
Formalizing REST APIs for web-based communication and
SIP interworking

Federica Paganelli · Terence Ambra · Alessandro Fantechi · Dino Giuli

Received: date / Accepted: date

Abstract Significant research efforts for the conver-
gence of Web and Telecommunication services have been

recently spent by research and industry stakeholders.
The IETF and W3C are cooperating in specifying how
web browsers should evolve to natively support com-

munication services. In this perspective, devising novel
mechanisms for signaling message exchange and possi-
ble interworking between Web- and SIP-based systems
is a hot topic of research. Indeed, discussions are still

ongoing on how differences between REpresentational
State Transfer (REST) and Session Initiation Proto-
col (SIP) models should be coped with. This issue is

made more difficult by the lack of rigorous modeling of
RESTful systems. In this paper we propose a rigorous
approach for design and implementation of REST com-

munication services (e.g., a call service) which leverages
formal verification techniques, while allowing to meet a
specific performance requirement (i.e., maximum call
setup delay). First, we formalize the call resource be-

havior through a Finite State Machine representation
by modeling and simulating service expected behavior

Federica Paganelli
CNIT Research Unit at the University of Florence, via S.
Marta 3 50139 Florence, Italy
E-mail: federica.paganelli@unifi.it

Terence Ambra
Department of Information Engineering at the University of
Florence, via S. Marta 3 50139 Florence, Italy
E-mail: terence.ambra@unifi.it

Alessandro Fantechi
Department of Information Engineering at the University of
Florence, via S. Marta 3 50139 Florence, Italy
E-mail: alessandro.fantechi@unifi.it

Dino Giuli
Department of Information Engineering at the University of
Florence, via S. Marta 3 50139 Florence, Italy
E-mail: dino.giuli@unifi.it

and its interworking with SIP User Agents through a
tool for the analysis of communicating state machines.

Then, we use the model-checking capabilities offered by
the tool for the verification of formal properties. Finally,
we implement a prototype that, thanks to the previous

formalization step, is shown to be functionally correct,
while yielding acceptable performance.

Keywords web services · internet of services · REST ·
final state models · call control · SIP

1 Introduction

The Web is evolving from a document-centric paradigm

to an increasingly interactive and collaborative form of
information sharing and real-time communication. In-
deed, some standardization efforts by the Internet En-

gineering Task Force (IETF) and the World Wide Web
Consortium (W3C) have recently started for defining
the Web Real-Time Communication (WebRTC) inter-
face and protocol specifications [13] to allow the na-

tive support of voice and video communications by web
browsers. These standardization activities focus on the
transfer of media streams between browsers, but do not
deal with signalling, which is left to service developers,
nor with interoperability with legacy systems, such as
systems based on the Session Initiation Protocol (SIP)
[58].

In the telecommunication domain, several web-based
APIs have been defined by the research and industry
communities for the signaling and control of peer-to-
peer or multiparty communication services provided by
legacy telecommunications platforms.

The REpresentational State Transfer (REST) archi-

tectural style, which was introduced by Fielding [23]
as a resource-oriented architecture style for networked

Manuscript

http://www.editorialmanager.com/tels/download.aspx?id=34275&guid=314e8732-921c-4745-bd70-11cc468a6d05&scheme=1
http://www.editorialmanager.com/tels/download.aspx?id=34275&guid=314e8732-921c-4745-bd70-11cc468a6d05&scheme=1
paganelli
Font monospazio

paganelli
Font monospazio

paganelli
Font monospazio
This is a post-peer-review, pre-copyedit version of an article published in Telecommunication Systems. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11235-016-0271-2

paganelli
Font monospazio

2 Federica Paganelli et al.

systems, is considered a best practice for the design

of web service interfaces. REST principles have thus

been applied to the design of signaling Application Pro-

gramming Interfaces (APIs) in several standardization

efforts, such as in OMA RESTful bindings for Parlay

X Web Services [48] and RESTful Network API for

WebRTC Signaling [49], as well as in several research

works, as discussed by Belqasmi et al [12].

SIP-based architectures definitely play a major role

among telecommunications legacy frameworks, as ar-

gued by Amirante et al [6]. Interworking between the

emerging browser-enabled systems and SIP-based ones

is thus a hot issue [6, 60]. Actually, convergence of

HTTP and SIP domains is not straightforward since

these protocols rely on different principles. Indeed, typ-

ical usage of SIP is stateful and peer-oriented, while

HTTP is stateless and based on the client-server model

[14, 35]. Several authors worked on this topic and dis-

cussed resource-oriented design of REST-based APIs

for the convergence of Web- and Telecom-centric ser-

vices. To the best of our knowledge, most works in this

research area focus on the design of the signaling APIs

[39, 19, 28]. Only some of them also discuss implemen-

tation details [19], but none of them adopts a rigorous

approach for modeling the required resources and their

behavior.

Indeed, lack of rigorous modeling is a limitation of

many works claiming to be RESTful. As argued by

Zuzak et al [65] this fact is causing ”negative effects,

such as confusion in understanding REST concepts, mis-

use of terminology and ignorance of benefits of the REST

style”. Thus, REST principles are often misunderstood

and misapplied. As discussed by Roy Fielding in his

blog [24], several systems that claim to be RESTful are

simply HTTP-based Remote Procedure Call (RPC) im-

plementations and violate REST principles.

Widespread misunderstanding of REST concepts re-

sults in a difficulty in fully taking advantage of REST

benefits (that is scalability, interoperability and sim-

plicity). Indeed, REST is an abstract model for the

Web architecture [25], hence it describes how a Web

application should behave to maximize desirable prop-

erties, such as simplicity and performance [65]. As the

Web gets more complex and grows in functionality, (i.e.,

real-time communication, Web of Things [50], Linked

Data [15]), preserving its desirable properties becomes

a major concern.

In the application domain of this work (real-time

communication on the web), the lacking adoption of

formal modeling also makes it difficult to design and

verify the correct interworking with external systems

and protocols (i.e., SIP-based systems), as needed. For

instance, there is no guarantee that error conditions,

such as deadlocks, will not occur. On the other hand,

formal development techniques have been criticized for

encouraging the production of inefficient, even if cor-

rect, software [9].

The objective of this work is pursuing a more rigor-

ous approach for the design of REST signalling APIs for

real-time communication on the web, leveraging formal

verification techniques, while guaranteeing the satisfac-

tion of a specific performance requirement (i.e., maxi-

mum call setup delay).

More specifically we present a new approach and

related results for the design and implementation of

a communication service interworking with SIP-based

systems and exposing a RESTful API (i.e., a service

interface compliant with REST principles). We will use

a call service as reference example throughout this pa-

per. By leveraging a resource-oriented service design

methodology, our original contribution is twofold. First,

we model the call resource behavior through a Finite

State Machine representation which accounts for the

SIP specifications of a call session setup and for REST

constraints. Analogously, the state machine formalism

is used to model the components of a SIP-REST gate-

way. As a result, the RESTful call service and the com-

ponents for its interworking with SIP User Agents (UAs)

are represented through a set of communicating state

machines, while their behavior can be simulated through

a tool for the analysis of communicating state machines.

Then, we show the use of the model-checking capabil-

ities offered by the tool for the verification of formal

properties (e.g., deadlock absence). Second, we present

a web application prototype that implements the spec-

ifications originating from the FSM formalization. The

prototype offers a RESTful real-time communication

service accessible to web browsers and supports the in-

terworking with SIP UAs. We show how, thanks to the

adopted tool, the behavior of the prototype can be eas-

ily compared with the expected behavior exhibited by

the simulation of the model. Moreover we also present

preliminary performance analysis results.

Thus, the proposed approach improves current re-

search by enhancing the design of a REST API for

real-time communication with formal modeling. This

allows to simulate and validate the call service model

against functional requirements, including the correct

interworking with SIP UAs. We also report on the im-

plementation of a prototype to check: i) its coherence

with respect to the validated model and ii) whether it

meets quantitative performance requirements.

The remainder of this paper is organized as follows.

In Section 2 we discuss related work. In Section 3 we

describe our approach for the design of a RESTful real-

time communication service interworking with SIP sys-

Formalizing REST APIs for web-based communication and SIP interworking 3

tems, which relies on the adoption of a state machine

formalism. We also discuss the used tool for simulating

the service expected behavior and verifying some for-

mal properties. Section 4 describes the implementation

of the prototype and its performance analysis. Finally,

Section 5 concludes the paper by discussing obtained re-

sults as well as providing some insight into future work.

2 Related work

Recent technological evolution in the telecommunica-

tion domain has been driven by the increasing need for

making capabilities of an operator’s network accessible

and invokable by external consumer applications. To

this purpose, service-oriented principles [21] have in-

spired the specifications of Service Delivery Platforms

that expose telecom capabilities via open APIs to en-

able enhanced and flexible service provision and com-

position.

Menkens and Wuertinger [43] highlight major ob-

stacles towards the development of web-telecom con-

verged applications: i) available specifications for tele-

com service environments define how telecommunica-

tion features can be exposed to third party develop-

ers, but they do not provide any concept or paradigm

supporting developers in composing telecommunication

services with Web services; ii) telecommunications spec-

ifications, such as IMS and SIP [58], are not supported

by default by widely adopted platforms for mobile de-

vices; and iii) application developers typically adopt

Internet and Web protocols and data formats. More

specifically, convergence of Web and SIP-based services

is considered difficult to achieve, since HTTP and SIP

are based on different principles [14, 35]: i) typical us-

age of SIP is stateful, while HTTP is stateless; ii) SIP is

peer-oriented while HTTP is based on the client-server

paradigm.

2.1 Real-time Communication on the Web

The need of migrating real time communication from

dedicated VoIP networks to the Web has been deeply

analyzed in [61], where a comparison of the complex-

ity of SIP-based systems is made with that of Web ar-

chitectures. This need has become more critical with

the upcoming of standards for real-time communica-

tions on the web that have been promoted by the IETF

and the W3C (i.e., RTCWeb protocol [5] and WebRTC

APIs [13]) for the native support of direct and interac-

tive communication between browsers without the need

of third-party browser plugins, such as Adobe Flash

Player.

Indeed, WebRTC specifies a set of ECMAScript APIs

that support the exchange of media streams between

two browsers. These APIs allow web application de-

velopers to develop novel JavaScript applications that

exploit such browser capabilities. As mentioned above,

the signaling mechanism is not specified in the standard

and left to application developers. A major require-

ment in the choice of the protocol supporting signaling

message exchange is to enable bidirectional communi-

cation between browser and server. This could be re-

alized through different mechanisms, such as long-held

HTTP requests (e.g., HTTP long polling) and the Web-

Socket protocol, which establishes a bidirectional chan-

nel for message exchange over TCP [22], as discussed

in [52, 2, 34].

Sege et al [59] provide a brief literature survey on

WebRTC and SIP integration. Li and Zhang [40] dis-

cuss the need for integrating WebRTC with IMS and

provide a preliminary description of an integration so-

lution, while Amirante et al [6] discuss the main techni-

cal issues entailed by the integration of SIP-based solu-

tions with WebRTC applications and propose a working

solution for a conferencing system. Finally, a general-

purpose open WebRTC gateway is described in [7].

2.2 Web APIs for Telecom services

In order to effectively support third party application

developers, some standard specifications for the web-

based exposure of telecom services have been defined

[45, 12]. Web-based interfaces may be distinguished into

those that comply with Web Service (WS) specifica-

tions and those complying with REST guidelines.

The Open Mobile Alliance (OMA) has defined a web

service framework called OMA Web Services Enabler

[47]. The Parlay group, which is a standardization body

working in collaboration with OMA, the Third Gener-

ation Partnership Program (3GPP) and the European

Telecommunications Standards Institute (ETSI), has

defined the Parlay X specifications [1]. Parlay X is a set

of Web Service APIs for accessing a wide range of tele-

com network capabilities, such as third party call con-

trol, call notification, short messaging, and payment.

OMA has released the specifications for the RESTful

bindings for Parlay X Web Services in 2012 [48]. The

currently available version (version 2.0) includes simple

non-session services such as short and multimedia mes-

saging, payment and location services, and accessory

features for call services. OMA has also recently re-

leased a set of REST APIs for WebRTC signalling over

HTTP [49]. The upcoming of this standard strengthens

the suitability of REST for communication signaling on

4 Federica Paganelli et al.

the web, but, to the best of our knowledge, no imple-

mentation is available yet.

Several research works have investigated the adop-

tion of Web services for exposing telecommunication ca-

pabilities [17, 27]. Recently, researchers are increasingly

focusing their efforts on RESTful services, rather than

on WS ones, since RESTful services are deemed more

lightweight and close to web application programming

models [3, 16].

Fu et al [26] present an early feasibility prototype

for a REST service architecture for bridging presence

service across heterogeneous domains. Moriya and Aka-

hani [44] conduct an experiment with human partici-

pants to evaluate their productivity in developing web-

telecom applications with Parlay X. They detect two

major problems: i) programmers may not be aware of

the call session state since the SOAP/HTTP-based in-

terface makes the interaction look stateless and syn-

chronous; ii) analogously, programmers may apply a

procedural style, while disregarding the event-driven

(i.e., asynchronous) nature of telecommunication ser-

vices.

Handling of session-based capabilities (e.g., a call

between two end users) is discussed in several works.

Lozano et al [41] propose a set of REST APIs for the ex-

posure of session-based IMS capabilities. Asynchronous

notification is handled through HTTP polling. Davids

et al [19] discuss different options for allowing voice

and video communications on the Web. They propose

a RESTful web communication API over HTTP, where

asynchronous notification is realized through long-lived

HTTP. Nicolas et al [46] propose an approach for tele-

com and web service convergence that exploits the Web-

Socket protocol. However, the design of REST APIs is

not discussed in detail and the message flow is described

only for presence and location update services. Grif-

fin and Flanagan [28] apply a resource-oriented design

methodology to define a call control interface that can

be exploited by browser-based applications. They take

a simple call model as reference, by adapting the Com-

puter Supported Telecommunications (CSTA) industry

standard. Also Li and Chou [39] analyse CSTA services

and propose some REST design patterns to properly

model communication services within REST.

2.3 Formal models for communication services and

protocols

Use of formal models is not a widespread practice in

commercial development of networking protocols and

applications [54], despite their known benefits in terms

of property verification and unambiguous specification.

In fact, this lack of rigor has lead to the widely ac-

cepted adoption of simulation-based testing as the cur-

rent practice for validating networking protocols, soft-

ware and hardware.

Nonetheless, several works have applied formal meth-

ods to the verification of networking protocols and sys-

tems. For instance, Zave [64] presents a Promela model

of invite dialogs in SIP. Other authors [20, 8] propose a

Coloured Petri Net model of the SIP INVITE transac-

tion to verify some functional properties of SIP.

As regards REST systems, Zuzak et al [65] explore

the use of a FSM-based approach for modeling REST-

ful systems with the goal of contributing to the un-

derstanding of the REST style. Porres and Rauf [53]

present an approach to model the structural and behav-

ioral interface of a RESTful web service. They use UML

class and protocol state machine diagrams to model the

conceptual and behavioral aspects of the web service

and generate a contract in the form of preconditions

and postconditions for methods of an interface.

To the best of our knowledge, the use of formaliza-

tion in the design of a REST real-time communication

service interworking with SIP-based systems has not

been investigated yet.

2.4 Motivation of our work

Our work basically accounts for the results achieved

by related work in the design of RESTful communica-

tion services, especially results achieved by Li and Chou

[39], Davids et al [19] and Griffin and Flanagan [28],

mentioned above. However, none of them delve into the

modeling of either the call flow or interoperability with

SIP legacy systems. Griffin and Flanagan [28] analyze

the normal and error/exception flows for a call in a

narrative way, i..e. without adopting a formal model.

Instead, formal modeling may ease the design and

verification of a system and its correct interworking

with other systems. Therefore, the main contribution

of this work consists in enhancing the design of REST

API for real-time communication services with formal

modeling to simulate and validate a call service model

against functional requirements. We adopt Finite State

Machines to model main components of a RESTful com-

munication service, including those handling the inter-

working with SIP UAs, and verify some properties of

the system.

Formalizing REST APIs for web-based communication and SIP interworking 5

3 FSM-based design of REST communication

services

In this section we show a design approach for REST

communication services which enhances a well-known

REST-oriented design methodology [55] through the

adoption of a state machine formalism and a tool for the

analysis of communicating state machines which allows

to verify the dynamic behavior of the system. We use

a call service as a reference example of communication

services throughout the rest of this paper.

We first introduce the adopted formalization ap-

proach and main REST principles. Then, we describe

the design of a REST communication service interwork-

ing with SIP and we also discuss how we handled Web

and Telecommunications convergence issues. Finally we

verify some desired properties of the modeled system.

3.1 Formalization

In order to provide a formal model of the call resource

behavior, we chose to adopt the UML State Diagram

notation since it is widely adopted and intuitive to

understand. In particular, a UML State Diagram is

adopted for defining the behavior of each distinguished

partner in the protocol. Indeed, since we do not use

the advanced features offered by UML State Diagrams

(such as hierarchical states, histories, concurrent re-

gions), each diagram is actually a Finite State Machine

(FSM). The full model is anyway made up of a collec-

tion of such machines, according to a UML Component

Diagram serving as a reference.

We have adopted the UML on the fly Model Checker

(UMC) tool [11] to support the design, simulation and

verification of the developed model. UMC is an inte-

grated tool for the construction, the exploration, the

analysis and the verification of the dynamic behavior

of UML models described as a set of communicating

UML state diagrams. UMC accepts a system specifica-

tion given in UML-like style as a collection of active

objects, modelled by state-machines.

Adopting UMC obliges us to use semantically well-

founded state machine descriptions, since the tool en-

forces the standard formal semantics given to UML

State Diagrams.

We could have adopted another model checker (such

as SPIN [31], which is popular as a formal protocol val-

idation tool) to formally prove desired properties of the

produced model. This would have required however a

translation of the UML State Diagrams into the spe-

cific model checker input language (Promela for SPIN),

with the possibility of introducing semantic misinter-

pretations.

We have used the two main functionalities offered

by the tool for the analysis of the behavior of a system:

– the ability to simulate the model computations;

– the model checking ability.

The former functionality has been used for verifying the

model itself, but especially to define the correct compu-

tations to which the implemented prototype should ad-

here. Such computations have been expressed for a bet-

ter visualization as Message Sequence Charts (or UML

Sequence Diagrams), as shown in the following sections.

The expression of the computations in this form is how-

ever not supported by the tool.

The latter functionality has been used to verify some

desired properties for the modeled system, in order to

validate the model. Indeed, UMC allows to verify prop-

erties specified in a variant of the CTL temporal logic

[18], called UCTL [10]. UCTL combines both branching-

time and linear-time operators. In a linear temporal

logic, operators are provided for describing events along

a single computation path. In a branching-time logic

the temporal operators quantify over the paths that are

possible from a given state. In CTL a path quantifier

can prefix an assertion composed of arbitrary combina-

tions of linear-time operators, according to the (simpli-

fied) syntax:

1. Path quantifiers are:

– A - “for every path”

– E - “there exists a path”

2. Linear-time operators are:

– Xp - p holds true next time.

– Fp - p holds true sometime in the future

– Gp - p holds true globally in the future

– pUq - p holds true until q holds true

In section 3.5 we show the use of UMC for verify-

ing some behavioral properties, defined by means of a

subset of the operators above.

In synthesis, the adoption of UML State Diagrams

and UMC has allowed us to design and validate a formal

model of the developed protocol.

3.2 REST principles

The REST architectural style was proposed by Fielding

[23] in his doctoral dissertation as an architectural style

for building large-scale distributed hypermedia systems.

On the REST vision, data sets and objects handled by

client-server application logic are modeled as resources.

The key principles of REST are fivefold [23]:

1. URIs as resource identifiers. Resources are exposed

by servers through Uniform Resource Identifiers (URIs).

6 Federica Paganelli et al.

Since URIs belong to a global addressing space, re-

sources identified with URIs have a global scope;

2. Uniform interface. The interaction with the resource

is fully expressed with four primitives, i.e., create,

read, update and delete;

3. Self-descriptive messages. Each message contains the

information required for its management (metadata

are used for content negotiation and errors notifica-

tion);

4. Stateless interactions. Each request from client to

server must contain the information required to fully

understand the request, independently of any re-

quest that may have preceded it;

5. Hypermedia As The Engine Of Application State

(HATEOAS). A hypermedia system is character-

ized by participants transferring resource represen-

tations that contain links; the client can progress to

the next step in the interaction by choosing one of

these links [51, 55].

We adopted the methodology for resource-oriented

design proposed by Richardson and Ruby [55]. Accord-

ing to this methodology, designers have to first figure

out the dataset on which the service will operate, and

split it into resources. Then, they should proceed for

each resource as follows:

1. name the resource using a URI;

2. identify a subset of the uniform interface that is ex-

posed by the resource;

3. design the representation(s) of the resource as re-

ceived in a request from the client or returned in a

reply;

4. analyze the typical course of events by exploring and

defining how the new resource behaves during a suc-

cessful execution and analyze possible error condi-

tions.

3.3 RESTful design of web-based communication

services

Hereafter we describe how we designed REST signalling

APIs for real-time communication on the web.

We took into account a simple case study for ex-

emplifying the proposed approach, namely a call setup

between i) two REST clients (e.g., web browsers), and

ii) a REST client and a SIP UA. In both cases an in-

termediary component is needed for the signalling mes-

sage exchange required for the call setup. The media

path does not necessarily require an intermediary com-

ponent, unless additional proccesing is required (e.g.,

transcoding).

3.3.1 Defining the service domain and resources

The service domain consists of a list of capabilities that

are made available to the web browser through REST-

ful web services. To represent the service domain of the

above-mentioned reference scenarios, we defined the fol-

lowing main resources: calls and call.

The calls resource represents the list of calls han-

dled by the system, including the calls that have been

disconnected but whose details are available in the call

history. It also offers a factory method to instantiate

new calls and retrieve existing calls, as explained in

subsection 3.3.3.

The call resource represents a video or audio call

between two peers. This resource contains all the infor-

mation that describes the call in terms of signaling and

media traffic and call state.

3.3.2 Assigning names to resources

Each resource is identified through a URI. According

to the REST guidelines, URI fragments should contain

nouns (e.g., call), rather than verbs (e.g., makecall). 1

In this work the calls resource is identified through the

http://{servername}/calls URI; analogously, the iden-

tifier of a call resource is http://{servername}/calls/

{call_id}.

3.3.3 Uniform interface

The constraint of uniform interface means that resources

are handled through a fixed set of operations: create,

read, update, delete. These operations can be mapped

onto HTTP methods: GET gets the resource state; PUT

sets the resource state; DELETE deletes a resource;

POST extends a resource by creating a child resource.

Table 1 shows the operations which can be invoked

on the calls and call resources and represent the ex-

posed REST API. GET and POST methods can be

invoked on the calls resource, while the call resource

exposes the PUT, GET and DELETE methods. For

instance, a POST request on the /calls URI is for

the creation of a new call resource and triggers the

establishment of the call between the requesting peer

and a destination peer specified in the body of the re-

quest. The returned response contains the identifier of

the newly created resource (i.e., /calls/{call_id}).

3.3.4 Resource representation

According to Fielding [23] “REST components perform

actions on a resource by using a representation to cap-

1 The use of verbs in URI fragments is a common practice
in web development outside of REST.

Formalizing REST APIs for web-based communication and SIP interworking 7

Table 1 REST API for call resource management

Resource URIs HTTP Description
Method

/calls GET Retrieve a list of calls
/calls POST Create a new call resource
/calls/{call_id} PUT Update the call resource
/calls/{call_id} DELETE Delete the call resource
/calls/{call_id} GET Retrieve the call resource

ture the current or intended state of that resource and

transferring that representation between components”.

At each interaction step, a representation may indeed

indicate the current state of the requested resource, the

desired state for the requested resource, or the value

of some other resources (e.g., a representation of some

error conditions).

The call resource representation contains the follow-

ing data fields:

– to, indicates the callee, identified by a URI;

– from, indicates the caller, identified by a URI;

– state, indicates the call state;

– offer, contains the session description that the caller

sends to the callee to request the establishment of

a call [57]. This information is represented accord-

ing to the Session Description Protocol (SDP) [30],

which is a standard format for describing streaming

media initialization parameters.

– answer, contains the session description that the

callee sends to the caller in response to an offer to

negotiate the media session establishment.

3.3.5 Modeling the Service Behavior as FSM

We modeled the behavior of the call resource through

a FSM representation, as shown in Fig. 1.

In order to adapt the implementation of REST-

oriented design principles to the main requirements of

the real-time communication service to be provisioned,

we took as reference the call setup model defined in the

SIP standard through INVITE client and server trans-

actions [58].

Transitions are fired by REST invocations sent by

user agents (i.e., the caller and the callee). When a tran-

sition is fired, a corresponding notification action (NO-

TIFY) is carried out to inform the other peer that the

resource reached a new state and new transitions are

permitted, in compliance with the REST HATEOAS

constraint, as discussed in section 3.3.6.

In detail, the FSM model shown in Fig. 1 repre-

sents the state evolution of the call resource for the call

session setup between two REST Clients (caller and

callee). The subjects that can trigger a transition by

a HTTP request are reported in the diagram between

brackets.

The call resource states are enumerated hereafter:

1. New, indicates a newly instantiated call resource;

2. Calling, indicates an initiated call;

3. Timeout, Cancel, Busy and Error, indicate that the

call failed due to out of time, caller-side call cancel-

lation, callee-side call cancellation (e.g., the callee is

busy) and request errors events, respectively;

4. Proceeding, indicates a call in progress;

5. Answered, indicates that the callee accepted the call;

6. Acked, indicates that the caller confirmed the call;

7. Closed, indicates a terminated call.

The call resource behavior is briefly described here-

after. For the sake of conciseness, we limit the descrip-

tion of the call resource behavior to the case of a suc-

cessful call and we only analyze some possible error

conditions.

Starting from the initial pseudo-state the caller per-

forms a POST request on the /calls URI to trigger

the creation of a call resource (NEW state). The newly

created call id is returned back to the client. The client

then invokes a PUT operation on the /calls/{call_

id} URI and passes the identifier of the callee and the

offer description encoded in the standard Service De-

scription Protocol (SDP) format in the message body.

The call state is updated to CALLING. Next intermedi-

ate transitions are all triggered by a PUT request on the

/calls/{call_id}URI, which can be sent by the caller,

the callee and/or the server for continuing the session

setup process by properly updating the resource state;

this event is always followed by a notification action to

inform the other peer about the state change. For in-

stance, when the callee accepts a call session, it updates

the call resource state to ANSWERED through a PUT

request containing the answer session description. This

state change is notified to the caller. Then, the caller up-

dates the call resource state to ACKED through a PUT

request and this change is notified to the callee. The fi-

nal transitions that occur in case of failed or closed call,

are triggered by the server by means of a DELETE op-

eration which deletes the call resource. Note that the

states Timeout, Cancel, Busy, Error and Closed can be

considered as equivalent, since they all lead to termi-

nation after a DELETE operation, and therefore could

be merged in a single final state. We have kept them

separate for clarity.

3.3.6 Web and Telecommunications convergence

The FSM-based representation of the call resource helps

understanding how we modeled the SIP peer-to-peer

8 Federica Paganelli et al.

NEW

CALLING

CANCEL

PROCEEDING

CLOSED

TIMEOUT

BUSY

ERROR

ANSWERED

ACKED

PUT CANCEL /
NOTIFY CALLEE

{Caller}

PUT TIMEOUT /
NOTIFY CALLER

{Server}

PUT PROCEEDING /
NOTIFY CALLER

{Callee}

PUT BUSY /
NOTIFY CALLER

{Callee}

PUT ERROR /
NOTIFY CALLER
{Callee, Server}PUT ERROR /

NOTIFY CALLER
{Callee, Server}

PUT CANCEL /
NOTIFY CALLEE

{Caller}

POST CALLS / HTTP 201
{Caller}

PUT BUSY /
NOTIFY CALLER

{Callee}

DELETE CALL
{Server}

DELETE CALL
{Server}

DELETE CALL
{Server}

DELETE CALL
{Server}

DELETE CALL
{Server}

PUT CALLING /
NOTIFY CALLEE

 {Caller}

PUT ANSWERED /
NOTIFY CALLER

{Callee}

PUT ACKED /
NOTIFY CALLEE

{Caller}

PUT CLOSED /
NOTIFY CALLEE or CALLER

{Caller, Callee}

PUT ERROR /
NOTIFY CALLEE
{Caller, Server}

Fig. 1 Finite-state machine of the call resource with two REST clients.

paradigm onto the Web client-server one and how we

handled the compliance with the HATEOAS constraint

(introduced in Section 3.2).

SIP UAs are peers that can act as clients or servers,

i.e., initiate or respond to SIP transactions. In our ref-

erence scenario, two REST clients are involved in the

call establishment. With respect to the call, they should

act as peers (i.e., a REST client should be able to initi-

ate or receive a call). However, this behavior should be

mapped onto the REST client-server interaction model.

This means that the state of the call resource evolves

according to the interactions of both clients with the

server. In order to manage this aspect, we introduced

a notification mechanism. Thus, when the call state

has changed, due to an action performed by one REST

client or the occurrence of other events (e.g., a timeout),

the server sends a notification message to the second

client to signal that the call state has changed.

Moreover, the notification message is used to convey

the reference to the next permitted transitions (i.e., the

actions that can be performed by the notified client).

This is the key mechanism that guarantees compliance

with the HATEOAS constraint. Indeed, a REST ser-

vice is a web of interconnected resources with an un-

derlying hypermedia model that determines not only

the relationships among resources but also the possible

net of resource state transitions [4]. REST clients dis-

cover and decide which links/control to follow/execute

at runtime. According to this constraint, an applica-

tion evolves through subsequent transitions of resources

from one state to another. The system can thus model

and advertise permitted transitions by means of re-

source representations delivered to clients [51]. Then,

client applications decide which possible forward steps

can be run based on their specific application goals

and/or through end users’ actions. Thus, the client-

server interaction is stateless since the request sent by

the client contains all the information needed by the

server to process it (e.g., the Call resource URI and the

action to be performed). On the contrary, SIP UAs are

stateful, i.e., they maintain the dialog or transaction

state. Thus, signaling messages for a call setup contain

information strictly related to the call session evolu-

tion and next permitted transitions are encoded in the

SIP UA implementation that maintains the client and

server transactions state machines.

Formalizing REST APIs for web-based communication and SIP interworking 9

3.4 Interworking with SIP

The FSM representation shown in Fig. 1 can also model

a call between a REST client and a SIP UA. The inter-

working is realized by introducing a proxy component

that implements the notification action into SIP mes-

sages delivered to the SIP UA and translates the SIP

messages sent back by the SIP UA into corresponding

REST invocations. This proxy is composed of two mod-

ules:

1. SIPMessageSender, which implements the notifica-

tion action according to the SIP specifications.

2. SIPMessageReceiver, which translates the SIP mes-

sages sent by the SIP UA into REST invocations.

We used the modeling and simulation capabilities of

the UMC tool to represent our system as a set of com-

municating state machines and, then, simulate their be-

havior. To this purpose, we defined the following state

machines: the call resource (shown in Fig. 1), the SIPMes-

sageReceiver, the SIPMessageSender, the REST client

and the SIP UA state machines (described hereafter

and shown in Figs. 2, 3, 4 and 5, respectively).

Fig. 2 shows the SIPMessageSender FSM represen-

tation. This component is in the Standby state, under

resting conditions. From this state, if one of the de-

picted transitions is activated, the machine enters the

Executed state. Then, the action related to this tran-

sition is performed and the machine returns back to

the standby state by a default trigger (timeout). All

the transitions to the Executed state are triggered by

a NOTIFY request event produced by the call resource

state machine. The transition is enabled upon the sat-

isfaction of a guard condition. The guard conditions

refer to the type of event to be notified (e.g., the newly

entered call resource state). Each event is followed by

a notification action to the SIP UA (caller/callee) via

a proper SIP message. For instance, if the newly en-

tered call resource state is Calling (i.e., PUT CALLING

guard condition), the notification message is translated

into a SIP INVITE message delivered to the SIP UA.

Fig. 3 models the behavior of the SIPMessageRe-

ceiver component. This state machine is similar to the

previous one, since it includes only the Standby and Ex-

ecuted states. The transition to the Executed state is

activated by a SIP message (SIP MESSAGE IN). The

transition is enabled upon the satisfaction of a guard

condition. According to the type of SIP message re-

ceived, the proper REST invocation on the call resource

is performed. For instance, if the transition is activated

by the reception of a provisional response sent by the

SIP callee (e.g., 180 Proceeding), a PUT Proceeding

operation is invoked on the call resource. It is worth

noticing that when the SIP UA acts as the caller, the

Fig. 2 Finite-state machine of the SIPMessageSender com-
ponent.

SIPMessageReceiver requests a call resource creation

(POST request) triggered by the reception of a SIP IN-

VITE message from the SIP UA. Then, upon the recep-

tion of a HTTP 201 message sent by the call resource

component, a PUT Calling request is invoked (this ex-

plains why Fig. 3 shows a transitions triggered by an

HTTP MESSAGE IN event).

The REST Client and SIP UA state machines have

been defined for modeling user agents acting as caller

and callee, but are not part of the contribution of this

work. Therefore we provide them for the sake of com-

pleteness, but we limit the description of their behavior

to a scenario of a successful call. Fig. 4a and Fig. 4b

show the REST Client FSM acting as the caller and

the callee, respectively. Fig. 5a and Fig. 5b show the

SIP UA Client and Server FSMs, which are based on

the SIP INVITE client and server transaction, respec-

tively [58].

The model of the overall system is shown in Fig. 6

by using a UML Component Diagram representation,

which describes how a system is split up into compo-

nents and the dependencies among these components.

A UMC model is specified by providing a set of class

declarations, a set of objects instantiations, and a set of

abstraction rules. The classes define the structure and

dynamic behavior of the objects which compose the sys-

tem. Thus, each component is an object instance, which

is exposed as a state machine. Fig. 6 shows the event-

based operations exposed by each FSM class interface

and the dependency of other classes on these interfaces.

3.5 Formal verification with UMC

We used the UMC tool available on the web (version

4.2) [42] to verify some behavioural properties expressed

in UCTL.

First we verified deadlock absence, since it is a well-

known property which is desirable in most systems.

10 Federica Paganelli et al.

Fig. 3 Finite-state machine of the SIPMessageReceiver component.

(a) (b)

Fig. 4 Finite-state machines of the REST Client component
for a scenario of successful call: (a) REST Client acting as
the caller, and (b) REST Client acting as the callee.

(a) (b)

Fig. 5 Finite-state machines of the SIP UA Client and Server
component for a scenario of successful call: a) SIP UA Client
acting as the caller, and b) SIP UA Server acting as the callee.

SIPMessageSender

Call Resource SIP UA

SIPMessageReceiver

SIP MESSAGE
(e.g., INVITE, ACK)

NOTIFY

CALL_RESOURCE_UPDATE
(e.g., PUT PROCEEDING)

SIP_MESSAGE_IN

REST Client

NOTIFICATION
(e.g., proceeding)

CALL_RESOURCE_UPDATE
(e.g., PUT CALLING)

Fig. 6 Component diagram for the communicating state ma-
chines model.

Then, we verified a service-oriented property (service

responsiveness) and a property characterizing RESTful

services (resource connectedness).

3.5.1 Deadlock absence

The absence of deadlocks is expressed by the UCTL

formula F1 in Table 2, which means “for every path

the CLOSED state is eventually reached”, namely the

UMC model permits to always terminate a successful

call verifying the deadlock absence condition.

Fig. 7 shows an excerpt of the model-checking ca-

pabilities offered by the UMC tool representing the de-

tailed explanation of the result of the formal verification

of this deadlock absence property.

3.5.2 Service responsiveness

The objective is to check if a service is responsive, i.e.,

if it guarantees a response to each received request [10].

An example is expressed by the UCTL formula F2 in

Formalizing REST APIs for web-based communication and SIP interworking 11

Table 2 Formulae for verification of properties with the UMC tool

Verified formulae

Deadlock Absence F1 = AF CLOSED

Service Responsiveness F2 = AG [PUT CALLING]
A [true trueU NOTIFY PUT PROCEEDING∨PUT CANCEL∨NOTIFY PUT TIMEOUT ∨
NOTIFY PUT BUSY ∨NOTIFY PUTERROR true]

Resource Connectedness F3 = ¬E [true ¬HTTP 201 MESSAGE U PUT CALLING true]

Fig. 7 Formal verification of deadlock absence by the UMC tool.

Table 2, which states that each time a request for a

call setup is triggered (through a PUT CALLING re-

quest), in all computations at a certain time the caller

is notified of either a successful or aborted call setup

progress. More precisely, the caller is notified that the

state of the call resource has been updated to a Proceed-

ing, Timeout or Busy state through the corresponding

PUT request, unless the caller itself has terminated the

call (PUT CANCEL request).

3.5.3 Resource Connectedness

Resource connectedness refers to the property wherein

every resource in the web service is reachable from the

base resource by successive requests. Resource connect-

edness is an important property of RESTful web ser-

vices which is implied by the HATEOAS constraint, as

discussed in Section 3.3.6. An example is provided by

the formula F3 in Table 2, which states that it may

never happen that a PUT CALLING request is trig-

gered if a HTTP 201 Message has not been sent be-

fore. This formula expresses a necessary condition un-

der the HATEOAS constraint for a PUT calling request

to be invoked on a /calls/{call_id} URI. An HTTP

201 Message is sent in response to a POST request

on the /calls/ URI and its body should contain the

/calls/{call_id} URI. Therefore, the formula means

that a PUT request for changing the state of a call

resource to CALLING cannot been issued if a POST

request on the /calls/ URI has not been triggered be-

fore. It is to note that the UMC model does not include

the specifications of the message content and references

to URIs, but expresses only the communication skele-

ton.

We model checked the above mentioned properties

and results are shown in Table 3.

Table 3 Validation results

Verified formulae F1 F2 F3

Validation result true true true

Evaluation time (ms) 12.03 13.08 0.66

12 Federica Paganelli et al.

4 Prototype Implementation

This section introduces the prototype that we imple-

mented by taking into account the REST API and the

state machine specifications described in Section 3. This

prototype offers a real-time communication service (i.e.,

voice and video call) between web browsers as well as

web browsers and SIP UAs. The prototype also offers

additional services, in particular a presence manage-

ment service, briefly described in Section 4.2, which is

needed in order to track users availability status and

contact details.

First, we describe the prototype architecture and

related implementation details. Then, we show how we

evaluated the prototype to check: i) its coherence with

respect to the validated model (subsection 4.6) and

ii) whether it meets quantitative performance require-

ments (subsection 4.7).

4.1 Prototype Architecture

The prototype is a web application, which is made of

the following main modules, as shown in Fig. 8:

– REST Communication Service: it handles the REST-

ful exposure of the call service to web browsers. It

also offers additional services, namely registration

and presence update subscription.

– Communication Service Logic: it contains the ap-

plication and persistence logic that implements call

and presence management services.

– Notification Manager : it is responsible for notify-

ing web browsers of events they subscribed to (e.g.,

incoming calls, state changes in a call setup).

– REST-SIP Gateway : it handles the interworking with

SIP UAs, i.e., it allows to establish a call between a

web browser and a SIP UA.

– Client-side Logic: it consists in a set of JavaScript

codes that are executed by the web browser to han-

dle the signaling message exchange and the media

channel establishment.

SIP User
Agent

SIP User
Agent

REST
Communication

Service

REST-SIP
Gateway

Notification
Manager

WebSocket/
HTTP Streaming

HTTP

Communication
Service Logic

Web Browser

Client-side
Logic

JavaScript

WebRTC

WebSocket

SIP User
Agent

SIP

Fig. 8 Functional architecture of the prototype.

4.2 REST Communications Service implementation

The Communication Service has been implemented as

a Java-based web application deployed on an Apache

Tomcat 7.0 servlet container. The implementation of

the REST Communication Service is based on Jersey,

a Java-based framework for developing RESTful Web

Services.

The Communication Service Logic includes the classes

implementing the behaviour of the exposed resources

(i.e., Calls and Call classes), as well as the classes han-

dling the connection with the database for data persis-

tence.

The REST-based exposure of these resources is han-

dled by appropriate classes built using the Jersey li-

brary (CallsResource and CallResource classes). Through

this interface, messages are exchanged that contain a

representation of resources. These messages can be seri-

alized according to different formats. For instance, both

JSON and XML are easily supported by the major-

ity of available REST libraries. We chose JSON since

it is less verbose and requires less time for serializa-

tion/deserialization than XML [29].

For the sake of completeness, we briefly introduce a

set of additional resources (i.e., presences and presence)

that have been implemented to handle user registration

and presence update in the system, which is a prereq-

uisite for a call setup.

The presence resource represents a user’s availabil-

ity status and contact information. This resource is ex-

posed to REST clients and SIP UAs in a way similar

as for the call resource. A REST client directly sends

a POST request on the /presences URI to trigger the

creation of the presence resource for that user. Then,

it subscribes to the events of interest and creates a no-

tification channel, as explained in section 4.3. A SIP

UA sends a SIP REGISTER message to the REST-

SIP Gateway to provide the server with contact details,

needed for the delivery of the events of interest, such as

incoming calls. The SIP REGISTER message is trans-

lated into a POST request on the /presences URI to

create the corresponding resource instance. Event no-

tifications towards the REST Client and SIP UA are

handled by the Notification Manager and REST-SIP

Gateway, respectively.

4.3 Notification Manager

The Notification Manager implements the observer de-

sign pattern. It listens for the updates of call and pres-

ence resources and notifies registered clients.

We chose to implement two alternative solutions

for handling asynchronous notifications: one solution

Formalizing REST APIs for web-based communication and SIP interworking 13

uses the WebSocket Protocol [22]; the second solution

is based on the HTTP Streaming mechanism and the

asynchronous processing of HTTP requests provided

by application containers implementing the Servlet 3.0

specifications [37]. Implementation details for these mech-

anisms are reported hereafter, while their comparative

evaluation is discussed in Section 4.7.

4.3.1 Notification over WebSocket

WebSocket allows web browsers and servers to exchange

messages through a bidirectional channel over TCP. In

our prototype, the server uses a WebSocket channel

that has been previously setup upon a client’s request

to deliver notification messages. According to the Web-

Socket specifications [22], a WebSocket connection is

established through an initial handshake between client

and server. First, the browser sends an HTTP request

asking for switching to the WebSocket protocol (i.e.,

the request message must contain an Upgrade header).

If the server accepts the protocol switching, it sends

a response with the 101 Switching Protocols code in

the Status Line. The HTTP connection is replaced by

the WebSocket connection, while an Observer object

instance is created to handle the delivery of resource

updates to this client (see Fig. 9). The class that spe-

cializes the Observer by implementing the notification

over the WebSocket protocol is called CallWSWriter.

Fig. 9 Subscription for notifications over a WebSocket chan-
nel.

4.3.2 Notification through HTTP streaming and

Asynchronous servlet processing

This solution implements the widely adopted HTTP

Streaming server push mechanism [32]. In the HTTP

Streaming approach, the browser initiates a connection

to the server through a request and the server keeps the

connection open instead of returning back a complete

response and immediately signaling the connection clo-

sure (chunked transfer encoding). The server can send

response updates (e.g., event notifications) through this

long lasting connection. We implemented this server

push mechanism by exploiting the asynchronous pro-

cessing of requests, as allowed by Servlet 3.0 implemen-

tations.

Asynchronous processing means that in case of a

request, a thread is in charge of accepting the request

and putting it into a processing queue. Such thread

does not get blocked and can be used for other tasks.

Consequently, especially in case of asynchronous HTTP

requests, this mechanism allows a more efficient usage

of resources.

A client makes a subscription to the notification ser-

vices through a POST request on the /notifications/

{userId} URI. The server handles this request by in-

stantiating an Observer instance (see Fig. 10). The class

that specializes the Observer by implementing the HTTP

streaming notification mechanism is called CallACWriter.

Fig. 10 Subscription for notifications through HTTP
Streaming and asynchronous servlet processing.

4.4 REST-SIP Gateway

The REST-SIP Gateway is made of two main com-

ponents, called SIPMessageSender and SIPMessageRe-

ceiver, which implement the specifications described in

section 3.4. The SIPMessageSender handles the deliv-

ery of notification messages directed to SIP UAs. The

SIPMessageReceiver handles the communication in the

opposite direction. It receives messages originating from

SIP UAs and parses and translates them into proper ac-

tions (e.g., the corresponding REST invocation on the

call resource). Both components have been developed

according to the SIP Servlet programming model and

have been deployed in the Mobicents SIP Servlets plat-

form [36].

4.5 Client-side logic

This component is made of JavaScript files that are

processed by web clients to handle the signalling mes-

14 Federica Paganelli et al.

sages exchange with the server and establish the media

channel with the other peer. This prototype works with

web browsers that support the WebRTC API and the

WebSocket protocol [13].

These scripts handle the interaction with the user,

the invocation of REST methods and the handling of

notifications sent by the server. The media channel es-

tablishment relies on the WebRTC API, namely the

getUserMedia function, which allows a web browser to

access camera and microphone resources, and PeerCon-

nection, which sets up a direct channel with another

browser for the transport of media data.

The call setup is handled by a set of JavaScript func-

tions, which execute basic actions, such as playing the

ringing tone, interpreting the media channel descrip-

tion received by the callee (offer) and preparing the an-

swer message for negotiating the peer connection setup.

The execution flow of these actions is triggered by two

type of events: user-generated events and notifications

pushed by the server. As mentioned above, the server

notifies the client when the resources of interest change

their state. The notification messages contain the rep-

resentation of the resource and the list of permitted

transitions. This information is translated into a set of

actions that can be executed automatically by the web

browser or upon a user-generated event. For instance,

when a server notifies an incoming call, it sends a mes-

sage to the callee that indicates the current state of the

resource (Calling) and the list of permitted next transi-

tions that can be invoked by the callee, i.e., transitions

to the Proceeding, Busy or Error states. The Proceed-

ing state is associated to a set of locally executable ac-

tions, such as playing the ringing tone to alert the end

user.

Through this mechanism our call service implemen-

tation aims at satisfying the REST HATEOAS con-

straint. Adoption of this constraint has the advantage

of promoting the decoupling of the client and server

logic, thus easing the maintenance of the client logic if

the server-side logic changes, while guaranteeing that

the client behaves coherently with the application state

machine.

4.6 Coherence with design specifications

In this subsection we analyze some reference scenarios

to show how we verified that the implemented proto-

type behavior is coherent with the specifications for-

malized through the communicating state machines.

Fig. 11 shows the message flow for a successful call

session setup between two web browsers mediated by

our web application prototype. First, the caller sends a

call session setup request through a POST request on

the /calls URI and subsequently updates the call sta-

tus to CALLING. This change will be notified to the

callee by the proper Observer instance. The notification

message contains also the offer session description, i.e.,

the set of media streams and codecs the caller wishes

to use, as well as the IP addresses and ports the caller

would like to use to receive the media [57]. For the sake

of conciseness, we don’t show the use of the ICE pro-

tocol [56] for NAT traversal, which is recommended in

the WebRTC specifications [13]. The callee updates the

call status to PROCEEDING through a PUT request

and, locally, plays the ringing tone to alert the end user.

This status can persist for some seconds and is notified

to the user at the caller side by playing a default beep.

When the end user accepts the call, the callee performs

the following actions: i) it parses the session offer and

generates the answer; and ii) it requests a transition of

the call resource to the ANSWERED status through a

PUT request carrying the answer. When the caller re-

ceives the notification message, it parses the answer to

establish the media session according to the negotiated

parameters and, finally, updates the call resource to the

ACKED status. Now the call has been established and

the end users can talk to each other.

Fig. 11 Call setup between two web browsers.

Fig. 12 and Fig. 13 show an analogous message flow

for a successful call setup between a web browser act-

ing as the caller and a SIP UA acting as the callee and

vice versa. The web browser interacts with the server

components as in the previous scenario. The interaction

with the SIP UA is handled by the REST-SIP Gateway

(i.e., the SIPMessageSender and SIPMessageReceiver

components) in compliance with the design specifica-

tions described in Section 3.

The coherence between the UML model and the pro-

totype implementation has been verified through cosim-

ulation, that is, running both on the model and on the

implementation the test scenarios we have defined for

Formalizing REST APIs for web-based communication and SIP interworking 15

Fig. 12 Call setup between a web browser (caller) and a SIP
UA (callee).

Fig. 13 Call setup between a SIP UA (caller) and a web
browser (callee).

this purpose, such as those shown in Figs. 11, 12 and

13.

We checked that the interactions shown in the previ-

ous sequence diagrams were coherent with the evolution
charts of the communicating state machines generated

by the UMC tool for a successful call setup. Fig. 14

shows an excerpt of the chart representing the evolution

of the state machine from the first POST request to a

PUT PROCEEDING invocation for the first reference

scenario. We found no substantial difference, therefore

we can infer that the simulation as well as the imple-

mentation show the same computations, and hence that

the latter satisfies the properties proved for the former.

4.7 Preliminary performance analysis

We performed a set of test iterations to evaluate the

performance of our prototype. The objective of this pre-

liminary analysis is to assess that the prototype imple-

mentation, which is consistent with the formalization,

satisfies acceptable performance requirements in a sim-

ple scenario. We took as reference the maximum value

for the call setup delay in Telecom/Web converged ser-

Fig. 14 Excerpt of the FSM evolution chart generated by
the UMC tool for a call setup between two web browsers.

vices environments, as defined by the TS 186 008-2

standard [63] (i.e., 8 seconds).

This experiment was aimed at evaluating the per-

formance in terms of time delay in REST-to-REST and

REST-to-SIP call scenarios. We used the following met-

rics: i) the call setup delay, defined as the time elaps-

ing between the call setup request (POST HTTP mes-

sage) and the reception of the final response (call AN-

SWERED notification); ii) the subscription delay, de-

fined as the time between the delivery of the subscrip-

tion request and the establishment of the notification

channel; and iii) the notification delay, defined as the

time between the occurrence of an event (i.e., the re-

ception of a PUT request for changing a resource state)

and the reception of the corresponding notification by

the subscribed client.

The testbed environment included a single machine

with a CPU Processor Intel Core i3 3217U 1.80 GHz,

RAM 4 GB DDR3, hosting the web application proto-

type, a Google Chrome browser and the SIPp testing

tool [62]. We chose to perform this experiment on a

single machine in a laboratory environment to gather

results on the delays due to processing tasks, while min-

imizing network delays. In order to simulate a config-

urable number of REST clients requesting a call setup,

we developed a web application that allows to configure

the number of calls to be initiated and the time delay

between two consecutive calls. In this experiment, we

configured the web application to simulate the initia-

tion of 100 consecutive calls with 5 seconds of delay.

The obtained results are presented hereafter.

16 Federica Paganelli et al.

The call setup between two web browsers required

approximately 50 ms, where approximately 30 ms were

due to the initial phase (PUT and POST invocation).

A call setup between a web browser and a SIP UA re-

quired 110 ms, where 60 ms were required on average for

processing an incoming SIP message and translating it

into the corresponding REST invocation. Thus, the dif-

ference between the REST-to-REST and the REST-to-

SIP cases is essentially due to time needed for process-

ing the SIP messages and performing the corresponding

REST invocation.

These results show how the average call setup delay

in our system is comparable with analogous measures

for call setup delay in SIP environments. For instance,

the study by [38] reports an average call setup delay

of 40 ms between two SIP UAs. The maximum call

setup delay measured in our system is well below the

acceptable limit of 8 seconds defined by the TS 186

008-2 standard [63].

Table 4 compares subscription and notification de-

lays obtained by adopting the WebSocket and HTTP

Streaming notification approaches. The subscription de-

lay in the two cases has been measured in the following

way: in the WebSocket case, the delay is the time mea-

sured at the client side between the delivery of the re-

quest to activate the WebSocket channel and the recep-

tion of the HTTP 101 response message; in the HTTP

Streaming case, we measured the time interval between

delivery of the subscription request and reception of the

first HTTP response chunk. As shown in Table 4 the

subscription delay with WebSocket is 7 ms on average,

while the delay with HTTP Streaming is 13 ms. The

notification delay is around 11 ms for both approaches.

Table 4 Subscription and Notification delays

Subscription Notification
delay (ms) delay (ms)

Web Socket 7 11

HTTP Streaming 13 12

A second experiment was aimed at measuring re-

sources consumption in terms of CPU usage. In order to

obtain more reliable measurements, the browser Google

Chrome and the SIPp testing tool were located on a sec-

ond machine. The two machines were connected via a

100 Mbps Ethernet/LAN. In the machine hosting the

Tomcat Application Container and the web application

we used JProfiler, which is a JVM profiler offering CPU

profiling capabilities.

As in the previous experiment, we ran this experi-

ment with a load scenario provided by the test web ap-

plication configured with 100 consecutive calls. First, all

users send a presence registration request to the server,

and then they initiate a call to a SIP UA, one after

the other with a time interval of 5 seconds between two

consecutive calls.

Figures 15 and 16 show the CPU load for the Web-

Socket and HTTP Streaming approaches, respectively.

In both cases, the CPU load has some peaks in

the first time instants. This is due to the creation of

presence resources occurring in the initial phase of the

experiment. Then, the subsequent peaks are due to

the processing of POST and PUT requests for the call

setup, recurring at intervals of approximately 5 seconds.

In the case of HTTP Streaming (Fig. 16), these peaks

increase up to a CPU usage of 20% and then decrease to

a level close to zero. With WebSocket, the application

shows a CPU pattern usage with peaks up to 10% CPU

usage, but with a minimum CPU usage that never drops

below 5%. At the time of writing, available studies on

WebSocket have only focused on network latency and

throughput in reference scenarios characterized by con-

tinuously streamed data, as in the study by Pimentel

and Nickerson [52]. Thus, it is not straightforward to

compare our results with these studies.

0

10

20

30

40

50

60

70

0 60 120 180 240 300 360

CP
U

 L
oa

d
(%

)

Time (secs)

Fig. 15 CPU usage with the WebSocket notification ap-
proach.

0

10

20

30

40

50

60

70

0 60 120 180 240 300 360

CP
U

 L
oa

d
(%

)

Time (secs)

Fig. 16 CPU usage with the HTTP Streaming notification
approach.

Formalizing REST APIs for web-based communication and SIP interworking 17

In a more accurate performance analysis it would be

worthwhile to evaluate delays and resource consump-

tion in more complex and realistic workload scenarios,

which we plan to make in future work.

5 Conclusions

In this work, we have proposed an approach for the

design and implementation of a REST API for real-time

communication services based on formal modeling.

We have shown how, while extending a resource-

oriented design methodology, we modeled call resource

behavior through a Finite State Machine (FSM) rep-

resentation. The adoption of a FSM representation (as

UML State Diagrams) allowed us to use the analysis,

exploration and model-checking capabilities offered by

the UMC tool in order to: i) model the service as a set

of communicating state machines; ii) simulate their be-

havior and interworking with client components (i.e.,

a REST client and a SIP UA); iii) verify some for-

mal properties (deadlock absence, service responsive-

ness and resource connectedness).

Leveraging these specifications, we implemented a

REST call service that can be invoked by any recent

browser supporting WebSocket and WebRTC standards

without requiring any additional code download. We

evaluated the functional correctness as well as the per-

formance of this prototype implementation.

According to the adopted REST principles, the ex-

posed API supports stateless interaction, since every

request from the client to the server contains all the

information required to serve the request. The set of

resources exposed through a uniform HTTP-based in-

terface can be extended to offer other similar services,

such as instant messaging and video conference.

We also discussed compliance with the HATEOAS

constraint. This means that at each interaction step

the client is provided with the options that are per-

mitted at that point. In particular, at each transition

the client receives the instructions on the possible next

steps from the server. Therefore, the dynamic behavior

of the caller and callee agents is embedded in the client-

side application logic, but the possible next transitions

are sent by the server. This promotes loose coupling

between client and server-side implementations, while

guaranteeing that the client behaves coherently with

the application resource’s state machine. This advan-

tage is more evident if we compare this approach with

legacy SIP UAs, which implement the client and server

state machines defined in the SIP specifications.

Real-time communication services require the de-

livery of asynchronous notifications. To cope with this

issue, that is not clearly handled in the REST archi-

tectural style, we implemented and compared through

performance testing two alternative solutions: one so-

lution is based on the WebSocket protocol, the second

one on HTTP Streaming.

Thanks to the results of a preliminary performance

evaluation, we showed that, although a rigorous mod-

elling approach has been adopted, the implemented pro-

totype satisfies performance requirements. In the near

future we will perform a more accurate performance

analysis in realistic scenarios. Moreover, it would be in-

teresting to extend the proposed approach and related

implementation to expose more complex services, such

as a videoconference service.

Although our work focused on real-time communi-

cation services, the proposed approach could be applied

in other application domains to the generalized prob-

lem of the design of REST services based on the HTTP

protocol and their interworking with external systems

through other application protocols. The extensibility

of the approach to other domains is straightforward if

protocol interworking can be hindered by a subset of the

mistmaches covered in this work (i.e., stateless versus

stateful interaction, client-server versus peer-oriented

paradigm).

The adoption of the state machine formalism al-

lowed us to exploit the analysis, exploration and model-

checking capabilities of the UMCtool to evaluate the

compliance of the implemented prototype behavior with

the communicating state machine model. In the near

future, we are planning to extend this study towards

formal specification of RESTful services. More specifi-

cally, we will extend the set of formal properties that

express desirable attributes of our model, and we will

use the model-checking capabilities offered by the UMC

tool for automated property verification.

UMC is not currently equipped with other typical

capabilities of model-based design tools, such as auto-

matic code generation from the model and automatic

test generation, again from the model. These two func-

tionalities can be found, for what concerns UML tools,

in the commercial IBM Rhapsody tool (that on the

other hand does not provide model checking capabil-

ities) [33]. We did not resort to automatic code gen-

eration for the prototype implementation, but rather

we have directly implemented the solution, using the

extracted computations as a guidance and reference to

verify the correct working of the prototype.

Automatic code generation from the model would

have allowed to formally relate the model and imple-

mentation, ensuring that properties proved on the model

hold for the implementation as well. In this paper we

have limited ourselves to check conformance of the man-

18 Federica Paganelli et al.

ually written implementation w.r.t. the model by means

of computation traces inclusion. Indeed, the ”Draw Ab-

stract Traces” feature of UMC provides an automaton

that generates all the computation traces of the model.

Navigating this automaton we can produce test scenar-

ios that can be replayed on the implementation: if the

behaviour is the same, it means that the implementa-

tion’s computations include the examined computation

traces of the model. We have shown in Fig. 14 an ex-

ample of conformance between model traces and test

scenarios.

The combined use of UMC and Rhapsody could be

used for further exploring the possibilities offered by

the integration of their features towards the rigorous

design of web-based communication signaling and in-

terworking.

Acknowledgements The authors acknowledge the techni-
cal support by Luca Capannesi and Lorenzo Mazzi, from the
University of Firenze.

References

1. 3GPP (2009) Open Service Access (OSA); Parlay X

web services; Part 1: Common. 3GPP TS 29.199-01

2. Agarwal S (2012) Real-time web application road-

block: Performance penalty of html sockets. In:

2012 IEEE International Conference on Commu-

nications (ICC), pp 1225–1229, DOI 10.1109/ICC.

2012.6364271

3. Aijaz F, Ali S, Chaudhary M, Walke B (2009) En-

abling high performance mobile web services provi-

sioning. In: Vehicular Technology Conference Fall

(VTC 2009-Fall), 2009 IEEE 70th, pp 1–6

4. Alarcon R, Wilde E, Bellido J (2011) Hypermedia-

driven restful service composition. In: Service-

Oriented Computing, Springer, pp 111–120

5. Alvestrand H (2013) Real Time Protocols for

Browser-based Applications. Internet-Draft,

IETF, URL http://tools.ietf.org/html/

draft-ietf-rtcweb-overview-08

6. Amirante A, Castaldi T, Miniero L, Romano SP

(2013) On the seamless interaction between we-

bRTC browsers and SIP-based conferencing sys-

tems. Communications Magazine, IEEE 51(4):42–

47

7. Amirante A, Castaldi T, Miniero L, Romano SP

(2014) Janus: A general purpose webrtc gateway.

In: Proceedings of the Conference on Principles,

Systems and Applications of IP Telecommunica-

tions, ACM, New York, NY, USA, IPTComm ’14,

pp 7:1–7:8, DOI 10.1145/2670386.2670389, URL

http://doi.acm.org/10.1145/2670386.2670389

8. Bai Y, Ye X, Ma Y (2011) Formal modeling and

analysis of sip using colored petri nets. In: Wireless

Communications, Networking and Mobile Comput-

ing (WiCOM), 2011 7th International Conference

on, pp 1–5, DOI 10.1109/wicom.2011.6040445

9. Becucci M, Fantechi A, Giromini M, Spinicci E

(2005) A comparison between handwritten and

automatic generation of c code from sdl using

static analysis. Software: Practice and Experi-

ence 35(14):1317–1347, DOI 10.1002/spe.673, URL

http://dx.doi.org/10.1002/spe.673

10. ter Beek M, Fantechi A, Gnesi S, Mazzanti F

(2008) An action/state-based model-checking ap-

proach for the analysis of communication proto-

cols for service-oriented applications. In: Leue S,

Merino P (eds) Formal Methods for Industrial Crit-

ical Systems, Lecture Notes in Computer Science,

vol 4916, Springer Berlin Heidelberg, pp 133–148,

DOI 10.1007/978-3-540-79707-4 11, URL http://

dx.doi.org/10.1007/978-3-540-79707-4_11

11. ter Beek MH, Mazzanti F, Gnesi S (2009) CMC-

UMC: A Framework for the Verification of Ab-

stract Service-oriented Properties. In: Proceedings

of the 2009 ACM Symposium on Applied Comput-

ing, ACM, New York, NY, USA, SAC ’09, pp 2111–

2117, DOI 10.1145/1529282.1529751, URL http:

//doi.acm.org/10.1145/1529282.1529751

12. Belqasmi F, Glitho R, Fu C (2011) Restful web

services for service provisioning in next-generation

networks: a survey. Communications Magazine,

IEEE 49(12):66–73

13. Bergkvist A, D C Burnett CJ, Narayanan A (2012)

WebRTC 1.0: Real-time Communication Between

Browsers. W3C Working Draft, W3C, URL http:

//www.w3.org/TR/webrtc/

14. Bond G, Cheung E, Fikouras I, Levenshteyn R

(2009) Unified telecom and web services compo-

sition: problem definition and future directions.

In: Proceedings of the 3rd International Confer-

ence on Principles, Systems and Applications of

IP Telecommunications, ACM, New York, NY,

USA, IPTComm ’09, pp 13:1–13:12, DOI 10.1145/

1595637.1595654, URL http://doi.acm.org/10.

1145/1595637.1595654

15. C Bizer TBL T Heath (2009) Linked data - the

story so far. Journal on Semantic Web and Inf Sys-

tems 5(3):1–22

16. Chen N, Chen Z, Zheng X, Chen G (2013) Mobile

cloud based system architecture for remote-resident

multimedia discovery and access. In: Web Informa-

tion System and Application Conference (WISA),

2013 10th, pp 361–364

Formalizing REST APIs for web-based communication and SIP interworking 19

17. Chou W, Li L, Liu F (2008) Web services for

communication over IP. Communications Maga-

zine, IEEE 46(3):136–143, DOI 10.1109/MCOM.

2008.4463784

18. Clarke EM, Emerson EA, Sistla AP (1986) Auto-

matic verification of finite-state concurrent systems

using temporal logic specifications. ACM Trans-

actions on Programming Languages and Systems

(TOPLAS) 8(2):244–263

19. Davids C, Johnston A, Singh K, Sinnreich H,

Wimmreuter W (2011) SIP APIs for voice and

video communications on the web. In: Proceedings

of the 5th International Conference on Principles,

Systems and Applications of IP Telecommunica-

tions, ACM, New York, NY, USA, IPTcomm ’11,

pp 2:1–2:7, DOI 10.1145/2124436.2124439, URL

http://doi.acm.org/10.1145/2124436.2124439

20. Ding LG, Liu L (2008) Applications and Theory of

Petri Nets: 29th International Conference, PETRI

NETS 2008, Xi’an, China, June 23-27, 2008. Pro-

ceedings, Springer Berlin Heidelberg, Berlin, Hei-

delberg, chap Modelling and Analysis of the IN-

VITE Transaction of the Session Initiation Proto-

col Using Coloured Petri Nets, pp 132–151. DOI 10.

1007/978-3-540-68746-7 12, URL http://dx.doi.

org/10.1007/978-3-540-68746-7_12

21. Erl T (2007) SOA Principles of Service Design (The

Prentice Hall Service-Oriented Computing Series

from Thomas Erl). Prentice Hall PTR, Upper Sad-

dle River, NJ, USA

22. Fette I, Melnikov A (2011) The WebSocket Pro-

tocol. RFC 6455, URL http://tools.ietf.org/

rfc/rfc6455.txt

23. Fielding R (2000) Architectural Styles and the

Design of Network-Based Software Architectures.

PhD thesis, Architectural Styles and the Design of

Network-Based Software Architecture

24. Fielding RT (2008) REST API must be hypertext

driven. URL http://roy.gbiv.com/untangled/

2008/rest-apis-must-be-hypertext-driven

25. Fielding RT, Taylor RN (2002) Principled design

of the modern web architecture. ACM Transactions

on Internet Technology (TOIT) 2(2):115–150

26. Fu C, Belqasmi F, Glitho R (2010) RESTful web

services for bridging presence service across tech-

nologies and domains: an early feasibility proto-

type. Communications Magazine, IEEE 48(12):92–

100, DOI 10.1109/MCOM.2010.5673078

27. Griffin D, Pesch D (2007) A Survey on Web Services

in Telecommunications. Communications Maga-

zine, IEEE 45(7):28–35, DOI 10.1109/MCOM.

2007.382657

28. Griffin K, Flanagan C (2011) Defining a Call

Control Interface for Browser-based Integrations

Using Representational State Transfer. Comput

Commun 34(2):140–149, DOI 10.1016/j.comcom.

2010.03.029, URL http://dx.doi.org/10.1016/

j.comcom.2010.03.029

29. Hameseder K, Fowler S, Peterson A (2011) Per-

formance analysis of ubiquitous web systems

for smartphones. In: Performance Evaluation of

Computer Telecommunication Systems (SPECTS),

2011 International Symposium on, pp 84–89

30. Handley M, Jacobson V (1998) SDP: Session De-

scription Protocol. RFC 2327, URL http://www.

ietf.org/rfc/rfc2327.txt

31. Holzmann G (2003) Spin Model Checker, the:

Primer and Reference Manual, 1st edn. Addison-

Wesley Professional

32. Huang M, Zhu L (2012) Research for Network Fault

Real-time Alarm System Based on Pushlet. In: In-

dustrial Control and Electronics Engineering (ICI-

CEE), 2012 International Conference on, pp 212–

215, DOI 10.1109/ICICEE.2012.63

33. IBM Rhapsody (2013) URL http://www-03.ibm.

com/software/products/en/ratirhapfami

34. Imre G, Mezei G (2016) Introduction to a

websocket benchmarking infrastructure. In: 2016

Zooming Innovation in Consumer Electronics In-

ternational Conference (ZINC), pp 84–87, DOI

10.1109/ZINC.2016.7513661

35. Islam S, Gregoire J (2013) Converged access of IMS

and web services: A virtual client model. Network,

IEEE 27(1):37–44

36. Ivanov I (2008) Mobicents Communication Plat-

form. URL http://www.mobicents.org/index.

html

37. Juneau J (2013) New Servlet Features. In: In-

troducing Java EE 7, Apress, pp 1–14, DOI 10.

1007/978-1-4302-5849-0 1, URL http://dx.doi.

org/10.1007/978-1-4302-5849-0_1

38. Kellokoski J, Tukia E, Wallenius E, Hamalainen

T, Naarmala J (2010) Call and messaging perfor-

mance comparison between IMS and SIP networks.

In: Internet Multimedia Services Architecture and

Application(IMSAA), 2010 IEEE 4th International

Conference on, pp 1–5, DOI 10.1109/IMSAA.2010.

5729396

39. Li L, Chou W (2010) Design Patterns for REST-

ful Communication Web Services. In: Web Services

(ICWS), 2010 IEEE International Conference on,

pp 512–519

40. Li L, Zhang X (2012) Research on the integration

of RTCWeb technology with IP multimedia subsys-

tem. In: Image and Signal Processing (CISP), 2012

20 Federica Paganelli et al.

5th International Congress on, IEEE, pp 1158–1161

41. Lozano D, Galindo LA, Garćıa L (2008) WIMS

2.0: Converging IMS and Web 2.0. Designing REST

APIs for the Exposure of Session-Based IMS Ca-

pabilities. In: Proceedings of the 2008 The Sec-

ond International Conference on Next Genera-

tion Mobile Applications, Services, and Technolo-

gies, IEEE Computer Society, Washington, DC,

USA, NGMAST ’08, pp 18–24, DOI 10.1109/

NGMAST.2008.97, URL http://dx.doi.org/10.

1109/NGMAST.2008.97

42. Mazzanti F (2015) UMC model checker. URL

http://fmt.isti.cnr.it/umc/V4.11/umc.html

43. Menkens C, Wuertinger M (2011) From service de-

livery to integrated SOA based application delivery

in the telecommunication industry. J Internet Ser-

vices and Applications 2(2):95–111

44. Moriya T, Akahani J (2010) Application program-

ming gap between telecommunication and internet.

Comm Mag 48(8):96–102

45. Mulligan C (2009) Open API standardization for

the NGN platform. Communications Magazine,

IEEE 47(5):108–113, DOI 10.1109/MCOM.2009.

4939285

46. Nicolas G, Sbata K, Najm E (2011) Architect-

ing end-to-end convergence of web and Telco ser-

vices. In: Proceedings of the 13th International

Conference on Information Integration and Web-

based Applications and Services, ACM, New York,

NY, USA, iiWAS ’11, pp 98–105, DOI 10.1145/

2095536.2095555, URL http://doi.acm.org/10.

1145/2095536.2095555

47. OMA (2006) OMA Web Services Enabler OWSER

Core Specification. Approved Version 1.1, Open

Mobile Alliance

48. OMA (2012) Enabler Release Definition for

RESTful bindings for Parlay X Web Services.

Tech. Rep. V2, Open Mobile Alliance, URL

http://technical.openmobilealliance.

org/Technical/release_program/docs/

CopyrightClick.aspx?pck=ParlayREST&file=

V2_0-20120724-A/OMA-ERELD-ParlayREST-V2_

0-20120724-A.pdf

49. OMA (2015) RESTful Network API for WebRTC

Signaling. Tech. Rep. V1.0, Open Mobile Alliance

50. Paganelli F, Turchi S, Giuli D (2014) A web of

things framework for RESTful applications and

its experimentation in a smart city. Systems Jour-

nal, IEEE PP(99):1–12, DOI 10.1109/JSYST.2014.

2354835

51. Parastatidis S, Webber J, Silveira G, Robinson IS

(2010) The role of hypermedia in distributed sys-

tem development. In: Proceedings of the First In-

ternational Workshop on RESTful Design, ACM,

New York, NY, USA, WS-REST ’10, pp 16–22,

DOI 10.1145/1798354.1798379, URL http://doi.

acm.org/10.1145/1798354.1798379

52. Pimentel V, Nickerson B (2012) Communicating

and Displaying Real-Time Data with WebSocket.

Internet Computing, IEEE 16(4):45–53, DOI 10.

1109/MIC.2012.64

53. Porres I, Rauf I (2011) Modeling behavioral restful

web service interfaces in uml. In: Proceedings of

the 2011 ACM Symposium on Applied Computing,

ACM, pp 1598–1605

54. Qadir J, Hasan O (2014) Applying formal meth-

ods to networking: Theory, techniques and appli-

cations. Communications Surveys Tutorials, IEEE

PP(99):1–1, DOI 10.1109/COMST.2014.2345792

55. Richardson L, Ruby S (2007) RESTful Web Ser-

vices. OReilly & Associates

56. Rosenberg J (2010) Interactive Connectivity Es-

tablishment (ICE): A Protocol for Network Ad-

dress Translator (NAT) Traversal for Offer/Answer

Protocol. RFC 5245, URL http://www.ietf.org/

rfc/rfc5245.txt

57. Rosenberg J, Schulzrinne H (2002) An Of-

fer/Answer Model with Session Description Proto-

col (SDP). RFC 3264 (Proposed Standard), URL

http://www.ietf.org/rfc/rfc3264.txt

58. Rosenberg J, Schulzrinne H, Camarillo G, Johnston

A, Peterson J, Sparks R, Handley M, Schooler E

(2002) SIP: session initiation protocol. RFC 3261,

URL http://www.ietf.org/rfc/rfc3261.txt

59. Sege P, Palch P, Papn J, Kubina M (2014) The

integration of webrtc and sip: Way of enhancing

real-time, interactive multimedia communication.

In: Emerging eLearning Technologies and Applica-

tions (ICETA), 2014 IEEE 12th International Con-

ference on, pp 437–442, DOI 10.1109/ICETA.2014.

7107624

60. Singh K, Krishnaswamy V (2013) A case for

sip in javascript. IEEE Communications Magazine

51(4):28–33, DOI 10.1109/MCOM.2013.6495757

61. Sinnreich H, Wimmreuter W (2010) Communica-

tions on the web. e & i Elektrotechnik und In-

formationstechnik 127(6):187–194, DOI 10.1007/

s00502-010-0742-l, URL http://dx.doi.org/10.

1007/s00502-010-0742-l

62. SIPp (2012) SIPp: Open Source test tool/traffic

generator for the SIP protocol. URL http://sipp.

sourceforge.net/

63. Vingarzan D, et al (2007) IMS/NGN

Performance Benchmark Part 2: Subsys-

tem Configurations and Benchmarks. URL

http://webapp.etsi.org/workprogram/Report_

Formalizing REST APIs for web-based communication and SIP interworking 21

WorkItem.asp?WKI_ID=25501, eTSI/TISPAN 6

Workitem 06024-2

64. Zave P (2008) Understanding sip through model-

checking. In: Schulzrinne H, State R, Niccol-

ini S (eds) Principles, Systems and Applica-

tions of IP Telecommunications. Services and Se-

curity for Next Generation Networks, Lecture

Notes in Computer Science, vol 5310, Springer

Berlin Heidelberg, pp 256–279, DOI 10.1007/

978-3-540-89054-6 13, URL http://dx.doi.org/

10.1007/978-3-540-89054-6_13

65. Zuzak I, Budiselic I, Delac G (2011) A Finite-

State Machine Approach for Modeling and Analyz-

ing RESTful Systems. J Web Eng 10(4):353–390

