
Intelligent and Resizable Control Plane for Software
De�ned Vehicular Network : A Deep Reinforcement
Learning Approach
karima Smida ( karima.smida@supcom.tn)

SupCom: Universite de Carthage Ecole Superieure des Communications de Tunis
https://orcid.org/0000-0001-5548-4100

Hajer Tounsi
SupCom: Universite de Carthage Ecole Superieure des Communications de Tunis

Mounir Frikha
SupCom: Universite de Carthage Ecole Superieure des Communications de Tunis

Research Article

Keywords: Software De�nned Vehicular Networks, Distributed control plane, Quality of Service, Deep
Reinforcement Learning.

Posted Date: August 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-276280/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Telecommunication Systems on October
23rd, 2021. See the published version at https://doi.org/10.1007/s11235-021-00838-2.

https://doi.org/10.21203/rs.3.rs-276280/v1
mailto:karima.smida@supcom.tn
https://orcid.org/0000-0001-5548-4100
https://doi.org/10.21203/rs.3.rs-276280/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11235-021-00838-2

Telecommunication Systems manuscript No.
(will be inserted by the editor)

Intelligent and Resizable Control Plane for Software Defined
Vehicular Network : A Deep Reinforcement Learning Approach

Karima Smida1 · Hajer Tounsi1 · Mounir Frikha1,2

Received: date / Accepted: date

K. Smida
� karima.smida@supcom.tn

H. Tounsi
� hajer.tounsi@supcom.tn

M. Frikha
� m.frikha@supcom.tn

1 Carthage University, Sup’com, Tunisia
·

2 King Faisal University (KFU), Saudi Arabia

Abstract Software-Defined Networking (SDN) has become one of the most promising paradigms to manage large

scale networks. Distributing the SDN Control proved its performance in terms of resiliency and scalability. However,

the choice of the number of controllers to use remains problematic. A large number of controllers may be oversized

inducing an overhead in the investment cost and the synchronization cost in terms of delay and traffic load. However, a

small number of controllers may be insufficient to achieve the objective of the distributed approach. So, the number

of used controllers should be tuned in function of the traffic charge and application requirements. In this paper, we

present an Intelligent and Resizable Control Plane for Software Defined Vehicular Network architecture (IRCP-SDVN),

where SDN capabilities coupled with Deep Reinforcement Learning (DRL) allow achieving better QoS for Vehicular

Applications. Interacting with SDVN, DRL agent decides the optimal number of distributed controllers to deploy

according to the network environment (number of vehicles, load, speed etc.). To the best of our knowledge, this is the

first work that adjusts the number of controllers by learning from the vehicular environment dynamicity. Experimental

results proved that our proposed system outperforms static distributed SDVN architecture in terms of end-to-end delay

and packet loss.

Keywords Software Defined Vehicular Networks, Distributed control plane, Quality of Service, Deep Reinforcement

Learning.

1 Introduction

Network softwarization is a key trend of current network

evolution. The aim of network programmability and vir-

tualization technologies, known as Software Defined Net-

works (SDN), is to offer more flexibility, scalability, and
reliability making in turn the network services deploy-

ment faster and cheaper. The main concept behind SDN

is to decouple data forwarding and its control contrary to

traditional networks. Control decisions are taken by the

logically centralized network brain called controller that

has the global network view. Passive forwarding devices

execute rules received from the controller. For robust-

ness and scalability purposes, the logically centralized

control plane is physically distributed to different con-

trollers throughout the network [1]. Vehicular networks
technologies and the resulting variety of applications have

been a hot topic in recent research. They come with huge

promising interests for future Intelligent Transportation

System. This paradigm has gone beyond leveraging the

rapid development of communication and computation

technologies to architectural advancements such as SDN,

Network Function Virtualization (NFV), Edge cloud and

Fog networking. Recently, we talk about Software Defined

Vehicular Networks (SDVN) [2]. Solutions for scalability

challenges in centralized and distributed SDN are extended

to SDVN [3]. Despite the performance improvement offered

by the distributed approach in SDVN [4], the choice of the

optimal number of controllers that ensures better quality

of service while minimizing the cost of inter-controllers

synchronization stills to be addressed [5]. Indeed, even if

the control plane is physically distributed, its operation

remains logically centralized since the controllers exchange

reports on their corresponding domains to have a global

state of the whole network and act as a single controller.

This issue can have a negative impact on delay-sensitive

vehicular applications especially road-safety services. We
have shown in [5] that deploying a wrong number of con-

trollers increases the packet end-to-end delay and the

packet loss ratio. In fact the performance degradation is

due either to the overload of these controllers (in case of

an under sizing of the number of controllers) or because of

the increased synchronization delay between them (in case

of an over sizing of a number of controllers). The criticality

of such applications with the increase in the complexity of
vehicular networks due to their dynamic and large scale

nature have fueled the need of an adaptive control plane.

However, adjusting the optimal number of controllers, in

real time and in an ever-changing environment, is difficult

and requires intelligence, agility, automation, and the abil-

ity to handle a large number of constantly changing states.

Few works have focused on estimating the optimal num-

ber of controllers in a distributed SDN architecture. Most

of proposals have instead compared the performance of

different implementations of centralized or distributed con-

trollers [1], otherwise they have addressed the controller

placement problem [6]. Indeed, authors in [7] proposed

an adaptively adjusting and mapping controller (AAM-

con) in data center networks. Their proposal consists into
two parts: one algorithm, which consists in reducing the

number of controllers according to network demand and

increasing it to the initial number when controller overload

is noted. The second part consists in adopting network

community theory to select a key switch to place the con-

troller that is closer to switches it controls in a subnet.

In [8], they have proposed an elastic distributed SDN
controller. It consists in resizing the number of controllers

based on the sum of the mean and standard deviation

of CPU usage over the stored values for each controller,
compared to two thresholds (low, high). Once the number

of controllers is modified (decreases or increases) then a

load rebalancing will be performed between the controllers

of the new pool.

On another side, Machine Learning (ML) has seen great

success in solving various problems and enabling automa-

tion in network operation and management including rout-

ing, traffic prediction and congestion control, resource

2

allocation, QoS and QoE management, and network secu-

rity [9]. Deep reinforcement learning (DRL) is a category of
ML. It brought big improvements compared to traditional

algorithms of ML in several areas such as problems that

were previously insoluble by reinforcement learning (RL)

due to their infinite state space [10]. Combining supervised
and reinforcement learning, DRL performs simultaneously

feature learning (from examples) and policy learning (from

experience). A software agent aims to discover the most

adequate actions to get closer to a target policy by max-

imizing the received rewards for every action choice. In

the long run, the agent will learn the entire configuration

updates (actions) that result in such a target strategy.
DRL power has been exploited in networking domains

too. For instance, authors in [11] used DRL to optimize

resource allocation in vehicle-to-vehicle communications.
In [12], authors were interested in leveraging DRL in rout-

ing protocols to optimize inter-controller synchronization

in SDN networks.

Our approach to improve the Distributed SDN control is

to use DRL to achieve an intelligent and resizable (elas-

tic) control plane for distributed SDVN architecture. We

propose an Intelligent and Resizable Control Plane for

Software Defined Vehicular Network (IRCP-SDVN) which

consists in adjusting the number of the distributed con-

trollers according to the real traffic load of the vehicular

network. Indeed, the proposed DRL agent learns vehicles

density and speed from the vehicular network and pre-

dicts the efficient number of controllers based on a reward

function which is a compromise between responsiveness

(end-to-end delay) and reliability (packet loss) and taking

into account the vehicular applications stringency in terms
of QoS.

The rest of this paper is organized as follows. In Section

2, we give some background on SDVN and controllers
placement and synchronization problems in distributed

SDN architecture. In Section 3, we review DRL basics

and its application in SDN networks. Section 4 presents

our proposed architecture (IRCP-SDVN). Our experimen-

tal evaluation results are shown in Section 5. Finally, we

conclude our work in Section 6.

2 Distributed Software Defined Networks

2.1 Overview

SDN is a recent paradigm based on centralized Manage-

ment, programmability and network abstraction and au-

tomation. It is one of the most important architectures of

next generation network. It composes of three planes [13].

The control plane, defined as a SDN controller, is the

abstraction layer that provides a logically centralized con-

trol to monitor and manage a geographically distributed
network. The SDN controllers role is to translate net-

working applications policies from the upper layer into

rules and push them to forwarding devices such as Open-

Flow switches, via southbound interface. OpenFlow [14]

is widely used for control and data plane communication.

Interaction with the upper layer or application plane is per-

formed through the northbound interfaces such as REST

API (Representational State Transfer Application Pro-

gramming Interface) [15]. To solve scalability issues, the

logically centralized control is distributed on multiple con-

trollers that communicate via east-west bound APIs [1].

The logically centralized control is shared among phys-

ically distributed controllers, each of which manages a

subnet referred to as a domain. These domain controllers

have to synchronize with each other to maintain a logically

centralized consistent global view. There are two state-of-

the-art shared data structure models: strong consistency

model or Single Data Ownership (SDO) and eventual

consistency model or Multiple Data Ownership (MDO).

In SDO model, a single controller referred to as data

owner is the only responsible for the update of the shared

data structure. Any update operation on any local data

structure performed by any domain controller must be

forwarded to the data owner. In other words, each domain

controller has a local copy of the main data structures

(global view) but any read/write operation is obligatory

forwarded to the corresponding leader. This latter en-

sures the update replication to its followers and awaits

the acknowledgment of the majority of them before the

update validation. This centralized approach strengthens

data consistency and facilitates its management exploit-

ing the distributed nature of the data structures only

for failover [16]. In MDO model, every controller has a

local copy of the network view and can run locally up-

dates then advertises them in an asynchronous way to

all other controllers. Hence, inconsistent network views
are noted until each controller updates the others. Thus,

higher network availability is achieved at the cost of tem-
porary inconsistency according to the CAP theorem [17].
As famous examples, the two state-of-the-art distributed

controllers Open Daylight (ODL) [18] and Open Network

Operating System (ONOS) [19] adopt the Raft consensus

algorithm [20] to achieve strong consistency for the shared

data structures. In fact, most of ODL versions are endowed

with clustering service to allow the deployment of multiple

instances of the controller following Raft algorithm [21].
ONOS provides eventual consistency model too, through

the so called anti-entropy algorithm based on a gossip

protocol [22].

Many challenges of traditional vehicular communica-

tion networks are resolved thanks to SDN giving birth to

SDVN. SDVN has achieved big improvements in terms

of quality of service (QoS), resource allocation and net-
work optimization in such dynamic (variable speed and

density) and stateless environment [23]. Scalability in ve-

hicular network is a hot topic for researchers. For that end,

3

several distributed SDN architectures were proposed and

have proved better performances [3]. A general distributed

SDVN architecture is presented in figure 1. Vehicles are

in the lowest level of data plane, they are the sensing data

source. The top of data plane includes wireless forwarding

devices like Road Side Units (RSU), Wi-Fi access points

(AP), 3G/LTE base stations (BS), etc.

2.2 Distributed Control Plane Related Work

In order to enhance the control plane, some works have

focused on scaling up centralized controllers. Beacon [24]

and McNettle [25] are famous examples of high perfor-

mance centralized controllers. Indeed, Beacon can run a

network of 80 servers, 320 virtual machines and 20 physical

switches wired as 4level-fat-tree. A single McNettle con-

troller has 46 cores achieving 14 million flows per second

and can serve up to 5000 switches. However, scaling up

the single controller does not resolve the performance drop

caused by distance between switches and single controller

in large scale networks neither the problem of single point

of failure [3].Thus distributing the control plane among
multiple controllers became a necessity. As a consequence,
many efforts are directed to distributed SDN architectures

as efficient solution to maintain and improve QoS in large

scale networks especially SDVNs [3].

The main interest is given to the distributed control

plane optimization through investigating the controller
synchronization and placement problems. Authors in [26]

intend to optimize controller placement in hierarchical

distributed SDVN in order to minimize controller-node
latency. They privilege a static placement of controllers at

the RSU level. This choice aims to have the vehicles, par-

ticularly in dense regions like road intersections, closest to

the controllers. Results proved that this approach reduces
delays compared to controller placement in the cloud as

well as a random placement. However, this static strategy

in controller placement may be not suitable with road

traffic variation in time-space dimension. For example, a

sudden traffic jam may occur far from the chosen places

for controllers because of an accident. In this case, emer-

gency messages may face high delays. Also, experiments

are done on simplified small network which may question

the effectiveness of the solution for large scale SDVN. The

controller placement problem is also investigated in [27]

where a dynamic strategy is promoted taking into account

the dynamicity of vehicular network topology. Authors

of this work carried out experiments with a realistic traf-

fic scenario and proved experimentally the limitations of

static controller placement in SDVN. Yet in our opinion,

deploying controllers on RSUs may generate additional

expenses because RSUs are originally dedicated hardware

to ITS (Intelligent Transportation System) which function-

ality is usually limited to data exchange with OBUs (On

Board Units) in their communication ranges [28].Thus,

their capacities are not adapted to deploy controllers and

they require enormous investments to equip them with

such capacities. Besides, knowing the critical role of a

controller as a brain of the network, we still support the

principle of deploying controllers in data centers for secu-

rity and management reasons. Authors in [16] investigate

the role of inter-controller traffic in distributed SDN con-

trollers placement. Analytical model is developed to assess

response time perceived by switches taking into consid-

eration the inter-controller and the switch to controller

OpenFlow traffic. In both existing models SDO and MDO,

the dominance of the synchronization latency between
controllers is highlighted and an optimal placement for

the leader controller in SDO is defended to find the best

delay tradeoff in a strong consistency model.

The model is evaluated for Internet Service Provider

(ISP) topologies where they evaluate switch-to-controller

delay and controller-to-controller delay for multiple con-

troller locations. Thus, they proved the importance of

the interaction between the controllers in the placement

problem without focusing on the number of controllers.

Indeed, their object is to find the optimal placement for
a given controller number and not the optimal number

of controllers for variable network load like the case of

dynamic vehicular networks.

Authors in [29] attempt also to achieve efficient placement

of controllers in a SDN hierarchical architecture based

on minimizing control plane delay. They formulated op-

timization problem as controller-switch association and

controller capacity sub-problems. They proved the effec-

tiveness of the proposed algorithm in an SDN scenario

consisting of randomly deployed SDN switches in 2000 km
2000 km square region. Their algorithm achieved lower val-

ues of control plane delay compared to proposed algorithm

in [30]. The latter work also investigates multi-controller

placement problem from the perspective of latency mini-
mization based on network partition technique. The prob-

lem is addressed by an optimized K-means algorithm.

Results are 2.437 times better than the average latency

achieved by the standard K-means clustering method.

Another work [31] investigates controller placement to
address network reliability and reduce delay for critical

applications. The proposed heuristic algorithm uses ro-

bustness factors namely algebraic connectivity, network

criticality, load centrality, and communicability. The pro-

posed approach achieved high network resilience against

targeted attacks and low controller to controller delays

outperforming k-median and k-center baseline methods.

Authors of [32] consider the communication delay, the uti-

lization of control plane, and the distribution of controller

workload to tackle the control plane placement problem.

They develop a new algorithm that integrates the genetic

algorithm (GA) and the gradient descent (GD) optimiza-
tion method. They proved the efficiency of their approach

on small-scale and large-scale networks by finding a trade-

4

Fig. 1 Distributed SDVN Architecture

off between the network response time and the control

plane utilization. However, these works aim to determine

optimal locations for a given number of controllers to opti-

mize the overall network performance without looking for

the optimal number of deployed controllers. Focusing on

minimizing inter-controller delay, authors in [33] use the
concept of Minimum Connected Dominating Set (MCDS)

to minimize delay time between controllers and the delay

time between controller and switch then assign the number

of controllers that satisfy the calculated minimum delay.

Efficiency of their approach is proved on small topolo-

gies like India35 and ATT North America and medium
topologies like Bell Canada and Germany50.

Synchronization between distributed controllers in

large scale and, especially, highly dynamic networks incurs

high costs in terms of extra-delay which is not suitable

with delay-sensitive applications. It is therefore crucial
to adjust the number of distributed controllers to the ac-

tual load of the network. An adaptively distributed SDN

controller in data center networks (AAMcon) is proposed

in [7]. The number of distributed controllers is increased

and decreased based on controller overload level using

NFV technology. Besides, a switch-to-controller mapping

scheme based on complex network community theory is
adopted. Good achieved results proved the importance

of tuning controller number and placement according to

network demands. However, AAMcon is tested only in the

context of datacenter networks. Experiments in dynamic

environments such as vehicular networks are missing to

prove its efficiency in such challenging conditions.

Authors in [12] were interested in distributed SDN

and dealt with the synchronization problem between con-

trollers based on a Deep Reinforcement Learning (DRL)

approach. They propose a routing-focused DQ (Deep-Q)

Scheduler to get the best policy that optimizes controller

synchronization scheme over a time period. They prove

that it outperforms anti-entropy algorithm. They extended
their work by proposing a policy design for Controller Syn-

chronization based on DRL too [34]. They proved the effi-
ciency of their DRL policy in maximizing the performance

enhancements brought by controller synchronizations in

terms of delay over a period of time. However, they only

consider eventual consistency model.

In a previous work [5], we investigated the performance

of distributed SDVN in variable density vehicular scenar-

ios. Experiments have shown the benefit of using multiple

controllers in terms of delay but also they confirmed that

the use of a non-optimal number of controllers incurs high

costs in terms of extra-delay resulting in QoS drop. In fact,

inter-controller synchronization increases the End-to-End

5

delay that is not toleratedfor critical applications.

In this paper, we propose to optimize the number of con-

trollers used in distributed SDVN according to the density

and the load of the vehicular network. We propose a Deep

Reinforcement Learning (DRL) approach that learns from
the vehicular network environment and decides the opti-

mal number of controllers. The main contributions of our

work are as follows:

– First, we make deployment of controllers in distributed

control plane tunable and adjustable in function of

data plane requirements in terms of QoS.

– Second, this adjustment is made automatically and in

real time thanks to AI by using Deep Reinforcement

Learning. Hence, our system learns in real time from

its experience in the vehicular environment to make

adequate decision (the effective number of controllers

to deploy for better QoS) and do not need prior knowl-

edge about the network.This fits vehicular networks
nature (high dynamicity).

– Finally, our system is open and can be deployed with
any kind of distributed controller independently of

its capacity thanks to the DRL agent that decides
the effective number of used controllers based on the

achieved QoS.

Table 1 presents the positioning of our work in relation

to the cited related ones.

3 Deep Reinforcement Learning and SDN

SDN brings new opportunities to apply Machine Learn-

ing (ML) techniques inside networks through its capabili-
ties such as centralized control, global network view etc.

Among the common ML algorithms applied to SDN we cite

supervised learning like Neural Networks, non supervised

learning such as K-means algorithm and Reinforcement

Learning (RL). DRL inherits the main advantage of RL

which is the ability to work without prior knowledge of

a mathematical model of the environment. This makes
it very suitable for dynamic networks especially with its

capability of solving problems with high-dimensional state

space [35].

3.1 DRL application in SDN

DRL has attracted much research interest. A compre-

hensive survey [10] introduces this field and covers its

main algorithms such as the deep Q-network and asyn-

chronous advantage actor-critic. The advantages of DRL

and the current areas of research within it are also de-

scribed. Many works are focusing on leveraging DRL in

making SDN networks more intelligent and agile by adding

automatic and autonomous reactivity. The idea was first

proposed in Knowledge Defined Networks (KDN) [35]
where a knowledge plane is added on top of the control

plane in SDN architecture. This paradigm mixes neural

networks with reinforcement learning to provide automa-

tion and optimization. In [36] a DRL mechanism for SDN,

called DROM, is proposed for routing optimization. Per-

formance metrics like delay and throughput are improved

thanks to the provided black-box optimization in continu-

ous times. Applying DRL keeps showing better results in

other SDN-based fields like IoT and vehicular networks

resolving scalability challenges. Authors in [37] propose a

DRL based QoS-aware Secure routing Protocol (DQSP) to

address security and latency issues in large-scale SDN-IoT

networks. A dueling DRL-based trust management scheme
for SDVN is proposed in [38] to face performance degra-
dation caused by malicious nodes. An agent is deployed

on a centralized SDN controller to learn the most trusted

routing path by deep neural network. The designed model

is used to evaluate neighbors behavior when forwarding

routing information.

3.2 Deep Reinforcement Learning Fundamentals

3.2.1 Reinforcement Learning

Reinforcement learning (RL) is one of Machine Learning
(ML) approaches that is different from supervised, unsu-

pervised and Semi-supervised learning techniques. It is

based on an agents interactions with uncertain external

environment which it explores and exploits the gathered

knowledge to make suitable decisions for every state. The

taken decision, also called action, is qualified by a reward

or a penalty that the agent receives as a feedback from the

environment. Therefore, instead of being taught by exem-

plars in datasets, the training data in RL is an evolving

set of state-action pairs and their corresponding rewards

(or penalties). The best sequences are used by the agent

to have an optimal strategy or policy optimizing a cu-

mulative reward. Thanks to its gradually refinement and

dynamic adaptation, RL is suitable to problems that have

no analytic formulation [40].

3.2.2 Q-Learning

Q-learning algorithm is a form of model-free RL. It is
a value-based method used to solve learning problems

without knowledge on the environment dynamics. It is a

mapping mechanism between a called state space S and

action space A according to a policy. It aims at supply-

ing information to an Agent about the most appropriate

action to take in a given state in order to maximize a
long term reward. At an instant t, a state-action value

function Q(st, at) is used to measure the return of choos-

ing the action a in the state s. The agent starts by a

6

Table 1 Distributed SDN optimization approaches

Ref SDN context Approach DRL based Object

[7] Datacenter Networks Optimal Controller Number with
dynamic Switch-to-controller

mapping

No Latency & Failure tolerance

[12] WAN/Dynamic
Topology

Scheduled inter-controller
synchronization

Yes Overall routing quality

[16] WAN/ Fixed
Topology

Dynamic leader-controller
Placement

No Latency

[26] Vehicular/ Dynamic
Topology

Static Controller Placement No Latency & Capacity

[27] Vehicular/ Dynamic
Topology

Dynamic Controller Placement No Latency & Capacity

[29] WAN/Fixed
Topology

Optimal Capacitated Controller
Placement

No Latency

[30] WAN/ Fixed
Topology

Optimal Controller Placement using
K-means-based network partition

No Latency

[31] Backbone Networks Optimal Controller Placement based
on robustness factors

No Latency & Reliability

[32] Small/Large scale
fixed topologies

Controller Placement Optimization
using genetic algorithm (GA) and

gradient descent (GD)

No Latency

[33] Small/medium scale
fixed topologies

Controller Placement Optimization
based on inter-controller delay
minimization using MCDS

No Latency

[34] WAN/Dynamic
Topology

Controller Synchronization Policy
Design

Yes Latency

IRCP-
SDVN

Vehicular/ Dynamic
Topology

Efficient Distributed Controller
Number with Dynamic domain

allocation

Yes Latency & Reliability

random Q-function then it continuously updates its Q-

Values through Equation (1) where α∈[0, 1] is the learning

rate and γ ∈[0, 1] is the discount rate [41].The final goal

of Q-learning is to find the best policy Π making the

agent select the suitable action that maximizes the reward

rt over time. This policy is improved every time a new

Q-value is given. For every state st ∈S, the selection of

the best action at ∈A is described by Equation (2). The

mathematical function argmax returns the action at ∈A
that achieves the highest value of Q(st, at) function. The

policy becomes optimal once the maximum Q-value is

determined through training.

Q(st, at)← Q(st, at)+α · [rt+1+γ · max
a∈A

Q(st+1, a)−Q(st, at)]

(1)

at = argmax
a∈A

Q(st, a) (2)

3.2.3 Deep Reinforcement Learning

Based on table method to record state-action rewards,
RL is limited to low-dimensional problems. It is not de-

signed to large-scale and highly dynamic networks, such

as vehicular networks, that have high dimensional state
and action spaces. In fact, it is impractical to retain all

the Q-values for all the state-action pairs. Deep learning

(DL), gives RL the ability to scale up to such complex

decision-making problems. Indeed, deep neural networks
(DNN) can automatically extract low-dimensional features

from high-dimensional data thanks to function approxima-

7

tion and representation learning capabilities. Therefore,

the function Q(s, a) is approximated by a parameterized

function Q(s, a, θ) where {θ} are weights of the Deep

Q-network or DQN [42]. Figure 2 recapitalizes Deep Rein-

forcement Learning process.

3.2.4 The epsilon-greedy policy

In order to avoid the risk that the agent falls into sub-

optimal patterns without exploring the whole action/reward

space, the two concepts called exploration and exploita-

tion should be used especially in the beginning of training

to allow some randomness in the selection of the best
action. Otherwise, the agent may not find the best pol-
icy. The general approach used to solve that problem is
the ǫ-greedy method. Every iteration, the agent selects

a random action with probability ǫ or an optimal action

(the output of the DNN equation 2) with a probability of
(1−ǫ). The epsilon value starts close to 1 and slowly decays

to 0 during training. That is, after a large exploration of

the state/action space, the agent ends with taking actions

only from the deep neural network [42].

4 IRCP-SDVN Framework

4.1 Problem Description and Motivation

Network reactivity in distributed SDVN is affected by

three classes of delay namely vehicle-RSU, RSU-Controller

and Controller-Controller delays. Vehicle-RSU delay is

mainly affected by environmental factors such as inter-

ference, signal strength and handover frequency depend-

ing of vehicle speed. RSU-Controller delay is inherent

to the known Controller Placement problem. Controller-

Controller latency includes inter-controller propagation

and processing delay that depends on the processing ca-

pability and load of the controller. It has been optimized
in several works treating the so called Controller Synchro-

nization problem [34]. However, in large scale networks,

inter-controllers latency dominates the other classes of

latency [16]. The increase in the number of controllers

can generate more cost and energy consumption. Despite

reliability and processing latency improvement thanks to

load balancing between multiple distributed controllers,

extra delays are produced due to the rise of inter-controller

synchronization transactions with every added controller.

Using ODL distributed controller [43], we showed in [5]

that it is inefficient to increase the number of controllers

above a certain value (2 controllers in our scenario), be-

cause of remarkable increase inend-to-end delay which is

not suitable for safety application. In this work, we will fo-

cus on the estimation of the optimal number of controllers

in SDVN case. Our optimization objective is to find a
tradeoff between minimizing latency to enhance SDVN

reactivity and maintaining acceptable reliability level to

meet the variety of vehicular applications requirements.

4.2 Solution Context

To analyze the inter-controller synchronization delay in

both SDO and MDO models previously described in sec-

tion 2.1, we consider a distributed SDVN divided into N

domains controlled by N controllers that are deployed in

the cloud. We suppose that a vehicle triggers a communi-

cation in the range of one RSU that misses entry in its

flow table matching received packets. The RSU sends a

packet-in message to its master controller (step1 in figure 3
(a) and (b)). The rest of steps depends on the consistency

model.

In SDO model, the master controller sends a Raft

request to the leader controller (step 2 in figure 3 (a)).

The latter floods replicas of the last updated view on

all the domains controllers (step 3 in figure 3 (a)) and
waits for acknowledgment from the majority of them (step

4 in figure 3 (a)). Once it receives at least (N/2 +1)

controllers’ acknowledgement (4 in figure 3 (a)), the leader

controller sends the most recent global view to master

controller (step 5 in figure 3 (a)) thus a packet-out is sent to

requesting RSU (step 6 in figure 3 (a)). In MDO model, the

master controller processes the request locally and sends

back a packet-out message to the RSU (step 2 in figure 3

(b)). In the mean time, it advertises the updates to all the

other domain controllers in an asynchronous way (step 3

in figure 3 (b)). Thus, to have consistent network view on

all the network controllers, a number of (N-1) transactions

is needed for each event. In both cases, these numbers are

multiplied by propagation and processing delays for each

controller. Consequently, in both synchronization models,

the number of deployed controllers has a clear impact on

increasing the total synchronization delay raising by that
the entire network latency.

In our study, we will consider ODL distributed con-

troller. In fact, we have shown in [44] that ODL outper-

forms other studied controllers (ONOS, POX, Floodlight)

in terms of end-to-end delay for safety vehicular appli-

cations. Moreover, as we mentioned earlier, ODL allows

the deployment of multiple instances of controller thanks

to clustering technique according to strong consistency

model. Thus, we adopt the above SDO model which re-

quires fewer transactions so less synchronization delay.

4.3 System Design

Our architecture is mainly divided into three layers: the

data plane, the control plane and the Intelligence plane as

it is described in figure 4.The intelligent DRL agent (upper
layer) retrieve data (traffic state, rewards) from the data

plane and estimates the optimal number of controllers,

then communicates it to the control plane for controllers

adjustment.

1. Data plane

The data plane mainly consists of forwarding devices

8

Fig. 2 Deep Reinforcement Learning process

such as OpenFlow-enabled RSUs (Road Side Units).

These RSUs are grouped into different control domains

in a dynamic way according to the distributed con-

trollers allocation. It is also responsible for reporting

the vehicles information and status such as velocity

and density to DRL agent. Besides, feedback on ex-

ecuted actions is reported to the agent as a linear

reward function composed of end-to-end (e2e) delay

and packet loss level indication during vehicles trans-

missions.

2. Control plane: Adjustable number of distributed SDN

controllers

The role of this layer is to adjust the number of dis-

tributed controllers according to the DRL agent deci-

sion.It consists of two modules. The integrated Control
Resizer (CR) which is responsible for adding or remov-

ing controllers to deploy the effective number (ENC)

dictated by the DRL agent, and the Load Balancer

(LB) which is charged to reassign the different RSUs

to the deployed controllers to balance the traffic load.

3. Intelligence Plane: Intelligent Regulator

The intelligence core is the DRL Agent that learns

the policy through interaction with the vehicular envi-

ronment. In other words, it collects and processes the

state reported by the data plane, namely vehicles den-
sity and speed. Then, taking into account the feedback

on achieved delay and packet loss, it transforms infor-

mation to a policy that it improves during training

to make best decision about the optimal number of

distributed controllers. In the following, we will detail

the different modules of our architecture.

4.3.1 Deep Reinforcement Learning Agent

In order to enable the DRL agent for control regulation,

we have to define the states, actions, and reward function

in the IRCP. All used notations are summarized in table

2.

1. IRCP State Space

We denote the state space by S. We opted that a

state st ∈S is represented by the tuple {t, ρ, υ}. The

variables t,ρ and υ refer respectively to the slot time,

the density of the vehicular network and the vehicles’

velocity at the instant t. We are considering only com-

municating vehicles that are generating traffic in our

SDVN network.

2. IRCP Action space

In our system, at each time t and based on a decision

policy, the agent takes an action at ∈ A, which consists

of deciding the effective number of distributed con-

trollers denoted by ENC, according to a current state

st ∈ S. The action space is A = {1C, 2C, 3C, 4C...nC}

where the number n depends on the network scale and

the allocated controller performances.

3. IRCP Reward function

9

Fig. 3 Consistency models in distributed SDVN. (Left) Fig. 3(a) SDO model (Raft algorithm); (Right) Fig. 3(b) MDO model
(anti-entropy algorithm)

The agent relies on the feedback received on the re-

ward rt to evaluate the effectiveness of the action in
order to improve the strategy. We define the reward

function using two most important QoS indicators in

vehicular networks: average end-to-end delay (d) and

packet loss (p) that reflect respectively the responsive-

ness and reliability of the vehicular network under the

control of the decided ENC controllers. End-to-end

delay is measured in milliseconds and packet loss is
the percentage of sent but not acknowledged packets.

Reward rt is denoted by Equation 3. In each state the
received values of instant end-to-end delay and packet

loss are compared to specified thresholds respectively

Dth and Pth. Thus, penalties are incurred if latency

and loss values exceed the defined thresholds. Other-

wise, reward is incremented. These thresholds are de-

fined depending on the vehicular application class. For

example, safety applications are strictly delay-sensitive

while infotainment applications do not tolerate packet

loss.

rt = rd + rp (3)

Where rd is delay reward and rp is packet loss reward.

They are calculated according to following process:

– rt, rd and rp are initialized to zero

– Get the instant end-to-end delay (d) and packet

loss (p) values in instant (t)

– If (d < Dth) then rd ++; else rd −−;

– If (p < Pth) then rp ++; else rp −−;

Table 2 Summary of key notations

Notation Description

ENC Effective Number of Controllers
CNC Current Number of Controllers
ρ Vehicular density
υ Velocity
d End to end delay
p Packet loss
Dth End to end delay threshold
Pth Packet loss threshold
rt /rd /rp Rewards

4.3.2 Deep Q-learning Based IRCP

We draw up in figure 5 a flow chart describing the steps

followed by our system to obtain the optimal policy. Three

main modules compose our system: the DRL module, the

vehicular network (vehicles and RSUs), and the distributed

controllers. The policy is initialized randomly as well as

the DNN parameters and the CNC. Once simulation en-

vironment and CNC distributed controllers are started,

vehicles and RSUs are generated and wireless V2I (Vehicle

to Infrastructure) links are established to allow traffic

exchange. Necessary data for agent learning is therefore

available.

As the agent has no sufficient experience in the be-
ginning to select the best action , the ǫ-greedy policy is
used to equilibrate the exploration and exploitation [45].

The ǫ value decay is repeated at every step until the

10

Fig. 4 IRCP-SDVN Architecture

choice of action becomes completely made by the DNN as

explained previously in section 3.2.4. Thereafter, batch-
ing and training take place. As explained in paragraph

3.2.3 the parameterized Q-function is represented by a
Deep Neural Network (DNN) that needs to be trained on

randomly sampled batches from the agents replay mem-

ory [45] for stability reasons. Training data is generated

from the interactions between the environment simulator,
controlled by the distributed controllers, and the agent

that decides the efficient number of those controllers. The

former returns rewards for the selected actions by the

latter. The memory is filled by samples including agents

data namely its original state st, the chosen action at, the

received reward rt for that action and its next state st+1.

Initially, the policy used to select the Efficient Number of
Controllers (ENC) is random. It is gradually improved by

updating the Q-network (adjusting weights and biases).

At the end of the training process the returned Deep Q-

Network will be ready to estimate the best action for each
state.

4.3.3 IRCP Components Interaction

The execution of the DRL agent’s orders is the responsibil-

ity of the two modules CR and LB. The CR is responsible
of adding (start) new controllers if ENC is greater than
CNC and removing (shut down) extra controllers if ENC

is smaller than CNC. CR stills idle when the two numbers

are equal. The LB module is in charge of RSUs reassign-

ment to deployed controllers (ENC) in an almost equal
manner. This simple method leads to a rapid mapping

between RSUs and controllers reducing time of migration

and re-association procedures. Also, it is an event-based

method as LB is triggered only when ENC is different of

CNC. Such a suitable method of load balancing improves

the scalability, responsiveness and reliability. It helps min-
imizing resource consumption and averts the overload of

any of the distributed controllers [46]. Figure 6 resumes

the interactions between our architecture components.

5 Evaluation and results

The purpose of this section is to prove the feasibility

and efficiency of our proposed IRCP-SDVN. We opted

to Road Safety Application use case in a realistic urban

mobility trace. It is the most delay-sensitive class of ve-

hicular applications. We recall that our aim is to improve

QoS in distributed SDVN taking into consideration the

impact of vehicles mobility and traffic density. Indeed,

when density of communicating vehicles increases, it may

lead to controller overload. Also, high mobility results in

increasing handover from one RSU to another and if these
RSUs are belonging to different control domains, more

inter-controller synchronizations are triggered.

11

Fig. 5 IRCP operation scheme
12

Fig. 6 Sequence diagram of IRCP components interactions

5.1 Experimental settings

Our simulation is implemented using Ubuntu 18.0.4 op-

erating system running on an Intel Core i7 CPU with

32GB of RAM. We emulate SDN based vehicular net-
work with Mininet-wifi [47]. We downscaled a 2000m X

2000m area of San Francisco from the Open Street Map

(OSM) for our road topology simulated with SUMO sim-

ulator [48]. Regarding emergency traffic generation and

measurements of end-to-end delay and packet loss, we use

iperf 2.0.13 [49]. We opt for ODL as SDN controller as

we previously proved its efficiency in such environment
and scenario [44]. We run ODL controllers on Docker

containers [50]. For packet routing, we use the layer-2 for-

warding application of ODL called l2-switch and deploy it

on our OpenFlow enabled RSUs. This application affords

the default reactive learning/forwarding mechanism. Inter-

Controller synchronization is ensured by the clustering
technique of ODL [43]. For IRCP agent training we use

NVIDIA Tesla k80 GPU with 12 GB of RAM offered by

the free GPU provider Google Colab, and the following

software environments: TensorFlow 1.15.0 and keras 2.3.1
with python 2.7.17. Regarding our deep Q-network, train-

ing convergence leads to a stable five-layer fully connected

neural network with validation mean square error (MSE)

equal to 0.02. The 3 hidden layers consist respectively of

100, 80 and 50 neurons. We opt for Relu as activation
function and adaptive moment estimation method (Adam)
for training with a learning rate of 0.01. Our replay mem-

ory has a maximum size of 10.000 samples with batch
size of only 20 samples as the smaller batch size is, the

better generalization will be. To balance exploration and

exploitation we utilized ǫ-greedy policy. The two thresh-

olds Dth and Pth are respectively fixed to 100ms and 15%

according to ETSI specifications for vehicular services

requirements [51]. Figure 7 sketches our Test-bed.

5.2 Experimented Scenario

We consider an accident scenario where a car crash occurs
in one RSUs coverage, and a neighboring ambulance or

an informed authority car will disseminate periodically

13

Fig. 7 Test-bed

Table 3 Simulation Setup

Parameters Value

Vehicles density 10 to 90 by step 10
Vehicles speed (kmph) 10 to 90 by range 10
RSU range 600m
RSU number 8
Bandwidth 54Mb/s (802.11g)
OpenFlow version 1.3
Simulation area 2000m x 2000m
Simulation time 20 min
Propagation Model Log-Distance-Loss Model (exp=2.5)
Traffic type User Datagram Protocol (UDP)
Packet Size 1470 bytes
Periodicity 3s

the warning (Decentralized Environmental Notification

Message or DENM) to the rest of vehicles in the rele-

vance area as sketched in figure 8. We mention that for

readability sake, we have represented the control and in-

telligence plane with a single IRCP entity. Such safety

related messages are strictly delay sensitive and require

high reliability [52].We consider two cases. In the first one,

we fix the speed and gradually vary the communicating

vehicles number. In the second we do the contrary as we fix

communicating vehicles number while varying gradually

the velocity (random values) by range of 10 km between

minimum and maximum speeds. Simulation parameters

are summarized in table 3.

To prove the performance of our proposed IRCP-SDVN

architecture, we will compare it to a centralized or sin-

gle controller SDVN architecture as well to a distributed

SDVN architecture with fixed number of controllers for

both described scenarios. The first reference architecture
is used to show the importance of distributing the control

plane in avoiding single controller overload and consequent

degradation of QoS. The second reference architecture rep-

resents the oversized distributed control plane for the same

density of our vehicular network. The goal of IRCP is to

resize the distributed control plane according to the traffic

load.

Our tests were limited to four controllers and a maximum

number of communicating vehicles to 90 given the con-

straints of resources available to us. In both scenarios, we

used the same settings and traffic scheme where vehicles

establish connections only with RSUs for exchanging data

packets (V2I communications). Thus, a vehicle belongs to

a controller domain only when it is in the range of one or

more RSUs of its domain. We precise that in the following

measurements, V2V (Vehicle to Vehicle) links are disabled
on purpose.

5.3 Results and analysis

We compare the performance of the 3 architectures in

terms of end-to-end delay and packet loss. In the case

of IRCP-SDVN, we consider first one controller then we

increase this number if needed according to the network

load. Our experimental results are sketched in figures 9 to
14. Each represented value is averaged over 5 runs. Picked

end-to-end delay and packet loss values are the average

of all achieved values among the communicating vehicles

during the simulation during each episode.

The first part of our experiments is to study the perfor-

mance of all architectures in terms of end to end delay and

packet loss by varying the density of vehicles. In figure9,

we can perceive that end to end delay increases when
vehicular density rises. In fact, the SDN controller has

to serve more and more communicating vehicles and to

forward further control messages. We note that the case

14

Fig. 8 Emergency scenario

of single controller presents the most important delays

due to its rapid overload when density reaches its peak.

Despite the better delays presented by the distributed
controller (4 controllers) compared to a single controller,

it notes lower performance than IRCP when density is

high. This difference is due to the synchronization over-
load of the four controllers compared to IRCP which uses

only two controllers when the vehicles density increases

(figure10). In fact, each update needs to be synchronized

among different domain controllers which results in addi-

tional delays. This is clearly shown in figure9 where IRCP

performs significantly lower delay where density exceeds

60 vehicles. Indeed, the sudden fall in delay is the result of

IRCP agent intervention when it decides to add a second

controller around the sixth minute as described in figure10.

As a consequence, the vehicles requests are balanced
between two controllers and the delay is remarkably re-

duced. From the load of seventy vehicles, end-to-end delay

returns to rise as the density increases. Around the ninth

minute, density reaches its peak but IRCP performs well

as end-to-end delay stills under the threshold (100 ms) and

better than the case of 4 controllers (figure9) . Further-

more, by decreasing the vehicles density, the end-to-end

delay decreases and IRCP removes the extra controller
and returns to work with only one controller like in the

beginning of the simulation period (figure 10). Thus, IRCP

adapts dynamically to the load of the vehicular network
by adopting an elastic control.

Figure11 presents the packet loss in function of Ve-

hicular density. For the same aforementioned reasons,
density increase also leads at certain level to controller
overload which results in packet loss rise. This is well

shown with the centralized architecture that has the high-

est loss rate. Using four controllers, packets have more

chance to be treated and packet loss is less. However, we

remark that IRCP performs worse than the four-controller
distributed architecture even while adding the second con-

troller (around the 6th minute) which is expected since
two controllers are more charged than four. But IRCP

performs better than the case of single controller. In the

following experiments, we investigate the performance of

the three architectures by varying the speed of vehicles.

Figure12 illustrates the end-to-end delay with different

vehicle velocities. As we notice, delay escalates with the

speed. First, this is due to the rapid change of vehicular

network topology so controller has to update its network

view frequently. Centralized architecture performs the

worst delays in this case as it has to manage more topol-

ogy changes so more delays to respond to vehicles requests

or exactly more treatments to install new flows on RSUs.

In fact, as it groups together all the RSUs in a single

domain, each vehicle in the network is liable to modify

the overall view.In distributed architectures, controllers

have to synchronize their views with each other after every

update.

The high speed of the vehicles can also increase the

delay due to broken links and their recovery time. The

link break may occur when control domain is changed,

which triggers global view update via inter-controller syn-

chronization. That explains the high values of end-to-end

delay produced by the static four-controller distributed

architecture when velocity exceeds 40 km/h (figure12).

However, our proposed IRCP performs clearly better as it

intervenes in these conditions to add the second controller,

as shown in figure13, thus decreasing the delay by pro-

cessing the vehicles requests more quickly while limiting

the controllers synchronization. Moreover, we remark that
despite the increase of the end-to-end delay for a velocity

greater than 60 km/s in the case of IRCP (figure12), it

15

Fig. 9 E2E Delay with variable density

stills better than the case of 4 controllers (figure12). In

addition, we notice that the delay decreases with the de-

crease in speed in the case of IRCP while adjusting the
number of controllers to one (figure13).

These good results of IRCP in terms of responsiveness
are supported by better reliability shown in figure 14. High

vehicle speed means frequent migration of vehicles from

one RSUs range or control domain to another which leads

to high number of broken links that increases packet loss.

By adding the second controller at speed exceeding 50

km/h, IRCP lightens the packet loss rate by balancing

the load while keeping a reasonable number of distributed

controllers (two) leading to less connection break than in

case of four control domains. However the packet loss still

increasing with the increase of the velocity but still better

than the case of one controller and 4 controllers. With

a single controller, increasing speed results in frequent

topology changes due to frequent handoffs from one RSUs

range to another, hence the growth in packet loss (figure

14).

Overall, the results of our experiments have shown

the interest of distributing the control plane compared to

centralized architectures but with a reasonable deployment

in terms of the number of distributed controllers. Our

proposed IRCP-SDVN outperforms static four-controller

distributed SDVN architecture especially in terms of delay,

the key QoS metric for road safety applications. Even

though results in terms of packet loss were higher than

Fig. 10 IRCP behavior (End to End delay in function of variable density)

16

Fig. 11 Packet Loss with variable density

that achieved by the static four-controller distributed

architecture during variable density experiments. These

results can be improved by adjusting the reward function

taking into account the end to end delay and packet

loss parameters. We recall that the goal of IRCP is to

find a compromise between responsiveness and reliability
according to the requirements of the specified vehicular

application.

6 Conclusion

It is clear that SDN’s distributed control plane has shown

its efficiency compared to the centralized controller, how-

ever over-dimensioning the number of controllers can cause

additional delays for synchronization and can lose effi-
ciency due to unnecessary overheads. Optimal choice of
the number of controllers is necessary. In this paper, a

deep reinforcement learning based approach called IRCP-

SDVN is proposed to resize and adjust the distributed
control plane in SDN-based vehicular networks according

to the traffic load and network density with respect to
vehicular applications requirements in terms of respon-

siveness and reliability. Experimental results prove that

our proposed system can achieve better results in terms of

end-to-end delay and packet loss for critical vehicular ap-
plication such as road safety services. Emergency messages
are delivered with significantly lower end-to-end delay and

Fig. 12 E2E Delay with variable vehicle speed

17

Fig. 13 IRCP behavior (End to End delay in function of variable speed)

Fig. 14 Packet Loss with variable vehicle speed

alleviated packet loss comparing to statically distributed

SDVN architectures under various dynamicity degrees.
Indeed, thanks to DRL based IRCP, efficient number of

controllers is deployed avoiding generated extra-delays

of inter-controller synchronization and extra consumed
resources for extra controllers. More experiments should

be performed in order to study more precisely the contri-

bution of optimal controller number choice on the QoS

requirements of other vehicular applications such as info-

tainment. In addition, it is important to assess the DRL

agent overload in the case of a denser and larger network

even though we believe that the DRL is executed by a

much more powerful controller than the others domains

controllers. So, the cost of processing will be much lower

than that of the frequent processing of the various trans-

actions executed by the domain controllers. Encouraged
by the obtained results, we intend as a perspective to

challenge the proposed framework in a more intensive sce-

nario and compare it to other numerical or ML methods

to estimate the optimal number of active controllers. In

addition, we plan to compare our proposal of the elastic

control plan to existing works. It would also be interest-

ing to investigate the possible combination between our

approach and the capacity scaling of the controllers as

proposed by Beacon and McNettle projects.

18

Conflicts of interest/Competing interests

The authors declare that there are no conflicts of interest

and competing interests

References

1. Bannour, F., Souihi, S., & Mellouk, A. (2018). Dis-
tributed SDN Control: Survey, Taxonomy, and Challenges.
IEEE Commun. Surv. Tutor , 20, 1 , 333354. doi :
10.1109/COMST.2017.2782482.

2. Fan, Y., & Zhang, N. (2017). A Survey on Software-defined
Vehicular Networks. Journal of Computers, 28, 4, 236-244.
doi:10.3966/199115592017062803025.

3. Smida, K., Tounsi, H., Frikha, M., & Song, Y. (2019). Soft-
ware Defined Internet of Vehicles: a survey from QoS and
scalability perspectives. In 15th International Wireless Com-
munications Mobile Computing Conference (IWCMC) (pp.
13491354). doi: 10.1109/IWCMC.2019.8766647.

4. Kaul, A., Obraczka, K., Santos, M. A. S., Rothenberg,
C. E., & Turletti, T. (2017). Dynamically distributed
network control for message dissemination in ITS. In
IEEE/ACM 21st International Symposium on Distributed
Simulation and Real Time Applications(DS-RT) (pp. 19).
doi:10.1109/DISTRA.2017.8167677.

5. Smida, K. , Tounsi, H., Frikha, M., & Song, Y. (2019). Delay
Study in Multi-controller Software Defined Vehicular Net-
work Using OpenDaylight for Emergency Applications. In
15th International Wireless Communications Mobile Com-
puting Conference (IWCMC) (pp. 615620). doi: 10.1109/
IWCMC.2019.8766633.

6. Kumari, A., & Sairam, A. S. (2021). Controller placement
problem in software-defined networking: A survey. Networks.
doi: 10.1002/net.22016.

7. Liu, W., Wang, Y., Zhang, J., Liao, H., Liang, Z., & Liu, X.
(2020). AAMcon: an adaptively distributed SDN controller in
data center networks. Front. Comput. Sci., 14, 1, 146161. doi:
10.1007/s11704-019-7266-6.

8. Dixit, A.A., Hao, F., Mukherjee, S., Lakshman, T. V., &
Kompella, R. (2014). ElastiCon: an elastic distributed SDN
controller. Proceedings of the tenth ACM/IEEE symposium
on Architectures for networking and communications systems
- ANCS 14, Los Angeles, California, USA (pp. 1728). doi:
10.1145/2658260.2658261.

9. Boutaba, R., & al. (2018). A comprehensive survey on ma-
chine learning for networking: evolution, applications and
research opportunities. J. Internet Serv. Appl., 9, 1, 16. doi:
10.1186/s13174-018-0087-2.

10. Arulkumaran, K., Deisenroth, M. P., Brundage, M., &
Bharath, A. A. (2017). Deep Reinforcement Learning: A
Brief Survey. IEEE Signal Process. Mag., 34, 6, 2638. doi:
10.1109/MSP.2017.2743240.

11. Ye, H., & Li, G. Y. (2018). Deep Reinforcement Learning
for Resource Allocation in V2V Communications. In IEEE
International Conference on Communications (ICC) (pp. 16).
doi: 10.1109/ICC.2018.8422586.

12. Zhang, Z., Ma, L., Poularakis, K., Leung, K., & Wu,
L. (2019). DQ Scheduler: Deep Reinforcement Learning
Based Controller Synchronization in Distributed SDN. ArXiv:
1812.00852,1-7. doi: 10.1109/ICC.2019.8761183.

13. Open Networking Foundation. Software-Defined Net-
working (SDN) Definition. Retrieved mai 10, 2020, from
https://www.opennetworking.org/sdn-definition/

14. Open Networking Foundation. OpenFlow pro-
tocol Archives. Retrieved may 09, 2020, from
https://www.opennetworking.org/tag/openflow-protocol/

15. IBM Cloud Education. (2021). REST APIs , Retrieved
august 02, 2021, from https://www.ibm.com/cloud/learn/rest-
apis

16. Zhang, T., Bianco, A., & Giaccone, P. (2016). The role of
inter-controller traffic in SDN controllers placement, In IEEE
Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN) (pp. 8792). doi: 10.1109/NFV-
SDN.2016.7919481.

17. Brewer, E. (2012). Pushing the CAP: Strategies for Con-
sistency and Availability. Computers, 2, 45, 2329. doi:
10.1109/MC.2012.37.

18. OpenDaylight . Retrieved jul 26, 2020, from
https://www.opendaylight.org/

19. Open Network Operating System (ONOS) SDN
Controller for SDN/NFV Solutions, Open Net-
working Foundation. Retrieved jul 26, 2020, from
https://www.opennetworking.org/onos/

20. Ongaro, D., & Ousterhout, J. (2014). In Search of an Under-
standable Consensus Algorithm. In Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(pp. 305-320).

21. Sakic, E., & Kellerer, W. (2018). Response Time and Avail-
ability Study of RAFT Consensus in Distributed SDN Control
Plane. IEEE Trans. Netw. Serv. Manag., 15, 1, 304318. doi:
10.1109/TNSM.2017.2775061.

22. Network Topology State - ONOS - Wiki. Retrieved jul 29,
2020, from https://wiki.onosproject.org/display/ONOS/

23. Jiacheng, C., Haibo, Z., Ning, Z., Peng, Y., Lin, G., &
Xuemin, S. (2016). Software defined Internet of vehicles: ar-
chitecture, challenges and solutions, J. Commun. Inf. Netw.,
1, 1426. doi: 10.1007/BF03391543.

24. Erickson, D. (2013). The Beacon OpenFlow Controller. (p.
18). doi: 10.1145/2491185.2491189.

25. Voellmy, A., & Wang, J. (2012). Scalable Software Defined
Network Controllers , ACM SIGCOMM Comput. Commun.
Rev., 42, 289290. doi: 10.1145/2377677.2377735.

26. Kalupahana Liyanage, K. S., Ma, M., & Joo Chong, P. H.
(2018). Controller placement optimization in hierarchical dis-
tributed software defined vehicular networks. Comput. Netw.,
135, 226239. doi: 10.1016/j.comnet.2018.02.022.

27. Toufga, S., Abdellatif, S., Assouane, H. T., Owezarski, P., &
Villemur, T. (2020). Towards Dynamic Controller Placement
in Software Defined Vehicular Networks. Sensors, 20, 6, 1701.
doi: 10.3390/s20061701.

28. An Overview of USDOT Connected Vehicle Road-
side Unit Research Activities. (2017).Retrieved jul 28,
2020, from https://connectedautomateddriving.eu/wp-
content/uploads/2017/08/USDOT.pdf

29. Chai, R., Yuan, Q., Zhu, L., & Chen, Q. (2019). Control
plane delay minimization-based capacitated controller place-
ment algorithm for SDN, EURASIP. J. Wirel. Commun. Netw.,
1, 282. doi: 10.1186/s13638-019-1607-x.

30. Wang, G., Zhao, Y., Huang, J., Duan, Q., & Li, J. (2016).
A K-means-based network partition algorithm for controller
placement in software defined network. In IEEE Interna-
tional Conference on Communications (ICC), (pp. 16). doi:
10.1109/ICC.2016.7511441.

31. Alenazi, M. (2019). Distributed SDN Deployment in
Backbone Networks for Low-Delay and High-Reliability
Applications. Int. J. Adv. Comput. Sci. Appl., 10.
doi:10.14569/IJACSA.2019.0101274.

32. Huang, V., Chen, G., Fu, Q., & Wen, E. (2019). Optimiz-
ing Controller Placement for Software-Defined Networks. In
IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), (pp. 224232).

33. Alowa, A., & Fevens, T. (2020). Towards Mini-
mum Inter-Controller Delay Time in Software Defined
Networking. Procedia Comput. Sci., 175, 395402. doi:
10.1016/j.procs.2020.07.056.

34. Zhang, Z., Ma, L., Poularakis, K., Leung, K. K., Tucker,
J., & Swami, A. (2019). MACS: Deep Reinforcement
Learning based SDN Controller Synchronization Policy De-
sign. ArXiv190909063 Cs. Retrieved jul 17, 2020, from
http://arxiv.org/abs/1909.09063.

19

35. Xie, J., & al. (2019). A Survey of Machine Learning Tech-
niques Applied to Software Defined Networking (SDN): Re-
search Issues and Challenges. IEEE Commun. Surv. Tutor.,
21, 1, 393430. doi: 10.1109/COMST.2018.2866942.

36. Mestres, A., & al. (2017). Knowledge-Defined Networking.
ACM SIGCOMM Comput. Commun. Rev., 47, 3, 210. doi:
10.1145/3138808.3138810.

37. Yu, C., Lan, J., Guo, Z., & Hu, Y. (2018). DROM: Optimiz-
ing the Routing in Software-Defined Networks with Deep Re-
inforcement Learning. IEEE Access, PP, 11. doi: 10.1109/AC-
CESS.2018.2877686.

38. Guo, X., Lin, H., Li, Z., & Peng, M. (2019). Deep Reinforce-
ment Learning based QoS-aware Secure Routing for SDN-IoT.
IEEE Internet Things J., 11. doi: 10.1109/JIOT.2019.2960033.

39. Zhang, D., Yu, F. R., Yang, R., & Tang, H. (2018). A Deep
Reinforcement Learning-based Trust Management Scheme for
Software-defined Vehicular Networks. In Proceedings of the
8th ACM Symposium on Design and Analysis of Intelligent
Vehicular Networks and Applications, Montreal, QC, Canada,
(pp. 17). doi: 10.1145/3272036.3272037.

40. Latah, M., & Toker, L. (2019). Artificial Intelligence Enabled
Software Defined Networking: A Comprehensive Overview.
IET Netw., 8, 2, 7999. doi: 10.1049/iet-net.2018.5082.

41. Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Mach.
Learn., 8, 3, 279292. doi: 10.1007/BF00992698.

42. Arulkumaran, K., Deisenroth, M. P., Brundage, M., &
Bharath, A. A. (2017). A Brief Survey of Deep Reinforce-
ment Learning. ArXiv. doi: 10.1109/MSP.2017.2743240.

43. Suh, D., Jang, S., Han, S., Pack, S., Kim, T., & Kwak, J.
(2016). On performance of OpenDaylight clustering, In IEEE
NetSoft Conference and Workshops (NetSoft) (pp. 407410).
doi: 10.1109/NETSOFT.2016.7502476.

44. Smida, K., Tounsi, H., Frikha, M., & Song, Y.Q. (2020).
Efficient SDN Controller for Safety Applications in SDN-
Based Vehicular Networks: POX, Floodlight, ONOS or
OpenDaylight?. In IEEE Eighth International Conference
on Communications and Networking (ComNet) (pp.16).
doi:10.1109/ComNet47917.2020.9306095.

45. Mnih, V., & al. (2015). Human-level control through deep
reinforcement learning. Nature, 518, 7540. doi: 10.1038/na-
ture14236.

46. Neghabi, A. A., Jafari Navimipour, N., Hosseinzadeh, M.,
& Rezaee, A. (2018). Load Balancing Mechanisms in the
Software Defined Networks: A Systematic and Comprehensive
Review of the Literature. IEEE Access, 6, 1415914178. doi:
10.1109/ACCESS.2018.2805842.

47. Mininet-WiFi: Emulating software-defined wire-
less networks. Retrieved feb 23, 2019, from
https://www.researchgate.net/publication/295861311 Mininet-
WiFi Emulating software defined wireless networks.

48. Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D.
(2011). SUMO - Simulation of Urban MObility An Overview.
In The Third International Conference on Advances in System
Simulation.

49. Iperf2. SourceForge. (2019). Retrieved feb 23, 2019, from
https://sourceforge.net/projects/iperf2/

50. Empowering App Development for Developers — Docker.
Retrieved jul 29, 2020, from https://www.docker.com/

51. Service requirements for V2X services. (2017). Retrieved
jan 22, 2021, from
https://www.etsi.org/deliver/etsi ts/122100 122199/122185/14.03.00 60/ts 122185v140300p.pf

52. Intelligent Transport Systems (ITS); Vehicular Communi-
cations;Basic Set of Applications;(2013). Retrieved Aug 11,
2020, from
https://www.etsi.org/deliver/etsi en/302600 302699/30263703/01.02.00 20/en 30263703v010200a.pdf.

20

	Introduction
	Distributed Software Defined Networks
	Deep Reinforcement Learning and SDN
	IRCP-SDVN Framework
	Evaluation and results
	Conclusion

