Telecommun Syst (2017) 65:281-295
DOI 10.1007/s11235-016-0229-4

@ CrossMark

Adaptive mean queue size and its rate of change: queue

management with random dropping

Karmeshu! - Sanjeev Patel' - Shalabh Bhatnagar>

Published online: 14 September 2016
© Springer Science+Business Media New York 2016

Abstract The random early detection active queue manage-
ment (AQM) scheme uses the average queue size to calculate
the dropping probability in terms of minimum and max-
imum thresholds. The effect of heavy load enhances the
frequency of crossing the maximum threshold value result-
ing in frequent dropping of the packets. An adaptive queue
management with random dropping algorithm is proposed
which incorporates information not just about the average
queue size but also the rate of change of the same. Intro-
ducing an adaptively changing threshold level that falls in
between lower and upper thresholds, our algorithm demon-
strates that these additional features significantly improve the
system performance in terms of throughput, average queue
size, utilization and queuing delay in relation to the existing
AQM algorithms.

Keywords Active queue management (AQM) - Rate of
change of average queue size - Throughput - Queuing delay -
AQMRD - Traffic control

1 Introduction
Active queue management is the most effective network

assisted algorithm to control the congestion at the routers.
There are several AQM algorithms proposed in the litera-

B<I Shalabh Bhatnagar
shalabh @csa.iisc.ernet.in

School of Computer and Systems Sciences, Jawaharlal Nehru
University, New Delhi 110067, India

Department of Computer Science and Automation, Indian
Institute of Science, Bangalore 560012, India

ture viz. drop-tail, random early detection (RED), random
early marking (REM) etc. RED has been able to enhance
the throughput by using dropping function in terms of the
average queue size [1]. A desirable feature of the algorithm
is to reduce the loss rate in the presence of random traffic
characteristics. Another algorithm REM introduces rate mis-
match as well as queue mismatch to yield high throughput
or achieve low loss-rate [2]. Queue mismatch is the dif-
ference between a target queue length and current queue
length. The rate mismatch is the difference between the
rate at which a sender sends the data and the rate at which
a receiver receives the data and thus it is directly associ-
ated with data rate. Accordingly, REM differs from RED
as it uses a different measure for congestion. This conges-
tion measure or price is updated based on both mismatches
observed for queue and rate. Similarly, REM computes the
prices for each link and then calculates their sum to determine
the end-to-end marking probability. The latter probability
increases with higher congestion measures or link prices [2].
A new algorithm BLUE improves the performance by reduc-
ing the loss rate of the packets by modifying the dropping
function based on loss events [3]. A separate first-come-first-
served (FCFS) queue is required in fairness-queuing (FQ)
scheme for each conversation. The queues are serviced in
a round-robin fashion so as to allocate equal bandwidth to
each queue. Stochastic fairness queuing (SFQ) is proposed to
avoid infeasible computational requirements for high-speed
networks [4]. In the case of large number of queues as com-
pared to the number of conversations, a high probability is
provided for each conversation being assigned to its own
queue. The flow or pair of source and destination receives
less than the allocated shared bandwidth when two conver-
sations collide. SFQ provides a mechanism so that collided
conversations for one slot are very unlikely to collide during
the next [4].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-016-0229-4&domain=pdf
http://orcid.org/0000-0001-7644-3914

282

Karmeshu et al.

A variant of RED has been proposed in [5] to resolve
the limitations observed with traditional RED [6]. Refin-
ing RED, Wang et al. [7] have enhanced the throughput by
keeping the average queue size below the threshold value
to avoid dropping of the packets. This has been realized
by first adapting the queue weight parameter and thereafter
the values of the maximum probability (max,) parameter
are chosen to stabilize the queue size. A limitation with
RED is that packets are discarded even when the queue
size is lower than the threshold value. Feng et. al. [8] have
addressed the issue of unnecessary dropping of packets by
requiring additional information on instantaneous queue size.
The important aspects for the stabilization of queue in the
RED gateway are discussed in [9-11]. A robust optimiza-
tion technique for RED is analyzed in [12]. This technique
is independent of technology, model and protocols used. A
detailed comparative study of AQM algorithms can be found
in [13]. In RED, the queue size varies according to con-
gestion level which leads to unpredictable queuing delay.
A major issue with traditional RED has been the setting
of the parameters and their tuning in order to achieve good
performance [6]. Adaptive RED achieves significant control
resulting in improved throughput using dynamic adaptation
of the max, parameter. Feng et al. [14] have proposed a
three-section RED (TRED) to overcome this issue partic-
ularly for heavy loads by dividing the queue size interval
(max;, — mingy,) into three equal sections where max;;, and
ming, are the maximum and minimum thresholds respec-
tively. In TRED, dropping probability is calculated according
to the dropping function used in the three different sections.
Nonlinear dropping functions are used in lower and upper
sections of the queue size interval. In addition, the middle
interval uses a linear dropping function. TRED is able to
improve the throughput at low loads and maintains low delays
at high loads [14].

The problem of parameter setting in TRED is not
addressed as in RED. Further, Adaptive RED also does not
show good performance under high load conditions. In the
case of proportional controller, it is found to suffer from a
limitation under certain situations in which it is infeasible
to implement. The instability is found in proportional con-
troller if an operating point of p lies between max , and 1 for
such network conditions which result in oscillations of queue
length. This leads to increase in the queuing delay and this
issue arises due to the coupling between the average queue
size and the dropping probability. The Proportional Integrator
(PD) controller has been proposed to decouple both the aver-
age queue size and the dropping probability [15,16]. The PI
controller is implemented with the nonlinear TCP dynamic
by introducing the role of the queue’s operating point. Wu
et al. [17] have proposed an interactive mobile streaming
scheme which has the capability to maintain a certain level

@ Springer

of service quality in the presence of dynamic network envi-
ronments. Most of the AQM schemes have been studied for
wired networks. Adaptive Optimized Proportional Controller
(AOPC) is another novel AQM scheme based on control-
ling the queue parameter [18]. The dropping probability is
updated for a very small time interval upon each packet
arrival in AOPC. AOPC measures packet loss ratio for larger
intervals by introducing load estimator for the network. TCP
load is estimated with the help of packet loss ratio and then
TCP/AOPC feedback is optimized according to the second-
order system model [18]. It makes AOPC stabilize the queue
length very close to the target queue length using an opti-
mized second-order system model. Chavan et al. [19] have,
however, discussed the robust AQM for wireless networks
where a challenging problem results from fading and the
resulting change in bandwidth allocation [20]. Chavan et
al. [19] have designed a better queue controller by tuning
the operating points offline. An analytical model for bursty
and correlated traffic to compute performance measures such
as end-to-end delay, loss probability, and throughput is also
proposed in [21] in the presence of hybrid wireless net-
works. This analytical model is also applicable for bursty
and correlated traffic and has been tested on OMNeT++ sim-
ulator.

One of the serious limitations of the aformentioned algo-
rithms is that they are based on information regarding the
mean queue size alone. Howeyver, in reality the rate of change
of queue size on account of non-stationary heavy traffic
may provide much deeper insights into the growth dynamics
of queue build up. Our work aims to incorporate informa-
tion both about the average queue size at any time and its
rate of change. It is useful to point out that the proposed
algorithm based on AQMRD is not related to REM. In
the context of REM, the quantity of interest is the differ-
ence between arrival rate of packets and the link capacity,
whereas in AQMRD, it is the rate of change of the aver-
age queue size in relation to the mid-threshold. In fact,
prior work completely ignores this second-order dynamics
that our work aims to capture. Our work makes our system
akin to a dynamical system where not just the velocity but
also information on acceleration is captured through the sys-
tem measurements and this new information is also used to
control the system dynamics. We observe that this (latter)
information indeed helps obtain better control over the sys-
tem.

This paper comprises of five sections. Section 2 discusses
a queue rate based model which is introduced to overcome
the problems observed in the existing algorithms. The sim-
ulations and discussions are presented in Sect. 3. Section 4
evaluates the performance of our proposed scheme with exist-
ing schemes using ns-2 simulator. In the last section, we
provide the concluding remarks.

Adaptive mean queue size and its rate of change: queue management with random dropping 283

2 System model
2.1 Queue-rate based model

A new approach which incorporates both queue size and
its rate of change would better characterize the evolution-
ary dynamics of queue size build up. The dropping function
is a key variable which affects the throughput or the loss-
rate in the AQM algorithm. The dropping function in RED is
based on the assumption that the input traffic characteristics
do not change much with time. In contrast to RED, we have
introduced a new parameter davg, corresponding to the rate
of change of the average queue size in addition to the aver-
age queue size (avg) itself. The proposed AQMRD approach
calculates the quantities avg and davg according to

avg(t +1) = (1 —wy) avg(t) + wy gt + 1), (D
davg(t + 1) = (1 — wg) davg(t) + wy(gq(t + 1) — q (1)),
)

where w, is a weight parameter, avg(t) and davg(t) are
the average queue size and the rate of change of the aver-
age queue size respectively at time 7. Here ¢ (#) denotes the
instantaneous queue length at time . We increment time by
one unit after the arrival of every packet. Accordingly, the
information about rate of change of the average queue size
would reflect the traffic characteristics to achieve better con-
gestion control at the routers. A positive value of the rate
of change of avg indicates that the queue size attains the
threshold rapidly whereas a negative rate of change indicates
a slow-down in the process of reaching the threshold.

In order to prevent packet drop at the gateways, our aim is
to modify the dropping function so that unused buffer space
remains available to accommodate the new arriving pack-
ets. This is achieved by noting that a positive value of davg
results in a reduction in the number of received packets. RED
has been found to perform well in the case of moderate traffic.
One of the deficiencies of RED is that it is hard to config-
ure and is sensitive to traffic load. Our proposed algorithm is
able to capture the changing nature of non-stationary traffic.
In the RED gateway, the average queue size is compared to
two thresholds, maximum threshold and minimum threshold.
However, the effect of non-stationary heavy traffic results in
the increase in frequency of crossing or reaching the max;,
and thus resulting in more packets being dropped. In order to
address this limitation, we have modified the RED algorithm
by introducing a new variable, viz., mid-threshold (mid;)
lying between min;, and max;,, which adapts to rapidly
changing temporal variation of avg. The proposed extended
framework results in qualitatively much improved values of
the performance metrics. To avoid reduction in the number
of received packets, we have applied a more aggressive drop-
ping function by varying mid;j towards min;j,.

This allows significant reduction in the number of dis-
carded packets and is achieved when a gateway marks the
packet more aggressively before avg reaches the max;j. Asa
negative rate of change will slow down the process of reach-
ing max;, it will not adversely affect the dropping of the
packets. However, a positive rate of change is likely to force
the system to enter into an undesirable state resulting in drop-
ping of several packets. The introduction of amid, takes care
of such an adverse situation. The proposed queue-rate based
model allows more unused space to be left in the buffer,
thus reducing the number of times avg crosses the maxi-
mum threshold. Consequently, it results in an increase in the
number of received packets by dynamically updating mid;;
depending on the value of davg.

2.2 Proposed algorithm: AQMRD

In the light of the significant role played by davg, we have
proposed a new queue-rate based algorithm for the gateways.
The AQMRD gateway performs different decisions for mid;;,
according to (3). Here, mid,, is updated as follows:

midiyy, +1 ifdavg <O,
midyy, = ymidy, — 1 if davg > 0, 3)
midy if davg = 0.

The dropping probability function is calculated as follows:

p1 ifdavg > 0, (4a)
prm a
p> ifdavg <0,

where pj and p, are given by

avg — mingy
p1 = ————————maxp, (4b)
mid;, — ming,

avg — mingy

p2 = max,. (4¢)

maxg, — mingy,

For a positive value of davg, the AQMRD gateway starts
dropping packets when avg crosses the threshold mid;
rather than max;;,. The AQMRD gateway for positive davg
calculates the dropping probability according to

0 if ming, > avg,
avg—min . . .

Db = —midi—mir[:h max, ifming, < avg < midy,, (5)
1 if midy, < avg,

where mid,;, is a variable which varies between min,;, and
max;, according to (3). In the case of a non-positive value
of davg, the dropping probability is computed as

@ Springer

Karmeshu et al.

284
0 if ming, > avg,
avg—min . .
Ppr = mmaxp if ming, < avg < maxy,, (6)
1 if max;;, < avg.

The Proposed AQMRD Algorithm:

synchronization. AQMRD’s dropping function is shown in
Fig. 1. The advantage of the proposed approach is that it
does not suffer from the phenomenon of global synchroniza-
tion due to the dynamic nature of mid;;. The advantage of
AQMRD is that it achieves a better throughput for heavy traf-
fic with the help of prior information regarding the change in

Initialization:
count «— —1
for each packet arrival
calculate the average queue size avg and
if mang, < avg < maxip
increment count
if davg >0
decrement the midy,
if avg < mid,
calculate probability p;
else
the probability p; set to 1
calculate probability pp using p;
update the dropping probability

Py
Pa <

rate of change of average queue size davg

1 — count.py

mark the arriving packet with probability p,

else
increment the mid,
calculate probability po
calculate probability pp using po
update the dropping probability

Y43
Pa <

1 — count.py

mark the arriving packet with probability p,

if gateway mark the arriving packet
count «— 0
else 1f maxy, < avg

mark the arriving packets with probability one

count — —1

The miny, is not kept too low in AQMRD gateway to
avoid underutilization of the bandwidth, particularly in view
of fluctuations arising on account of heavy and non-stationary
traffic. Depending upon the permissible delay, the threshold
max;y is set. If the difference between max;; and min,j is
small then average queue size is likely to reach the maxi-
mum queue size frequently as seen in the drop-tail scheme.
Accordingly, to circumvent the problem, we choose mid;,
so that it varies according to
midy, = x.ming, where x € [1, 3]. (7)
In case of a positive value of davg, the difference between
mid;y and ming, should be sufficient enough to avoid global

@ Springer

F 3
Py
T TR
maxp if davg >0
it davg <=0
. . >
0 ming, mid,, max, avg

Fig. 1 AQMRD’s packet dropping function

Adaptive mean queue size and its rate of change: queue management with random dropping 285

50 Mbps, 4-10 ms

Sy

Ry D,
10 Mbps, 150 ms

Sz

Sn

Fig. 2 Network topology

average queue size and the rate of change of the same. This
dynamic adaptation of mid,; results in an adaptive nature of
queue management and which in turn results in improvement
of the performance irrespective of the parameter setting. The
next section presents a comparative study of our scheme with
existing AQM schemes using the ns-2 network simulator.

3 Simulations and discussions
3.1 The simulation setup

We consider the network topology as shown in Fig. 2. The
gateway/router parameters for our scheme used in the exper-
iments are set as wy = 0.002, max, = 0.1, and max;, = 48
packets. The queue parameter min,; is set at one-third of
max,y, in each simulation to achieve good performance [8].
A gateway has a buffer size of 64 packets and each FTP source
sends a packet with a maximum packet size of 1000-bytes
until the congestion control window allows sending of the
packets. The choice of parameter values in AQMRD is dic-
tated by the fact that the values should be similar to the ones
commonly used in REM, PI, SFQ and Adaptive-RED. This
will aid in fair comparison of the results of AQMRD with the
other existing AQM schemes. We now provide some values
of the parameters used in REM, SFQ, and PI. The parameter
settings for REM are ¢ = 1.001, « = 0.1, y = 0.001 and
b* = 20 packets. These values are taken from Athuraliya et
al. [2]. The parameters ¢, o, and y are constant parameters
and b* is the target queue length. The constant ¢ is always
taken to be greater than one. Noting from Athuraliyaetal. [2],
the constant o provides a trade off between utilization and
queuing delay during the transient phase, while y controls
the responsiveness of REM to changes in network conditions.
For the above set of values, it is found that REM’s perfor-
mance is good. Mckenney [4] sets the default values in SFQ to
maxqueue = 40 and buckets = 16. In the case of PI, Hollot
et al [15] have suggested the values of the PI coefficients and
sampling frequency as a = 0.00001822, b = 0.00001816,

w = 170 respectively, and the target queue as gr.r = 50.
Some of the AQM schemes are sensitive towards their para-
meter settings. For each scheme there are some parameters
which are responsible for controlling the congestion. The
purpose of maintaining the parameters to their prescribed
values in the literature (cf. [2,4,5,8,15]) is to provide fair
comparisons of the algorithms in the literature while keep-
ing the parameter settings as prescribed therein, with our
AQMRD algorithm. The parameters for AQMRD have been
set to similar values as the other algorithms in the literature
in order to have a fair comparison with the other algorithms
as well as to get an idea of the efficacy of our scheme.

For performing simulation, we assume random propaga-
tion delay varying from 4 to 10 ms between the FTP sources
and router. Each simulation is run for a duration of 100s. We
choose maximum probability max, = 0.1 to check the effi-
cacy of the proposed scheme with respect to the parameter
setting. Due to the adaptive nature of our proposed scheme
as discussed later, AQMRD achieves good performance even
for a high maximum probability as max, = 0.1, indicating
that our scheme has low sensitivity towards the max, para-
meter because at a low value of max,, our scheme achieves
good performance. We set the delay-bandwidth product at
around 200 packets which equals the congestion window
size [8].

3.2 AQMRD’s parameter settings

In our experiments, we have simulated settings with 25, 50,
75 and 100 FTP sources, respectively. These correspond to
low, moderate, high and very high traffic load conditions.
For our first set of experiments, we have simulated 25 FTP
sources for the network topology shown in Fig. 2. We show
in Fig. 3 the behavior of both average and instantaneous

~ a

@ 50 (.)

g

<3 40

©

£ 30 {‘
g | g
N 20

g

[

3

O 4 45 50 55 60
@ (b)

2 50 : —

~ Instantaneous queue size

® 40 Avera i

g ge queue size

[

N

n

[

o]

[

3

o

Simulation time (seconds)

Fig. 3 AQMRD versus RED: comparative changes in g and avg for
N = 25.a RED, b AQMRD (Color figure online)

@ Springer

286

Karmeshu et al.

60 RED
50| AQVURD =

ol 7
zg /\\ \ \w / / \ /\\

40 45 50 55 60

avg

100 +

davg
o

-100 +))) E
40 45 50 55 60
Simulation time (seconds)

Fig. 4 AQMRD versus RED: comparative changes in avg and davg
for N = 50. a Average queue size, b rate of change of avg (Color figure
online)

queue sizes in RED and AQMRD gateways for these 25 FTP
sources. This shows that the AQMRD gateway suppresses
the fluctuations in the average queue size and instantaneous
queue size by more than what is observed in the RED gate-
way. This lower value of average queue size reduces the
queuing delay in our scheme.

For moderate traffic load of N = 50 FTP sources, changes
in both average queue size and rate of change of the average
queue size come into picture. Fig. 4 shows a comparison
between RED and AQMRD for avg and davg. In contrast to
RED, it indicates that the avg and davg both are stabilized
sufficiently by AQMRD. The mid;;, is adapted according to
traffic load because it depends on the value of davg that
differs for different traffic loads. The parameter mid;) is
increased by one for negative value of davg and decreased by
one for positive value of davg. There is no change in mid;;,
if davg equals zero. The reason behind changing the mid;
is to adjust the dropping probability subject to enhancing the
performance parameters for our scheme. A negative value of
davg indicates that the average queue size decreases with
the rate of davg and a positive value of davg indicates that
the average queue size increases with the rate of davg. If
the average queue size increases then it indicates that more
packets are coming into the queue. To avoid larger estimates
of dropped packets, AQMRD’s aim is to increase the drop-
ping probability by decreasing the mid,; value. Similarly, for
negative value of davg the parameter mid,j, increases just to
reduce the dropping probability.

It is important to highlight the mechanism for setting the
parameters for simulation of AQMRD algorithm. There are
two new parameters viz. mid;; and davg and remaining para-
meters are the same as in RED or other variants of RED such
as MRED, Adaptive RED, TRED etc. The mid; is a variable

@ Springer

which varies from min;;, to max;;, depending on the value
of davg. Feng et al [8] have suggested that min;j;, should be
kept to a level of 1/3 of max;, to get good performance. The
principle behind setting of the parameters wy,, min;,, max
and max is given for instance in Floyd et al. [1] and Feng
et al. [8]. The setting of w, is crucial as it reflects how fast
the gateway detects congestion. A low value of w, does not
detect initial congestion. The maximum value of w, as given
in Floyd et al. [1] is 0.0042. Accordingly we set wy = 0.002
in our simulation. It may be noted that both max;;, and min;;,
depend on the average queue size. The utilization declines
as ming, is lowered and thus min;, cannot be made very
small. However, on the other hand, max;j, is always less than
the buffer size. We keep (max;, —min,,) large for achieving
reduced number of drops. If avg tends to max;,, the dropping
probability tends to max . A higher value of (max;, —min,,)
indicates a smaller slope for the dropping function resulting
in lower number of packet drops. For high congestion, max,,
is set to 0.1 because in a congested link, a higher dropping
probability helps in avoiding the overflow. For the AQMRD
gateway, we have shown in Fig. 5 the variation of mid;;, with
respect to the simulation time for N = 25 and N = 50.
Depending on the value of davg, mid,;, stabilizes between
ming, and max,,. Simulation results show that mid,; oscil-
lates between min;;, = 16 and max;, = 48, and stabilization
varies from min;j to max;y,.

4 Performance evaluation
4.1 Simulations under different scenarios

We note in our setting that input traffic increases when the
number of FTP sources reaches around 25 for a chosen

T T (a) T T
25
s I

25 t
20 |
15 | v

50 52 54 56 58 60

T T (b) T T
il M i
| |
15

e

60

Mid-threshold
w
S

Mid-threshold
w
)

50 52
Simulation time (seconds)

Fig. 5 Comparison of mid;;, between N = 25 versus N = 50.
aN=25bN =50

Adaptive mean queue size and its rate of change: queue management with random dropping 287

delay-bandwidth product of 200 packets on the bottleneck
link. This scenario is presented later in Fig. 12. Therefore,
we have performed the simulations for four cases N = 25,
50, 75, and 100 FTP sources that respectively correspond
to light traffic, moderate traffic, high traffic, and very high
traffic with respect to the setting shown in Fig. 2. In our
scenario, the most significant delay is the queuing delay
which depends on the transmission delay. Queuing delay is
proportional to the product of the number of packets transmit-
ted and transmission delay. To have a lower queuing delay
we consider high bandwidth of the bottleneck link which
results in low transmission delay for a given fixed size of
packets. In order to demonstrate the efficacy of the pro-
posed algorithm, we examine the performance measures viz.
throughput, link-utilization, queue size, and queuing delay
through ns2 simulations.

4.1.1 Scenario-1: number of FTP sources N = 25

For N = 25 FTP sources, throughput is found to increase
for AQMRD when all the 25 FTP sources are superimposed
but Adaptive RED is capable of achieving more through-
put at low traffic loads. Fig. 6 shows a comparative study
of throughput for different AQM algorithms. This has been
achieved as a result of the adaptation of max, in the Adap-
tive RED scheme. Our scheme performs better than Adaptive
RED for moderate traffic load as discussed in scenario-2. PI
outperforms the AQM schemes because it is able to dynam-
ically control the queue for this network scenario. This is
achieved due to the fact that a sufficient buffer size is set and
PI is found to be very sensitive towards buffer size.

90
85 t
80 f
~ 75+
)
5 70 +
[o%
o)
g 65+
g RED
= 60 r Adaptive RED ——
TRED ——
55 L REM ——
SFQ
| Pl —
>0 AQURD
45

20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 6 Comparative study of throughputs for N = 25 (Color figure
online)

85 -

80 -

75 +
X
T 70t s
3 RED
< 651l Adaptive RED —— |
9 TRED ——
o 60 REM ——
c + SFQ 4
. Pl ——

55 AQMRD

£
50 -
45

20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 7 Comparative study of throughputs for N = 50 (Color figure
online)

60

Adaptive-RED ——
AQMRD ——
50 +

40 |

30 -

20

"I uuwumwuu S

20 30 40 50 60 70 80 90 100

Average queue size (packets)

Fig. 8 Comparative study of avg for N = 50: Adaptive-RED vs
AQMRD (Color figure online)

4.1.2 Scenario-2: number of FTP sources N = 50

Next, we increase the number of FTP sources to 50 in order
to simulate a network scenario for moderate traffic load. We
also compare the throughput with Adaptive RED in Fig. 7
which indicates that Adaptive RED fails when traffic load
increases and our scheme performs better than the Adaptive
RED scheme. In this setting as well for the earlier mentioned
reasons, PI is seen to exhibit the best results but is closely
followed by AQMRD. We compare the average queue size
changes over the simulation time with Adaptive-RED, see
Fig. 8. The proposed AQMRD achieves better results than
the other AQM algorithms except PI in terms of throughput.
AQMRD also achieves better stabilization of the queue as
compared to Adaptive RED.

@ Springer

288

Karmeshu et al.

85 —
80
75 +
9
T 70+
3 —
E 65 | Adaptive RED ——
g TRED ——
[60 REM ——
C r SFQ 4
F pPl——
55 L AQMRD
50
45

20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 9 Comparative study of throughputs for N = 75 (Color figure
online)

60

Adaptive-RED ——
AQMRD ——

50 |
40 |

30+

20 +

Average queue size (packets)

10 +

o L L L L L L L
20 30 40 50 60 70 80 90 100

Fig. 10 Comparative study of avg for N = 75: adaptive-RED versus
AQMRD (Color figure online)

4.1.3 Scenario-3: Number of FTP sources N =75

In order to have a more realistic scenario, we further increase
the number of FTP sources to 75. Figure 9 shows the compar-
ative study of throughput for each scheme. We observe that
AQMRD shows good results here, better than PI and all the
other schemes except REM. For this setting, throughput of
REM is very close to our scheme. We also evaluate the aver-
age queue size for N = 75 and observe that AQMRD is better
than Adaptive RED. Figure 10 compares the average queue
size stabilization between Adaptive-RED and our scheme.
Our scheme AQMRD gets higher stabilization for queue size
than Adaptive-RED which results in lower queuing delay for
our scheme. It may be noted that whereas Adaptive RED

@ Springer

85 |
80 | : f’%
75t
9
S 70t
5 RED ——
£ el Adaptive RED ——— |
9 TRED ——
2 REM ——
c 60 SFQ
= Pl —
55 | AQMRD
501/
45 | i
20 30 40 50 60 70 80 90 100

Simulation time (seconds)

Fig. 11 Comparative study of throughputs for N = 100 (Color figure
online)

has wide fluctuations in average queue length, our algo-
rithm AQMRD controls these significantly (see Figs. 8, 10).
Our scheme is designed so as to be able to control the traf-
fic whether it is with low or high loads. Simulation results
achieved in Fig. 9 show that our scheme outperforms all
other schemes except REM at high traffic loads. However,
the difference in performance between AQMRD and REM
is marginal here.

4.1.4 Scenario-4: Number of FTP sources N = 100

In order to simulate very heavy traffic, we further increase
the number of FTP sources to 100. From Fig. 11, we observe
that our scheme outperforms all the other AQM algorithms—
RED, MRED, Adaptive-RED, TRED, REM, SFQ, and PIL
Scenario-3 and scenario-4 show that our scheme is able to
control the congestion better than all other schemes at high
as well as very high traffic loads.

4.2 Effect of load

Next, we show the results of several experiments by using
the same network parameters as before. Here, we vary the
number of FTP sources from 12 to 100 and compare the
throughputs in Fig. 12 for eight different levels of traffic
load. The purpose of these simulations on ns-2 is to evalu-
ate the average throughput as a function of N. The AQMRD
gateway shows improvement in throughput for each simu-
lation and in fact shows the best results when the number
of FTP sources goes beyond 54. These results show that the
proposed scheme is capable of yielding good performance,
regardless of the level of traffic. PI is capable of achieving
the best average throughput at light traffic load but its per-
formance degrades at high traffic loads. In comparison, our

Adaptive mean queue size and its rate of change: queue management with random dropping 289

85

6.5 |

Average throughput (Mbps)

5.5 ¢
10 20 30 40 50 60 70 80 90 100
Number of FTP sources (N)

Fig. 12 Comparative study of the average throughput versus N (Color
figure online)

scheme is competitive against PI and in fact, consistently
outperforms PI at traffic loads beyond 54 sources. The REM
algorithm shows good results in a narrow change and is mar-
ginally better than AQMRD for N = 75 but does not compare
favourably at other load levels. Unlike the other algorithms,

our scheme exercises better control over the network traf-
fic.

4.3 Effect of max;y,

Next, we consider the same network parameters as before
and evaluate the link utilization or relative throughput (i.e.,
throughput/bandwidth) for three different levels of max;j,.
We compare the relative throughput of our scheme with that
of the recently proposed scheme TRED. It is remarkable
that the relative throughput for our scheme approximately
increases between 12 and 16 % over TRED for three differ-

85

80 |

75 |

70

65 |

60 |

Throughput(%)

55 |

50

45

40 ; ; ; ; : : ‘
20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 13 Throughput comparison of AQMRD versus
max;, = 48 (Color figure online)

TRED,

85

80 -

75 +

70 +

65

60 -

Throughput(%)

55t

50 +

45

40 L 1 1 L 1 L L
20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 14 Throughput comparison
max;, = 30 (Color figure online)

of AQMRD versus TRED,

85

80 |

75 +

70 t

65 |

60 |

Throughput(%)

55

50

45

40 ; ; : : ; ; :
20 30 40 50 60 70 80 90 100
Simulation time (seconds)

Fig. 15 Throughput comparison of AQMRD versus TRED,
max;, = 18 (Color figure online)

| /‘
a 8 RED —+—
g MRED ——
S 76+ TRED —%—
= AQMRD —@—
5
2 74}
[o2)
3
2 72
S
&
e Tr
>
< 681

6.6
15 20 25 30 35 40 45 50

max_th (packets)

Fig. 16 Comparative study of the average throughput versus max;j:
RED, MRED, TRED and AQMRD (Color figure online)

@ Springer

290

Karmeshu et al.

85| ' ‘ ‘ T]
n 2 ———i—
o e
Ke) 8 L - "
Z — RED —+—
5 MRED ——
o TRED —+—
5 AQMRD —=—
§ 7.5 L SFQ
c Pl —e—
= REM
[}
(o]
o
[
2
65 L I I I I n L
40 60 80 100 120 140 160

Buffer size (packets)

Fig. 17 Comparative study of the average throughput versus buffer
size: RED, MRED, TRED, SFQ, REM, PI and AQMRD (Color figure
online)

ent levels of max;;, see Figs. 13, 14 and 15. We have not
shown the relative throughput for RED and MRED because
there is only a marginal change in throughput in the schemes
over TRED. In Fig. 16 we compare the average through-
put of AQMRD with RED, MRED and TRED. The average
throughput is computed as the ratio of total number of bytes
sent to the total simulation time. The average throughput in
each case is evaluated for six different simulations as max;,
varies from 18 to 48 in equal intervals. All the parameters
and the variables other than max;;, are the same as before.
The performance comparisons of the average throughput ver-
sus max;, of our algorithm with RED, MRED, and TRED
are given in Fig. 16. We evaluate the average and relative
throughput for different levels of max;, and observe from
Figs. 13, 14, 15 and 16 that AQMRD performs better than
RED, MRED, and TRED, in the relative throughput metric
as well.

4.4 Effect of buffer size

In order to check the sensitivity of the buffer size in high traf-
fic load, we performed simulations with buffer sizes varying
between 40 and 160 and fixing max;; to 48 for each simu-
lation. We consider the simulation for high trafic load with
N = 75 FTP sources. We have performed seven simula-
tions to carry out the results of throughput as a function
of the buffer size. Figure 17 indicates that our proposed
scheme uniformly achieves more than 12 % higher through-
put than the other algorithms except the two schemes REM
and PI. The reason for enhanced throughput in PI and
REM is due to the availability of buffer size which can
accommodate large queues. This advantage of large buffer
size, however, is not available in RED and AQMRD as
the queue size is limited to the interval [min,, max:].

@ Springer

It is to be underlined that one has to pay the price for
increased buffer size. Simulation results also show that PI
and REM are sensitive to the buffer size on account of a
higher range of queue size. AQMRD outperforms all AQM
schemes at low buffer size due to the introduction of the
rate of change of average queue size parameter. In fact,
our scheme is more robust and shows the least sensitiv-
ity or variation in performance as a function of the buffer
size.

4.5 Queuing delay

Queuing delay plays an important role under high traffic
conditions. We have performed simulation experiments to
compare the instantaneous queuing delay and throughput for
high traffic with N = 75 and N = 100 FTP sources. In
Figs. 18 and 19, we show plots of the instantaneous queue-
ing delay as a function of simulation time. It can be seen
that TRED achieves a low delay with approximately same
throughput as RED under high load. Our scheme reduces the
queuing delay significantly over TRED even while result-
ing in higher throughput. Figure 18 shows that for N = 75,
AQMRD exhibits smaller queuing delay in relation to RED,
Adaptive-RED, and TRED. The AQMRD gateway achieves
significantly lower queuing delay and higher throughput than
each of the schemes RED, MRED, TRED, and Adaptive-
RED. From Fig. 19, we also observe that there is much
improvement in queuing delay when using AQMRD. The
variability in the queueing delay in all the plots shown (with
the various AQM schemes) arises because of the stochas-
ticity in the traffic patterns. It is important to note that the
aforementioned variability is the least in AQMRD in com-
parison with all the other AQM schemes. We are able to
achieve this through the efficient use of the rate of change
of average queue size metric in our algorithm. Our pro-
posed scheme achieves better stabilization of the queuing
delay metric with lower delay values achieved as com-
pared to the other schemes which is an important gain
for AQMRD. We also obtain good throughput as shown
in Fig. 17 which conclusively demonstrates that AQMRD
achieves low delay without affecting the goal of achieving
high throughput.

4.6 Mean values of performance measures

Expected values of performance measures such as queu-
ing delay, average queue size, instantaneous queue size, and
average loss-ratio are given in Tables 1, 3, 5, and 7, respec-
tively. PI is unable to attain the acceptable queuing delay
as its expected queuing delay increases by 300% drasti-
cally with respect to RED. On the other hand, it can be
seen that the AQMRD gateway achieves upto 17.74 % reduc-

Adaptive mean queue size and its rate of change: queue management with random dropping 291

Fig. 18 Comparisons of

(b)

queuing delay for N = 75. w 60 60
a RED, b Adaptive-RED, £ 50 50 |
¢ TRED, d AQMRD, e MRED, -
f SFQ, g REM, h PI 5 40 40 + i
- 30 30+ '
2 20 20t |
2 10 10} .
>
o O 0
0 20 40 60 80 100 0 20 40 60 80 100
w
E
>
O©
5]
O
(@)}
C
5
g 0
o 0 20 40 60 80 100 0 20 40 60 80 100
Simulation time (seconds) Simulation time (seconds)
f
»w 60 60 T T M T
E sol 50 |
& 401 40 t |
3 30t 30 i
2 20t 20t |
§ 10 ‘ | 10+ 1
o O 0
0 20 40 60 80 100 0 20 40 60 80 100

Queuing delay (ms)

Simulation time (seconds)

tion in expected queuing delay. Tables 2, 4, and 6 show
the percentage reduction in queuing delay, expected value
of the average queue size, and expected value of instan-
taneous queue size each with respect to the RED scheme.
Table 8 shows the percentage increase in loss-ratio for each
scheme with respect to RED. This reduction in queuing
delay is on account of lower expected value of average and
instantaneous queue sizes observed in AQMRD. The trade-
off between queuing delay and utilization or throughput is
also pointed out by Hollot et al. [15] as increase in uti-

0 0
0O 20 40 60 80 100 0O 20 40 60

80 100
Simulation time (seconds)

lization also results in an increase in the queuing delay.
Further, in support of these findings, Feng et al. (see Sect.
2, C of [14]) point out that it may not be possible to achieve
both high link utilization/throughput and low queuing delay
simultaneously. However, it is worth noting that AQMRD
has the advantage of improving both throughput and queu-
ing delay albeit with a higher packet loss rate. It should
be emphasized that our AQMRD algorithm significantly
improves performance in both the aforementioned QoS met-
rics.

@ Springer

292

Karmeshu et al.

Fig. 19 Comparisons of
queuing delay for N = 100.

a RED, b Adaptive-RED,

¢ TRED, d AQMRD, e MRED,
f SFQ, g REM, h PI

Queuing delay (ms) Queuing delay (ms) Queuing delay (ms)

Queuing delay (ms)

60 . . (a) T 60
50 50
40 | 40
30+ | 30
20+ | 20
10+ | 10

0 | 0

0 20 40 60 80 100

0
0 20 40 60 80 100
Simulation time (seconds)

20 40 60 80 100

0
0
Simulation time (seconds)

20 40 60 80 100

20

40 60 80 100

O 20 40 60 80 100

Simulation time (seconds)

20 40 60 80 100

H

20 40 60 80 100
Simulation time (seconds)

Table 2 Percentage reduction in expected queuing delay with respect

Table 1 Comparative performance results: queuing delay to RED
AQM algorith Number of FTP N

AQM algorithms E[queuing delay] (ms) QM algorithms mbero sources ()

N=25 N=50 N=75 N=100 N=2 N=30 N=75 N=10

_ — _ _ (%) (%) (%) (%)

RED 0.03071 0.02671 0.02656 0.02571 MRED 0 —0.04 —5.69 019
MRED 0.03071 0.02672 0.02807 0.02576 Adaptive- 11745 —53.20 2082 —0.19
Adaptive-RED 0.06678 0.04092 0.03209 0.03208 RED
SFQ 0.03651 0.02206 0.02086 0.02085 SFQ —18.89 +17.41 +21.46 +18.90
REM 0.03071 0.03802 0.04191 0.03425 REM 0 —42.34 +57.79 —33.22
PI 0.09313 0.05348 0.04498 0.06083 PI —300.25 —100.22 —69.35 —136.60
TRED 0.03437 0.02958 0.02642 0.02690 TRED —11.91 —10.75 +0.53 —4.63
AQMRD 0.02871 0.02413 0.02259 0.02115 AQMRD +6.51 +9.66 +14.95 +17.74

@ Springer

Adaptive mean queue size and its rate of change: queue management with random dropping 293

Table 3 Comparative performance results: time average of average
queue size

AQM algorithms E[average queue size] (packets)

N =25 N =50 N =175 N =100
RED 6.41 11.51 14.02 14.31
MRED 6.41 11.60 14.18 14.51
Adaptive-RED 21.12 23.15 24.67 21.01
TRED 6.97 11.54 14.01 14.80
AQMRD 7.06 7.09 11.30 11.53

Table 4 Percentage reduction in the expected average queue size with
respect to RED

AQM algorithms Number of FTP sources (N)

N =25 N =50 N=175 N =100

(%) (%) (%) (%)
MRED 0 —0.78 —1.14 —1.40
Adaptive-RED ~ —22949 —101.13 —75.96 —46.82
TRED —8.74 —0.26 +0.071 —3.42
AQMRD —10.14 +38.40 +19.40 +19.43

Table 5 Comparative performance results: expected instantaneous
queue size

AQM algorithms E[instantaneous queue size] (packets)
N=25 N=50 N=75 N=100
RED 6.60 13.23 17.83 19.34
MRED 6.60 13.23 18.94 19.65
Adaptive-RED 19.11 26.32 28.67 28.01
TRED 7.14 13.11 17.76 20.36
AQMRD 791 13.39 15.27 15.56

Table 6 Percentage reduction in the expected instantaneous queue size
with respect to RED

AQM Algorithms Number of FTP sources (V)

N =25 N =50 N =75 N =100

(%) (%) (%) (%)
MRED 0 0 —6.23 —1.60
Adaptive-RED —189.55 —98.94 —60.80 —44.83
TRED —-8.18 +0.91 +0.40 -5.27
AQMRD —19.85 —-1.21 +14.36 +19.55

5 Conclusions

We presented in this paper a new AQMRD algorithm that
incorporates both average queue size and its rate of change,
and is found to achieve significantly better performance than
RED as well as its variants in the presence of non-stationary
heavy traffic. An important aspect of the proposed approach

Table 7 Comparative performance results: average loss ratio

AQM algorithms Average loss-ratio (%)
N =25 N =50 N=175 N =100
RED 0.578 1.771 2.690 3.067
MRED 0.578 1.771 2911 3.012
Adaptive-RED 0.200 1.94 2.833 3.078
TRED 0.666 1.819 2910 3314
REM 0.578 1.262 1.819 2.242
SFQ 0.374 1.845 2.790 3.077
PI 0.199 1.249 1.908 2177
AQMRD 0.638 2.771 4.086 4.490
Table 8 Percentage increase in average loss-ratio over RED
AQM algo- Number of FTP sources (N)
rithms
N=25 N =50 N=75 N =100
(%) (%) (%) (%)
MRED 0 0 +8.22 -1.79
Adaptive- —65.40 +9.54 +5.32 +0.36
RED
TRED +15.19 +2.71 +8.18 +8.05
REM 0 —28.74 —32.78 —26.89
SFQ —35.29 +4.18 +3.72 +0.33
PI —05.57 —29.48 —29.07 —29.02
AQMRD +10.38 +56.47 +51.90 +46.40

is that it incorporates the rate of change in queue size as an
additional parameter. AQMRD prevents the frequent cross-
ing of maximum threshold by the average queue size and
rapidly responds to congestion before the overflow of pack-
ets occurs. As noted by Feng et al. [14], the principal goal of
the congestion controlling algorithm is to maintain low level
of the queue size so as to keep low delay. Based on exten-
sive numerical experiments, we have found that AQMRD has
outperformed the existing well known AQM algorithms viz.,
RED, MRED, TRED and Adaptive RED, respectively, as can
be seen in Figs. 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and
19. Our scheme AQMRD also outperforms the PI and REM
at low buffer sizes as also high traffic loads. The proposed
AQMRD algorithm has the advantage of reducing the delay
and queue size in comparison to the existing RED algorithm
but PI is seen to have the worst queuing delay. An impor-
tant finding here is that the AQMRD gateway reduces the
expected value of average queue size by 38.4 % for 50 FTP
sources. We may point out that the inclusion of the new para-
meters corresponding to the rate of change of average queue
size as well as the mid;;, threshold level have played a sig-
nificant role in enhancing the performance of the algorithm.
An area of future enquiry would be to optimize the values

@ Springer

294

Karmeshu et al.

of mid,, and the other parameters max,,, min,, wy, max,
etc. using a stochastic optimization approach.

References

1. Floyd, S., & Jacobson, V. (1993). Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking,
1(4), 397-413.

2. Athuraliya, S., Li, V. H., Low, S. H., & Elissa, Q. Y. (2002). REM:
Active queue management. [EEE Network, 15(3), 48-53.

3. Feng, W,, Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The
BLUE active queue management algorithms. /EEE/ACM Transac-
tions on Networking, 10(4), 513-528.

4. Meckenney, P. E. (1990). Stochastic fair queuing. In Proceedings
of IEEE INFOCOM (pp. 733-740, Vol. 2).

5. Floyd, S., Gummadi, R., & Shenker, S. (2001). Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue man-
agement. Berkeley, CA. http://www.icir.org/floyd/papers.html.

6. May, M., Bolot, J., Diot, C., & Lyles, B. (1999). Reasons not to
deploy RED. In Proceedings of IWQoS (pp. 260-262)

7. Wang, H., & Shin, K.G. (1999). Refined design of random early
detection gateways. In Proceedings of IEEE GLOBECOM (pp.
769-775).

8. Feng, G., Agarwal, A. K., Jayaraman, A., & Siew, C. K. (2004).
Modified RED gateways under bursty traffic. I[EEE Communica-
tions Letters, 8(5), 323-325.

9. Low, S. H., Paganini, F., Wang, J., & Doyle, J. C. (2003). Linear
stability of TCP/RED and a scalable control. Computer Networks,
43(5), 633-647.

10. Tan, L., Zhang, W., Peng, G., & Chen, G. (2006). Stability of
TCP/RED systems in AQM routers. /EEE Transactions on Auto-
matic Control, 51(8), 1393-1398.

11. Woo, S., & Kim, K. (2010). Tight upper bound for stability of
TCP/RED systems in AQM routers. [EEE Communications Let-
ters, 14(7), 682-684.

12. Bhatnagar, S., & Patro, R. K. (2009). A proof of convergence of the
B-RED and P-RED algorithms for random early detection. IEEE
Communications Letters, 13(10), 809-811.

13. Adams, R. (2013). Active queue management: asurvey. I[EEE Com-
munations Surveys & Tutorials, 15(3), 1425-1476.

14. Feng, C. W., Huang, L. F.,, Xu, C., & Chang, Y. C. (2015). Conges-
tion control scheme performance analysis based on nonlinear RED,
Journal of IEEE Systems, PP(99), (1-8). [Early Access Article].

15. Hollot, C.V.,Misra, V., Towsley, D., & Gong, W. (2001). On design-
ing improved controllers for AQM routers supporting TCP flows.
In Proceedings of IEEE INFOCOM (pp. 1726-1734).

16. Hollot, C. V., Misra, V., Towsley, D., & Gong, W. (2002). Analysis
and design of controllers for AQM routers supporting TCP flows.
IEEE Transactions on Automatic Control, 47(6), 945-959.

17. Wu, Y., Min, G., & Yang, L. T. (2013). A network and device aware
QoS approach for cloud-based mobile streaming. /EEE Transac-
tions on Multimedia, 15(4), 747-757.

18. Wang, J., Rong, L., & Liu, Y. (2008). A robust proportional con-
troller for AQM based on optimized second-order system model.
Computer Communications, 31(10), 2468-2477.

19. Chavan, K., Kumar, R. G., Belur, M. N., & Karandikar, A. (2011).
Robust active queue management for wireless neyworks. EEE
Transactions on Control Systems Technology, 19(6), 1630-1638.

20. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless com-
munication. Cambridge: Cambridge University Press.

21. Wu, Y., Min, G., & Yang, L. T. (2013). Performance analysis of
hybrid wireless networks under bursty and correlated traffic. EEE
Transactions on Vehicular Technology, 62(1), 449—454.

@ Springer

Karmeshu has been working as
Professor in School of Computer
and Systems Sciences, Jawahar-
lal Nehru University, New Delhi,
India, since 1986. Prior to joining
JNU, he taught at the Univer-
sity of Delhi (India), University
of Waterloo (Canada), UAM, and
UNAM (Mexico). After obtain-
ing his Ph.D. in 1976 in the
area of Diffusion of Brownian
Particles Through Generalized
Langevin Equation, he joined
the University of Stuttgart, Ger-
many, as a visiting scientist. In
1993, Dr. Karmeshu received the Shanti Swarup Bhatnagar Award,
India’s most prestigious award in the field of science and engineering,
for his contributions to mathematical modelling of social and technical
systems. He was also awarded the Dr. C. M. Jacob Gold Medal for the
year 1990 by the Systems Society of India. Dr. Karmeshu has published
about 100 papers in journals. He has been working in the area of mod-
elling and simulation of non-linear stochastic systems covering a wide
range of engineering and socio-technical systems. His current research
interests lie in the study of mobile and wireless systems, application
of entropy framework to communication networks and computational
neuroscience.

Sanjeev Patel received his
B.Tech. degree in Computer Sci-
ence and Engineering from Moti-
lal Nehru National Institute of
Technology, Allahabad, India in
2005, M.Tech in Computer Sci-
ence and Technology from Jawa-
harlal Nehru University, New
Delhi, India in 2008. He is cur-
rently working as an Assistant
Professor in the Department of
CSE at Jaypee Institute of Infor-
mation Technology Noida. He is
also a research scholar at School
of Computer and System Sci-
ences, Jawaharlal Nehru University, New Delhi, India and is working
in the area of performance modeling of flow and congestion control.

Shalabh Bhatnagar received
a Bachelors in Physics (Hons)
from the University of Delhi in
1988. He received his Masters
and Ph.D. degrees in Electri-
cal Engineering from the Indian
Institute of Science, Bangalore in
1992 and 1997, respectively. He
was a Research Associate at the
Institute for Systems Research,
o University of Maryland, College
N Park, during 1997 to 2000 and
»»\ \ | ‘ a Divisional Postdoctoral Fellow
& Y /R’l; T at the Free University, Amster-

o dam, during 2000 to 2001. He is

currently working as a Professor at the Department of Computer Science
and Automation at the Indian Institute of Science, Bangalore. He has

http://www.icir.org/floyd/papers.html

Adaptive mean queue size and its rate of change: queue management with random dropping 295

also held visiting positions at the Indian Institute of Technology, Delhi
and the University of Alberta, Canada. Dr.Bhatnagar’s interests are in
simulation optimization, stochastic control and reinforcement learning.
He has authored or co-authored more than 115 research articles in var-
ious journals and conferences. He is the Principal at author of a book

with title ‘Stochastic Recursive Algorithms for Optimization: Simulta-
neous Perturbation Methods’, published by Springer in 2013. He is a
Fellow of the Indian National Academy of Engineering and a Fellow of
the Institution of Electronics and Telecommunication Engineers.

@ Springer

	Adaptive mean queue size and its rate of change: queue management with random dropping
	Abstract
	1 Introduction
	2 System model
	2.1 Queue-rate based model
	2.2 Proposed algorithm: AQMRD

	3 Simulations and discussions
	3.1 The simulation setup
	3.2 AQMRD's parameter settings

	4 Performance evaluation
	4.1 Simulations under different scenarios
	4.1.1 Scenario-1: number of FTP sources N=25
	4.1.2 Scenario-2: number of FTP sources N=50
	4.1.3 Scenario-3: Number of FTP sources N=75
	4.1.4 Scenario-4: Number of FTP sources N=100

	4.2 Effect of load
	4.3 Effect of maxth
	4.4 Effect of buffer size
	4.5 Queuing delay
	4.6 Mean values of performance measures

	5 Conclusions
	References

