Machine Learning based Optimized Live Virtual
Machine Migration over WAN Links

Moiz Arif, Adnan K. Kiani, Junaid Qadir
School of Electrical Engineering & Computer Science (SEECS)
National University of Sciences & Technology (NUST), Islamabad, Pakistan
Email: {12mseemarif, adnan.khalid, junaid.qadir} @seecs.edu.pk

Abstract—Live virtual machine migration is one of the most
promising features of data center virtualization technology.
Numerous strategies have been proposed for live migration of
virtual machines on Local Area Networks. These strategies work
perfectly in their respective domains with negligible downtime.
However, these techniques are not suitable to handle live mi-
gration over Wide Area Networks and results in significant
downtime. In this paper we have proposed a machine learning-
based downtime optimization (MLDO) approach which is an
adaptive live migration approach based on predictive mechanisms
that reduces downtime during live migration over wide area
networks for standard workloads. The main contribution of our
work is to employ machine learning methods to reduce downtime.
Machine learning methods are also used to introduce automated
learning into the predictive model and adaptive threshold levels.
We compare our proposed approach with existing strategies in
terms of downtime observed during the migration process and
have observed improvements in downtime of up to 15%.

Live Migration, Wide Area Network, Virtual Machine,
Hypervisor.

I. INTRODUCTION

Virtualization is the art of abstraction of the hardware
resources and provisioning them in software [1]. Multiple
operating systems can run on single hardware resource shared
amongst the instances. Hypervisors ensure that the resources
are virtualized and provisioned to the virtual machines. Every
virtual machine is given the illusion that it is in control of the
entire hardware resource. Such features have enabled its mass
deployment in data centers. Virtualization technology is being
used to provide numerous services in every field of technology.

Maintenance of a data center involves servicing of servers,
racks and network nodes. This requires the servers to be
powered off for a pre-determined amount of time until the
job is completed. In order to achieve this goal, the services
hosted by server need to be moved to another location. This is
known as migration of services. There are several important
parameters linked with migration like total migration time,
downtime of services and resource utilization. Migration of a
virtual machine while it is running is known as live migration
[2] [3]. The above mentioned performance parameters play a
significant role in the live migration of services. Migrations
can be planned as well as unplanned. The primary goal is to
minimize downtime associated with live migration of virtual
machines.

Local Area Network (LAN) is a network of computer
systems that are limited to a small geographic area. Existing
live migration techniques work well in a LAN environment
[4]. Researchers have proposed many modifications and
optimizations with the help of which live migration can
be successfully completed without any noticeable service
downtime. When it comes to Wide Area Networks, conditions
change [4] and normal live migration techniques are not
applicable anymore. The same techniques that work perfectly
over LANs can cause significant downtime over WAN links
causing the migration process to fail. WAN links are generally
constrained in bandwidth and are often unpredictable. There is
often limited bandwidth available with high latency, jitter and
packet loss. These constraints impose certain restrictions that
have to be catered for while designing migration strategies
over WAN links.

In addition to the restrictions imposed by the WAN links,
there are certain application level restrictions as well. VM
accesses a memory for read or write operation and changes
the content of the memory. The rate at which the VM
changes the content of the memory is referred to as the
page dirtying rate. It is an accepted norm that lower page
dirtying rate would result in reducing the time required to
iteratively copy the contents of memory. Size of the workload
associated with VM also plays an important role since we
generally do not have a common storage area network in
WANS. The size of disk and memory can vary from a few
hundred Megabytes to several Gigabytes and transferring such
big files over limited-bandwidth links pose a serious challenge.

There are two commonly used migration strategies [4]:
Pre-Copy [2] and Post-Copy [5]. In the pre-copy approach
memory is copied from the source to destination in iterations
until a certain threshold after which there is a brief stop in
copy phase followed by the resume phase. In this strategy
the downtime is time required for the stop and copy phase.
Most hypervisors use the pre copy migration approach. In
this approach we have to cater for the page dirtying rate. If
the page dirtying rate is greater than the copy rate then this
techniques is stuck into an infinite iterative loop. Initially the
container or resource for VM is reserved at the destination.
Subsequently, all memory pages are copied in the first round
and successive rounds only copy the pages dirtied by the

VM. As a consequence, the source VM is suspended and
certain measures are taken to fully synchronize the state of
VM with destination. The state of VM at the source is then
released and resumed at the destination.

The post copy strategy involves suspension of the VM at
the start followed by the copy phase in which bare minimum
processor state is copied at the destination. The processor
state is sufficient to run VM. Subsequently, memory pages are
copied to the destination. Here memory pages are not copied
over and over again and each page is copied only once.
Another noticeable difference is that in pre-copy approach
the source handles all the requests; however, in post-copy
this task is assigned to the destination. Different variations
of post-copy technique have been proposed and they differ
with each other in the way the memory pages are copied.
The popular variations are Demand Paging, Active Pushing
and Pre-Paging [6]. Demand Paging involves copying only
the required page from the source. Active pushing copies the
pages during suspension phase while the container is being
set up at the destination. Pre-paging is an extension of active
pushing as it predicts the requirement of a page by analyzing
VM memory access patterns and based upon that, it changes
the duration of the copy phase.

Another important factor in the migration process is
the fact that the network connections or settings at the
destination should be an exact replica of the source and
should be consistent. In LAN networks this does not raise any
significant concern as we remain in the same subnet and the IP
addresses does not change. However, over WAN we can have
different subnets and the downtime can be large enough to
cause a TCP connection timeout and eventually breaks up the
connection between server and the client. Various approaches
like Provider Provisioned Virtual Private Network (PPVPN)
[7], Active and Programmable Networks [8], Overlay
networks [9] and Network Virtualization Environment (NVE)
[10] have been proposed by researchers to tackle this problem.

Copying large workloads and VM disks over slow WAN
links is an important concern. Apart from these challenges,
we also have VMs with huge RAM allocations which pose a
serious problem during live migration process. Researchers
have proposed some solutions to this problem such as xXNBD
[11] and CR/TR-Motion [12]. Most approaches involve
having a storage area networks where heavy workloads are
copied independently without disrupting normal network
traffic. Migrating traffic is assigned higher priority on the
network. This can however result in overwhelming of link
and causing service degradation to other applications.

Machine learning techniques are applied in computer
sciences in order to reduce human intervention and make the
system self-aware and automatic [27]. The learning process is
based on data input over a period of time and the outcomes
are used to make better decisions in the future. New data

or samples are compared to the model optimized by the
machine learning algorithms in order to categorize them and
make decisions. For making efficient predictions, we expect
the machine learning algorithms to produce prediction rules
as accurately as possible. Machine learning can be applied
to the domain of VM migration in data centers. In this
particular scenario, the machine learning algorithms would
be able to efficiently predict the time when the system should
automatically migrate VMs away from any host in order
to avoid significant downtime caused due to congestion of
resources. These decisions are based on violation of threshold
values set for physical and virtual parameters. Thresholds are
referenced as the maximum values after which the system
might show degraded performance. Threshold breach event
can be avoided based on the predictions made by the machine
learning algorithms. There are other advantages that can be
harvested from such systems like conservation of energy
by migrating VMs and shutting off extra servers. The main
contribution of our work is to introduce automated learning
into our predictive model using machine based learning
techniques and decision tree learning.

Some salient aspects of our work:
A. Use of Prediction model:

In our work we make use of prediction methods in order to
predict the conditions that result in triggering of the migration
process. These prediction models identify the critical time
intervals of resource utilization of the system where we
have increased resource utilization. A migration during these
critical time intervals can cause significant downtime. The
prediction model takes into account the historical behavior of
the system and makes sure that all the necessary migration of
VMs are completed before the critical time intervals.

B. Use of Machine Learning Algorithms:

We introduce automated learning into our proposed model
by employing machine learning algorithms. Machine learning
introduces automated intelligence into the system with the
help of which the system becomes self aware of the decisions
to be made. With the help of prediction models these
decisions are also scrutinized after any decision has been
made. Our system is based on adaptive threshold based model
for resources. The thresholds are continuously optimized
overtime with he help of machine learning algorithms.

In this paper, we present a new migration strategy for
WAN links. A new predictive algorithm MLDO is proposed
that reduces downtime significantly. This paper is organized
as follows: in section II we discuss the existing migration
strategies. In Section III we present our proposed migration
approach. Section IV describe results obtained from our mi-
gration approach. Section V sheds some light on future work
and Section VI concludes the paper.

II. STATE OF THE ART WORK

In [13], the authors have described a new approach to
seamlessly migrate a live running virtual machine over
Metropolitan Area Network/Wide Area Networks with no
noticeable downtime. Xen virtualization environment is used
with pre-copy migration approach. The downtimes quoted
in the work were 0.8 to 1.6 seconds. These values are
only 5-10 times larger than that of the LAN strategies. VM
traffic controller is introduced which is basically a broker
service and is responsible for provisioning of network,
data, computational resources and IP tunnels. The strategy
proposed in the paper does not take into account variable link
speeds between nodes which can be a major bottleneck when
evaluating service downtime.

In [14], authors have proposed a cooperative context aware
approach towards data center migrations over WAN. They
advertise the use to tunneling technology to immediately set
up the network when the need for migration is identified.
As soon as the migration process is completed, and having
the network set up, the new traffic is now directed to the
migrated VM via tunnel. The traffic is then re-routed to
use a more direct and optimal path. For copying of the
file systems, authors have proposed the use of flexible and
adaptive replication system that replicates and synchronizes
file system between local and remote locations. Asynchronous
replication is used for the initial transfer of data in bulk and
then switches to synchronous replication for the remainder
of migration process. Authors have also discussed check
pointing procedures for the migration scenario during
unplanned outages. The paper lacks evaluations for variable
link characteristics.

In [15], authors have proposed a complete platform for
migration of virtual machine across WANs. A Virtual Private
Network (VPN) based network infrastructure is used that cater
for the networking requirements. Some optimizations have
also been proposed for moving of memory and local persistent
storage over bandwidth constrained WAN links. Extensive
evaluations have been performed over software and in real
world data centers and results have shown that total migration
time is reduced by 30%, memory migration time is reduced
by 65% and lowers the bandwidth consumption over the links
for memory and storage migrations by 57%. Steps involved
in live migration of VM include establishment of layer 2
connectivity between source and destination, transfer of disk,
transfer of memory and suspend/resume phase. In order to
achieve seamless migration of network connections, Virtual
Private LAN Service (VPLS) based VPN technology is used
in initial step. Asynchronous disk copy method is used and
soon after synchronous copy mode for live memory migration
is carried out. Some optimizations have been made to the pre-
copy approach which improves performance and is termed
as Smart Stop and Copy. Finally, content based redundancy
method is used to conserve bandwidth.

In [16], authors have explained server consolidation
frameworks and have given a detailed review and comparison
of existing server consolidation frameworks and their
challenges. Authors have described optimizations for virtual
machine migrations and have compared the optimization
techniques with each other.

In [17], authors have evaluated adaptive threshold based
approach for the consolidation of virtual machines in cloud
data centers. Authors have carefully explained how threshold
based systems work and differences between different
threshold based frameworks. Optimization to the adaptive
threshold based algorithms gives the minimum possible
Service Level Agreements (SLA) violation. The work done
by the authors gives a detailed insight on threshold based
systems and their contributions to the efficient consolidation
of virtual machines in data centers.

In [18], authors have proposed an advanced live migration
mechanism enabling instantaneous relocation of VMs based
on post-copy live migration. Implementation has been done
by including a light weight extension to KVM (Kernel-based
Virtual Machine Monitor). Experimentation showed that a
heavily-loaded VM was successfully migrated to another
physical machine within 1 second.

After evaluating various techniques proposed for live
migration of a virtual machine over WANs, we have
concluded that these approaches are limited and are have
a subset of features that a complete approach should have
when we take wide area network links. A complete approach
should be able to handle variable link speeds, unpredictable
nature of traffic patterns, variable delays and in some cases
disaster recovery procedures. The approaches lack predictive
intelligence that can prevent disaster or proactively act in
order to avert any unforeseen situation. Similarly, correlation
between workload sizes, available bandwidth and nature
of service offered by the application hosted by the VM is
necessary for finding an optimal operating point before and
during migration process.

III. PROPOSED APPROACH

In this paper, we propose predictive mechanisms to
predict the need for migration by monitoring a distinct set
of parameters. Our approach is divided into 2 modules:
Monitoring Engine and Processing Engine. Both modules
work in close coordination. The monitoring engine monitors
physical and virtual parameters and collects data for the
processing engine. The processing engine compares the data
with pre-defined thresholds and apply machine learning
methods to make decisions. We build a statistical model
based on collected data and by varying parameters and link
characteristics. Our approach is independent of underlying
hypervisors and can run with any virtualization suite.

A. Monitoring Engine

The monitoring engine monitors CPU, memory and network
utilization for servers and reports to the processing engine.
This engine is also responsible to keep track of all usage of the
server. The engine logs the data in the database for heuristic
analysis. Based on the data being monitored, migration deci-
sion is taken. Various statistical data is logged and plotted for
user-based decisions and automatic migrations. The idea here
is to start the migration of VMs based on its usage patterns
as well as the load conditions on the physical server. Figure
1 shows us the basic signaling phase for a threshold breach
event. The monitoring engine on detecting a threshold breach
event sends an exception to the processing engine which in
turn gathers the required information necessary to continue
with the migration process. Information is taken from the
databases and the selected remote host is contacted in order
to reserve the resources.

Remote
Host

Processing
Engine

Monitoring

Engine Database

exception(cpu,value)

ACK(suppr_cpu_except)

db_query(vm_list, info)

o

db_reply(vm_list, info)

db_query(guest _list, info)

db_reply(guest_list, info)

resource_reservation(vm_info)

ACK (resources_reserved)

MIGRATION PHASE

Fig. 1: A sample of signaling message flow of the monitoring engine
due to threshold breach event

Parameters are monitored live and the data is saved in the
database at 10 second intervals. The value of this interval
can be changed keeping in view the required granularity
and accuracy of monitoring. This data is saved later on by
the processing engine in performing historical analysis and
determining usage patterns for a particular node. Parameters
monitored are CPU utilization, memory usage, network
parameters and disk usage patterns. We leverage libvirt
library and linux based modules for achieving the monitoring
goals. For database operations we use MySQL. Monitoring
engine also maintains a database of all available hosts in

the data center along with all its available resources. It
also stores information regarding all VMs running on hosts.
This database is updated along with creation and deletion
of VMs and with other related operations. The database
holds the following information breached events, migration
events, average utilization of hosts in the database along
with timestamps, CPU, memory and network utilization,
network parameters, disk usage patterns, list of all available
hosts in the data center along with all its available resources,
information on all VMs running on hosts. The database tables
are updated row by row with new information being added
to the respective tables using python MySQL APIs. When
the engines start the Initial dimension is considered to be the
current values of the entire system and as the time passes the
averages historical information are included in the decision
making process thereby fine tuning the system. The maximum
allowed information is different for every table used in the
MySQL database. The utilization values are capped at 7 days.
Migration and breached events have no maximum allowed
limitation. The VM and host tables are as per demand and
based on the actual servers and VMs running in the datacenter.

The thresholds are defined and modified by the processing
engine. Monitoring engine is responsible for correlating
monitored data with the corresponding thresholds. In case of
a threshold breach the monitoring engine raises a flag to the
processing engine and specifics the parameter breached and
other required information needed by the processing engine
in making the migration decision. These decisions are made
with the help of machine learning algorithm C4.5 [19]. The
decision tree algorithm C4.5 is used to identify the need to
migrate and similarly the prediction rules are defined. The
decision tree is based on the CPU, memory and network
threshold values. The cases where the thresholds have been
breached are referred to as breached events. The cases where
breached events are followed by migration is known as
migration events. For both the cases respective flags are set
and removed. Monitoring engine separately logs breached
events, migration events and average utilization of hosts in
the database along with timestamps. All threshold values
are also stored in the database. Currently, historical data is
being stored in the database for up to 7 days with varying
frequency of updates depending on the parameter.

Threshold breach events are tackled in two possible
scenarios. First scenario is Reactive handling of events in
which a threshold breach event is detected by the monitoring
engine and a flag is raised to the processing engine along
with the necessary details about the threshold breach event. In
this scenario the decision tree made by C4.5 tells us whether
to migrate or not by comparing the current utilization values
with the predefined thresholds and correlating with historical
data available to the system. The second scenario is based
on proactive handling of events which is further explained in
the processing engine.We use C4.5 to generate the decision
tree based on training data provided to the algorithm and

used for classification of the new arriving data set. Specific
release is C4.5 Release 8 and use statistical pruning. From a
statistical point of view the chances of getting false positives
are reduced with time and as more and more historical data
is available. The confusion matrix of the system shown in
Table 2 is for the outcome of total 95 test cases. Here we
define basic terms such as true negatives (15), true positives
(73), false positives (4) and false negatives (3)

TABLE I: Confusion Matrix for the system

N =95 Predicted Predicted
’No’ ’Yes’
Actual "No’ 15 4
Actual *Yes’ 3 73

The results from the confusion matrix shows that we have
an Accuracy of 92.6% and a mis-classification rate of 7.4%.

The migration decisions specified at the end of the decision
tree are not final. Final decision of migration is taken by
the processing engine after analyzing the network and link
characteristics at the source and the destination. Processing
engine also performs heuristic analysis on the previous breach
events and the average utilization values of the hosts during
the estimated duration of the migration process.

Figure 2 shows us a sample decision tree for the case in
which we take CPU and memory utilization parameters as a
basis for decision making. The decision tree starts off with
the CPU utilization on top due to the fact that without enough
CPU resources available the migration process can fail and
can cause performance degradation to other VMs or services
running on the machine.

CPU
Utilization

> max_cpu_thresh < max_cpu_thresh

Start
Migration

< max |nw_thresh
< max_nw_thresh

> max_nw/thresh 2 max_nw] thresh

Delayed Start Delayed Start
Migration Migration Conditional Migration
Migration

Fig. 2: Final decision tree diagram of the system which outputs the
need to migrate a VM based on threshold breach events

The monitoring engine continues to monitor the parameters
while the migration is in progress and also keeps a check
on network utilization at both the source and the destination.
Monitoring engines at both data centers talk to each other
and share usage information on regular basis and also during
the migration process. Monitoring engine acts as a bridge for
external communication for any given host.

B. Processing Engine

The processing engine consumes usage data from the
monitoring engine and performs migration of virtual
machines based on thresholds. These thresholds are adaptive
and change whenever a special conditions arises. Migration
thresholds are set in order to avoid network congestion due to
heavy migration traffic flow over WAN links. Whenever CPU
load breaches a certain threshold the processing engine will
check the network load and link condition. It will then decide
on an adaptive migration traffic speed so that normal inter
data center traffic is not affected. This technique is especially
helpful when we have large RAM and disk sizes for VMs.

Thresholds for CPU utilization, memory utilization and
network characteristics are defined in the processing engine
and fed to the monitoring engine. These thresholds are
adaptive and they change based on the usage patterns of
the nodes and adjusting to an optimum value. Based on the
number and time of occurrences of threshold breach events
of any parameter and correlating it with usage patterns, the
processing engine predicts with a certain degree of accuracy
when on any given server there is a breach of threshold.
This scenario is referred to as Proactive as compared to
the Reactive scenario mentioned in the monitoring engine.
With this prediction the processing engine takes preventive
measures to avoid that situation. When the preventive
measures are taken the processing engine does a post analysis
of the situation and reinforces its decision or learn from it.
Over time optimum values of thresholds is further polished.
All of this is done by the C4.5 algorithm based on the
training data provided to the processing engine by the
monitoring engine and the database. The decision tree helps
in the classification of new events. Current utilization values,
historical average utilization, along with previous threshold
breach and migration events along with timestamps are fed
into the machine learning algorithm and it keeps on updating
the thresholds dynamically. The initial threshold values are
pre-defined in the processing engine source code and they are
dynamically updated and optimized over the period of time.

The decision tree is a 2-tier structure which results in the
migration decision. Delayed migration waits for adequate
network bandwidth to be available before starting the
migration process. Delayed conditional migration case is
monitored more closely for some time until the memory
utilization falls below the threshold or adequate network
bandwidth becomes available. The no migration case describe

the case of continued migration of parameters under normal
circumstances. Decision tree generation algorithm is explained
in Algorithm 1.

Algorithm 1 Decision Tree Learning

1: if CPU — Util > MaxCPUthresh then

2. if Mem — Util > MaxMemThresh then
3: Start Migration

4: else

5: if Net — Util > MaxNetThreshold then
6: Delayed Migration

7: else

8: Start Migration

9: end if

10: end if

11: else

122 if Mem — Util > MaxMemT hresh then
13: if Net — Util > MaxNetThreshold then
14: Delayed Conditional Migration

15: else

16: Start Migration

17: end if

18: else

19: No Migration
20: end if
21: end if

Figure 3 shows the prediction process as a whole. It gives a
high level understanding on how the monitoring and process-
ing engines are inter linked and the types of data the processing
engine consumes in order to make prediction. Custom data
lookup refers to the fact that whenever a migration decision
has to be made the processing engine queries the database
for specific information that will help reinforce or cancel
the hypothesis that a migration has to be made based on
current threshold breaches. The historical data for a particular
host/VM refer to the dataset saved in the database pertaining
to a particular host/VM. The data is updated from time to
time like a sliding window with the length of 7 days for
utilization values. These values are co-related to the previous
migration and threshold breach events to predict whether at
any time period in the near future there would be a need to
migrate workloads or not. For the initial case the reference
time interval would be the time at which the VM boots up or
the host comes online.

The prediction algorithm embedded in the processing
engine takes the current utilization values (CUV), historical
utilization averages (HUA) along with timestamps, previous
threshold breach events (TBE) and previous migration events
(PME) as input. The average utilization values are averaged
over a 30 second interval. Further averages are calculated as
per demand especially when comparing increased utilization
valued intervals with the threshold breach identified cases.
Threshold breach events and previous migration events

Database

Historical Data

+ Average utilizations along with timestamps
* Previous Breach Events with timestamps and util values
* Previous Migration events along with threshold values
* Custom data lookup for heuristic analysis

Current CPU —y CPU
Utilization . Threshold
Processing
Monitoring Current Memory Engine |—> Memory
Engine Utilization (Ngo182) Threshold
Current NW BW —p oy, Network BW
Utilization Threshold

CPU, Memory & NW BW Thresholds

Fig. 3: System level block diagram showing calculation of adaptive
thresholds and the overall prediction model used by the system

are mapped with each other to identify the cases where a
threshold breach event resulted in migration of a VM. Such
cases are referred to as threshold migration event (TME).
Similarly, current utilization values and historical averages
are mapped together and time intervals are identified where
we have increased utilization averages. These intervals are
referred to as increased utilization intervals (IUI). Then we
identify critical time intervals (CTI) in which by mapping
threshold migration events with these increased utilization
intervals. Such intervals would be those where historically
increased thresholds were recorded and the threshold breach
event resulted in migration of VMs. The processing engine
finds out the VMs to migrate and calculate the estimated
time required to complete the migration event and executes
the migration in such a way that it completes before the
critical time interval approaches. Algorithm 1 will decide
whether to migrate based on a breach event which happened
due to a breached threshold however the results of this
algorithm are used by the algorithm 2 to predict future
migrations. Algorithm 2 learns from previous occurred events
and adjust itself accordingly in order to make itself aware of
the anomalies occurred in the past and tries to proactively
avoid those conditions.

The internal working of the processing engine is based
on the type of threshold breach notification it receives from
the monitoring engine. This notification is taken as the
need to migrate a virtual load away from a server. The first
step is to choose a suitable destination amongst the list all
available hosts. There is a scheduler routine running within
the processing engine whose sole responsibility is to consume
a list of hosts and output the most suitable host to run the
virtual load. The decision tree includes taking into account

Algorithm 2 Prediction Algorithm

Require: current utilization values, historical utilization aver-
ages, threshold breach events, previous migration events
1: for all Values of CPU utilization, memory utilization and
network utilization do

2: CUV <« current_utilization_values

3. HUA « historical_utilization_averages
4: TBE < threshold_breach_events

5. PME < previous_migration_events
6: while TBE & PME # 0 do

7: for i in range(len(TBE)) do

8: for j in range(len(PME)) do

9: if TBEJi|[j] == PME]i][j] then
10: TME <+ ali

11: else

12: continue

13: end if

14: end for

15: end for

16: end while
17: for k in range(len(CUV)) do
)

18: for [in range(len(HU A)) do

19: if CUV[k][l] > HUA[K][!] then
20: IUT <+ HUA[K][I]

21: else

22: continue

23: end if

24: end for

25: end for
26: for m in range(len(TME)) do

27: for n in range(len(IUI)) do

28: if CUV[k][l] == HU A[K][l] then
29: CTI « IUI[K][]

30: else

31: continue

32: end if

33: end for

34: end for

35: end for

migration process starts and it uses Pre-Copy technique. As
a first step the disk contents are copied at the destination and
then the memory contents. Memory is copied in iterations and
when the remaining dirty pages is below a specified threshold
the VM is shut off to copy the remaining contents and then
VM is resumed at the destination. The traffic is temporarily
routed from the host to the destination via tunnels in order to
keep the incoming network connections alive till the time the
new route is advertised for the new destination. Processing
engine maintains a routing table of all available routes for all
virtual machines running on physical machines along with
other important information.

Another important factor is the network bandwidth utilized
by the migration process. Migration traffic is high priority
and it takes preference over normal traffic. Processing engine
monitors the traffic patterns on the link and controls the
bandwidth allocated to the migration process so that the
migration process doesnt overwhelm the link and cause
service disruption for other services. This consideration
applies at the source and at the destination. Figure 4 shows
the initialization phase for the proposed system.

Monitoring & Processing Engine Initializas

/

the resource table maintained by the monitoring engine in
the database. The scheduler makes sure to avoid migrating
a VM to a heavily-loaded server or to a server where for
instance the CPU utilization is bound to increase based on the
usage patterns of that server. Simultaneously, choosing which
virtual machines to migrate is based on the minimization
of migration [17] approach. This approach ensures that
minimum number of VMs are migrated from the source to
the destination. After each migration is done the threshold
flags are checked, the migration process continues until the
threshold breach event has been closed.

As soon as appropriate destination is identified by
the scheduler, the required resources are reserved at the
destination and the database is updated accordingly. Now the

Creation of database and I Setting.gp of TLS
tables certificates
A 4
Database Synchronization | Connect tolibvirt (Local &
Remote)
‘ Threshold
itori i values
Momtorm;gt;’_):‘tattnbutes Calculation of Thresholds

Saves info
in DB

U{\\‘\‘La{‘o(\o% Runtime feed of
?\eads\)esﬁ(om Utilization values

NG

Current Utilization values
(Runtime)

Database

Fig. 4: Initialization phase for monitoring and processing engines

IV. RESULTS

We performed extensive experimentation using different
workloads to test our proposed approach. Before migration we
ran server application on the VM that listens to client requests
on TCP sockets. We ran client application on a standalone
machine which is sending messages to the Server VM and
getting response in return. Client and server connection was
setup and messages were exchanged. Our algorithm starts
migration when the resource utilization exceeds the threshold.
In this case we observed that migration was triggered by
processing engine after receiving a threshold breach alarm
from monitoring engine. Migration caused an increased in
CPU utilization by 35% and memory utilization by 10%.
Migration traffic was sent at a constant rate and in order
to decrease downtime during the stop and copy phase the
network bandwidth was momentarily increased by 3 times.
It was observed that TCP connection did not break and the
packet stream was received in order with negligible downtime.

A. Testbed Setup

We have performed migrations over local systems having
2.5 GHz core i5 processors and 4 GB of RAM. We have
used netem [20] tool along with ethtool to simulate WAN
environment for migrations. Experiments have been performed
for lightly-loaded and heavily-loaded servers. We have a
client/server application running on the VM that receives
requests from clients and sends a response. We plan to
measure the time duration in which the clients do not receive
a response from the server. VM has a total disk size of 10
Gigabytes pre-allocated with a 1 Gigabyte RAM and a full
Ubuntu 12.04 LTS desktop is running on top of it. Network
link between the two machines is 1G which is later changed
for experimentation. For experimentation, we have varied
the CPU utilization of the workload in order to verify the
working of our algorithm. We have also experimented with
different types of workloads and observed the downtime in
each case. We have also performed experiments on different
types of workloads including web server and File Transfer
Protocol (FTP) servers. For the comparison section we have
replicated various scenarios to the best of our abilities and
changed the configurations of the above mentioned test-bed
system.

B. Comparison with existing strategies

We have tested our framework on 2, 3 and 4 servers
in order to test how the system scales when more devices
are added to the pool of available hosts. The framework is
self-sustaining and it can cater for as many number of servers
in the data center. The results were consistent for all the three
test cases. In [18] authors report total migration time of 65
seconds when using Pre-Copy and 10 seconds when using
optimized Post-Copy migration approach. These experiments
were performed with dual 1G links and with VM running
at 100% capacity. However, when we apply constraints

on the links in order to simulate WAN links the above
results degrade significantly. With the same environment
and VM specifications our system completes the migration
process using pre-copy technique in 58 seconds. It is worth
mentioning that when WAN characteristics were applied to
the network link the migration time increased to 4 minutes
which indicates that WAN links have an unpredictable and a
significant impact on application performance.

The survey of adaptive threshold techniques and
optimizations mentioned in [16] and dynamic consolidation of
VMs based on adaptive utilization thresholds [17] techniques
give us an insight to how the threshold based systems
work. The techniques explained by the authors cater for one
parameter at a time. In our system we incorporated CPU,
memory and network based thresholds in order to avoid a
failed migration. As explained earlier a fully utilized network
link can cause delays for the migration traffic as well as
other application running on the server as well as for the
workloads themselves. Figure 5 shows the results of the
above comparisons.

Downtime Comparison - WAN

Improvement
in Downtime:
(20+2)%

Improvement
in Downtime:
(68 +4)%

B
[18] VMEM vs MLDO }

Improvement
in Downtime:
(71£8)%

[18] Pre-Copy w/o VMEM -

0 10 20 30 40 50
Downtime (sec)

MLDO m Without MLDO

Fig. 5: A comparison of downtimes offered by DT Algorithm [17],
VMEM [18] and MLDO

The optimized downtime shown in the Figure 5 are
averaged values. The optimized downtime [18] pre-copy
technique is 9 4+ 0.6 seconds with 95% confidence interval,
[18] post-copy 5 + 0.1 seconds with 95% confidence interval
and [17] is 8 £ 0.5 seconds with 95% confidence interval.
The confidence interval calculations are done following
equations from [22]. The range of downtime signifies the
variable and unpredictable nature of the link. Contributing
factors are bursty traffic, variable end to end latency and other
congestion related phenomenon. In each case our proposed

systems performs better and offers lesser downtime.

The downtime values mentioned by the authors above vary
significantly when we apply WAN link characteristics on the
links connecting the host to the destination. Figure 6 shows
the effects of increasing latency on the downtime.

Effects of increasing latency on downtime during VM migration

60 T T T T T
O [18]- Pre-Copy wio VMEM
% [18]- Post-Copy with VMEM
& [17)- DT Algorithm

0 % MDO

40

Downtime (sec)
Ca
o

0 0 20 30 40 50 60 70 80 90
Latency (ms)

100

Fig. 6: Effects of increased latency on downtime offered by DT
Algorithm [17], VMEM [18] and MLDO

C. Effects of variable Latency on the system

We performed experimentation using a VM having a
10GB disk size and 1GB RAM size. It was observed that
by increasing the latency there was an increase in downtime
and total migration time. Similarly, a greater change in both
the metrics was observed in the case for variable latency.
Web server application was running in this experiment. The
migration and service downtime were measured using original
migration strategies of KVM [21]. Processing engine caters
for the variable latency on the link and adjusts network
speed of the migration traffic accordingly and ensures that
migrations process does not affect other services. During the
final stop and copy of the RAM dirty pages processing engine
ensures maximum transfer rates. Migration time increases
with the increase in latency on the link. Figure 7 shows the
effect of latency on the migration process.

D. Effects of variable Threshold levels on the system

During experimentation we noticed that migrations causes
as increase in the CPU and memory utilization on the physical
machine. The results are given in Table 2 which represent
that by varying the CPU and memory thresholds we achieve

Effect of increasing end-to-end latency on downtime

10 T T T T T T T T
o
Ji] 1=} \
Ll
E —d—K\M
= ——NLDO
g gt .
g M
T I 1 1 L | | | L L

0 10 20 30 40 50 60 70 80 % 100
Latency (sec)

% Effect of increasing end-to-end latency on total migration time

= SD T T T T T T T T T

3)
£

Z 40

8 = KM

T ——NLDO

.E” 20 1
£

E 0]] | | I I I I I

|9 0 10 20 30 40 50 60 70 80 9 100

Latency (sec)

Fig. 7: Effects of increased end-to-end latency on downtime offered
by KVM [21] and our approach

different results. When the threshold levels are increased the
CPU get to a phase where it gets fully loaded, this means that
processes will have to wait a longer period of time in order to
get hold of the CPU which increases the downtime. In Figure
8 we see the effects of these thresholds on the downtime.

Effect of increasing CPU thresholds on MLDO downtime
10 T T T T

[—6—MLDO -Dourime fsec) |

Downtime (sec)
oo

6 | L 1 | | 1
40 45 50 56 60 65 70 7
Thresholds based on CPU utilization
Effect of increasing Memory thresholds on MLDO downtime

9 T T T T T T
o | —B— MLDO - Downtime (sec)|
Sl E
]
c
:
]

| L 1 | | 1

6
40

45 50 5 60 65 70 75
Thresholds based on Memary utilization

Fig. 8: Effects of varying CPU and memory utilization thresholds on
downtime oftered by MLDO

Table 2 shows the effects of CPU and memory thresholds
on the system and the improvements different threshold levels
give us.

TABLE II: Threshold Information and Improvements

CPU % Increase | Memory % Increase | % Improve-
Threshold | in CPU | Threshold | in Memory | ment in
limit utilization limit utilization downtime
during during
migration migration
50% ~ 35% 60% ~10% 10 + 2%
55% ~ 35% 65% ~ 10% 7+ 2%
60% ~ 35% 70% ~ 10% 5+ 2%
65% ~ 35% 75% ~ 10% 34+ 1%

We compared our migration algorithm with standard
migration algorithms of KVM [21]. These standard algorithms
use pre-copy approach and are built into the hypervisors.
We apply our proposed algorithm on top of these existing
techniques and compare results. We logged migration time
and service downtime by changing network parameters of
variable latency and variable link speeds. We then carried out
a series of migration experiments by changing the parameters
of link speeds and latency. Our algorithm ensured minimum
downtime for all such scenarios. We calculated downtime
by timing ICMP echo request and reply messages. Figure 7
give the results of performing the same series of experiments
with our proposed framework. Standard experimentation
includes migration with off the shelf techniques which
are coded in the hypervisor and virtualization libraries by
default. After implementing our proposed algorithm we
managed to reduce downtime and total migration time. We
also noticed that overall migration time is reduced for low
latency links and remains fairly constant for high latency links.

E. Effects of variable link speeds on the system

We adjusted the transfer speeds to reduce downtime
as well as total migration time. Our prediction algorithm
initiates migration at an optimum point by monitoring all the
parameters. Improvements can be observed in downtime as
well as overall migration time. This is due to the variable
adaptive rate of transmission used during migration. Migration
traffic has a higher priority as compared to normal network
traffic. Our proposed approach increases the transfer speed
to an extent where the normal traffic does not get affected.
Whenever network traffic is increased, the transmission rates
adjusts accordingly. Subsequently, we found an optimized
migration point by conducting a series of experiments by
changing parameters of CPU utilization, memory utilization
and link characteristics. We also vary link speed, latency
and packet loss. Figure 9 shows the effect of increasing link
speed on the downtime and total migration time.

F. Effects of data compression on the system

Data compression methods are used in order to reduce
the size of data. In our scenario data compression reduces

Effect of increasing link speeds on downtime
T T T T T

[—a—rum | |

)
o —— MLDO
~ 10} : T
i)
£
o

a. il i 1 1 L L L

2 4 8 8 10 12 14
_ Link speed (Mbps)
E Effect of increasing link speeds on total migration time
80 . B

_;: T T T T T KVM
E 80 L _—)(—MLDO__
<
9 40¢
o
20F
£
§ 0 i I I 1 I L L
a
° 2 4 6 8 10 12 14

Link speed (Mbps)

Fig. 9: Effects
migration time

of increased link speed on downtime and total

the number of bytes sent from the source to the destination
during the migration process. There are many compression
algorithms available such as Lempel-Ziv 77 (LZ77) [23],
Lempel-Ziv-Welch [24], Huffman codes [25] and etc. These
compression algorithms can offer compression of upto 40%
or more [26]. We used LZ77 algorithm to observe the effect
of data compression on live migration. In our case we have
a relatively large data to send over the link. Although data
compression algorithms save bandwidth but they also increase
the overall migration time due to extra processing involved
at the source and destination for compression and decom-
pression respectively. After experimentation we observed that
the overall size of data was reduced by up to 35% due to
compression. The effect on downtime was negligible, however
total migration time varied depending on the size of the
workload. Figure 10 shows the effect of compression using
LZ77 algorithm on MLDO.

Effect of compression on sent data
v T T

T T T T

17 T T

" [—&—WLDO - Before Compression|

15 —¢— MLDO - After Compression

Actual Data Sent (GB)

I | L . I . I I |
10 105 1 115 12 125 13 135 14 145 15
Size of Workload (GB)

Fig. 10: Effects of compression using LZ77 algorithm on data bytes
sent using MLDO

V. FUTURE WORK

In the future we plan to develop a signaling framework
which will cater for inter-hypervisor migrations. This is
important when there are more than one type of hypervisor
being used and to cater for this we must have a system that
can communicate and convey information between different
hypervisors. We plan to conduct extensive testing and
implement signaling framework to go along with processing
and monitoring engines and with more workload types. Our
current model reduces the overall downtime of VM services
during live migration. We believe that a standalone all in
one package is the solution for problems related to live VM
migration across WAN. A single entity should be responsible
for co-relating various parameters and taking optimal
decisions which would reduce downtime. Our platform can
be placed alongside SDN controllers at a centralized location
and can also be ported out to use with OpenFlow. We plan
to conduct extensive testing and optimization on bandwidth
conservation in order to conserve more bandwidth and reduce
downtime and total migration time.

VI. CONCLUSION

Live virtual migration is an important tool having many
advantages in both LAN and WAN environments. Live
migration involving WANs pose some new challenges that
have to be accounted for in order to achieve seamless
migration of a VM without significant downtime. Moving
large workloads with high page dirtying rate while keeping the
network configurations consistent can be very complicated.
In addition, factors such as memory size, page dirtying rate,
network transmission rate and migration algorithms directly
affect the performance of live migration. In this paper we have
reviewed some of the migration techniques. We proposed
an adaptive live migration approach based on prediction
and machine learning algorithms called MLDO. MLDO
reduces total migration time and downtime by making the
system intelligent and adaptive. Compression algorithm was
employed in order to reduce the amount of data sent during
the migration process. We have quoted an improvement of
about 15%. MLDO is adaptive in nature and it caters for
variable link characteristic on WAN links.

REFERENCES

[1] Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and
the art of virtualization.” ACM SIGOPS Operating Systems Review 37,
no. 5 (2003): 164-177.

[2] Clark, Christopher, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. “Live migration
of virtual machines.” In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pp. 273-286.
USENIX Association, 2005.

[3] Medina, V., & Garca, J. M. (2014). “A survey of migration mechanisms
of virtual machines.” ACM Computing Surveys (CSUR), 46(3), 30.

[4] Kapil, D., Pilli, E. S., & Joshi, R. C. (2013, February). “Live virtual
machine migration techniques: Survey and research challenges.” In Ad-
vance Computing Conference (IACC), 2013 IEEE 3rd International, (pp.
963-969). IEEE.

[5] Hines, M. R., Deshpande, U., & Gopalan, K. (2009). “Post-copy live
migration of virtual machines.” ACM SIGOPS operating systems review,
43(3), 14-26.

[6] Hines, M. R., & Gopalan, K. (2009, March). “Post-copy based live
virtual machine migration using adaptive pre-paging and dynamic self-
ballooning.” In Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments (pp. 51-60). ACM.
Hines, Michael R., Umesh Deshpande, and Kartik Gopalan. “Post-copy
live migration of virtual machines.” ACM SIGOPS operating systems
review 43.3 (2009): 14-26.

[71 Andersson, L., & Madsen, T. (2005). Provider Provisioned Virtual Private
Network (VPN) Terminology (No. RFC 4026).

[8] Campbell, A. T., De Meer, H. G., Kounavis, M. E., Miki, K., Vicente, J.
B., & Villela, D. (1999). “A survey of programmable networks.” ACM
SIGCOMM Computer Communication Review, 29(2), 7-23.

[91 Andersen, D., Balakrishnan, H., Kaashoek, F., & Morris, R. (2001).
Resilient overlay networks (Vol. 35, No. 5, pp. 131-145). ACM.

[10] Chowdhury, N. M. K., & Boutaba, R. (2010). “A survey of network
virtualization.” Computer Networks, 54(5), 862-876.

[11] Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., & Sekiguchi, S. (2009,
May). “A live storage migration mechanism over wan for relocatable
virtual machine services on clouds.” In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid
(pp. 460-465). IEEE Computer Society.

[12] Liu, H., Jin, H., Liao, X., Yu, C., & Xu, C. Z. (2011). “Live virtual
machine migration via asynchronous replication and state synchroniza-
tion.” parallel and distributed Systems, IEEE Transactions on, 22(12),
1986-1999.

[13] Travostino, F., Daspit, P., Gommans, L., Jog, C., De Laat, C., Mambretti,
J., Monga, 1., Van Oudenaarde, B., Raghunath, S., & Wang, P. Y. (2006).
“Seamless live migration of virtual machines over the MAN/WAN.”
Future Generation Computer Systems, 22(8), 901-907.

[14] Ramakrishnan, K. K., Shenoy, P., & Van der Merwe, J. (2007, August).
“Live data center migration across WANSs: a robust cooperative context
aware approach.” In Proceedings of the 2007 SIGCOMM workshop on
Internet network management (pp. 262-267). ACM.

[15] Wood, T., Ramakrishnan, K., van der Merwe, J., & Shenoy, P. (2010).
“Cloudnet: A platform for optimized wan migration of virtual machines.”
University of Massachusetts Technical Report TR-2010-002 .

[16] Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A.,
& Xia, F. (2015).“A survey on virtual machine migration and server
consolidation frameworks for cloud data centers.” Journal of Network
and Computer Applications, 52, 11-25.

[17] Beloglazov, A., & Buyya, R. (2010, November).“Adaptive threshold-
based approach for energy-efficient consolidation of virtual machines in
cloud data centers.” In Proceedings of the 8th International Workshop on
Middleware for Grids, Clouds and e-Science (p. 4). ACM.

[18] Hirofuchi, T., Nakada, H., Itoh, S., & Sekiguchi, S. (2010, May).
“Enabling instantaneous relocation of virtual machines with a lightweight
vmm extension.” In Cluster, Cloud and Grid Computing (CCGrid), 2010
10th IEEE/ACM International Conference on (pp. 73-83). IEEE.

[19] Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning.

[20] Hemminger, S. (2005, April). Network emulation with NetEm. In Linux
conf au (pp. 18-23).

[21] http://www.linux-kvm.org/page/Migration

[22] Box, G. E., Hunter, W. G., & Hunter, J. S. (1978). Statistics for
experimenters

[23] Ziv,J., & Lempel, A. (1977). “A universal algorithm for sequential data
compression.” IEEE Transactions on information theory, 23(3), 337-343.

[24] Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., & Arikawa, S.
(1998, March). “Multiple pattern matching in LZW compressed text. In
” Data Compression Conference, 1998. DCC’98. Proceedings (pp. 103-
112). IEEE.

[25] Sharma, M. (2010). “Compression using Huffman coding. ” IJCSNS
International Journal of Computer Science and Network Security, 10(5),
133-141.

[26] Cui, Lei, Jianxin Li, Bo Li, Jinpeng Huai, Chunming Hu, Tianyu Wo,
Hussain Al-Aqgrabi, and Lu Liu. “VMScatter: migrate virtual machines to
many hosts.” In ACM SIGPLAN Notices, vol. 48, no. 7, pp. 63-72. ACM,
2013.

[27] Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013).
“Machine learning: An artificial intelligence approach.” Springer Science
& Business Media.

