exists F2 ∈ F̂C such that

ProbF1

M (
c?ṽ@k−−−−→,D) = ProbF2

N (
c?ṽ@k
=⇒ ,D)

or
ProbF1

M (
c?ṽ@k−−−−→,D) = ProbF2

N (=⇒,D).
In the first case, since by hypothesis k ∈ R, also N is
able to synchronize with O, for all executions

e = N
τ−→θ1

N1
τ−→θ2

...Ni−1
c?ṽ@k−−−−→∆

Ni
τ−→θi+1

...N ′ ∈ ExecF2

N (
c?ṽ@k
=⇒ ,D),

since by hypothesis d(l, k) ≤ r, by applying rule (Bcast)

we get Ni−1 | O
cL!ṽ[l.r]−−−−−−→ Ni | O′, and there exists a

matching execution:
N | O τ−→θ1

N1 | O
τ−→θ2

...Ni−1 | O
cL!ṽ[l,r]−−−−−−→∆ Ni | O′

τ−→θi+1
...N ′ | O′.

By applying the rule (Lose) to the actionNi−1 | O
cL!ṽ[l,r]−−−−−−→∆

Ni | O′ and by Definition 4 ∃F̄ ′ ∈ FC such that,

ProbF̄
′

N|O(C) = ProbF2

N (D).

By Definition 8 there exists F ′ ∈ F̂C such that, ProbF
′

N|O(=⇒

, C) = ProbF̄
′

N|O(C).
If N is not able to receive the message the proof is
analogous, because ∃F ′ ∈ F̂C such that, for each exe-
cution of ExecF1

N (=⇒,D):

N
τ−→θ1

N1...
τ−→θk Nk,

by applying rule (Par) to each step:

N | O τ−→θ1
N1 | O...

τ−→θk Nk | O,
and by applying rule (Bcast) and (Lose) to O, and
then (Par) to Nk | O, we get:

N | O τ−→θ1
N1 | O...

τ−→θk Nk | O
τ−→∆ Nk | O′ ∈

ExecF
′

N|O(=⇒, C),
hence, since the output of O does not change the prob-
abilities of the executions, we get:
ProbF

M|O(=⇒, C) = ProbF1

M (=⇒,D) =

ProbF2

N (=⇒,D) = ProbF
′

N|O(=⇒, C).
2. if α = c!ṽ@K / R then

ProbF
M|O(

c!ṽ@K/R−−−−−−−→, C) =

ProbF
′

N|O(
c!ṽ@K/R

=⇒ , C).
The proof is analogous to point (iii) of the previous item.

3. if α = c?ṽ@k then
ProbF

M|O(
α−→, C) = ProbF

′
N|O(

α
=⇒, C)

or
ProbF

M|O(
α−→, C) = ProbF

′
N|O(=⇒, C).

If P,Q ∈ C, then by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō
and P̄ ≈Fp Q̄. But then there exists D ∈ N/ ≈Fp such that
D = {P̄ : P̄ | Ō ∈ C}. Now we have two cases to consider:

(i) The transition is due to an action performed by O,

hence O
α−→∆ O′ and M | O′ ∈ C. But since M ≈Fp N ,

then also N | O′ ∈ C, and, by Definition 8 there exists

F ′ ∈ F̂C such that by applying rule (Par) to O
α−→ O′,

we get N | O α−→ N | O′ obtaining:

ProbF
M|O(

α−→, C) = ProbF
′

N|O(
α

=⇒, C).
(ii) The transition is due to an action performed by M .

In this case, by Definition 8 ∃F1 ∈ F̂C such that:
ProbF

M|O(
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈Fp N , there exists F2 ∈ F̂C such that

ProbF1

M (
α−→,D) = ProbF2

N (
α

=⇒,D),
or
ProbF1

M (
α−→,D) = ProbF2

N (=⇒,D).

In both cases, for each e ∈ ExecF1

N (
α̂

=⇒,D):

e = N
α1−−→θ1

N1...
αk−−→θk Nk

by applying rule (Par) to each step we get:

N | O α1−−→θ1
N1 | O...

αk−−→θk Nk | O.
Hence, ∃F ′ ∈ LSched such that:

ProbF2

N (
α

=⇒,D) = ProbF
′

N|O(
α

=⇒, C),
or
ProbF2

N (=⇒,D) = ProbF
′

N|O(=⇒, C).
In order to prove that F ′ ∈ F̂C , we start by the con-
sideration that, by Definition 8 there exists at least a
context C[·] and ∃F̄ ∈ FC such that C[N ] −→ C′[N ′],
and, by the reduction rules we get:

C[·] ≡ (νd̃)m[c̄L,r〈ṽ〉.P ]l |M1

for some d̃ such that c 6∈ d̃, some m, some set L of lo-
cations, some process P , some (possibly empty) net-
work M1, some location l and some radius r such that
d(l, k) ≤ r. Then, by Definition 4 we have that there

exists a scheduler allowing m[c̄L,r〈ṽ〉.P ]l −→ Jm[P ]lK∆,
and again by Definition 4 there exists a scheduler al-

lowing the reductionm[c̄L,r〈ṽ〉.P ]l | N | O −→
∗

Jm[P ]l |
N ′ | O′K∆, and hence, by Definition 8, F ′ ∈ F̂C as re-
quired.

Case 2.
Let us consider now the relation

S = {((νd)M, (νd)N) : M ≈Fp N}.

Let C ∈ N/S: if P,Q ∈ C, then by definition of S P ≡
(νd̄)P̄ , Q ≡ (νd̄)Q̄ and P̄ ≈Fp Q̄. But then ∃D ∈ N/ ≈Fp such
that D = {P̄ : (νd̄)P̄ ∈ C}.

We have to prove that, ∀F ∈ F̂C , ∃F ′ ∈ F̂C sucht that,
∀C ∈ N/S, ∀α:

1. α = τ implies that
ProbF

(νd)M
(
τ−→, C) = ProbF

′
(νd)N

(=⇒, C).
Since Chan(τ) = ⊥, by Definition 8 ∃F1 ∈ F̂C such that

ProbF
(νd)M

(
τ−→, C) = ProbF1

M (
τ−→,D)

and, since M ≈Fp N ∃F2 ∈ F̂C such that: ProbF1

M (
τ−→,D) =

ProbF2

N (=⇒,D).
Finally we can take F ′ ∈ LSched mimicking the execu-
tions in the set ExecF2

N (=⇒,D), when applying the re-
striction on N . Hence:
ProbF2

N (=⇒,D) = ProbF
′

(νd)N
(=⇒, C).

In order to prove that F ′ ∈ F̂C , we start by the consid-
eration that, by Definition 4, for any context there exists
a scheduler in FC mimicking the behaviour of N when
interacting with the given context. Hence ∃F̄ ∈ FC such
that ExecF̄

(νd)N
contains all the reductions correspond-

ing to the executions in ExecF
′

(νd)N
, i.e., by Definition 8,

F ′ ∈ F̂C as required.
2. α = c!ṽ@K / R

Since Chan(c!ṽ@K /R) 6= d, by Definition 8 ∃F1 ∈ F̂C such
that
ProbF

(νd)M
(
α−→, C) = ProbF1

M (
α−→,D),

then since M ≈Fp N , ∃F2 ∈ F̂C such that

ProbF1

M (
α−→,D) = ProbF

′
N (

α
=⇒,D).

Therefore, since Chan(α) 6= d, ∃F ′ ∈ LSched such that:

ProbF2

N (
α

=⇒,D) = ProbF2

(νd)N
(
α

=⇒, C).
We prove that F ′ ∈ F̂C as in the previous cases.
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3. α = c?ṽ@k
Again, since Chan(c?ṽ@k) 6= d, by Definition 8 ∃F1 ∈ F̂C
such that
ProbF

(νd)M
(
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈Fp N , there exists F2 ∈ F̂C such that

ProbF1

M (
α−→,D) = ProbF2

N (
α

=⇒,D) or

ProbF1

M (
α−→,D) = ProbF2

N (=⇒,D),
when N is not able to receive ṽ. In both cases we can apply
rule (Res) to N , since Chan(τ) = ⊥ and Chan(c?ṽ@k) 6= d.
Hence, there exists F ′ ∈ LSched such that the required
result holds, i.e.,

ProbF2

N (
α

=⇒,D) = ProbF
′

(νd)N
(
α

=⇒, C) or

ProbF2

N (=⇒,D) = ProbF
′

(νd)N
(=⇒, C).

Again, we prove that F ′ ∈ F̂C as in the previous cases. ut

Proof of Theorem 3

In order to prove the completeness of the probabilistic
labelled bisimilarity we show that the relation

R = {(M,N) : M ∼=Fp N}

is a probabilistic labelled bisimulation.
We have to prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that,

∀C ∈ N/R, ∀α:

if α = τ then ProbFM (
τ−→, C) = ProbF

′
N (=⇒, C).

By Theorem 1 and by Definition 8 we know that ∃F̄ ∈ FC
such that ProbFM (

τ−→, C) = ProbF̄M (C), and, since M ∼=Fp
N , ∃F̄ ′ ∈ FC such that ProbF̂M (C) = ProbF̄

′
N (C). Again

by Theorem 1 and by Definition 8 ∃F ′ ∈ F̂C such that

ProbF̂
′

N (C) = ProbF
′

N (=⇒, C ∪ {N̄ ≡ N ′ ∈ C}), but since
∼=Fp is closed under structural equivalence, ∀N̄ ≡ N ′ ∈ C,
N̄ ∈ C, and hence: ProbFM (

τ−→, C) = ProbF
′

N (=⇒, C).
if α = c!ṽ@K / R then
ProbFM (

α−→, C) = ProbF
′

N (
α

=⇒, C).
First we notice that ProbFM (

c!ṽ@K/R−−−−−−−→, C) is either 0 or 1.

If ProbFM (
c!ṽ@K/R−−−−−−−→, C) = 0 we are done, because it will

be enough to take any scheduler F ′ ∈ F̂C not allowing
observable output actions on the channel c, and we get

ProbFM (
c!ṽ@K/R−−−−−−−→, C) = ProbF

′
N (

c!ṽ@K/R
=⇒ , C).

If ProbFM (
c!ṽ@K/R−−−−−−−→, C) = 1, by Theorem 1 and by Defini-

tion 8 ∃F̄ ∈ FC such that M⇓F̄1 c@K, and this means that

∃F̄ ′ ∈ FC such that N⇓F̄
′

1 c@K, hence, again by Theorem
1 and by Definition 8 there exist F ′ ∈ F̂C and R′ such

that K ⊆ R′ and ProbF̄
′

N (C) = ProbF
′

N (
c!ṽ@K/R′

=⇒ , C).

We proved that ∃R′ with ProbFM (
c!ṽ@K/R−−−−−−−→, C) = ProbF

′
N (

c!ṽ@K/R′
=⇒

, C), now we want to show that R′ = R. In order to mimic
the effect of the action c!ṽ@K /R, we build the following
context
C[·] =

∏n
i=1(ni[c(x̃i).[x̃i = ṽ]f̄(i)

ki,r
〈x̃i〉]ki | mi[f

(i)(ỹi).ōk
(i)
ki,r
〈ỹi〉]ki),

where R = {k1, ..., kn}, ni, mi, ok(i) and f(i) fresh ∀i ∈
[1− n]. Since M

c!ṽ@K/R−−−−−−−→, then the message is reachable
by all nodes ni, hence, by Definition 4 ∃F̄1 ∈ FC such that

C[M ] −→
∗
M̂ , where

M̂ ≡M ′ |
∏n
i=1(ni[0]ki | mi[ōk

(i)
ki,r
〈ṽi〉]ki ≡M

′ |
∏n
i=1(mi[ōk

(i)
ki,r
〈ṽi〉]ki ,

with M̂ 6↓f(i)@R and M̂⇓F̄1
1 ok(i)@R, ∀i ∈ [1− n].

The absence of the barb on the channels f(i) together
with the presence of the barb on the channels ok(i) en-
sures that all the locations in R have been able to receive

the message. Since C[M ] ∼=Fp C[N ], ∃F̄2 ∈ FC such that

ProbF̄1

C[M]
(C′) = ProbF̄2

C[N]
(C′) where M̂ ∈ C′.

Therefore, C[N ] −→
∗
N̂ with N̂ 6↓f(i)@R and N̂⇓F̄2

1 ok(i)@R.
The constrains on the barbs allow us to deduce that
N̂ ≡ N ′ |

∏n
i=1(ni[0]ki | mi[ōk

(i)
ki,r

ṽi]ki) ≡ N
′ |

∏n
i=1(mi[ōk

(i)
ki,r

ṽi]ki),

which implies N
c!ṽ@K/R

=⇒ N ′, or N =⇒ N ′ in case (Lose)
has been applied to the output action on the channel c.
Since M̂, N̂ ∈ C, then M̂ ∼=Fp N̂ , and since ∼=Fp is contex-

tual, it results (νok(1)...ok(n))M̂ ∼=FM
p (νok(1)...ok(n))N̂ .

By applying (Struct Res Par):
(νok(1)...ok(n))M̂ ≡
M ′ | (νok(1)...ok(n))

∏n
i=1(mi[ōk

(i)
ki,r
〈ṽi〉]ki) ≡M

′

and
(νok(1)...ok(n))N̂ ≡
N ′ | (νok(1)...ok(n))

∏n
i=1(mi[ōk

(i)
ki,r
〈ṽi〉]ki) ≡ N

′

and, since the network

(νok(1)...ok(n))
∏n
i=1(mi[ōk

(i)
ki,r
〈ṽi〉]ki)

is silent, we can derive that M ′ ∼=Fp N ′. But since N ′ ∈ C

and N
c!ṽ@K/R

=⇒ N ′, by Definition 8 ∃F ′ ∈ F̂C such that:

ProbF
′

N (
c!ṽ@K/R

=⇒ , C) = 1 = ProbFM (
c!ṽ@K/R

=⇒ , C),
as required.

if α = c?ṽ@k then ProbFM (
α−→, C) = ProbF

′
N (

α
=⇒, C) or ProbF

′
N (=⇒

, C).
We notice that ProbFM (

c?ṽ@k−−−−→, C) is either 0 or 1.

If ProbFM (
c?ṽ@k−−−−→, C) = 0 we are done, because it will be

enough to take any scheduler F ′ ∈ F̂C not allowing input

actions on the channel c, and we get ProbFM (
c?ṽ@k−−−−→, C) =

ProbF
′

N (
c?ṽ@k
=⇒ , C).

If ProbFM (
c?ṽ@k−−−−→, C) = 1, because M

c?ṽ@k−−−−→ JM ′K∆, by
Definition 4 there exists at least a context C[·] and ∃F̄ ∈
FC such that C[M ] −→ C′[M ′], and by Theorem 1 we de-
duce that:
C[·] ≡ (νd̃)m[c̄L,r〈ṽ〉.P ]l |M1 and

C′[·] ≡ (νd̃)m[P ]l |M ′1
for some m, some tuple d̃ of channels such that c /∈ d̃,
some set L of messages, some radius r, some process P ,
some location l such that d(l, k) ≤ r and some (possibly
empty) networks M1 and M ′1.
By Definition 4, for any context there exists a scheduler
in FC allowing m to perform the output when interact-
ing with any context. Hence we can build the following
context:
C1[·] = · | m[c̄L,r〈ṽ〉.P ]l | m1[c(x̃).f̄k,r′ 〈x̃〉.ōkk,r′ 〈x̃〉]k,
in order to mimic the behaviour of the networks, with m
static, f and ok fresh channels, r′ > 0 and d(l, k) > r′ ∀l ∈
Loc such that l 6= k. Hence, there exists a scheduler F̄1 ∈
FC such that: C1[M ] −→

∗
M ′ | m[P ]l | m1[ōkk,r′ 〈ṽ〉]k ∈

ExecF̄1

C[M]
,

with M ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k 6↓f@k and

M ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k⇓
F̄1
1 ok@k.

The reduction sequence above must be matched by a cor-

responding reduction sequence C1[N ] −→
∗
N ′ | m[P ]l |

m[ōkk,r′ 〈ṽ〉]k, with
M ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k ∼=p

N ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k 6↓f@k and

N ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k⇓
F̂2
1 ok@k for some F̄2 ∈ FC .

This does not ensure that N actually performed the input
action, but we can conclude that there exists F ′ ∈ LSched
and N ′ such that either N

c?ṽ@k
=⇒ N ′ or N =⇒ N ′. Since

M ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k ∼=p N ′ | m[P ]l | m[ōkk,r′ 〈ṽ〉]k
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and ∼=Fp is is a contextual relation, we can easily derive

M ′ ∼=Fp N ′ (applying the rules for structural equivalence),
i.e., ∃F ′ ∈ LSched such that:

ProbFM (
c?ṽ@k−−−−→, C) = 1 = ProbF

′
N (

c?ṽ@k
=⇒ , C)

or
ProbFM (

c?ṽ@k−−−−→, C) = 1 = ProbF
′

N (=⇒, C).
Now we have only to prove that F ′ ∈ F̂C , but this follows
straightforwardly by Definition 8, since F̄2 ∈ FC . ut


