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Abstract For many years the research community has

attempted to model the Internet in order to better un-

derstand its behaviour and improve its performance.

Since much of the structural complexity of the Inter-
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net is due to its multilevel operation, the Internet’s

multilevel nature is an important and non-trivial fea-

ture that researchers must consider when developing

appropriate models. In this paper, we compare the nor-

malised Laplacian spectra of physical- and logical-level

topologies of four commercial ISPs and two research

networks against the US freeway topology, and show an-

alytically that physical level communication networks

are structurally similar to the US freeway topology.

We also generate synthetic Gabriel graphs of physical

topologies and show that while these synthetic topolo-

gies capture the grid-like structure of actual topologies,

they are more expensive than the actual physical level

topologies based on a network cost model. Moreover,

we introduce a distinction between geographic graphs

that include degree-2 nodes needed to capture the ge-

ographic paths along which physical links follow, and

structural graphs that eliminate these degree-2 nodes

and capture only the interconnection properties of the

physical graph and its multilevel relationship to logical

graph overlays. Furthermore, we develop a multilevel

graph evaluation framework and analyse the resilience

of single and multilevel graphs using the flow robust-

ness metric. We then confirm that dynamic routing

performed over the lower levels helps to improve the

performance of a higher level service, and that adap-

tive challenges more severely impact the performance

of the higher levels than non-adaptive challenges.

Keywords Internet modelling · Critical infrastruc-

ture · Attack · Graph spectrum · Flow robustness ·
Algebraic connectivity · Spectral radius · Network

science · Gabriel graph · Geographic graph · Structural

graph · Multilevel graph · Network cost · Resilience ·
Survivability · Dependability · Performability
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1 Introduction and Motivation

The Internet has evolved to become a multilevel in-

frastructure critical to the functioning of society. The

multilevel behaviour emerged in part due to the fact

that protocols interact in multiple levels and in part

because of the ways in which players operate, provide,

and use the services of the Internet. Over the years,

studies by the research community investigating the

resilience of the Internet have suggested controversial

findings [58], one being that an attack on a few central

nodes could bring the entire Internet down. But this

claim was dismissed by other researchers [10,30] based

on the mesh-like structure of actual service-provider

backbones. Therefore, realistic models are required to

mathematically understand the properties of the Inter-

net and improve its resilience.

The Internet can be examined at the physical, IP,

router, PoP (point of presence), and AS (autonomous

system) level from a topological point of view [29]. At

the bottom is the physical topology consisting of ele-

ments such as fibre and copper cables, point-to-point

wireless links, ADMs (add drop multiplexers), cross-

connects, and layer-2 switches. The logical level con-

sists of devices operating at the IP-layer. A PoP is a

collection of routers in a geographic location, and PoP-

level topology can be seen as an aggregated view of

the routers. At the AS-level, different provider networks

peer with each other at IXPs (Internet exchange points)

and private peering points [53]. Understanding the evo-

lution of the Internet from a multilevel point of view

is more realistic than examining its properties at indi-

vidual levels. On the other hand, the primary focus of

previous studies has been on the logical aspects of the

topology, since tools have been developed to collect,

measure, and analyse IP-level properties of the Inter-

net (e.g. Rocketfuel [59]). However, given that physical

networks provide the means of connecting nodes in the

higher levels, the study of physical connectivity is an

important area of research [31,38,45]. Furthermore, it

is essential to model the impact of large-scale disasters

and attacks against the physical infrastructure using

the physical-level graph [21]. There are only a few stud-

ies that analyse graphs holistically from a multilevel

point of view [46,47,52], but in very specific contexts.

In this paper, we begin our multilevel analysis of

communication and transportation networks by expand-

ing upon our previous work. First, we analyse the nor-

malised Laplacian spectra of several commercial and re-

search networks and find that fibre topologies are struc-

turally similar to other critical infrastructures such as

freeways. In our earlier work, we show this by exam-

ining only two commercial networks [19], in this study

we expand this to six networks. Second, we show that

physical level topologies can be modelled by Gabriel

graphs [35], since both are grid-like structures. Third,

while Gabriel graphs capture the structure of the phys-

ical topologies, they are more expensive than the actual

physical level topologies based on a network cost model.

Fourth, we show that properties of geographic physi-

cal networks that capture information on the paths fol-

lowed by links are dominated by degree-2 nodes. The

removal of these degree-2 nodes does not change the

structure significantly, but these structural graphs pro-

vide a more accurate representation of graph-theoretic

properties such as degree distribution and clustering

coefficient. Fifth, we develop a formal multilevel graph

model and a framework to analyse flow robustness of

a multilevel graph [22]. Furthermore, we extend this to

include multiprovider graphs that captures logical IXP

links. We analyse the flow robustness of a number of

two-level graphs constructed from real-world commu-

nication networks and show that resilience of networks

can be captured more realistically than a single level

graph. Finally, as a side benefit of our work, we pro-

vide online adjacency matrices of these networks to the

research community for future studies.

The rest of the paper is organised as follows: The

communication and transportation topologies we use

in this study are presented in Section 2. The evalua-

tion of graphs using metrics is presented in Section 3.

The correlation of transportation and communication

networks using graph spectra is presented in Section 4.

The structural properties of communication networks,

as well as Gabriel graph models of physical networks

is presented in Section 5. We evaluate multilevel trans-

portation and communication graphs using flow robust-

ness in Section 6. We analyse graphs and rank their re-

silience using flow robustness and spectral properties in

Section 7. We provide a brief discussion in Section 8,

followed by our conclusion as well as proposed future

work in Section 9.

2 Topological Dataset

We study real networks (i.e. transportation and com-

munication) that are geographically located within the

continental United States. Therefore, we only include

the 48 contiguous US states, the District of Columbia,

and exclude Hawaii, Alaska, and other US territories.

Furthermore, we have developed the KU-TopView (KU

Topology Map Viewer) [61] using the Google Map API

and JavaScript to visually present and assist in analy-

sis of these topological maps. Unlike other visualisation

tools, KU-TopView makes raw data conveniently avail-

able in the universal form of an adjacency matrix along
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(a) US freeways (b) AT&T (c) Level 3

(d) Sprint (e) TeliaSonera (f) Internet2

Fig. 1 Visual representation of transportation, and physical and logical level service provider networks in KU-TopView [55]

with the node coordinates and permits their manipu-

lation. We have made these topologies publicly avail-

able [55].

2.1 Transportation Network

We have generated the freeway topology to represent

the transportation network. Our starting point is the

American Association of State Highway and Transporta-

tion Officials (AASHTO) data, which lists control cities

and their sequential listing along each interstate high-

way. A control city is a major population center or des-

tination on or near the interstate highway system de-

termined by each state [13]. However, while generating

the transportation topology, we realised that the exist-

ing list of control cities was not sufficient to represent

the graph accurately. For example, there is no control

city at some interchanges between interstate highways.

Therefore, we add 6 additional cities1 in those cases

after verifying the crossing on Google Maps, as well

as two that are needed to correspond to physical fiber

junctions2. There are also a few important newer free-

ways that are not listed in the 2001 AASHTO document

that we add to reflect current connectivity3. This US

freeway graph with 411 nodes, 553 links, and an aver-

age degree of 2.7 is shown in Figure 1a. We note that

in a previous study of US interstate highway system,

1 Benton Harbor MI, Country Club Hills IL, Effingham IL,
Gary IN, Joilet IL, Lake Egypt IL
2 Blaine WA, Hannibal MO
3 I-335 Kansas Turnpike, I-86 East, I-97, I-68, I-495 in NY,

and the important non-Interstate US-101 in California be-
tween Los Angeles and San Francisco

the authors used GIS (geographic information system)

databases from the year 2000 (unfortunately there is no

reference to the source of data), and the resulting inter-

state freeway network consisted of 1337 links and 935

nodes with an average degree of 2.86 [36]. We note that

the number of nodes and degree distribution in this

geographic graph is highly dependent on the number

of control cities used for geographic representation and

that a number of cities are degree-2 vertices in between

higher degree nodes at interchanges. We will discuss a

uniform solution to this problem in Section 5.

2.2 Communication Networks

The Internet is a complex and large-scale network for

which collective analysis is non-trivial. Therefore, we

restrict this study to include physical fibre and logical

level topologies. We note that throughout this paper

we refer to IP router, PoP, and AS level graphs as logi-

cal level graphs or L3, whereas fibre level topologies as

physical level topologies and denote them as L1. We use

Rocketfuel-inferred AT&T, Level 3, and Sprint PoP-

level topologies [9,59] to study logical level topologies.

We note that international links, as well as links cross-

ing over Pacific and Atlantic Oceans, are removed inten-

tionally to compare the logical level topologies against

the US fibre deployments and freeway topologies.

We then use a US long-haul fibre-optic routes map

data to generate physical topologies for AT&T, Sprint,

and Level 34 [44]. In this map, US fibre-optic routes

4 We also utilised the Level 3 network map in an effort to
reflect the data as accurately as possible [4].
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Table 1 Topological characteristics of baseline networks

Topology Star Lin. Tree Ring Grid Tor. Mesh Star Lin. Tree Ring Grid Tor. Mesh

Nodes 10 10 10 10 10 10 10 100 100 100 100 100 100 100
Links 9 9 9 10 13 15 45 99 99 99 100 180 200 4950

Max. degree 9 2 3 2 3 3 9 99 2 3 2 4 4 99
Avg. degree 1.8 1.8 1.8 2 2.6 3 9 2 2 2 2 3.6 4 99
Deg. assort. −1 −0.1 −0.5 1 0.3 1 1 −1 0 −0.3 1 0.6 1 1

Closeness 0.6 0.3 0.4 0.4 0.4 0.5 1 0.5 0 0.1 0 0.2 0.2 1
Clust. coeff. 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Algeb. con. 1 0.1 0.2 0.4 0.4 1.4 10 1 0 0 0 0.1 0.4 100

Diameter 2 9 5 5 5 3 1 2 99 12 50 18 10 1
Radius 1 5 3 5 3 3 1 1 50 6 50 10 10 1

Hopcount 1.8 3.7 2.8 2.8 2.3 1.9 1 2 33.7 7.8 25.3 6.7 5 1
Max. Node

36 20 26 8 11 4 0 4851 2450 3068 1201 616 200 0
betweenness

Max. Link
9 25 24 13 12 6 1 99 2500 2496 1250 341 200 1

betweenness

cross cities throughout the US and each ISP has a dif-

ferent coloured link. We project the cities to be physical

node locations and connect them based on the map,

which is sufficiently accurate on a national scale. We

use this data to generate adjacency matrices for each

individual ISP. To capture the geographic properties

as well as the graph connectivity, cities are included

as nodes even if they are merely a location along a

link between fibre interconnection. As with the free-

way graph, we will further discuss this in Section 5.

Finally, we also make use of the publicly available Telia-

Sonera5 network [6], Internet2 [3], and CORONET [8,

26] topologies. CORONET is a synthetic fibre topology

designed to be representative of service provider fibre

deployments, and this does not have a corresponding

logical topology.

The physical and logical commercial service provider

networks are shown in Figures 1b, 1c, 1d, and 1e. The

Internet2 research network at the physical and logical

level is shown in Figure 1f. Initial visual inspection sug-

gests that the physical topologies are similar to the free-

way topology. The relation of the physical level topol-

ogy and other physical infrastructures has been stated

before [61,64]; however, to best of our knowledge, we

are not aware of any previous work that quantitatively

demonstrates the correlation between these different in-

frastructures rigorously.

3 Properties of Networks

Although topology viewing is a powerful tool, it does

not suffice for rigorous analysis of topologies [67]. We

therefore calculate the graph metrics of regular net-

works (shown in Table 1) and critical infrastructures

5 TeliaSonera physical graph has a link between Houston
and Miami that appears to cross over the Gulf of Mexico.
This is because TeliaSonera does not provide intermediate
geographic path information.

as shown in Table 2 using the Python NetworkX li-

brary [39].

3.1 Graph Metrics

Some of the well-known metrics provide insight on a va-

riety of graph properties, including distance, degree of

connectivity, and centrality. Network diameter, radius,

and average hop count provide distance measures [38].

Eccentricity of a node is the longest shortest path from

this node to every other node; the largest value of eccen-

tricity among all nodes is the diameter and the smallest

eccentricity is the radius. Betweenness is the number of

shortest paths through a node or link and provides a

centrality or importantness measure [11,50]. Clustering

coefficient is a centrality measure of how well a node’s

neighbours are connected [38]. Closeness centrality is

the inverse of the sum of shortest paths from a node

to every other node [56,57]. Assortativity provides a

measure of degree variance in a network [54]. Algebraic

connectivity, a(G), is the second smallest eigenvalue of

the Laplacian matrix [34]. For the graphs of the same

order (number of vertices), algebraic connectivity pro-

vides a very good measure of how well the graph is con-

nected and it indicates robustness of networks against

node and link failures [41,43,49].

3.2 Graph Properties

Based on the metrics we describe above, we analyse

regular graphs and real networks in this section.

3.2.1 Baseline Networks

We start our metrics-based analysis on seven regular

graphs: star, linear, binary tree6, ring, grid, toroid, and

6 We note that not all leaves are binary as needed for a
given order.
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Table 2 Topological characteristics of communication and transportation networks

Network Nodes Links
Avg. Node Clust.

Diam. Rad.
Avg.

Close.
Max. Node Max. Link

Degree Coeff. Hop. Between. Between.

AT&T L1 383 488 2.6 0 39 20 14.1 0.1 17011 14466
AT&T L3 107 140 2.6 0.1 6 3 3.4 0.3 2168 661
Level 3 L1 99 130 2.6 0.1 19 10 7.7 0.1 1628 1046
Level 3 L3 38 376 19.8 0.8 3 2 1.5 0.7 59 37
Sprint L1 264 312 2.4 0 37 19 14.8 0.1 11275 9570
Sprint L3 28 76 5.4 0.4 4 2 2.2 0.5 100 27

TeliaSonera L1 21 25 2.4 0.2 9 6 4.1 0.3 75 61
TeliaSonera L3 16 29 3.6 0.5 4 2 2.1 0.5 34 17

Internet2 L1 57 65 2.3 0 14 8 6.7 0.2 630 521
Internet2 L3 9 13 2.9 0.4 4 2 2 0.5 9 11

CORONET L1 75 99 2.6 0 17 9 6.45 0.2 1090 704
US freeways 411 553 2.7 0.1 42 21 13.65 0.1 23872 19785

full mesh. We investigate the effect of an increase in

the order (number of nodes) from n = 10 to n = 100

for the baseline topologies as shown in Table 1. We

note that the values are rounded to the nearest tenth

decimal. The number of edges (links) are increased as

necessary for each topology to scale to the number of

nodes. Some metrics yield the same values for graphs

of the same order (e.g. average degree for star, linear,

tree), and others yield the same values for graphs of

differing sizes and orders (e.g. same a(G) for 10 node

linear and 100 node grid), therefore relying on a single

metric for graph analysis is clearly not sufficient.

3.2.2 Real Networks

We investigate the graph-theoretic properties of the log-

ical and the physical topologies of four commercial ISP

networks (AT&T, Level 3, Sprint, TeliaSonera) and the

Internet2 research network, as well as the fibre-link level

of the CORONET synthetic topology. We also study

the US Interstate Highway graph. Our results are shown

in Table 2. In general, the metrics for the logical topolo-

gies differ from the physical topologies in that the phys-

ical topologies have more nodes and links compared to

logical topologies.

The maximum degree of each provider’s physical

topology is less than that of its corresponding logical

topology. This is due to the ability of logical topologies

to arbitrarily overlay virtual links. The average degree

of each provider’s physical topology is less than that of

its corresponding logical topology, in particular for the

Level 3 topology in which the average degree for the

logical level graph is a relatively highly meshed 19.8.

Physical topologies have a higher value of network di-

ameter, radii, and average hopcount than that of logical

topologies. Betweenness values also differ for physical

and logical topologies, showing a difference of one or

two orders of magnitude higher for physical topologies.

Clustering coefficient and closeness centrality metrics

are also higher for the logical topologies compared to

physical topologies.

From a distance metrics perspective, clearly physi-

cal topologies have higher values. We observe that the

values of degree-based metrics also differ between phys-

ical and logical topologies. This can be attributed to

the ease with which nodes can be connected in a log-

ical topology as compared to the difficulty involved in

connecting node in a physical topology, in which one

must physically lay down fibre between nodes. Long

links are added to logical topologies to reduce the for-

warding overhead of multihop paths. From a centrality

metrics perspective, we can see that physical topologies

are not as clustered and have more homogeneous degree

distributions.

We can also see that US freeway graph metrics are

closer to those of the physical topologies. This is not

surprising: both the US Interstate Highway system and

the physical level of the Internet are physical infrastruc-

tures rather than logical overlays, and they frequently

share the same paths since freeways (and railways) pro-

vide inexpensive right-of-way along which to lay fibre.

Collective analysis of graph metrics provides a good in-

dication of resilience of different topologies; however, it

is difficult to infer sensible conclusions about the struc-

ture of a network or how similar two different networks

are. Therefore, we redirect our attention to the spectra

of these graphs.

4 Spectrum of Networks

In this section we first present a brief background on the

spectra of graphs and then present our spectral analysis

of the transportation and physical topologies.

4.1 Background on Spectra

Let G = (V,E) be an unweighted, undirected graph

with n vertices and m edges. Let V = {v0, v1, . . . , vn−1}
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denote the vertex set and E = {e0, e1, . . . , em−1} de-

note the edge set. A graph can be represented by several

methods including an adjacency matrix, incidence ma-

trix, Laplacian matrix, and normalised Laplacian ma-

trix [25,65]. A(G) is the symmetric adjacency matrix

with no self-loops where aii = 0, aij = aji = 1 if there

is a link between {vi,vj}, and aij = aji = 0 if there

is no link between {vi,vj}. The Laplacian matrix of G

is: L(G) = D(G) − A(G) where D(G) is the diagonal

matrix of node degrees, dii = deg(vi). Given degree of

a node is di = d(vi), the normalised Laplacian matrix

L(G) can be represented:

L(G)(i, j) =


1, if i = j and di 6= 0

− 1√
didj

, if vi and vj are adjacent

0, otherwise

Let M be a symmetric matrix of order n and I be

the identity matrix of order n. Then, eigenvalues (λ)

and the eigenvector (x) of M satisfy Mx = λx for

x 6= 0. In other words, eigenvalues are the roots of the

characteristic polynomial, det(M − λI) = 0. The set

of eigenvalues {λ1, λ2, . . . , λn} together with their mul-

tiplicities (number of occurrences of an eigenvalue λi)

define the spectrum of M . Spectral graph theory has

been extensively covered in several monographs [15,17,

25,27,65]. The spectrum of the AS-level topology of the

Internet has been analysed based on the k largest val-

ues of the adjacency matrix [37]. The IP-level topology

of the Internet has also been investigated and its Lapla-

cian spectrum compared against synthetically gener-

ated topologies [42]. The normalised Laplacian spec-

trum of AS-level topologies has been shown to differ sig-

nificantly from that of synthetically generated topolo-

gies [66]. Recently, a weighted spectral distribution met-

ric has been proposed and has shown that synthetically

generated graphs can be fine-tuned using spectral prop-

erties [33]. While previous studies utilised graph spectra

to analyse logical level topologies, in this study we fo-

cus on physical networks and how they relate to each

other structurally, as well as to their logical overlays.

4.2 Spectral Analysis of Networks

The normalised Laplacian spectrum provides insight

into the structure of networks that are different in or-

der (number of nodes) and size (number of links). The

eigenvalues of the L(G) reside in the [0, 2] interval and

take values {0 = λ1 ≤ λ2 ≤ . . . ≤ λn}. The algebraic

multiplicity of λ = 0 indicates the number of connected

components. Hence, there is always at least one eigen-

value equal to 0. Furthermore, matrices which resemble

one another may have similar eigenvalues and multiplic-

ity. The spectrum of L(G) is quasi-symmetric7 around

1, which means a large algebraic multiplicity for the

eigenvalue λ = 1 may indicate duplications in a net-

work [14]. In other words, two separate nodes {u, v}
might have all or some of their neighbours being same.

For example in a star graph with all other nodes con-

necting to the single central node, the leaves will all

have the same neighbour, which is the central node.

Likewise, while in a full mesh all nodes have the same

neighbours, a partial mesh will have partial duplica-

tions. The presence of many small eigenvalue multi-

plicities may indicate that there are many components

within a graph and these components are loosely con-

nected to each other [14]. An eigenvalue of 2 indicates

the graph is bipartite; eigenvalues close to 2 indicates

the graph is nearly bipartite [14]. A bipartite graph

is a graph in which its vertex set can be divided into

two groups in such a way that there will be no edges

between the vertices within each group. Once the dis-

crete and deterministic eigenvalues are calculated for a

given graph, the relative frequency of eigenvalues yield

valuable information about the structure of a network.

Moreover, spectra can be presented in relative cumu-

lative frequency as well, and we describe our choice in

the next section. For the rest of this paper we abbre-

viate relative frequency as RF and relative cumulative

frequency as RCF.

4.2.1 Spectra of Baseline Networks

The RF (relative frequency) of the normalised Lapla-

cian eigenvalues for baseline topologies (star, linear,

ring, tree, grid, toroid, full mesh) of order n = 100 is

shown in Figure 2. Since most of the eigenvalues have

very small multiplicities, the RF of eigenvalues has a

floor that is too noisy to be able to gather useful in-

formation. Because of the noisy floor in representing

multiple RFs, we use the RCF (relative cumulative fre-

quency) for the baseline graph analysis and for the rest

of the paper. Furthermore, we note that while some re-

searchers use RFs that they term density of eigenvalues

to represent the spectra [14] and others use RCF that

they term normalised index of eigenvalues to represent

the spectra [66]. Since we show multiple curves in a plot

to compare different graphs, our preference is to show

spectra using RCFs since it is more informative.

The RCFs of the eigenvalues for these baseline to-

pologies are shown in Figure 3. The star topology has

7 We use the term quasi-symmetric to represent almost
symmetric graph spectra. For example, a finite full-mesh
graph is quasi-symmetric, since all eigenvalues except the first
(which is equal to 0) are equal to a value close to 1. We will
detail those graphs in the next section.
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Fig. 2 Spectra of baseline topologies, n = 100
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its eigenvalues fixed, independent of the graph order:

{0 = λ1 ≤ 1 = λ2 = . . . = λn−1 ≤ λn = 2}. The spec-

trum of a 100 node full mesh looks similar to a star,

except that it does not have an eigenvalue of 2 and the

eigenvalues are fixed at 1.0101 (we comment on that

later). An interesting observation is that the spectrum

of these two baseline topologies look very similar. In-

deed, at a micro level we can think of each individual

node in a mesh as a star motif. Furthermore, the al-

gebraic connectivity of a star is 1 [34]. However, since

node centrality measures are largest for a star topol-

ogy, the central node in a star can be the target of an

attack or the single point of failure from a network engi-

neering perspective. An attack against the root node of

a binary tree is also the worst case scenario, however,

this partitions the network into two islands, in which

nodes in each island can communicate with each other

whereas this is impossible for a star topology. The spec-

trum of linear and ring topologies look almost identical,

since a ring has an additional link compared to a lin-

ear topology, and both linear and ring topologies have

the lowest algebraic connectivity values. Likewise, mul-

tiplicities of grid and toroid topologies look very sim-

ilar, since a toroid has additional links to connect the

nodes on the edge of a grid. We also observe that since

a Manhattan grid is a combination of linear topologies,

its spectrum looks similar to a linear topology. Multi-

plicities of a tree topology lie somewhere between the

two extremes of mesh and linear.

We show the spectra of five different full-mesh com-

plete graphs in Figure 4. The eigenvalues of a n-order

complete graph are: {0 = λ1 ≤ n
n−1 = λ2 = . . . = λn}.

The multiplicity of the eigenvalue equal to n/(n−1) for

complete graphs is n− 1. Moreover, as the order of the

graph approaches infinity, the eigenvalues will converge

to a value of 1 since limn→∞
n

n−1 = 1. However, eigen-

values λ2 through λn are never exactly equal to 1 in

a finite full mesh topology. Furthermore, the algebraic

connectivity is equal to the order of a complete graph

a(G) = n.

4.2.2 Spectra of Real Networks

We plot the RCFs of eigenvalues of US freeways against

physical8 and logical level topologies in Figure 5 and

Figure 6 respectively. Clearly, the spectra of the logical

and physical topologies differ. Furthermore, the spectra

of the physical topologies resemble the spectra of the US

Interstate Highway graph as shown in Figure 5. This

confirms our supposition that the properties of net-

works are similar since fibre is laid along right-of-ways,

such as freeways. The spectra of logical level topologies

along with the US Interstate Highway graph is shown

in Figure 6. We intentionally include the transportation

graph to compare it against the logical level topologies,

which clearly shows the spectra do not match to that of

freeways. The algebraic multiplicity for the eigenvalue

8 These plots use the geographic version of the physical
graphs; this will be explained in Section 5.
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λ = 1 is largest for the AT&T logical topology, indi-

cating that this topology contains the largest number

of node duplications. In other words, this topology has

the most star-like components, as is evident by visually

inspecting it on KU-TopView [55]. The largest eigen-

values indicate to what degree a graph is bipartite [14].

The largest eigenvalues of the physical topologies and

the largest eigenvalues of the freeways graph are the

eigenvalues closest to 2. Hence, the physical topologies

and the freeways topology are the most nearly bipartite

graphs.
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Fig. 5 Spectra of geographical physical networks
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Fig. 6 Spectra of logical networks

5 Structure of Communication Networks

In Section 4 we showed that the transportation graph

closely matches the physical level topologies. In this

section we analyse the structure of individual service

provider networks and develop different models to rep-

resent physical level topologies. Furthermore, we calcu-

late the fibre length of the physical level topologies.

5.1 Gabriel Graphs

In an attempt to understand the analytical models of

physical level networks, we generate Gabriel graphs of

the six service provider networks we study. The Gabriel

graphs are useful in modelling graphs with geographic

connectivity that resemble grids [35,51]. In a Gabriel

graph, two nodes are connected directly if and only

if there are no other nodes that fall inside the circle

whose diameter is given by the line segment joining

the two nodes. Since physical level communication net-

works resemble grids, we generate Gabriel graphs using

the physical level network node locations. We note that

the physical node locations we use in KU-TopView are

in GPS (Global Positioning System) format, and we

therefore convert node locations from GPS to ECEF

(earth-centered, earth-fixed) format to accurately cal-

culate the distance between any nodes. The number

of nodes, links, and average degree of Gabriel graphs

of six geographical physical networks (Gabriel-G) are

shown in Table 3. In all cases, the synthetically gener-

ated Gabriel graph has more links than the correspond-

ing geographical physical level topology. Note that since

we use the same node locations, the number of nodes

remain the same for Gabriel graphs.

5.2 Structural Graphs

As discussed in Section 3, the geographical physical-

level topologies consist of degree two intermediate nodes

for accurate geographic representation. This is neces-

sary to model area-based challenges on the network,

such as power failures and severe weather [20,21]. How-

ever, these intermediate nodes artificially change the

graph theoretic properties of the networks, in particu-

lar artificially skewing the degree distribution toward

degree-2 nodes. Therefore, we modify the existing geo-

graphical physical level graphs by removing nodes with

a degree of two, as long as there is not a logical level

node at that location for which the physical node pro-

vides service to upper layers.

We show an example to emphasise the difference

in representing geographic and structural physical level

graphs in Figure 7. In this case, the map we have [44]

has a path from Spokane, WA (dark coloured pin on

upper left corner of Figure 7) to Billings, MT (cyan

coloured pin on lower right corner of Figure 7) crossing

five cities (Coeur d’Alene, ID; Thompson Falls, MT;
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Table 3 Structural properties of fibre topologies

Provider Graph Nodes Links
Avg. Tot. Link Avg. Link Max. Link Min. Link

Degree Length [km] Length [km] Length [km] Length [km]

AT&T

Geographical 383 488 2.6 50,026 103 630 6
Structural 130 191 2.9 37,489 196 1, 195 6
Gabriel-G 383 686 3.6 66,157 96 563 6
Gabriel-S 130 218 3.4 36,459 167 695 6

Level 3

Geographical 99 130 2.6 28,538 220 1, 063 10
Structural 48 71 3.0 25,390 358 1, 322 10
Gabriel-G 99 170 3.4 33,991 200 736 10
Gabriel-S 48 70 2.9 19,154 274 963 10

Sprint

Geographical 264 312 2.4 33,627 108 602 6
Structural 52 73 2.8 25,190 345 1, 299 11
Gabriel-G 264 474 3.6 57,104 121 605 6
Gabriel-S 52 73 2.8 19,853 272 1, 064 11

TeliaSonera

Geographical 21 25 2.4 14,190 568 1, 592 27
Structural 18 21 2.3 14,040 669 1, 592 41
Gabriel-G 21 26 2.5 12,111 467 1, 523 27
Gabriel-S 18 23 2.6 12,482 543 1, 523 41

Internet2

Geographical 57 65 2.3 19,050 293 910 41
Structural 16 24 3.0 18,146 756 2, 737 264
Gabriel-G 57 94 3.3 28,786 306 871 41
Gabriel-S 16 23 2.9 13,815 601 1, 063 264

CORONET

Geographical 75 99 2.6 28,325 286 943 20
Structural 39 63 3.2 27,579 438 1, 195 44
Gabriel-G 75 127 3.4 33,265 262 758 20
Gabriel-S 39 61 3.1 22,757 373 1, 064 44

Missoula, MT; Helena, MT; Bozeman, MT), forming

a zigzag shaped path that captures geography of the

path. This geographic physical graph is necessary to

accurately study area-based challenges such as severe

weather. On the other hand, this physical path from

Spokane, WA to Billings, MT can be represented as

a single link structurally. After all, it does not matter

where the link is cut between Spokane, WA and Billings,

MT since there is no logical PoP that is a traffic source

or sink between these cities. We note that, the nodes

that have a degree 3 or higher are kept to capture the

physical layer structure even if there is not a logical PoP

in these locations. Moreover, stub nodes are removed

since we are interested in backbone networks and in the

geographic representation these stub nodes might as

well represent access networks.

Fig. 7 Geographical vs. structural graphs

The number of nodes, links, and average degree of

these structural graphs are shown in Table 3. Each

structural graph has fewer nodes and links than its

corresponding physical level graph. However, with the

exception of TeliaSonera, each structural graph has a

larger average degree than its corresponding physical

level graph. For example, the structural graph of In-

ternet2 has 16 nodes, 24 links, and an average degree

of 3 whereas the original Internet2 physical graph has

57 nodes, 65 links, and an average degree of 2.28. We

believe that the structural graph of TeliaSonera has a

smaller average degree than the original graph of Telia-

Sonera due to the latter’s small order and size. Fur-

thermore, the TeliaSonera geographic graph was not

obtained from the fiber map with significant detail of

intermediate cities, but rather from a far more abstract

map on TeliaSonera’s Web site with only a few interme-

diate degree-2 nodes. However, we note that total fibre

length of the structural graph (14,040 km) is close to

that of the original physical graph (14,190 km).

Finally, we also generate synthetic Gabriel graphs

using the node locations of the modified structural to-

pologies. The number of nodes, links, average degree

of nodes, and the total link length for these graphs

(Gabriel-S) are shown in Table 3. An observation is

that all these Gabriel graphs result in a total link length

that is less than structural graphs. On the other hand,

when we generate the Gabriel graphs of the geographi-

cal physical topologies, with the exception of TeliaSon-

era, these incur more cost than the geographical phys-

ical level topologies.

5.3 Spectral Comparison of Networks

Next, we study the spectra of logical level, physical

level, Gabriel, and structural graphs as shown in Fig-

ure 8. We note that the CORONET synthetic topology
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Fig. 8 Spectra of service provider networks

does not include any logical level topology since CORO-

NET is aimed at modelling a generic fibre topology.

We observe that physical level, Gabriel, and structural

graphs all share a similar spectrum due to the fact that

all of them have a grid-like structure. The normalised

Laplacian spectra of AT&T, Level 3, and Sprint log-

ical level networks show an s-curve that corresponds

to spectra of star- and mesh-like topologies (cf. Fig-

ure 3). On the other hand, the spectra of the TeliaSon-

era and Internet2 logical level topologies show a flat-

diagonal curve that corresponds much more closely to

spectra of grid-like topologies, as shown in Figure 1.

Note that Internet2 is a research network that has a

sparsely connected topology that is very similar to its

physical topology.

We conclude that the logical and physical level to-

pologies do indeed have different structures. The struc-

tural differences between the logical and physical level

topologies, while impossible to determine using a sin-

gle graph metric, are successfully captured by the nor-

malised Laplacian spectrum. Moreover, the normalised

Laplacian spectrum can be used to compare graphs of

differing sizes and orders. Furthermore, while the spec-

tra of the physical level topologies reveal grid-like struc-

tures, the spectra of the large logical level topologies

reveal star- or mesh-like structures.

5.4 Cost of Networks

Structural properties impact the connectivity and cost

of building networks. While at the logical level the cost

is captured by the number of nodes and the capacity of

each node (i.e. bandwidth and number of ports avail-

able in a router [10,30]), at the physical level, the length

of the fibre dominates the cost. As we discussed, log-

ical level links are arbitrarily overlaid links on top of

the underlying physical links. Previously, we provided

a network cost model as:

Ci,j = f + v × di,j (1)

where f is the fixed cost associated with link (includ-

ing termination), v is the variable cost per unit distance

for the link, and di,j is the length of a link [40,60,61].

Based on the assumption that the variable cost domi-

nates in long haul fibre networks, we ignore the fixed

cost associated with links, and simplify network cost as:

C =
∑
i

li (2)

where li is the length of the i-th link [12,18,24]. With

this simplified network cost model, we observe in Ta-

ble 3 that, with the exception of TeliaSonera, each Gabriel

graph incurs a cost that is approximately 20% larger

than its corresponding original physical level graph.

The Gabriel graph corresponding to TeliaSonera incurs
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a cost that is actually 15% smaller than that of its cor-

responding physical level graph. The structural topolo-

gies incur a slightly smaller cost than the geographical

topologies because links are line-of-sight rather than

following the geographic path of the actual fibre. We

note that the number of nodes has changed from the

original geographical physical to the modified struc-

tural graphs, since we only consider degree-3 and logical

PoP nodes when constructing the structural graphs and

delete degree-2 intermediate nodes needed for accurate

geographic representation.

Table 4 Upper bounds of fibre link lengths for full mesh

Physical
Nodes Links

Tot. l Max. l Min. l
Networks ×106 [km] [km] [km]

AT&T 383 73, 153 116.8 4,400 6
Level 3 99 4, 851 7.5 4,260 10
Sprint 264 34, 716 57.8 4,330 6
TeliaSonera 21 210 0.4 4,079 27
Internet2 57 1, 596 2.7 4,233 41
CORONET 75 2, 775 4.6 4,260 20

Finally, for each physical level topology, we con-

sider a baseline of the full-mesh topology whose ver-

tex set is identical to that of the original topology. We

then calculate the maximum link length, minimum link

length, and total link length of each full-mesh topology

as shown in Table 4. The maximum possible length of

a fibre link is around 4,200 km for each topology corre-

sponding to a diagonal of the continental US. Note that

the total lengths are given in millions of km for a hypo-

thetical full-mesh physical level topology, emphasising

that real networks cannot have unlimited resilience due
to cost constraints.

6 Multilevel Analysis

A holistic graph analysis of the Internet is non-trivial

and does not exist to the best of our knowledge. Un-

derstanding the evolution of the Internet from a multi-

level point of view is more realistic than examining its

properties at individual levels. Therefore, we have de-

veloped a framework to analyse the flow robustness [56]

of multilevel and multiprovider networks. When design-

ing a resilient network, our main goal is providing ser-

vice to the users in a cost-efficient manner. Hence, it

is extremely important that we ensure connectivity be-

tween pairs of end systems. It is for this reason that

we introduced the flow robustness metric, which quan-

tifies resilience as the fraction of node pairs that remain

connected in a network after it has been subjected to

a number of node and link failures. Furthermore, we

categorise networks in the following four groups:

1. Single level, single provider: These networks con-

sist of the physical or logical level of a single provider.

Most previous studies analysed this type of graph [19,

21,56].

2. Single level, multiprovider: These networks con-

sist of AS-level graphs that include several provider

networks, but as a single adjacency matrix in which

each provider is a single vertex of the graph. While

several studies exist in the analysis of AS-level graphs

[32], they treat multiprovider graphs at an abstract

level (i.e. AS number), but they lack capturing the

inter-AS level connectivity into the structure of the

provider graphs.

3. Multilevel, single provider: These networks con-

sist of multilevel graphs within a single provider.

There are a few studies examining multilevel graphs

for a single provider [46,47,52].

4. Multilevel, multiprovider: This type of model

and analysis is the most realistic to capture the com-

plexity of the Internet, and is the ultimate target of

our research.

We begin our multilevel analysis of flow robustness

of a 3-level graph and a 2-level graph in which the top

two level graphs are the same. We show that the two

multilevel graphs exhibit different performance and us-

ing fewer levels of graphs obscures accurate resilience

evaluation of the top level of a multilevel graph. We

then analyse the flow robustness of a number of two-

level graphs constructed from real-world communica-

tion networks. Next, we analyse a multiprovider graph,

which is constructed by aggregating four different ISP

networks into a single adjacency matrix. Our results

confirm that it is difficult to partition the tier-1 ISP

connectivity using attacks targetted at logical links.

6.1 Multilevel Graph Model

In an effort to further understand the structure of a

number of communication networks, we employ a frame-

work for studying multilevel graphs. A multilevel graph

G is a sequence of graphs, G = (G`0 , G`1 , ..., G`L−1
),

ordered from lowest-level graph to highest-level graph

where:

1. L is the number of levels

2. G`i is the graph corresponding to level `i, where `i
can be any desired label, given by G`i = (V`i , E`i)

3. For all non-negative integers i and j such that i ≤ j,
V`j ⊆ V`i
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Fig. 9 Multilevel graph example

4. For all non-negative integers i and j such that i ≤ j
and all nodes u and v such that u, v ∈ V`j , if

conn`i(u, v) = false, then conn`j (u, v) = false, where

the function conn`m takes as its two parameters

nodes in V`m and returns true if the two nodes are

connected in G`m and false otherwise.

In other words, a multilevel graph consists of multiple

graphs, one for each level, arranged such that for any

pair of levels, the set of all nodes in the higher level

is a subset of the set of all nodes in the lower level,

and such that nodes that are not connected in a lower

level are not connected in a higher level. In this paper,

we only consider unweighted and undirected graphs. A

connected multilevel graph is depicted in Figure 9a, and

when a link is removed at the bottom level, this does

not impact the higher level graphs if dynamic routing is

utilised as shown in Figure 9b. Note that in Figure 9c,

the removal of links (1, 6) and (3, 4) in the lowest level

partitions the graph and necessitates the removal of all

links between the disconnected clusters in the above

levels as well.

A number of authors have discussed the importance

of multilevel graphs as a means of further studying the

resilience and survivability of the Internet [28,46–48,52,

63]. Some have even developed multilevel graph frame-

works of their own [46,47]. One study made use of a

multilevel framework in order to study railway, peer-

to-peer, brain, and random graph topologies [47]. Each

topology was subjected to random and loaded [46] link

deletions, which were used to simulate errors and at-

tacks, respectively. The robustness of each topology was

then quantified in two different ways: as the fraction

of logical link weight remaining and as the size of the

largest connected component, both as a function of the

number of link deletions. In our work, we study chal-

lenges [23] on multilevel networks by subjecting topolo-

gies to deletions drawn from a far more extensive group

of graph metrics. Moreover, rather than treating robust-

ness as the fraction of remaining logical link weight or

as the size of the largest connected component, we con-

sider the quantity flow robustness, which is defined as

the fraction of node pairs that remained connected after

a number of deletions [56].

We implement our model in Python. Our code takes

as input a collection of adjacency matrices – one for

each level – and stores them in a single multilevel graph

data structure in memory, with the following require-

ments:

1. For any pair of levels, the set of all nodes in the level

above are required to be a subset of the set of all

nodes in the level below.

2. For any pair of levels, nodes that are disconnected

from one another in the level below are also required

to be disconnected from one another in the level

above.

If the above requirements are met, we can then perform

node and link deletions at any level and calculate any

number of graph metrics with the help of the Python

NetworkX library [39]. When node and link deletions

are performed within a given level, the effects of the

deletion are propagated to the higher levels to ensure

that requirement 2 remains satisfied.

6.2 Multilevel Graph Analysis

We first employ our multilevel graph analysis frame-

work to demonstrate the effect using multiple levels of

graphs on the service resilience [62] at the top level.

For this demonstrative analysis, we use a 3-level graph

(US freeways, geographical physical, and logical-level

topology of Internet2 research network) and a 2-level

graph (physical- and logical-level topology of Internet2

research network) in which top two levels are identical

both for 3-level and 2-level graphs. We emphasise that

the lowest graph in the 3-level graph is the freeways
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graph, and it does not provide a service in the con-

ventional sense to the physical topology other than the

provision of right-of-way. This is an example to show

the impact of using multiple levels of graphs on eval-

uating the service resilience of the top level. For both

the 3- and 2-level network, we perform random node

and link deletions at the lowest level and observe how

these deletions affect the highest level. Moreover, we

consider the effects of these deletions under two sep-

arate scenarios – dynamic routing and static routing.

Under perfect dynamic routing, we allow any pair of

nodes in a given level to remain connected so long as

there exists some path between them in the level be-

low. Under static routing, which we show for worst-case

baseline comparison, we immediately sever the connec-

tion between two nodes within a given level the moment

that the shortest path between them in the level below

is disrupted.
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Fig. 10 Robustness of multilevel network for node deletions
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Fig. 11 Robustness of multilevel network for link deletions

The results of this experiment are shown in Fig-

ure 10 for node deletions and in Figure 11 for link dele-

tions. For both networks, the average flow robustness

of the topmost level is plotted against the number of

random deletions performed at the lowest level. For a

given number of deletions, the average flow robustness

was computed by averaging the flow robustness over

1000 failure sets, each of which was generated by per-

forming the specified number of random deletions. For

each value of average flow robustness on the curve, we

also plot the 95% confidence interval. We note that the

3-level network has higher values of average flow ro-

bustness for any given number of deletions than the

2-level network. For example in Figure 10, when we

delete 50 random nodes in the lowest topology of the

3-level graph (in the freeways graph), the flow robust-

ness at the top level is approximately 0.55, whereas in

a 2-level graph when we delete random 50 nodes in the

lowest topology (in the physical topology), the flow ro-

bustness at the top level is approximately 0. This shows

that adding multiple levels of graphs in resilience anal-

ysis impacts the outcome significantly. The difference

when considering multiple levels is due to the fact that

the bottom level graph has nodes that are a superset

of the top 2 levels. We also note that if the US freeway

topology was less connected (e.g. instead of a grid-like,

it was linear) then the flow robustness would be lower.

However, it is outside scope of this paper to analyse

different connected graphs at the lower layers, and it

will be part of our future work. Moreover, both the

3-level and 2-level network have higher values of aver-

age flow robustness under dynamic routing than under

static routing. Finally as expected, average flow robust-

ness diminishes more severely with node deletions than

with link deletions since a single node deletion results

in the deletion of all of its incident links.

Our framework can handle graphs with any number

of levels. Part of the reason behind the experiment given

above was to demonstrate the ability of our framework

to handle multilevel graphs with more than two levels,

in particular, the 3-level graph with the Internet2 phys-

ical and logical topologies in the two upper levels and

the freeway right-of-way graph in the lowest level. We

focus on 2-level communication networks for the rest of

our multilevel analysis. To that end, we use the geo-

graphical physical and logical level adjacency matrices

for each of AT&T, Level 3, Sprint, TeliaSonera, and

Internet2 to create multilevel graphs for each network,

and then perform node and link deletions within each

multilevel graph at the physical level. Finally, we calcu-

late the resulting flow robustness in the logical level for

every failure set. The results of the experiments involv-

ing node deletions are shown in Figures 12 through 16,
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Fig. 12 AT&T flow robustness for dynamic and static routing during adaptive and non-adaptive node deletions
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Fig. 13 Level 3 flow robustness for dynamic and static routing during adaptive and non-adaptive node deletions
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Fig. 14 Sprint flow robustness for dynamic and static routing during adaptive and non-adaptive node deletions
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Fig. 15 TeliaSonera flow robustness for dynamic and static routing during adaptive and non-adaptive node deletions
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Fig. 16 Internet2 flow robustness for dynamic and static routing during adaptive and non-adaptive node deletions
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while the results of link deletions are shown in Fig-

ures 17 through 21.

As can be seen in Figures 12 through 21, in some

of cases we delete nodes and links at random while

in others we delete nodes and links with very specific

properties. The former experiments serve as a baseline

for comparison against the latter, which focus on those

nodes and links with large values of certain forms of

centrality – in particular, betweenness, closeness, de-

gree, link betweenness, current-flow betweenness, and

current-flow closeness. We discussed the first four met-

rics earlier in the paper; here, we define current-flow

betweenness and current-flow closeness [16].

Unlike conventional betweenness and closeness that

measure a node’s centrality based on the shortest paths

going through that node, current-flow betweenness and

current-flow closeness are both ways of measuring a

node’s centrality based on information flow alone. To

understand these two measures, we must first view the

graph under consideration as an electrical network into

which one unit of current enters from a node known

as the source and from which one unit of current exits

through another node known as the sink9. The loca-

tions of the source and sink suffice to specify a unique

current for each link in the network, as argued in Lemma

1 of [16]. Moreover, once each link is assigned a cur-

rent, it is possible to assign absolute potentials to each

node throughout the network, as argued in Lemma 2

of [16]10.

The current-flow betweenness of a node in a graph is

simply the average of the total current passing through

that node (from all of its incident links) over all pos-

sible electrical networks resulting from different possi-

ble (source, sink) pairs. The current-flow closeness of a

node in a graph is the inverse of the average over all

other possible nodes of the potential difference between

that node when it is treated as the source and the other

node when it is treated as the sink. If we view “current”

as information, then in essence, current-flow between-

ness is a measure of the amount of information that can

pass through a given node, while current-flow closeness

is a measure of the ease with which information can be

sent out from one node into the rest of the network.

9 Note that the concept of an electrical network – and there-
fore the measures of current-flow closeness and current-flow
betweenness – make sense only if the graph is simple and con-
nected. That is why these measures, along with closeness, are
employed only for non-adaptive deletions, explained in the
subsequent paragraph.
10 In order to compute these potentials, we assign each link
one unit of resistance. In other words, we employ the stan-
dard practice of assigning each link of an unweighted graph
a length of one. This provides the ability to capture the link
capacity in future analysis.
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Fig. 17 AT&T flow robustness for link deletions
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Fig. 18 Level 3 flow robustness for link deletions
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Fig. 19 Sprint flow robustness for link deletions
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Fig. 20 TeliaSonera flow robustness for link deletions
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Fig. 21 Internet2 flow robustness for link deletions
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We use all of these measures (betweenness, close-

ness, degree, link betweenness, current-flow between-

ness, and current-flow closeness) as a means to study

what sorts of deletions at the physical level have the

most disruptive effect at the logical level. Furthermore,

we consider two different categories of deletions: adap-

tive deletions and non-adaptive deletions. A non-adap-

tive deletion is defined as a deletion performed based on

the initial node or link centrality rankings that existed

prior to the occurrence of any deletion. An adaptive

deletion is defined as a deletion performed based on

centrality rankings that are recomputed after the most

recent deletion. This can result from an attacker that

has real-time access to internal network management

and operations information.

Finally, note that for centrality-based deletions we

compute flow robustness, while for random deletions

we compute average flow robustness in the same man-

ner as before, that is by averaging the flow robustness

over 1000 failure sets, each of which was generated by

performing the number of random deletions. We also

plot the 95% confidence intervals on each of the points

located on the random curves.

As before, flow robustness diminishes more severely

under static routing than under dynamic routing, and

node deletions have a greater impact on flow robust-

ness than link deletions. Furthermore, adaptive dele-

tions have a more severe impact on the network than

non-adaptive deletions. The reason for this should be

clear: an adaptive deletion is always selecting from the

pool of existing nodes or links the one with the highest

centrality value, whereas a non-adaptive deletion will

select from the pool of one that used to – but may no

longer – have the highest centrality value. Hence, adap-

tive deletions have a far greater tendency to select the

most important nodes or links than non-adaptive dele-

tions, which results in a more severe impact on the flow

robustness of the logical level.

Given a sufficiently small number of deletions, ran-

dom deletions tend to have less effect on flow robust-

ness than any other type of deletion. This is unsurpris-

ing, since deletions based on centrality metrics have a

greater tendency to delete more “important” nodes and

links than random deletions. What is surprising, how-

ever, is that, given a sufficient number of deletions, the

flow robustness resulting from non-adaptive deletions

based on closeness and current-flow closeness surpasses

the average flow robustness resulting from random node

deletions. This holds true for all five of the networks

under study. For example in Figure 14b, with 40 ran-

dom node deletions the flow robustness of the Sprint

network is about 0.3, whereas the flow robustness for

closeness is about 0.55. Similarly in Figure 14b, for 60

random node deletions the flow robustness is about 0.1

and for flow closeness the flow robustness is about 0.2.

We speculate that since these are non-adaptive chal-

lenges, by the time network arrives in a state in which

several nodes are deleted, initially calculated rankings

are no longer accurate. However, why this happens only

for closeness and current-flow closeness centrality met-

rics is not known. The reasons for the occurrence of

this phenomenon, and an investigation into the types

of multilevel graphs to which it is restricted, will be the

subject of future work.

6.3 Multiprovider Graph Analysis

We introduce a new graph-theoretic model in which we

define the concept of a multiprovider graph. Within our

framework, a multiprovider graph is an ordered pair

(GL3, GAS), in which L3 represents PoP-level topology

and AS represents the interprovider AS topology, where

GL3 = (VL3, EL3) and GAS = (VAS, EAS) are graphs

such that:

1. the vertices in VAS are mutually disjoint connected

subgraphs ofGL3 that, when taken together, contain

all of the vertices in VL3. More specifically, if

VAS = {v1, v2, ..., vn}, then

(a) any two distinct vertices vi, vj ∈ VAS will be con-

nected subgraphs of GL3 given by vi = (Vi, Ei)

and vj = (Vj , Ej) such that Vi ∩ Vj = Ø

(b) if we let vi = (Vi, Ei) for all integers i such that

1 ≤ i ≤ n, then
⋃n

i=1 Vi = VL3.

2. there exists some function f : EAS → 2EL3 such that

for any pair of distinct vertices vi, vj ∈ VAS given by
vi = (Vi, Ei) and vj = (Vj , Ej), if {vi, vj} ∈ EAS,

then f({vi, vj}) = Vij ∩ EL3 where Vij is the set

of unordered pairs {ui, uj} such that {ui, uj} ∈ Vij
if and only if ui ∈ Vi and uj ∈ Vj . More explic-

itly, the mapping f is used to identify edges be-

tween specific AS peer routers that serve to connect

two ASes vi, vj ∈ VAS that share a given AS-edge

{vi, vj} ∈ EAS.

To study multiprovider graphs, first we combine the

PoP-level topologies of four commercial ISPs (AT&T,

Level 3, Sprint, TeliaSonera). We treat each ISP as a

single AS, and the resulting AS-level abstract graph is

a full-mesh with 4 nodes, in which each AS is connected

to the other through a logical IXP (Internet exchange

point) link. We select Atlanta NAP [1], Equinix [2],

Terremark [7], and MAE-East [5] as the IXPs in which

4 ISPs are connected. The reason we select these 4 IXPs

is that we analysed a number of IXP websites and found

that these IXPs do provide service to the 4 commercial



Transportation and Communication Networks 17

ISPs. We do not claim that this is an exhaustive list of

IXPs, however, it was sufficient to generate a full-mesh

AS-level graph for those tier-1 ISP providers. The 4

IXPs are distributed across the US in 17 different cities

and there are 51 logical links that connected the four

ISPs.
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Fig. 22 Flow robustness of multiprovider network

In Figure 22, the flow robustness of a multiprovider

graph is shown. In this case we delete all inter-AS IXP

links in a city, ranked based on betweenness. As ex-

pected, adaptive attacks inflict more harm than non-

adaptive attacks, which, in turn, inflict more harm than

randomly-placed attacks. In Figure 22, the sharp reduc-

tions of flow robustness due to targetted attacks indi-

cate the disconnection of an AS from the AS-level graph

following such attacks. Note that several cities must be

deleted in order to disconnect a single AS. In contrast,

the flow robustness values in random scenarios decrease

at a smoother rate because the flow robustness is av-

eraged over 1000 failure sets. For example, the flow ro-

bustness values indicate that a very high percentage of

the failure sets following the twelfth city deletion did

not partition the network in any manner. Furthermore,

our results indicate that it is very difficult to partition

the tier-1 ISP connectivity, which is a full-mesh, given

that it requires at least 9 cities and all the IXP links in

a city to be destroyed. If we had included all IXPs in

more than 17 cities, intuitively it would have been even

more difficult to partition the AS-level graph.

Next, we analyse flow robustness of two provider

graphs and their connections via IXPs. In this case,

we investigate the flow robustness of provider duos as

shown in Figure 23. Since these graphs are constructed

by only two providers, the impact of random deletions

and centrality-based attacks result in the same flow ro-

bustness. The connectivity between these provider duos

flo
w

 r
ob

us
tn

es
s

number of city deletions

AT&T and Level 3
AT&T and Sprint

Level 3 and Sprint
AT&T and TeliaSonera

Level 3 and TeliaSonera
Sprint and TeliaSonera

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
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Fig. 24 Resilience of Level 3, Sprint, TeliaSonera trio

breaks when the nth IXP link is broken. For example,

AT&T and Level 3 peer with each other in 16 cities,

and flow robustness remains at 1 until the 16th IXP

link breaks, in which flow robustness drops to 0.

Finally, we analyse the flow robustness of a provider

trio combination (Level 3, Sprint, TeliaSonera). The

network performance when challenged by random fail-

ures and targeted attacks against IXP links are shown

in Figure 24. The number of IXP connections reduced

from 17 to 10 as shown in Figure 24 when we con-

sider only three providers. As expected, the flow ro-

bustness depends on the number of IXP links between

the provider trio.

7 Flow Robustness and Spectral Properties

Previously, we presented how physical communication

topologies match the structure of the right-of-way of

freeways using normalised Laplacian spectra. In this

section, we compare the flow robustness against spec-
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Table 5 Ranking of flow robustness and spectral properties

Network
Avg. Flow FR

a(G)
a(G)

ρ(L) ρ(L)
Robustness Rank Rank Rank

Level 3 L3 0.9413 1 0.9758 1 1.5037 1
Sprint L3 0.6503 2 0.6844 3 1.6361 2

TeliaSonera L3 0.5963 3 0.7669 2 1.7237 3
Internet2 L3 0.4779 4 0.4885 4 1.8091 4

AT&T L3 0.2996 5 0.1324 5 1.9127 5
TeliaSonera L1 0.1615 6 0.1178 6 1.9642 6
CORONET L1 0.0958 7 0.0401 7 1.9688 7

Level 3 L1 0.0721 8 0.0261 9 1.9811 9
Internet2 L1 0.0626 9 0.0386 8 1.9858 11
US freeways 0.0323 10 0.0055 10 1.9752 8

AT&T L1 0.0222 11 0.0055 11 1.9892 12
Sprint L1 0.0164 12 0.0053 12 1.9840 10

tral properties of the networks we study. The two im-

portant spectral properties we are interested are alge-

braic connectivity a(G) and the spectral radius ρ(L).

We present these metrics of five logical level topologies,

six physical level network topologies, and US freeway

graph in Table 5.

Flow robustness was defined in the previous section;

here, we calculate its value for single level graphs for

comparison. We approximate the average flow robust-

ness of a given network by averaging the flow robust-

ness over its 10,000 link-failure sets drawn uniformly

and randomly from the pool of all of its link-failure

sets. Next, we consider the algebraic connectivity a(G)

of these topologies. Algebraic connectivity is the sec-

ond smallest eigenvalue of the Laplacian matrix and

is well-suited for measuring graph connectivity and for

comparing the connectivities of graphs with the same

order [34]. Finally, we consider the spectral radius of

these 12 topologies. The spectral radius ρ is the ab-

solute value of the maximum eigenvalue, ρ = |λmax|.
Moreover, if ρ(L) = 2, then the graph is bipartite, and

the closer the spectral radii to 2, the closer the graph

is to a bipartite. We calculate the spectral radius of the

normalised Laplacian matrix ρ(L) shown in column 6

of Table 5. We note that we previously studied spectral

radii of Laplacian matrices ρ(L) and adjacency matri-

ces ρ(A), but did not observe any pattern for ρ(L) and

ρ(A) [19].

We rank the flow robustness of networks in descend-

ing order in columns 1 and 2. The logical topologies

have higher values compared to the physical topologies

and the US freeway graph. When we rank the topolo-

gies according to descending values of a(G), we observe

a similar ranking order. In this case, only the rank-

ings of the Internet2 and Level 3 physical topologies are

swapped. Finally, we rank the spectral radii of these 12

topologies in ascending order. The ranking according to

the spectral radii of the first seven topologies matches

the rankings of the flow robustness and a(G). Our con-

clusion from this ranking comparison is that flow ro-

bustness, algebraic connectivity, and spectral radii are

suitable metrics for the resilience analysis of networks.

8 Discussion

In previous sections we presented how communication

and freeway right-of-way graphs relate to each other

as well as an analysis of multilevel communication and

transportation networks. In this section we discuss what

these result mean for the network research community.

Existing models of the Internet often employ a single

level perspective. However, as we demonstrated, multi-

level graphs yield different performance measures than

single level graphs under network perturbations. More-
over, given that the Internet is built on multiple levels

structurally, synthetic topology generators as well as

Internet models should consider its multilevel nature.

Another important factor is the geography of the nodes.

While statistical frameworks provide analytical models

of the Internet, fibre routes are built on the right-of-way

of the freeways, railways, and other critical infrastruc-

tures [61,64]. Moreover, freeways and other critical in-

frastructures are not built randomly or via the preferen-

tial attachment model–instead, they are built between

adjacent major population centers in a way that will

reduce the cost of building these infrastructures [40].

Eventually, this impacts how the fibre routes are laid

out since placing fibre along a freeway is more feasible

than placing it over mountains or other unreachable ter-

rain even if it might result in a shorter physical path.

Another important point of discussion is the differ-

ence in graph-theoretic properties between the physi-

cal and logical topologies. While freeways and physi-

cal fibre route graphs share similar grid-like structural
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characteristics, logical overlays clearly differ from the

physical underlays in terms of well-studied graph met-

rics, spectral properties, and flow robustness values.

Physical topologies have higher distance metric values,

whereas logical topologies have higher centrality met-

ric values. Intuitively, one would expect that a richly-

connected underlay is needed to provide a resilient ser-

vice to users. We have shown that while lower level

graphs have grid-like structure and higher level graphs

have mesh-like structure, the resilient service at the

highest level depends on the protection of critical net-

work elements that are common at all levels.

A third and final point of discussion is that, for a

sufficiently large number of challenges, random failures

can degrade the performance of a network more severely

than non-adaptive attacks targeted at nodes based on

closeness and current-flow closeness centrality metrics.

This is an interesting result and we aim to investigate

the reasons behind it in future work.

9 Conclusions and Future Work

Realistically modelling the Internet requires a collective

and systemic analysis of all of its structural properties.

Intuitively, fibre-level topologies are laid along right-of-

way of the freeways, since it is less costly than line-

of-sight installation. We analytically show structural

similarities between these physical infrastructures by

using the normalised Laplacian spectra. Moreover, we

show that synthetically generated Gabriel graphs can

model physical level topologies that are grid-like; how-

ever, with a greater cost incurred. We then show that

geographical physical level graphs are dominated by

degree-2 nodes, and removal of them provides more ac-

curate structural metrics, particularly for degree distri-

bution. Next, using the flow robustness metric we eval-

uated multilevel graphs and analysed combined com-

munication and transport networks with our multilevel

framework. We confirmed that dynamic routing helps

alleviate the impact of perturbations and that adap-

tive challenges degrade multilevel network performance

more than non-adaptive challenges. We also computed

the flow robustness values of single level graphs and our

results indicate that the rankings provided by impor-

tant spectral properties are comparable to the rankings

provided by the flow robustness metric.

Our future work will include the incorporation of

other critical infrastructures such as railways, pipelines,

and the power grid. We will also investigate the signif-

icance of the closeness and current-flow closeness cen-

trality metrics in order to determine why – for a suffi-

cient number of deletions – they have less impact on

the network than random failures. We will evaluate

multi-domain networks including tier-2 and tier-3 net-

works using our multilevel graph framework. Finally, we

will generate graphs with specific properties and adding

links and nodes to increase resilience.
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