
Breaching the privacy of connected vehicles

network

Vladimir Kaplun and Michael Segal

Ben-Gurion University of the Negev

segal@bgu.ac.il

Abstract— Connected Vehicles network is designed to

provide a secure and private method for drivers to use the

most efficiently the roads in certain area. When dealing with

the scenario of car to access points connectivity (Wi-Fi, 3G,

LTE), the vehicles are connected by central authority like

cloud. Thus, they can be monitored and analyzed by the cloud

which can provide certain services to the driver, i.e. usage

based insurance (UBI), entertainment services, navigation etc.

The main objective of this work is to show that by

analyzing the information about a driver which is provided to

the usage based insurance companies, it is possible to get

additional private data, even if the basic data in first look,

seems not so harmful. In this work, we present an analysis of

a novel approach for reconstructing driver’s path from other

driving attributes, such as cornering events, average speed

and total driving time. We show that, in some cases, it is

possible to reconstruct the driver’s path, while not knowing

the target point of the trip.1

I. INTRODUCTION

The Internet of Things (IoT) is a new trend in our

information and communication process stemming from

the evolution of the Internet. There are many use cases in

which IoT technologies are explored like smart phones,

watches, electrical devices and more. One of the most

interesting fields that we plan to investigate is a cloud

monitored vehicles, in which trip information (location and

time) is generated by each vehicle and stored in cloud’s

database. The information that is stored in the cloud’s

database can be very valuable for third party companies.

Their interest can be due to many utilities that the data

gathered from the vehicle can provide, e.g. tracking,

learning patterns, providing usage based insurance,

learning statistics about road conditions and more.

Therefore, it is important to ensure a privacy of the user in

a process of queries which are performed by the various

third party companies.

In this work we will focus on usage-based-insurance (UBI).

A usage-based-insurance is an automobile insurance where

the insurer uses data on driving behavior to set the

1 This is a pre-print of an article published in Telecommunication

Systems journal. The final authenticated version is available online at:

https://doi.org/10.1007/s11235-018-00544-6

premium offered to each policyholder. The premiums are

adjusted so as to reflect the individual driver risk profiles

constructed by the insurer. In order to calculate the risk of

each driver properly, the insurance company has to know

several driving attributes e.g. total driving time, cornering,

and average speed. Commercial UBI programs are

available on the market today are mainly based on

information extracted from the car’s on-board-diagnostics

(OBD) system, or from externally installed hardware

components, referred to as black-boxes or aftermarket

devices. Another method for measuring cornering and

other attributes for the UBI revenues are smartphone-based

insurance telematics applications, aiming to avoid the

logistic and monetary costs associated with on-board-

diagnostics or black-box dependent solutions.

The aim of this thesis is to identify whether the privacy of

the users can be compromised by the usage-based-

insurance companies. The privacy breach can be reached

by getting basic information about specific user and by

using the algorithms that we conducted. Thus, throughout

the thesis we will show that it is possible to find user’s path

by knowing some attributes that the UBI companies gather

from the driver in order to assess the level of each user’s

risk.

This work is organized as follows: Section II presents the

problem definition and describes the model used in this

research. Literature survey and previous work description

can be found in Section III. Section IV describes our

algorithms for revealing driver’s path. In Section V we

show extended simulation results and finally Section VI

concludes our work.

II. SLRRENEMILERP AND MODEL

This section provides a description of the model used in

this research and the required notations. In addition, it

includes a definition of the problem studied.

A. Model

The routing algorithm is assumed to be an on-demand

algorithm, i.e., a path between a source node and a

destination node is set up only when a request is made.

We start by listing the graph theory notations which are

used in this work.

Connected vehicles network is well presented using graph

theory, while the roads are presented as a collection of

directed edges and the intersections are presented as a

collection of vertices. Intersections are defined as the

junction at-grade of two or more roads meeting or crossing.

Furthermore, we also define intersections as turning events

greater than 60°. Let some directed graph 𝐺 represent a

road map inside a defined area. We let 𝑉(𝐺), 𝐸(𝐺) to

represent the sets of vertices (intersections) and edges

(roads), respectively of 𝐺, where |𝑉(𝐺)| = 𝑛. A directed

edge 𝑒𝑣𝑖,𝑣𝑗
= (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 exists if a vehicle can reach 𝑣𝑗

from 𝑣𝑖 in 1 hop path. The use of directed graph comes

from constraints on the direction of driving in the physical

world. If there is a directed edge which connects vertex 𝑣𝑖

to 𝑣𝑗 , vertex 𝑣𝑗 is considered as a successor of 𝑣𝑖 . If there is

a successor for the vertex, it is possible for the driver to

drive to the next intersection.

In addition, we define a simple path as a set of disjoint

vertices [𝑣𝑖 , … , 𝑣𝑗], which are connected by edges, while

one can reach the last vertex from the first vertex using the

directed edges. We define the length of the path 𝑃𝑎𝑡ℎ as a

number of vertices that path contains, and denote it

as |𝑃𝑎𝑡ℎ|.
The use of weighted directed graph comes from the legal

and physical constraints of each road. There are 3 weights

for each of the edges 𝑒𝑣𝑖,𝑣𝑗
∈ 𝐸 in graph 𝐺:

 We define 𝑊(𝑒𝑣𝑖,𝑣𝑗
) as the maximum legal speed

which is allowed by law in the road between 𝑣𝑖 to 𝑣𝑗 ,

and define

𝑊([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑙 , 𝑣𝑘]) =
𝑊(𝑒𝑣𝑖,𝑣𝑗

)+⋯+𝑊(𝑒𝑣𝑙,𝑣𝑘
)

|[𝑣𝑖,𝑣𝑗,…,𝑣𝑙,𝑣𝑘]|−1
 which is

average speed in [𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑙 , 𝑣𝑘] 𝑝𝑎𝑡ℎ.

 We use 𝑑(𝑒𝑣𝑖,𝑣𝑗
) = |𝑒𝑣𝑖,𝑣𝑗

| to denote the road distance

of 𝑒𝑣𝑖,𝑣𝑗
 which connects vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺). We

assume that 𝑑(𝑣𝑖 , 𝑣𝑗) is limited by 𝑚𝑖𝑛𝑟𝑜𝑎𝑑 ≤

𝑑(𝑒𝑣𝑖,𝑣𝑗
) ≤ 𝑚𝑎𝑥𝑟𝑜𝑎𝑑 . In order to denote the distance

of a certain path, we use the following notations:

 We define 𝑑([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘]) as a distance of the

[𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘] path.

 We define 𝑑([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘], 𝑣𝑎) as a distance of the

[𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘 , 𝑣𝑎] path, while 𝑣𝑎 is disjoint

from 𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘 vertices.

There are 2 limits on the distance which we define as

follows:

 We define 𝑋𝑡𝑢𝑟𝑛, a distance between 2 turns to the

same direction:

 𝑚𝑖𝑛𝑟𝑜𝑎𝑑 ≤ 𝑋𝑡𝑢𝑟𝑛 ≤ 𝑚𝑎𝑥𝑡𝑢𝑟𝑛

 Let’s define 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 as a maximum distance between

the starting vertex and the possible turn. In general, it

is bounded by |𝐸| ∙ 𝑚𝑎𝑥𝑟𝑜𝑎𝑑 . However, in our

algorithms we can limit it with maximum legal speed

and time difference between the starting vertex and

possible turning event.

In order to map the popularity of the roads in certain area,

we use 𝑃(𝑒𝑣𝑖,𝑣𝑗
) to denote the road popularity which

connects vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺). If we want to denote the

average popularity of certain directed path, we would

use 𝑃([𝑣𝑖 , … , 𝑣𝑗]).

Furthermore, in order to have exact definition of a

cornering event we define a turning angle as at least 60°,

similarly to [1]. Therefore, if an angle between the previous

road direction and the current road direction is between 0-

59°, it would be considered as straight driving, and if the

angle is between 60°-180°, it would be considered as a

turning event. When dealing with calculation of the closest

edge to a specific GPS coordinate, we introduce the

definition of ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) which is a straight

segment distance between GPS point 𝑝 and edge (road) 𝑒.

In addition to the edge weights, it is important to define the

direction of each edge (road). Thus, we introduce

the 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. We will use < 𝑣𝑖 , 𝑣𝑗 > to define the 2

dimensional 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 vector of 𝑒𝑣𝑖,𝑣𝑗
, while each

𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is relative to the north of the planet.

Furthermore, we later on will use the notion

of 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 vector, which is the vector of

predecessor road. Predecessor road, is a road in which

former vertex is the first vertex of the currently examined

road.

Finally, in order to assess the number of turning events

inside the certain path, we use the notation of

𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ.

B. Problem Definition

This work presents a study of the problem of Breaching

Drivers Privacy by revealing driver's path while using

basic driving information. The motivation is to find an

efficient algorithm in a good computation time, which

would hopefully reveal driver's path while the starting

point is given. Specifically, we would like to maximize the

revealed path distance, while minimizing the variance

between the real driver’s path and the revealed path.

Furthermore, we would like to have the best revealed path

which has the highest popularity among possible paths.

Since there are vast amount of possibilities for turning in a

specific amount of seconds, it would be very challenging to

find the correct path. Thus, the objective of this work is to

determine how to use the given driver’s attributes, and to

find the influence of the road popularities on breaching

driver’s privacy.

III. SLRWEEUPIVELP

This section reviews the previous works which were
performed in the field of privacy and usage based insurance
path mitigation. We first survey the works which defines the
user privacy and ways to protect it. Afterwards, we examine
some works which deal with usage based insurance and
their threat to user’s privacy.

A. Privacy classification

In order to understand the threats that UBI possesses to

the privacy of the drivers, it is important to classify and

measure privacy levels. Thus, restraining the queries which

the third party companies ask the database. Therefore,

Xiaofeng et al. [2] suggests classifying the privacy levels by

two parameters: universality and confidentiality. The

privacy universality indicates how many people think their

privacy is impaired when the information is disclosed.

While, the privacy confidentiality indicates the importance

of the privacy to the data owner and the degree of secrecy.

In addition, there are many other methods for

classification of privacy levels such as using machine

learning algorithms in order to compute the mutual

information between the utility and privacy. The utility of a

dataset is a measure of how useful a privatized dataset is to

the dataset owner. Thus, by setting a privacy threshold,

which defines the levels of privacy inside the dataset, the

utility of the query to the dataset of the third party can be

restricted. As a result, it can prevent privacy breach [3]. To

the best of our knowledge, the path of the user is the most

valuable private data of each user [4]. Thus, in our work we

focus on inferring the path of the user which is considered

to be the highest private data. This is because UBI

companies can infer other private attributes from driver’s

path, like personal address, working address and the places

that the user has visited. For example, it would be very

dangerous for any politician to expose his daily pass,

accordingly, exposing himself to unnecessary threat.

B. Privacy Anonymization

 The main threat to user’s privacy is inferring an

additional information about a driver from an information

table release. The first model of privacy-preserving data

publication was k-anonymity [5]. That model suggests to

generalize the values of the attributes so that each of the

released record becomes indistinguishable from at least k-1

other records, when projected on those attributes. As a

consequence, each individual may be linked to sets of

records of size at least 𝑘 in the released anonymized table,

whence privacy is protected to some extent.

While k-anonymity refers only to single release of the table,

protecting the private information from adversaries who

examine the sequential release was studied in [6]. Wang et

al. introduces the “lossy join” which generalizes the current

release of the table column, so that the join with the

previous release of the table column becomes lossy enough

to disorient the attacker. Shmueli et al. [7] further

investigates the notion of protecting the data in sequential

releases and extends the study of continuous data

publishing. In their study, they present 2 privacy attributes,

k-linkability and k-diversity. The k-linkability mandates that

even if an adversary combines information from all

releases of the underlying table, he would not be able to

link any selection of values of the attributes to less than 𝑘

distinct values of the sensitive attribute. The k-diversity

demands that such an adversary would not be able to link

any selection of values of the attributes with any sensitive

value with probability greater than 1/𝑘. In order to achieve

the requirements above, the paper [7] proposes “Cell-

Generalization” method, in which each cell is generalized

independently.

C. Usage Based Insurance data aggregation methods

 There are several methods for Usage Based Insurance to

gain user’s data. Such methods can gain small portion of

drivers’ attributes or even all them. One of those methods

is vehicle telematics based program. In order to enter the

program, a driver has to install telematics unit which in

turn gains user’s mileage, breaking habits, time of a day

when the data was recorded and average speed.

Furthermore, some telematics units aggregate cornering

behavior log of the driver [8]. Given the privacy issues

surrounding the geographic tracking of individuals, many

solutions explicitly claim that the customer’s GPS

coordinates are not recorded. Privacy policies clearly state

what information is collected, as well as the possibility of

sharing the data with third-parties, using it for fraud

prevention and research, or for compliance with the law

[9]. Recent estimates predict that up to 30% of all vehicles

in the United States, and 60% of all vehicles in the United

Kingdom, will be insured through some type of insurance

telematics program by the year 2020 [10].

 Because of large costs related to installation,

maintenance, and logistics which involved with telematics

programs, another method for aggregating driver’s

attributes was presented in [11]–[14]. That method

involves a smartphone-based insurance telematics

applications. Currently, the commercial expansion of the

UBI industry is held up by the process of acquiring data.

On one hand, the use of smartphones for the collection of

driving data is much simpler than telematics methods, due

to the high percentage of drivers who own a smartphone.

On the other hand, the vast amount of information that can

be collected from the smartphone can infer driver’s privacy

[15].

D. Cornering data

Despite efforts to improve the conditions of the road

surface and the quality of the tires, skidding and rollover

events still play a major role in many of today’s car

accidents. Moreover, statistics show that even though only

three percent of all vehicle crashes involve a rollover,

approximately 1/3 of all passenger deaths are related to

rollover events [16]. As of yet, no safety system exists that

can fully compensate for the dangers in turning events

induced by excessive speeds or reckless driving. Thus, in

order to perform a better risk analyses of the driver’s

driving skills, it is important to detect dangerous cornering

events.

E. Path Finding Algorithms

One of the most interesting privacy breach attacks, is an

attack which gains path from some driver’s attributes.

Hunter at el. [117] presented an algorithm of reconstructing

vehicle trajectories from sparse sequences of GPS points,

for which the sampling interval ranges between 10 seconds

and 2 minutes. The algorithm maps streaming GPS data in

real-time, with a high throughput. They present an efficient

Expectation Maximization algorithm to train the filter on

new data without ground truth observations. Two of the

common problems which occur when dealing with these

GPS traces are the correct mapping of these observations to

the road network, and the reconstruction of the trajectories

of the vehicles from these traces. The main challenge is

finding the right path among very high possible paths due

to urban environment. The main disadvantage of that

algorithm is despite of its success reconstructing driver’s

path, it needs points in the middle and the end of the path.

In our work, we assume that we have only the starting

point and the cornering events. Thus, we do not map the

GPS traces.

Another interesting work which inferred driver’s path from

another attributes was performed by Dewri et al. [1]. In

their study, they showed that the destinations of trips may

also be determined without having to record GPS

coordinates. In this paper, they studied the threat of

location inference in vehicle telematics applications that

collect driving habits data. Hence, developing an inference

algorithm to demonstrate that inferring the destinations of

driving trips is possible with access to simple features such

as driving speed and distance traveled. The algorithm does

fail in some cases, e.g. traffic jams. In order to work, it

needs an ideal road and turning conditions. Thus, when

there is a traffic jam or if the driver didn’t take a turn in the

right speed or pattern it wouldn’t work. Furthermore, the

researcher considers that every driver, always takes a

shortest path to the destination. In our work, we do not

make that assumption and our algorithm can work even if

there is a traffic jam.

The work of Gao et al. [18] shows that drivers can be

tracked by merely collecting their speed data and knowing

their home location. To demonstrate the algorithm’s real-

world applicability, they evaluated its performance with

datasets which represents suburban and urban areas. The

algorithm predicted destinations with error within 250

meters for 14% traces and within 500 meters for 24%

traces one dataset (254 traces). For a larger dataset (691

traces), they similarly predicted destinations with error

within 250 and 500 meters for 13% and 26% of the traces

respectively. Thus, showing that these insurance schemes

enable a substantial breach of privacy. The percent of

predicted endpoints within 250 meters of the actual

endpoint also does not decrease with distance, with trips as

long as 10.5 miles still having endpoints correctly predicted

to within 250 meters. Unfortunately, the main assumption

of the algorithm is that the speed is known at least in a rate

of 2 samples in second, very high sampling rate, since there

is sometimes a loss in GPS signal. In our work, we are

basing our solutions on an average speed of the driver

instead of continuous speed data.

If the attacker wishes to find user’s path, he has to rely only

on the information that the UBI companies need in order to

assess the risk of the driver, while the combination of all of

them can cause a privacy breach. As we mentioned

beforehand, the attributes that are provided are starting

point, cornering log file, and average speed. Cornering data

is provided about the speed pattern when a driver performs

a turn, left or right. Thus, when performed dangerously, it

would cause much higher insurance payment. As shown in

[19] and [9], left turn differs from right turn in some

features like higher speed in left turn and different speed

pattern. Hence, the detection of left turn, right turn is

performed by matching training templates for these events

with some test data. In our algorithms we assume that the

cornering data is provided to us after the detection of left

and right turn and the time when the turning event

occurred.

IV. IUHEIIIIIAPIIRTELEIBN
Within this section, we present, describe and analyze a new

approach for discovering driver’s trajectory from attributes

that are provided to the UBI companies.

A. Mapping popularities in graph 𝐆

Before the use of the algorithm, it is important to map all of

the road popularities. Thus, we propose

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm in order to perform this

task.

The input of the 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm

receives 𝐺 = (𝑉, 𝐸), directed graph which represents the

driving area. In addition, in order to compute popularity

weight for each of the edges, we also need GPS log files,

where each one of them encapsulates the GPS coordinates

of specific road user (vehicle). The GPS log files are

defined as 𝑃𝑓𝑖𝑙𝑒 array. The GPS coordinates of each

vehicle 𝑖 in 𝑃𝑓𝑖𝑙𝑒 is formatted as follows, while 𝐺𝑃𝑆𝑧

represents GPS coordinates of the vehicle.In our algorithm

we denote GPS data 𝑗 inside 𝑃𝑓𝑖𝑙𝑒 𝑖 as 𝑃𝑓𝑖𝑙𝑒[𝑖][𝑗]. The

algorithm returns graph 𝐺 = (𝑉, 𝐸) with adjacent

popularity weight 𝑃(𝑒) for each edge 𝑒.

𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓𝒊𝒕𝒊𝒆𝒔 (𝑮, 𝑷𝑭𝒊𝒍𝒆)

1. 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑒 𝑖𝑛 𝐸:
2. 𝑃(𝑒) = 0

3. 𝒇𝒐𝒓 𝑖 ← 1 𝑡𝑜 𝑖 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑓𝑖𝑙𝑒𝑠:

4. 𝒇𝒐𝒓 𝑗 ← 1 𝑡𝑜 𝑗 ← 𝑃𝑓𝑖𝑙𝑒[𝑖]. 𝑙𝑒𝑛𝑔𝑡ℎ:
5. 𝑝 = 𝑃𝑓𝑖𝑙𝑒[𝑖][𝑗]
6. 𝑑 = ∞

7. 𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑛𝑢𝑙𝑙
8. 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑒 𝑖𝑛 𝐸:
9.

𝒊𝒇 ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) < 𝑑:

10. 𝑑 =

ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒)

11. 𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑒

12. 𝑃(𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡)+= 1

13. 𝒓𝒆𝒕𝒖𝒓𝒏 𝐺

The computation time of 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm

is equal to 𝑂(|𝐸| ∙ |𝐶| ∙ |𝑁|), while |𝐸| represents a number

of edges in the graph, |𝐶| is the number of files and |𝑁|
represents a number of GPS coordinates in each file.

Furthermore, if the number of GPS coordinates is very

high, we can construct Voronoi Diagram for finding the

closest edge to each GPS coordinate. Thus, we can take all

of the GPS coordinates and build a Voronoi Diagram for

them, which will consume computation time of 𝑂(|𝐶| ∙
|𝑁| log(|𝐶| ∙ |𝑁|)). Afterwards, for each edge, we find

which Voronoi cells it intersects. Therefore, if 𝑘 represents

the maximum number of voronoi cells that can be

intersected by single edge, the total computation time

would be 𝑂(|𝐶| ∙ |𝑁| log(|𝐶| ∙ |𝑁|) + |𝐸| ∙ 𝑘).

B. Finding Straight Paths From a certain vertex

In order to find driver’s path, first, it is important to find

the possible paths between the last vertex in the 𝑝𝑎𝑡ℎ and

possible turn event which will be used later on. This is the

goal of 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm. In addition, we

limit 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm to find paths with

distance which is no greater than Y kilometers.

There are several functions which we use in the

algorithm. The “append_vertex” function is used when we

want to add a vertex to path. The “append_one_path”

function is used when we want to add an entire path to the

array. The “append_paths” is used when we want to add

several paths to an array. In addition, the “add_vertex”

function is used when we want temporarily add a certain

vertex to the end of the path. Finally, the “add_paths” is

used when we want temporarily add one path to another,

while the second path is added in the end of the first path.

Thus, in following code lines path will not contain the

added vertex or path. In the input of the

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm there are attributes that

assist the algorithm to find possible paths. The algorithm

receives ∆𝑡 which is the time difference between the

starting vertex and the turning event. Another attribute is a

direction (left or right) that the driver made a turn to, which

we will denote as 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛. In addition, we

define 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 as a speed in residential area.

Furthermore, the algorithm has to know what happened

before it was called, e.g. previous path, and whether it is

another recursion call, which complies when 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛

Boolean is False. It gets 𝑃𝑎𝑡ℎ attribute which is a path until

the current vertex, and 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 which is a Boolean that

indicates whether the previous road was a turn event.

In the output of the algorithm, we get a set of paths

which go straight, starting from the last vertex of the 𝑃𝑎𝑡ℎ

until possible turning vertices under the constraints of ∆𝑡

and 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛.

𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑷𝒂𝒕𝒉 𝑭𝒊𝒏𝒅𝒆𝒓

 (∆𝒕 , 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒖𝒓𝒏, 𝑷𝒂𝒕𝒉 , 𝑭𝒓𝒐𝒎 𝑻𝒖𝒓𝒏)

1) 𝐵 = {}

2) 𝑰𝒇 |𝑃𝑎𝑡ℎ| ≥ 2:

3)

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐺𝑒𝑡 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 2 𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑃𝑎𝑡ℎ

4) 𝒆𝒍𝒔𝒆: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑙𝑙
5) 𝑁𝑜𝑑𝑒 = 𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑃𝑎𝑡ℎ

6) 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 =
 𝐹𝑖𝑛𝑑 𝑎𝑙𝑙 𝑁𝑜𝑑𝑒’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑛 𝐺(𝑉, 𝐸)

7) 𝑰𝒇 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) == 0:
8) 𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑"

9) 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ)

10) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵

11) 𝒆𝒍𝒔𝒆:
12) 𝑋 = 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 ∗ ∆𝑡

13) 𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠):
14) 𝑰𝒇 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is not 𝑛𝑢𝑙𝑙:
15) 𝐴𝑛𝑔𝑙𝑒, 𝑡𝑢𝑟𝑛 = Find angle, turn

between the previous and current direction

16) 𝑰𝒇 180° > 𝑎𝑛𝑔𝑙𝑒 > 59° 𝑎𝑛𝑑 𝑡𝑢𝑟𝑛 =
= 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑢𝑟𝑛:

17) 𝑰𝒇 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 == 𝐹𝑎𝑙𝑠𝑒:
18)

𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ[𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ) − 1] 𝑎𝑠 "𝑡𝑢𝑟𝑛"

19)

𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ (𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑"))

20) 𝒆𝒍𝒔𝒆:
21)

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖]))

22)

𝑰𝒇 𝑋 < 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡:
23) 𝑋 =

 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡

24)

𝒆𝒍𝒔𝒆 𝒊𝒇 𝑎𝑛𝑔𝑙𝑒 < 60° && 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 == 𝐹𝑎𝑙𝑠𝑒:
25) 𝑰𝒇 𝑑(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) <

𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡:

26)

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖]))

27) 𝑰𝒇 𝑋 <
𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡:

28)

 𝑋 = 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡

29)

 𝒆𝒍𝒔𝒆: 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑"))

30) else: 𝑰𝒇 𝑑(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) <
𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡:

31)

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖]))

32)

𝑰𝒇 𝑋 < 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡:
33)

𝑋 = 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡

34)

𝒆𝒍𝒔𝒆: 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑"))

35) 𝐴 = ℎ 𝑚𝑜𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 𝑜𝑝𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝐵

36) 𝐵 = 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝐵

37) 𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝐿𝑒𝑛𝑔𝑡ℎ[𝐴]:
38)

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑝𝑎𝑡ℎ𝑠(𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑷𝒂𝒕𝒉 𝑭𝒊𝒏𝒅𝒆𝒓

 (∆𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛, 𝐴[𝑖], 𝐹𝑎𝑙𝑠𝑒))
39) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵

The 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm defines an 𝐵

array, and 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. The 𝐵 array, later on

will encapsulate all of our possible paths until the possible

turn. Whereas, the variable 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 indicates

the vector of the previous road. Consequently, in steps 7-10,

the input 𝑝𝑎𝑡ℎ is marked as “closed” and 𝐵 is retuned if

there are no successors, otherwise the algorithm proceeds to

the12-34 steps, which in turn, adds the path and their

successors to 𝐵 array and assigns the longest possible

distance to 𝑋 variable. The 𝑋 variable would store the

maximum distance that can be reached with the boundary of

∆𝑡 and maximum legal speed, while the least maximum

legal speed equals to 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 .

In steps 13-34, the algorithm examines each of the

successors of the 𝑁𝑜𝑑𝑒. It calculates the angle between

the 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, which was calculated in 2-4

steps, and the current road direction and determines whether

the current road is considered as a turning event to the same

direction as 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛. In that case, the successor

is marked as a “turn”, the p𝑎𝑡ℎ and its successor are marked

as “closed”, and appended to 𝐵 array. In other cases in

which the angle is less than 60°, the 𝑝𝑎𝑡ℎ and its successor

are just appended to 𝐵 array. Furthermore, there is one case

in which the algorithm cannot determine whether there was

any possible turning event. It happens when the

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is equal to 𝑛𝑢𝑙𝑙. Thus, the angle and

the turn direction cannot be calculated. Hence, the successor

of the 𝑝𝑎𝑡ℎ is considered as a straight continuation of

the 𝑝𝑎𝑡ℎ. In addition, the algorithm uses the 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛

attribute in order to determine whether it is the main

algorithm call or it is a recursion call. If 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 is

equal to True, it means that this is the first call of the

algorithm, which means that if the angle is between 60° -

180° , and the 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛 is equal to turning

direction between the previous and current road, the

successor is just a straight continuation of the 𝑝𝑎𝑡ℎ and is

not considered as a possible turn. In all other cases, the new

path which consist of the 𝑝𝑎𝑡ℎ and its successor are marked

as “closed” and appended to 𝐵 array. The algorithm

appends the 𝑝𝑎𝑡ℎ and its successor which is not marked as

“closed”, only if the distance of the 𝑝𝑎𝑡ℎ and its successor

is less than 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∙ ∆𝑡 which is

maximum distance that can be reached.

In steps 35-36 we partition the paths that are stored in 𝐵

array into 2 arrays. The first array 𝐴 would store only the h

most popular opened paths, while 𝐵 array would store only

closed paths. Opened paths, on a contrary to the closed

paths, are paths from which the driver can proceed

propagating to another vertex, according to algorithm

limitations.

Finally, in steps 37-38, the algorithm recursively

searches the continuation paths and eventually returns the 𝐵

array.

Analyzing 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ𝑠 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm

Let’s denote ⌈
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑚𝑖𝑛𝑟𝑜𝑎𝑑
⌉ as 𝛼. The number of hops is

maximized when each road distance is equal to 𝑚𝑖𝑛𝑟𝑜𝑎𝑑.

Thus, the number of hops that 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟

algorithm reaches is bounded by 𝑂(𝛼).

Theorem 1: The total computing time of the

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would be bounded by

𝑂(ℎ𝛼).

Proof: From the 35
th
 step, it can be examined that the

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm takes ℎ most popular

paths and proceeds to the next step which in turn goes

recursively to the successors of the last vertex of the 𝑝𝑎𝑡ℎ.

If the algorithm produces maximum number of hops, the

total computing time is equal to ∑ ℎ𝑚𝛼
𝑚=1 = ℎ + ℎ2 + ℎ3 +

⋯ + ℎ𝛼 = 𝑂(ℎ𝛼).

C. Defining 𝑭𝒊𝒏𝒅𝒊𝒏𝒈 𝑷𝒂𝒕𝒉𝒔 algorithm

The 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, gets several parameters

from 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm and finds all

possible paths from a last vertex in the 𝑝𝑎𝑡ℎ either until

number of turns in every path is equal to predefined criteria,

or the path reached a dead-end or the number of turns is

equal to number of rows in 𝑀𝐶 file. A dead-end state is a

state of the graph 𝐺 when the algorithm cannot reach any

other vertex from a specific vertex under specific

constraints. The predefined criteria is a parameter 𝑚 which

is the maximum turning events in all paths that

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm returns to

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm. In the input there are

several attributes that assist 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm on

finding continuation to the current 𝑝𝑎𝑡ℎ. The algorithm gets

2 attributes, 𝑇𝑟𝑖𝑝𝑡𝑖𝑚𝑒 and 𝑀𝐶 file, that allow it to estimate

the time boundaries in which it has to find the successor

paths to the last vertex of the 𝑃𝑎𝑡ℎ. In addition, it gets

parameter 𝑚 which notates the maximum number of turning

events that the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠 algorithm can reach. The

output of the algorithm returns possible continuation paths

from the last vertex of the 𝑃𝑎𝑡ℎ.

𝑭𝒊𝒏𝒅𝒊𝒏𝒈 𝑷𝒂𝒕𝒉𝒔 (𝑇𝑟𝑖𝑝𝑡𝑖𝑚𝑒, 𝑃𝑎𝑡ℎ, 𝑀𝐶, 𝑚)

1) 𝐵 = {}

2) ∆𝑡 = |𝑀𝐶[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ][1] − 𝑇𝑟𝑖𝑝𝑇𝑖𝑚𝑒|
3) 𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠=𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑒𝑟

4) (∆𝑡, 𝑀𝐶[𝑡𝑢𝑟𝑛𝑛𝑢𝑚𝑃𝑎𝑡ℎ
][0], [𝑃𝑎𝑡ℎ[𝑃𝑎𝑡ℎ. 𝑙𝑒𝑛𝑔𝑡ℎ −

 1]], 𝑇𝑟𝑢𝑒)

5) 𝒇𝒐𝒓 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠:
6) 𝑑𝑒𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 "𝑐𝑙𝑜𝑠𝑒𝑑" 𝑚𝑎𝑟𝑘
7) 𝑰𝒇 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) == 0:
8) 𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑".

9) 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ)

10) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵

11) 𝒆𝒍𝒔𝒆:
12) 𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠):
13)

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑝𝑎𝑡ℎ𝑠(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]))

14) 𝑰𝒇 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐵[𝑖] == 𝐿𝑒𝑛𝑔𝑡ℎ[𝑀𝐶]:

15) 𝑀𝑎𝑟𝑘 𝐵[𝑖] 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑"

16) 𝐴 = 𝐵

17) 𝒇𝒐𝒓 𝑖1 𝒕𝒐 𝑖𝐿𝑒𝑛𝑔𝑡ℎ[𝐴]:
18) 𝑊𝐻 = 𝐹𝑎𝑙𝑠𝑒

19)

𝑰𝒇 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐴[𝑖] <

 𝑚 𝑎𝑛𝑑 𝐴[𝑖] 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑":
20) 𝑛 = 𝑜𝑢𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑒𝑑𝑔𝑒 𝑖𝑛 𝐴[𝑖]
21) 𝒇𝒐𝒓 𝑗1 𝒕𝒐 𝑗𝐿𝑒𝑛𝑔𝑡ℎ[𝐵]:
22) 𝑰𝒇 𝐵[𝑗] ≠ 𝐴[𝑖] && 𝑛 equals to one of turning

nodes in 𝐵[𝑗] && 𝑛 ! = 𝐵[𝑗][𝑙𝑒𝑛𝑔𝑡ℎ(𝐵[𝑗]) − 1]:
23) 𝑊𝐻 = 𝑇𝑟𝑢𝑒

24)

𝑘 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑛 𝑖𝑛 𝐵[𝑗]
25) 𝑃 = []
26) 𝒘𝒉𝒊𝒍𝒆 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃 ≤

𝑙𝑒𝑛𝑔𝑡ℎ(𝑀𝐶) 𝑜𝑟 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃 ≤ 𝑚:
27)

𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝐵[𝑗][𝑘])

28) 𝑘++

29)

𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝐴[𝑖]. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑃))

30)

 𝐴. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝐴[𝑖]. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑃))

31) 𝑰𝒇 𝐴[𝑖] ∈ 𝐵:
32) 𝑑𝑒𝑙𝑒𝑡𝑒 𝐴[𝑖] 𝑓𝑟𝑜𝑚 𝐵

33) 𝑰𝒇 𝑊𝐻 == 𝐹𝑎𝑙𝑠𝑒:
34) T= MC[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐴[𝑖]+1][1]

35) 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑝𝑎𝑡ℎ𝑠

36) (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠(𝑇, 𝐴[𝑖], 𝑀𝐶, 𝑚))
37) 𝑰𝒇 𝐴[𝑖] ∈ 𝐵:
38) 𝑑𝑒𝑙𝑒𝑡𝑒 𝐴[𝑖] 𝑓𝑟𝑜𝑚 𝐵

39) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm logic

The Algorithm uses two arrays that hold the paths.

Array 𝐴 holds all the potential paths that have not been

completed enough turning events according to 𝑀𝐶 file,

while Array 𝐵 holds all possible paths. During each

iteration, the algorithm goes recursively throughout possible

paths which are limited in time, turning direction and

average maximum legal speed. If there are no continuation

paths for the 𝑃𝑎𝑡ℎ, the 𝑃𝑎𝑡ℎ is marked as “closed” and the

algorithm returns the 𝑃𝑎𝑡ℎ with “closed” mark to higher

level recursion. In order to bring down the computation time

of the algorithm, before going to another recursion, the

algorithm checks whether the continuation of the 𝑃𝑎𝑡ℎ

already exists in other paths which were examined before.

In that case, the algorithm copies the rest of the path to 𝐴, 𝐵

arrays, with the restrictions that we mentioned before.

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm steps

In step number 1, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm defines

𝐵 array, which later on will encapsulate all of our possible

paths. In the 3
rd

 step, the algorithm retrieves, using

the 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm, all of the possible

continuation paths with a time boundary of ∆𝑡 . Therefore,

in steps 6-11 if there are no consequent trajectories, the

algorithm marks the input 𝑝𝑎𝑡ℎ as “closed” and returns it.

Otherwise, in steps 12-15, if the input 𝑝𝑎𝑡ℎ with its

continuation path encapsulates the same number of turning

events as the length of 𝑀𝐶 file, it is marked as “closed”.

Therefore, we introduce auxiliary array 𝐴 which in the 16
th

step holds the paths of 𝐵 array. The 𝐴 array would hold all

of the 𝐵 array paths. The role of 𝐴 array is to keep the order

of path search. Steps 17-36 constitute the main core of the

algorithm in which it iterates through all of the paths in

array 𝐴 and finds recursively, all of the possible paths which

are bounded by time, turning direction, legal speed and

maximum turning events 𝑚.

In order to reduce the computation time of the

algorithm, before going to another recursion, it checks, in

steps 21-32, whether the algorithm has already visited the

current vertex. In this case, it copies the continuation path

from a previous trajectory that is already containing the

continuation path of the current vertex. The copying of the

continuation path is within the boundaries of 𝑀𝐶 file size.

Finally, in steps 33-36, in case that the algorithm didn’t

manage to find the continuation path in other paths, it

recursively calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm.

Analyzing 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm

If a distance 𝑋𝑡𝑢𝑟𝑛 is equal to 𝑚𝑖𝑛𝑟𝑜𝑎𝑑, then the number

of possible turns that algorithm 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟

would produce is bounded by ⌊
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑋𝑡𝑢𝑟𝑛
⌋ = ⌊

𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑚𝑖𝑛𝑟𝑜𝑎𝑑
⌋ =

𝑂(𝛼) turns. Thus, the number of possible turns which the

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would find is bounded

by 𝑂(𝛼).

Lemma 2 – The computation time of the 𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑖𝑛𝑔

algorithm without checking previous paths equals to

𝑂(ℎ𝛼 ∙ 𝛼𝑚−1).

Proof: The number of possible turns which the

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would find is bounded

by 𝑂(𝛼). In every recursion, the 𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑖𝑛𝑔 algorithm

reveals 𝛼 new paths while calling 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟

which computation time is bounded by 𝑂(ℎ𝛼). Thus, the

computation time would be ℎ𝛼 + 𝛼 ∙ ℎ𝛼 + 𝛼2 ∙ ℎ𝛼 + ⋯ +
𝛼𝑚−1 ∙ ℎ𝛼 = ℎ𝛼 ∙ (1 + 𝛼 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑚−1) =
𝑂(ℎ𝛼 ∙ 𝛼𝑚−1).

Lemma 3 – The computation time for iterating in

previous paths is equal to 𝑂(𝑚 ∙ 𝛼2𝑚).

 Proof: In the worst case scenario, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠

algorithm would iterate through all of the possible paths

until it will reach 𝑚 turning events in all the paths. Thus, in

every turning vertex, it will have to iterate through all the

possible previous paths in 𝐵 array. The maximum number

of possible paths is bounded by 𝛼𝑚 . For each possible path,

the algorithm will iterate through 𝑚 ∙ 𝛼𝑚 vertices, which is

the maximum number of vertices in the 𝐵 array. Thus the

maximum computation time for checking previous paths in

steps 16-36 of 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, is bounded by

𝑂(𝑚 ∙ 𝛼𝑚 ∙ 𝛼𝑚) = 𝑂(𝑚 ∙ 𝛼2𝑚).

Theorem 4 – The total computation time of

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm equals to 𝑂(ℎ𝛼 ∙ 𝛼𝑚−1 +
𝑚 ∙ 𝛼2𝑚).

Proof: The theorem complies from lemma 2 and lemma 3.

D. Defining 𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓 𝑷𝒂𝒕𝒉𝒔 algorithm

The 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm finds all

possible paths, while after each call to the

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, it deletes all of dead-end paths.

The 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm gets the 𝑀𝐶 file

which holds the cornering event time and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥,

which is an intersection from where the driver started his

path. In addition, it gets 𝑚 parameter which determines the

maximum number of new turning events within the paths

which the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm should return. Ranked

paths according to the average popularity of each path are

returned/

𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓 𝑷𝒂𝒕𝒉𝒔 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 (𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 𝒗𝒆𝒓𝒕𝒆𝒙, 𝑴𝑪, 𝒎)

1) 𝑐 = 1

2) 𝑃𝑎𝑡ℎ𝑠 =
𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠(00: 00, [𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥], 𝑀𝐶, 𝑚 ∙ 𝑐)

3) 𝑐 + +

4) 𝒘𝒉𝒊𝒍𝒆 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑃𝑎𝑡ℎ𝑠:

5) 𝒇𝒐𝒓 𝑗1 𝑡𝑜 𝑗𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ𝑠):

6) 𝑰𝒇 𝑃𝑎𝑡ℎ𝑠[𝑗] 𝑖𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 “𝑐𝑙𝑜𝑠𝑒𝑑” &&

 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ𝑠[𝑗] < 𝐿𝑒𝑛𝑔𝑡ℎ(𝑀𝐶):

7) 𝑑𝑒𝑙𝑒𝑡𝑒 𝑃𝑎𝑡ℎ𝑠[𝑗]

8) 𝒇𝒐𝒓 𝑗1 𝑡𝑜 𝑗𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ𝑠):

9) 𝑰𝒇 𝑃𝑎𝑡ℎ𝑠[𝑗] 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑐𝑙𝑜𝑠𝑒𝑑:

10) 𝑇 = 𝑀𝐶[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ𝑠[𝑗] + 1][1]

11)

𝑃𝑎𝑡ℎ𝑠 =
𝑃𝑎𝑡ℎ𝑠 ∪ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠(𝑇, 𝑃𝑎𝑡ℎ𝑠[𝑗], 𝑀𝐶, 𝑚 ∙ 𝑐)

12) 𝑑𝑒𝑙𝑒𝑡𝑒 𝑃𝑎𝑡ℎ𝑠[𝑗]

13) 𝑐 + +

14)

𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑜𝑟𝑡𝑒𝑑 𝑃𝑎𝑡ℎ𝑠 𝑎𝑟𝑟𝑎𝑦 𝑏𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, by using

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, finds possible paths which are

available from a certain 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. The aim of the

algorithm is to get possible paths while deleting all of dead-

end paths after each iteration of 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm.

Consequently, in the output it would provide paths which

are ranked by average popularity.

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm steps

In the 2
nd

 step, the algorithm uses 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠

algorithm in order to find possible paths

from 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Consequently, in steps 5-7, the

algorithm checks whether a path has a dead-end. The

indication for it, is when 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm marked

the path as “closed”, while the current number of turns has

not reached the number of turns that can be concluded from

𝑀𝐶 file. Afterwards, in steps 8-12, the

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, for every remaining

path, looks for continuation paths. The

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm calls 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠

algorithm and requires from it to retrieve all of the

continuation paths until it reaches at maximum 𝑚 ∙ 𝑐 turning

events. Thus, iterating steps 5-13 until the number of turns

in every path would comply with number of turns defined in

𝑀𝐶 file. In other words, when the path turns reach the

number of rows in 𝑀𝐶 file, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm,

marks it as “closed”.

Lemma 5 – The overall number of iterations through 5-13

steps is bounded by ⌈
|𝑀𝐶|

𝑚
⌉ − 1 .

Proof: Every time the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm is

called, it discovers at most 𝑚 new turning events. The

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm will stop iterating

through 5-13 steps when there will be no opened paths. The

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm will mark the path as “closed”,

when the number of turning events would be equal to |𝑀𝐶|.
The first call to 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 is made in 2

nd
 step and

other calls are made within steps number 5-13. Thus, the

overall number of iterations through 5-13 steps is bounded

by ⌈
|𝑀𝐶|

𝑚
⌉ − 1.

Lemma 6 – The number of paths which 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠

algorithm finds is bounded by 𝑂(𝛼|𝑀𝐶|).

Proof: 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm in 2
nd

 step, calls

for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, the former finds at

maximum 𝛼 𝑚 paths for the 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Afterwards,

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, iterates through steps

number 5-13 until all of the paths are marked as “closed”. In

each iteration, the algorithm calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠

algorithm, while the former finds at most 𝛼 𝑚 new paths for

last vertex for each of the paths in 𝑃𝑎𝑡ℎ𝑠 array.

Let’s examine the number of paths after each iteration:

Iter. # Start 1 𝑖
⌈
|𝑀𝐶|

𝑚
⌉ − 2 ⌈

|𝑀𝐶|

𝑚
⌉

− 1

#paths

𝛼 𝑚

𝛼 2𝑚

𝛼 (𝑖+1)𝑚

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−1)∙𝑚

𝛼
⌈
|𝑀𝐶|

𝑚
⌉∙𝑚

Thus, number of paths is bounded by 𝛼⌈
|𝑀𝐶|

𝑚
⌉∙𝑚 = 𝑂(𝛼|𝑀𝐶|)

.

Theorem 7 – Overall computation time of

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm is bounded by

O((𝛼(⌈
|𝑀𝐶|

𝑚
⌉−1)∙𝑚 + 1) ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}) .

Proof: According to Theorem 4, the computation time for

each call to 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 is bounded by 𝑂(ℎ𝛼 ∙ 𝛼𝑚−1 +
𝑚 ∙ 𝛼2𝑚). In the 2

nd
 step, the 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠

algorithm calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm and finds at

most 𝛼𝑚 paths for the 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Before steps

number 8-12, there will be the following number of paths in

𝑃𝑎𝑡ℎ𝑠 array, which equals to number of calls to

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm:

It. # 1 2 𝑖
⌈
|𝑀𝐶|

𝑚
⌉ − 2 ⌈

|𝑀𝐶|

𝑚
⌉ − 1

#paths

before

steps

8-12

𝛼 𝑚

𝛼 2𝑚

𝛼 𝑖∙𝑚

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−2)∙𝑚

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−1)∙𝑚

Thus, the overall computation time is a combination of

computation time in the 2
nd

 step which is bounded by

𝑂(ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚) and all of the calls to

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm in each iteration which is

bounded by 𝑂 (∑ 𝛼𝑐𝑚 ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}
⌈
|𝑀𝐶|

𝑚
⌉−1

𝑐=1).

Thus, the overall computation time for all calls is as

follows:

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} + ∑ 𝛼𝑐𝑚 ∙
⌈

|𝑀𝐶|

𝑚
⌉−1

𝑐=1

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} = { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} +

𝛼𝑚 ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} + ⋯ + 𝛼
(⌈

|𝑀𝐶|

𝑚
⌉−1)∙𝑚

∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} = 𝑂 ((𝛼
(⌈

|𝑀𝐶|

𝑚
⌉−1)∙𝑚

+ 1) ∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}).

E. 𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔 algorithm

Finally, we are using all of previous components for the

following algorithm In the input of the algorithm there is

𝐺 = (𝑉, 𝐸) directed graph which represents the area of

driving, while the vertices represent intersections or turns

greater than 60° and edges represent the roads.

Furthermore, the algorithm gets the 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥,

𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 which is driver’s average speed, 𝑀𝐶 file, and

∆𝑡 𝑡𝑜𝑡𝑎𝑙 which is the total driving time. Furthermore, the

algorithm gets parameter 𝑚 which defines number of new

turning events for each call for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm.

Ordered array of all possible paths, for driver movement

serves as an output for our algorithm. The possible paths

are ordered by the average road popularity.

𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔

(𝑺𝒂𝒗𝒆𝒓𝒂𝒈𝒆, ∆𝒕 𝒕𝒐𝒕𝒂𝒍, 𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 𝒗𝒆𝒓𝒕𝒆𝒙, 𝑴𝑪, 𝒎) 1. 𝐺 = 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 ()

2. 𝑃𝑎𝑡ℎ𝑠 = 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠

 (𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥, 𝑀𝐶, 𝑚)

3. 𝒇𝒐𝒓 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑃𝑎𝑡ℎ𝑠:

4. 𝑰𝒇 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ ∆𝑡 𝑡𝑜𝑡𝑎𝑙 ∗ 1.1 <

|𝑝𝑎𝑡ℎ| || |𝑝𝑎𝑡ℎ| < 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ ∆𝑡 𝑡𝑜𝑡𝑎𝑙 ∗ 0.9:

5. 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑝𝑎𝑡ℎ)

6. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑃𝑎𝑡ℎ𝑠

In step 1, the algorithm is mapping the popularities for each

edge by using 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm.

Consequently, in step 2, the algorithm gets possible paths

that can be reached from a 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥 and bounded

by 𝑀𝐶 file, while ∆𝑡𝑡𝑜𝑡𝑎𝑙 is the total trip time of the driver.

Afterwards in steps 3-5, it deletes all of the paths that do not

meet the user’s average speed attribute. Finally, the

algorithm returns all of the remaining paths which are

ranked by average popularity of the path.

Theorem 8 – The total computation time of

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟’𝑠 𝑃𝑎𝑡ℎ𝑠 algorithm is bounded by

𝑂 (|𝐸| ∙ |𝐶| ∙ |𝑁| + ((𝛼(⌈
|𝑀𝐶|

𝑚
⌉−1)∙𝑚 + 1) ∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚})) .

Proof: The computation time derives from computation time

of 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm and Theorem 7.

V. SIMULATION

 This section describes the results of the path

reconstruction algorithms which were implemented on the

real vehicle’s paths. A description of the set-up is followed

by a presentation of the findings and their analysis.

A. Environment Set-up

 In order to test our algorithms we used the dataset of real

life trajectories. The dataset was collected as a part of

𝐺𝑒𝑜𝐿𝑖𝑓𝑒 2.0 project and was conducted and published by

𝑀𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 company. The paths were collected during 5

years by the people of Beijing [20]. In addition, in order to

implement our algorithms 𝑃𝑦𝑡ℎ𝑜𝑛 2.7 coding language was

used. The algorithms were tested over the trajectories with

turning events in a range of 1-6 events, and trajectories

distance varying from 0.337 𝑘𝑚 to 8.69 𝑘𝑚. The

trajectories were distributed over the area of the city of

Beijing.

Two types of comparative analysis were tested. First

analysis compared the rank of the closest constructed path

as a function of traveling distance, traveled time and

average user’s speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒), while examining the

difference among number of turning events in trajectories.

Second analysis compared the maximum distance of the

first ranked constructed trajectory from the real path as a

function of traveled distance, traveled time and average

user’s speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒).

In order to map all of the road popularities, we used the

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm, while GPS log files that

we used were the log files from taxi trajectories project

which is called T-Drive [21]. T-Drive files contain a one-

week GPS coordinates of 10,357 taxis. The total number of

points is about 15 million.

We used the 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm with the

following parameters: 𝑌 is equal to 10𝑘𝑚 and ℎ = 2. The

reason for our selection is that the computation times for

those parameters are reasonable while constructing good

trajectories.

We used the 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑃𝑎𝑡ℎ𝑠 algorithm

with the 𝑚 = 3 parameter. The reason for our choice is our

will to use 𝑚 that will be high enough, so we will not lose

essential paths when deleting non popular paths in

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, and low enough for

obtaining computation time.

B. 𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔 Performance

We now present the findings for

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟’𝑠 𝑃𝑎𝑡ℎ𝑠 algorithm, while examining

the influence of the traveling distance and the average user

speed 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and traveling time on the closest constructed

path to the real trajectory. We use the notion of standings as

a popularity assessment of each path in the 𝑃𝑎𝑡ℎ𝑠 array,

while the most popular path will be ranked as 1 and the least

popular path will be ranked as the length of the 𝑃𝑎𝑡ℎ𝑠

array.

Traveled Distance Influence

In Fig. 5.1 we present the traveled distance influence on

the absolute standings, respectively, of the closest

constructed path to the real user’s path. We examined 50

trajectories which traveling distances variant from

0.337 𝑘𝑚 to 8.69 𝑘𝑚, while examining the difference

between the number of rows in 𝑀𝐶 file, which represents

the number of turning events in the path. We notice that the

absolute standing of the constructed path increases with

increase of traveling distance. Furthermore, one can see

that the number of turning events makes no difference on

the absolute standings of the constructed path. The absolute

standings of the path is beginning to have a bigger variance

after traveling distance of 4 𝑘𝑚 and its very high as we

reach the 8 − 9 𝑘𝑚. The conclusion is that we can reveal

user’s path with an absolute standings up to 20 as long as

his traveled distance is lower than 4 𝑘𝑚. In addition, we

cannot see any influence of the traveled distance on the

relative standings.

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

M
ax

 D
is

ta
n

ce
 (

m
et

er
s)

Traveled Distance (kilometers)

Average Speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒) Influence

In Fig. 5.2 we present the user’s average speed influence

on the absolute standings of the closest constructed path to

the real user’s path. We examined 50 trajectories which

speed variant from 7.46 𝑘𝑚/ℎ to 40.96 𝑘𝑚/ℎ. From figure

5.2, it seems that the average speed doesn’t have any effect

on the absolute standings of the constructed path.

Furthermore, number of turns also doesn’t influence the

absolute standings of the constructed path.

Influence of Traveling Time

 In Fig. 5.3 we present the user’s traveling time influence

on the absolute standings of the closest constructed path to

the real user’s path. We examined 50 trajectories while

traveling time varies from 1.75 minutes to 30.4 minutes.

As expected, we notice that the absolute standing of the

constructed path increases with the increase of traveling

time. Furthermore, one can see that number of turning

events makes no difference on the absolute standing of the

constructed path. The absolute standings is starting to have

a bigger variance after traveling time of 7 minutes and is

getting very high as we reach 12.5 minutes. The

conclusion is that we can reveal user’s path as long as his

traveling distance is lower than 7 minutes, while the

constructed path has absolute standings is in top 20

trajectories.

Maximum distance from trajectory

In order to examine the maximum distance between the

constructed trajectory and the driver’s path, we tested the

maximum distance from the first ranked constructed

trajectory. Three types of comparative analysis were

performed. First analysis compared the maximum distance

of the first ranked constructed path as a function of traveled

distance. Second analysis compared the maximum distance

of the first ranked constructed path as a function of user’s

average speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒). Third analysis compared the

maximum distance of the first ranked constructed path as a

function of traveling time.

0

20

40

60

80

100

120

140

0 2 4 6 8 1 0

A
B

SO
LU

TE
 S

TA
N

D
IN

G
S

TRAVELING DISTANCE (KILOMETERS)

MC = 1 MC = 2 MC = 3

MC = 4 MC = 5 MC = 6

Figure 5.4: Maximum distance of the first ranked

constructed path as a function of traveled

distance.

Figure 5.1: Absolute standings of the constructed

path as a function of traveling distance

0

50

100

150

0 1 0 2 0 3 0 4 0 5 0

A
B

SO
LU

TE
 S

TA
N

D
IN

G
S

AVERAGE SPEED (KM/H)

MC = 1 MC = 2 MC = 3

Figure 5.2: Absolute standings of the closest

constructed path as a function of user’s average

speed.

0

50

100

150

0 1 0 2 0 3 0 4 0

A
B

SO
LU

TE
 S

TA
N

D
IN

G
S

TRAVELED TIME (MINUTES)

MC = 1 MC = 2 MC = 3

MC = 4 MC = 5 MC = 6

Figure 5.3: Absolute standings of the constructed

path as a function of user’s traveling time

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35

Travelling time (min)

Figure 5.5: Maximum distance of the first ranked

constructed path as a function of traveling time.

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50

M
ax

 D
is

ta
n

ce
 (

m
et

er
s)

Average Speed (km/h)

Figure 5.6: Maximum distance of the first ranked

constructed path as a function of average speed.

Figure 5.7: Maximum distance of the first ranked,

median and random trajectory as a function of traveled

distance in paths which start in the residential road and

finish in the highway.

0

1000

2000

3000

4000

5000

1
.7

3
 1

.8
1

 2
.0

6

2
.3

 2
.5

2
 3

.6
4

 3
.7

8

3
.9

 4
.0

8

4
.2

 4
.6

4
 6

.2
1

 6
.7

1

M
ax

im
u

m
 D

is
ta

n
ce

 (
m

et
er

s)

Traveled Distance

1st place Median Random

From Fig. 5.4 one can learn that as traveling distance is

getting higher, the maximum distance is getting higher with

greater variance. The ratio between the axes has a

proportion lower than 1 in a majority of trajectories.

Furthermore, number trajectories which have maximum

distance lower than 10%, 15%, 20% of the driver’s traveled

distance are equal to 12, 15, 19 out of 50 trajectories,

respectively. From Fig. 5.5, we observe that the traveling

time has no influence on the maximum distance. From Fig.

5.6, we observe that average speed has the same influence

on maximum speed as the influence of traveling distance.

Types of trajectories and their influence on maximum

distance

There are 3 types of trajectories which we examined.

First type of trajectory is a path in which the driver starts

from residential road and finish his path in the highway.

Second type of a trajectory is a path in which the driver

starts from a residential area, propagates via highway roads

and finishes his path in residential area. Third type is a

trajectory in which the driver starts from the highway.

In order to understand the difference between the roads and

their influence of the roads popularity, we compared the

maximum distance between the real trajectory and the most

popular (1
st
 place), random and median ranked trajectory.

a) Residential to highway trajectory

We can notice that in 7 out of 7 paths, the 1
st
 ranked

path was closer to the real trajectory than a median ranked

path, see Fig. 5.7. Thus, the popularity plays an important

role in that kind of trajectories.

0

1000

2000

3000

1.81 2.06 2.3 2.52 3.9 4.2 4.64

M
ax

im
u

m
 D

is
ta

n
ce

Traveled Distance (km)

1st place Median Random

Figure 5.8: Maximum distance of the first ranked, median

and random trajectory as a function of traveled distance in

paths which start in the residential road and finish in the

highway and roads which start from the residential road,

propagates through highway and finish in residential road.

0

1000

2000

3000

4000

5000

6000

7000

1
.7

3
 1

.8
6

2

.3
 2
.5

1
 2

.7
2

 3
.6

4
 3

.7
8

 3
.9

2
 4

.1
1

4

.2
 4
.4

3

4
.7

 4
.8

1
 5

.1
2

 5
.1

2

5
.3

 6
.2

1

6
.7

 8
.0

5
 8

.6
9

M
ax

im
u

m
 D

is
ta

n
ce

 (
m

et
er

s)

Traveled Distance (km)
1st place Median Random

Figure 5.9: Maximum distance of the first ranked,

median and random trajectory as a function of

traveled distance in all types of path

b) Residential through highway to residential

trajectories

The setup is:

1. The driver started from residential road and ended

his path in highway.

2. The driver started from residential road, drove

through the highway and ended his path in

residential area.

We can notice (Fig. 5.8) that in 12 out of 14 trajectories, the

1st ranked path was closer to the real trajectory than a

median ranked path. On the one hand, in the majority of

trajectories, the 1st ranked path was closer to the real

trajectory than a median, which means that the popularity

has a major influence on the constructed path. On the other

hand, when we added a second type of trajectories to our

bar chart, we can notice that not all of the 1st place

trajectories are closer than a median ranked paths to the real

trajectory, which means that the second type of trajectories

add a certain uncertainty.

c) Trajectories which start from the highway

Figure 5.9 concludes all 3 types of the trajectories. We

can notice that by adding the 3
rd

 types of trajectories

(trajectories which start from a highway), the majority of

trajectories which are closer to the real trajectories are

median trajectories. Thus, in a 3
rd

 type of trajectories, the

popularity doesn’t play an important role for constructing

driver’s trajectory.

C. General Findings

There are several findings that we noticed while running

our algorithms. First, when there is an interchange in

driver’s path, our algorithms produce constructed path

which doesn’t have a good absolute standings, with no

difference what is the traveling time, traveling distance or

average speed of the user. Second, because of a high

amount of possible paths, our algorithms are performing in

a reasonable computation time when a path has a distance

up to 10 𝑘𝑚 . Third, motorway and freeway roads have

higher popularity than residential roads. Thus, when the

driver drives on the residential road, which is located near

the motorway or freeway, the constructed path would be

ranked in worse position. Finally, there are some situations

in which the real path is passing through private roads.

Hence, there will be some difficulty to reconstruct his path.

The constructed path might be close or far from the original

road, depends on the case. In addition, there are some paths

which we ignored since the popularities of those paths were

too low. The amount of that kind of paths was about 7% of

the total amount of paths that we examined.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have studied the problem of breaching

driver’s privacy by revealing driver's path while using basic

driving information. Although the problem has been studied

in several articles, some of them assume that GPS

coordinates of the driver in the middle and the end of the

path are known, while others assume that driver’s

continuous speed is known. We proposed a new approach

for reconstructing driver’s trajectory from basic driving

information and by using roads popularities. By knowing

the beginning location, driver’s average speed, and

cornering log file, we can reconstruct driver’s path while

having the closest reconstructed path ranked among top

ranked paths. The paths are constructible within a

reasonable time.

For reconstructing the driver’s path, first we found

possible turning vertices from starting vertex. We continued

doing so, until number of turning vertices in each path was

equal to a predefined criteria. Afterwards, we deleted all of

dead-end paths and continued finding continuation paths

until the number of turning events was equal to the number

of cornering events in cornering log file. Finally, we deleted

all of the paths which are not comply with cornering log file

and driver’s average speed. Thus, we ranked the final paths

by their popularities. When we examined the maximum

distance from the first ranked constructed trajectory as a

function of traveled distance, traveling time and driver’s

average speed, we showed that as traveled distance is

getting higher, the maximum distance is getting higher with

greater variance, while the same applies for user’s average

speed. In addition, when the path starts from residential

road and finish its path in a highway, the constructed path

would be ranked much higher than a path which started in

highway. This phenomenon can be explained by hypothesis

that the driver tends to drive from lower to higher

popularity roads, while highways have higher popularities.

In other words, the driver which starts from residential road,

will tend to propagate to the highway. Furthermore, the

standings of the trajectory which is closest to the real

trajectory are not influenced by the amount of turning

events.

The optimal solution is yet to be reached when it comes to

reconstruction of driver’s path while using roads

popularities, and is a task for future study. Other possible

directions are reconstructing driver’s path while knowing

GPS coordinates in the middle of the trajectory. That can be

useful when the user is willing to provide his GPS

coordinates but his signal is lost in some scenarios, e.g.

driving in the tunnel or in areas with electro-magnetic

interference.

Bibliography

[1] Dewri R., Annadata P., Eltarjaman W., Thurimella R.,

“Inferring Trip Destinations from Driving Habits Data”,

Proceedings of the ACM Conference on Computer and

Communications Security, 2013, pages 267-272.

[2] Xiaofeng L., Zhaowei Q., Qi L. and Pan H., “Privacy

Information Security Classification Study in Internet of

Things”, International Conference on Identification,

Information and Knowledge in the Internet of Things, 2014,

pages 162-165.

[3] Mivule K. and Turner C., “A Comparative Analysis of

Data Privacy and Utility Parameter Adjustment, Using

Machine Learning Classification as a Gauge”, Procedia

Computer Science, 2015, pages 414-419.

[4] Torra V. and Navarro-Arribas G., “Data Privacy”,

WIREs Data Mining Knowl Discov, 2014, pages 269–280.

[5] Sweeney L., “K-Anonymity: A Model for Protecting

Privacy”, International Journal on Uncertainty, Fuzziness

and Knowledge-based Systems, 2002, pages 557–570.

[6] Wang K., Fung B., “Anonymizing sequential release”,

Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD), 2006, pages 414–423.

[7] Shmueli E., Tassa T., Wasserstein R., Shapira B.,

Rokach L., “Limiting disclosure of sensitive data in

sequential releases of databases”, Information Science,

2012, volume 191 , pages 98–127.

 [8] P. Handel, I. Skog, J. Wahlstrom, F. Bonawiede, R.

Welch, J. Ohlsson, and M. Ohlsson, “Insurance telematics:

Opportunities and challenges with the smartphone solution”

IEEE Intelligent Transportation Systems Magazine , 2014,

volume 6(4), pages 57-70.

[9] D.Rinku, A. Prasad, E. Wisam, T. Ramakrishna ,”

Inferring Trip Destinations From Driving Habits Data”,

Proceedings of the 12th ACM workshop on Workshop on

privacy in the electronic society, 2013, pages 267-272.

[10] Kulcsár Z., “Insurance Telematics Report 2014”,

http://www.tu-auto.com/insurance-report/, 2014.

[11] Eren H., Makinist S., Akin E., and Yilmaz A.,

“Estimating driving behavior by a smartphone”,

International Vehicle Symposium, 2012, pages 234–239.

[12] Saiprasert C. and Pattara-Atikom W., “Smartphone

enabled dangerous driving report system”, International

Conference Systems Science, 2013, pages 1231–1237.

[13] Johnson D. and Trivedi M., “Driving style recognition

using a smartphone as a sensor platform” IEEE Conference

Intelligent Transportation Systems, 2011, pages 1609–1615.

[14] Meseguer J., Calafate C., Cano J., and Manzoni P.,

“Driving styles: A smartphone application to assess driver

behavior” IEEE Symposium Computer Communication,

2013, pages 535–540.

[15] Wahlstrom J., Skog I., and Peter H., “Detection of

Dangerous Cornering in GNSS Data Driven Insurance

Telematics”, IEEE Transactions on Intelligent

Transportation Systems, 2015, volume 25(6), pages 3073-

3083.

[16] “Rollover data special study final report,” U.S.

Department of Transportation, National Highway Traffic

Safety Administration, Technical Report, 2011, pages 1-59.

[17] Hunter T., Abbeel P., Bayen M. A.,” The path

inference filter: model-based low-latency map matching of

probe vehicle data”, Algorithmic Foundations of Robotics

X, Proceedings of the Tenth Workshop on the Algorithmic

Foundations of Robotics, 2013, pages 591-607.

[18] Xianyi G., Firner B., Sugrim S., Pendergrast V. K.,

Yang Y., Lindqvist J., “Elastic Pathing: Your Speed is

Enough to Track You” , UbiComp '14, Proceedings of the

2014 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, 2014, pages 975-986.

[19] Eren H., Makinist S., Akin E., and Yilmaz A.,”

Estimating Driving Behavior by a Smartphone”, Intelligent

Vehicles Symposium IV, 2012, pages 234-239.

[20] Zheng Y., Chen Y., Xie X., Wei-Ying M.,”GeoLife2.0:

A Location-Based Social Networking Service”, proceedings

of the 10th International Conference on Mobile Data

Management, 2009, pages 357-358.

[21] Yuan J., Zheng Y., Zhang C., Xie W., Xie X., Sun G.,

and Huang Y., “T-drive: driving directions based on taxi

trajectories”, Proceedings of the 18th SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, 2010, pages 99-108.

