
EDChannel: Channel Prediction of Backscatter
Communication Network Based on Encoder-
Decoder
Dengao Li 

Taiyuan University of Technology
Yongxin Wen 

Taiyuan University of Technology
Shuang Xu 

Taiyuan University of Technology
Qiang Wang 

Taiyuan University of Technology
Ruiqin Bai 

Taiyuan University of Technology
Jumin Zhao  (  zhaojumin@tyut.edu.cn )

Taiyuan University of Technology https://orcid.org/0000-0002-9049-4053

Research Article

Keywords: Backscatter communication, Channel prediction, Deep learning, Encoder-decoder

Posted Date: January 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1173737/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1173737/v1
mailto:zhaojumin@tyut.edu.cn
https://orcid.org/0000-0002-9049-4053
https://doi.org/10.21203/rs.3.rs-1173737/v1
https://creativecommons.org/licenses/by/4.0/


Springer Nature 2021 LATEX template

EDChannel: Channel prediction of

backscatter communication network based on

encoder-decoder

Dengao Li1,3, Yongxin Wen2,4, Shuang Xu1,3, Qiang

Wang2,4, Ruiqin Bai2,4 and Jumin Zhao2,4*

1Shanxi, College of Data Science, Taiyuan University of
Technology, Jinzhong, 030600, China.

2Shanxi, College of Information and Computer, Taiyuan
University of Technology, Jinzhong, 030600, China.

3Technology Research Centre of Spatial Information Network
Engineering of Shanxi, Jinzhong, 030600, China.

4Intelligent Perception Engineering Technology Centre of Shanxi,
Jinzhong, 030600, China.

*Corresponding author(s). E-mail(s): zhaojumin@tyut.edu.cn;
Contributing authors: lidengao@tyut.edu.cn;

wyx1142557393@163.com; xushuang@tyut.edu.cn;
wangqiang510@126.com; bairuiqinty@163.com;

Abstract

Backscatter communication networks have attracted much attention due
to their small size and low power waste, but their spectrum resources
are very limited and are often affected by link bursts. Channel pre-
diction is a method to effectively utilize the spectrum resources and
improve communication quality. Most channel prediction methods have
failed to consider both spatial and frequency diversity. Meanwhile,
there are still deficiencies in the existing channel detection methods
in terms of overhead and hardware dependency. For the above rea-
sons, we design a sequence-to-sequence channel prediction scheme. Our
scheme is designed with three modules. The channel prediction mod-
ule uses an encoder-decoder based deep learning model (EDChannel)
to predict the sequence of channel indicator measurements. The chan-
nel detection module decides whether to perform a channel detection
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by a trigger that reflects the prediction effect. The channel selection
module performs channel selection based on the channel coefficients
of the prediction results. We use a commercial reader to collect data
in a real environment, and build an EDChannel model based on the
deep learning module of Tensorflow and Keras. As a result, we have
implemented the channel prediction module and completed the over-
all channel selection process. The experimental results show that the
EDChannel algorithm has higher prediction accuracy than ARIMA,
linear regression (Linear), and autoregression (AR). The overall through-
put of our scheme is improved by approximately 2.9% and 17.4% over
random frequency hopping in both stable and unstable environments.

Keywords: Backscatter communication, Channel prediction, Deep learning,
Encoder-decoder

1 Introduction

Backscatter communication network, a short-distance, ultra-low power waste,
low-cost wireless communication technology, is widely used to build large-
scale deployment of sensor networks [1, 2]. With the rapid development of
the Internet of Things technology and the increasing demand for wireless sen-
sor networks, backscatter communication technology has attracted widespread
attention from academic circles and industrial circles, and many potential
application scenes have also been mentioned a lot such as target positioning,
gesture recognition, and medical testing [3], etc. At the same time, backscatter
communication networks have been widely used in various wireless platforms
such as Radio Frequency Identification (RFID) [4], Wi-Fi, and Bluetooth, etc.
As a result, we can expect that in the near future, devices related to backscatter
communication networks will be used on a large scale in everyday life.

However, the backscatter communication network uses the energy obtained
by the radio frequency signal at the transmitting end to transmit data [5].
This low-power transmission method makes the quality of the communication
not guaranteed in dynamic channels. At the same time, backscatter communi-
cation networks are usually deployed in complex network environments, such
as factories, shelves and so on. The above-mentioned factors cause the state
of the channel to exhibit a high degree of burstiness, which seriously affects
the communication quality of the backscatter communication network. There-
fore, researchers generally reduce transmission loss in two ways to ensure the
higher throughput of the backscatter communication network. One is select-
ing channels through predicted channel metrics, and selecting channels with
better channel quality for communication [6]; the other is adapting rate based
on the predicted channel metrics, which dynamically adjusts the communica-
tion rate according to the changes in channel quality [7]. Studying the channel
prediction in the backscattering communication network is extremely impor-
tant. Through extensive preliminary experiments, we observe that there are
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many causes of channel bursts in backscatter communication networks, such
as tag collisions due to the addition of new tags, sudden changes in chan-
nel metrics due to tag movement, changes in multipath propagation due to
the addition of obstacles, or a surge in external interference. Additionally,
the inherent dynamic variability and unpredictability of wireless channels also
make real-time and accurate channel quality predictions face huge challenges.

Most of the previous research in the field of channel prediction has focused
on constructing channel models by designing Markov models [8]. Although this
simple model-based approach has specific advantages when computing power
and data are limited, their studies generally assume a variety of ideal condi-
tions. And these assumptions are usually difficult to put into actual systems,
which leads that such methods are unable to work well in different real envi-
ronments. In todays data-driven Internet-of-Things era, channel prediction
algorithms based on classic machine learning have been applied to the channel
prediction of backscatter communications to estimate the channel parame-
ters when the tag is in different states, such as the eigenvalue decomposition
(EVD) based on the received signal covariance matrix [9], the expectation
maximization (EM) algorithm [10], and the least squares (LS) algorithm [11].

In addition, with the rapid development of cloud computing and big data
technologies over the past decade [12], coupled with the continuous growth
of the field of machine learning, researchers have begun to try to apply deep
learning machine learning which consumes more computing power to channel
prediction, so as to obtain more accurate predictions of channel metrics [13, 14].
This provides us with an opportunity to design a more robust and accu-
rate channel prediction system. Specifically, we introduce sequence-to-sequence
encoder-decoder models based on deep learning, which are very suitable for the
problem of mapping input sequences to output sequences [15]. The model has
been widely used in tasks such as text generation and natural language trans-
lation. Moreover, the applicability of the encoder-decoder model in predicting
channel metrics is also proved in [16].

In this paper, an encoder-decoder based sequence-to-sequence deep learn-
ing model (EDChannel) is designed for channel prediction in backscattered
communication networks with convolutional neural networks (CNN)+ long
short-term memory (LSTM) as the encoder and LSTM as the decoder. We
next design a channel detection scheme that has no requirement in hardware
dependence based on the sequence-to-sequence prediction mode. The root
mean square error (RMSE) of the real-time feedback sequence of the current
channel indicator and the predicted value sequence obtained by the prediction
module is used to determine whether to perform channel detection. Finally,
we introduce a channel coefficient to select the channel with the best chan-
nel quality. Experimental results show that EDChannel algorithm achieves
higher accuracy of channel prediction than ARIMA, linear regression(Linear)
and autoregression(AR), and the overall throughput in stable environment and
unstable environment is also increased by about 2.9% and 17.4% compared
with random frequency hopping in Blink [17].
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In the rest of this paper, Sect. 2 shows the related work. Sect. 3 gives the
detailed design of the system. Sect. 4 describes the specific implementation
details and data collection and evaluates the implemented methodology. And
we conclude our work in Sect. 5.

2 Related Work

This section firstly introduces the related work of wireless channel prediction.
Wireless channel prediction can be roughly classified into two categories: One
is the Markov model, which models the channel changes by making simpli-
fied assumptions, relying on few network parameters and limited historical
data; the other is a machine learning model, which is a channel prediction
model used to predict the quality of wireless channels through historical data
and machine learning algorithms [16]. We then introduce the related work
of channel prediction based on deep learning in the backscatter communica-
tion network, and briefly describe the research status of channel detection and
channel selection in the backscatter communication network. Finally, aiming
at the shortcomings of the existing methods, we design our framework.

Channel prediction based on Markov model: Smith et al. proposed
a linear finite state Markov predictor for channel prediction, and achieved a
good balance between complexity and accuracy [18]. Halaseh et al. proposed
a method based on a continuous hidden Markov model for time-frequency
spectrum occupancy prediction in cognitive radio networks [19]. Traditional
channel prediction methods based on Markov models have specific advantages
when computing power is precious and data is limited. However, they usually
assume that the transmitter knows all the channel state information and the
receiver has error-free channel estimation, and these assumptions are usually
difficult to meet in the actual channel prediction system. In addition, Wang et
al. found that when using Markov models for channel prediction, only high-
order Markov models can achieve better performance than low-order Markov
models [20]. However, the high-order Markov model requires a higher amount
of calculation, which further restricts the application of the Markov model in
channel prediction.

Channel prediction based on machine learning: In the channel pre-
diction of backscatter communication networks, previous work mainly focused
on the use of machine learning for channel parameter estimation. For example,
Wang’s team used blind channel estimators based on EVD, EM algorithms, and
LS algorithms to estimate the channel parameters when tags are in different
states. And through the Cramer-Rao Lower Bounds lower bounds to evalu-
ate the performance of the algorithm [9–11, 21, 22]. Darsena et al. deduced a
computing feasible space alternate generalized expectation-maximization algo-
rithm for joint channel estimation, interference cancellation and data detection
of backscatter information [23]. While methods based on machine learning for
channel prediction can give accurate channel parameters, they in some cases
struggle to accurately identify dependencies between data points and require
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human intervention to maintain a better prediction. Instead, deep learning
can automatically learn relationships from historical data by training on large
amounts of data.

Channel prediction based on deep learning: In [6], the authors
demonstrated that the use of a multi-layer BP neural network can accurately
predict channel parameters, and evaluated and compared the throughput of
the overall framework of BLINK [17] and CARA [24] in different environments.
Although the channel prediction accuracy of this method is very high, the
length of the channel indicator sequence predicted by it is relatively short.

Channel detection: The related work of channel detection in the
backscatter communication network includes that BLINK [17] determines
whether to perform detection with the trigger detecting the change of the posi-
tion or movement pattern of the sensor tag. Then, only one probe is used to
obtain channel information. Tian decides whether to perform channel detec-
tion or not by the trigger that can detect the movement of the sensor tag and
the data of the acceleration sensor [6].BLINK and Tian’s method can trig-
ger channel detection in most cases promptly. However, in the experiments in
section 3.3, we found that the received signal strength indicator continued to
change significantly when only the obstacle moved and the tag did not make a
move. We still need to perform channel detection on this situation to get real-
time channel conditions. In addition, these two methods also require related
hardware such as sensors to be implemented, which may not be sufficient in a
real environment. CARA proves the channel correlation, and grouping chan-
nels through channel correlation. Then, multiple probes are used at the same
time to reduce the overhead of channel detection [24]. Although the method of
using multiple probes can quickly detect the state of the channel, it occupies
limited channel resources.

Channel selection: In the backscatter communication network, the cor-
rect channel selection can improve the efficiency of information transmission
and reduce the loss of information. In the existing channel selection research,
Blink and CARA select directly through the channel metrics detected [17, 24].
Although this is convenient, it faces a certain degree of time delay. Tian selects
channels based on predicted channel metrics [6]. Although the predicted value
of the channel indicator can be obtained by BP neural network, the predicted
sequence of the channel indicator is short and the amount of information about
the channel is small.

Our approach: In this article, we design EDChannel for sequence-to-
sequence channel prediction. In addition, we consider a hardware-free channel
detection scheme for channel prediction in backscatter communication net-
works, and introduce a channel coefficient for channel selection. The accuracy
and wide applicability of the EDChannel algorithm is demonstrated through
the results of channel prediction of the EDChannel algorithm and the com-
parison algorithm in a variety of real-world situations. The comparison of
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Fig. 1 System overview.

channel selection with random frequency hopping in stable and unstable envi-
ronments demonstrates that channel selection provides an improvement in
system throughput.

3 System Design

3.1 System Overview

In order to improve the performance of the backscatter communication system
and the accuracy of channel selection, we propose a more accurate channel
prediction framework and build a sequence-to-sequence deep learning model
based on encoder-decoder, as shown in Fig. 1. Among them, the EDChannel
encoder uses the CNN model for feature extraction of sub-sequences, and the
LSTM model to help extract features across time steps. The decoder uses the
LSTM model to be responsible for reading and interpreting the input sequence
model to achieve sequence-to-sequence channel prediction. On the basis of
channel prediction, we design the channel detection module and channel selec-
tion module. The channel detection module uses the RMSE of the measured
value sequence of the channel indicator and the predicted value sequence as the
trigger of the channel detection. The channel selection module uses the mean
and variance of the normalized sequence of predicted values to determine the
channel selection criteria and to measure the signal strength and stability of
the channel respectively.

3.2 Channel prediction module

We design EDChannel, as shown in Fig. 2.
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The encoder is responsible for reading and interpreting the input sequence
model, it receives the past signal strength measurement value sequence
X = (X1, X2, · · ·, Xn), and generates a fixed-length context vector. It com-
presses and encodes the information of the entire input sequence X, and
represents the model’s interpretation of the channel strength measurement
value sequence. The decoder is a model in charge of explaining each step in the
generated output sequence. It uses the context vector output by the encoder
and the output Yt−1 of the previous time step as input, and then outputs the
signal strength prediction value sequence Yt−1 = (Y1, Y2, · · ·, Yk) [25]. Then
connect a fully connected layer behind the decoder to share the weight.

We use LSTM units as the underlying neural network architecture in each
layer of the encoder and decoder. As shown in Fig. 3, LSTM is a special recur-
rent neural network (RNN), which has the same structure of neural network
repeating module chain like RNN, but the internal structure of repeating mod-
ules is different. Compared with the simple layer of RNN, LSTM has four
layers, which interact especially [26, 27].
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Fig. 4 CNN unit structure diagram.

LSTM solves the problem of vanishing or exploding gradients by adding
gates for controlling access to past information and has been proved effective in
many prediction tasks, such as wind speed prediction. Encoders and decoders
retain important features through various gate functions in LSTM to ensure
that important features will not be lost during long-term transmission. There
are three types of gates: input gate it, forget gate ft and output gate ot. The
calculation formula is as follows:





ft = σ(Wf ∗ [ht−1, xt] + bf )

it = σ(Wi ∗ [ht−1, xt] + bi)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc)

(1)

where Wf , Wi and Wc represent the corresponding weights. bf , bi and bc
represent the corresponding bias terms. [ht−1, xt] represents the connection of
two vectors into a longer vector, and σ is the sigmoid function. The forget
gate determines how much of the cell state Ct−1 from the previous moment is
retained to the current moment Ct. The input gate determines how much of the
network’s input xt at the current moment is saved in the unit state Ct. Then
update the old unit state Ct−1 to the new unit state Ct. Finally, calculate the
output gate ot and the unit output ht of the LSTM. The calculation formula
is as follows:





Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ ∗ (Wo ∗ [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(2)

Although LSTM has been proved in dealing with the time dependence of
channel prediction, maintaining structural locality and solving such expansion
problems remain to be challenged [28]. Therefore, in order to extract features
completely, the CNN+LSTM discussed by Trigeorgis and Ringeval [29] is con-
sidered as an encoder in this paper. This model has been applied to traffic
speed prediction and energy consumption prediction.

Fig. 4 shows the overall architecture of a CNN. Among them, each node of
the convolution layer extracts features from the input sequence through con-
volution operation, and generates a feature map. The pooling layer compresses
the input feature map, on the one hand, it makes the feature map smaller to
simplify the network calculation complexity. On the other hand, feature com-
pression is performed to extract the main features. The flattening layer mainly
converts the three-dimensional layer in the network into a one-dimensional
vector to fit the input of LSTM for long-term learning.
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Fig. 5 The received signal strength changes only when the obstacle is moving.

3.3 Channel detection module

In the study of channel detection, we found that with only the obstacle moving
and the tag not moving, the indicator of the channel received signal strength
still changed significantly, as shown in Fig. 5. In this case, we still need to per-
form channel detection to get real-time channel conditions. At the same time,
considering the design of our channel prediction module, we use the RMSE
of the target tag predicted value sequence and the true value sequence as the
trigger for channel detection. From a large number of preliminary experiments,
we found that the RMSE value of the predicted value and the true value of
the entire sequence is generally less than 5 when the signal fluctuation is pre-
dictable. So in order not to miss any better channels, we set the threshold at 4.
This means that we do not perform channel detection when the RMSE value
of the whole sequence prediction and the true value is less than 4. When the
RMSE value is greater than 4, a new channel detection scheme is executed.

3.4 Channel selection module

Following the channel detection and prediction module, a sequence of channel
indicator predictions is obtained, using the meanX and variance S2 to measure
the average received signal strength and stability of the predicted sequence,
respectively. The specific calculation formula is as follows:





X =

∑n

i=1
Xi

n

S2 =

∑n

i=1
(Xi −X)2

n

(3)

where Xi is each value of the prediction sequence, and n is the number of data
in the prediction sequence. In channel selection, we always prefer the mean
value to be as large as possible so that the received channel strength will be
greater. At the same time, we also hope that the variance is as small as possible,
because the channel will be more stable in this way. However, in the course of
our experiments, we found that when we chose the channel with the highest
mean value, the variance of that channel was not always the smallest. This
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means that the channel chosen is not always the strongest and most stable at
the same time. We therefore introduce a channel coefficient γ to indicate the
channel’s strength. The calculation formula of γ is as follows:





α =
Xj −Xmin

Xmax −Xmin

β =
S2
max − S2

j

S2
max − S2

min

γ = Aα+Bβ

(4)

where Xj and S2
j are the mean and variance of the corresponding sequence,

Xmax and Xmin are the maximum and minimum mean values in all the
sequences, S2

max and S2

min are the maximum and minimum variances in all the
sequences. α is the positive normalization of the mean of the corresponding
sequence, β is the inverse normalization of the variance of the corresponding
sequence, and A and B are the impact factors.We think that α and β are
equally important, so we set 0.5 for both. In the channel selection process,
we always choose the channel with the maximum channel coefficient γ. When
multiple channels have the same γ value, the channel with the largest α value
is selected. And when two channels have exactly the same α and β, the channel
with a frequency close to that of the channel currently being communicated is
selected.

4 Implementation and evaluation

In this section, we use RFID to conduct a lot of experiments to evaluate the
performance of our scheme. First, we introduced the experimental equipment,
the data collection environment and three evaluation metrics. Then the optimal
training data window and optimal step size of the EDChannel algorithm under
unstable environment are discussed, and various initialization parameters of
the experiment are given. Next, we carried out the prediction experiment of
the EDChannel algorithm in a stable environment, and then discussed the
experimental results of the car moving scene and the pedestrian moving scene.
In order to make the evaluation more comprehensive, we used two additional
metrics to analyze the experimental results, which proved the superior per-
formance and wide applicability of the EDChannel algorithm. Finally, our
experiments comparing the two channel selection methods show that channel
selection using the channel coefficients of the prediction sequence can improve
the throughput of the network.

4.1 Experimental equipment and data collection

Fig. 6 shows that Impinj Speedway R420 reader and two different tags as
backscatter nodes in the network. The specific equipment parameters are
shown in Table 1. Channel data was collected in a variety of environments as
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Fig. 6 Experimental equipment.

shown in Fig. 7 and a deep learning module based on Tensorflow 2.4.0 and
Keras 2.4.3 was used to implement our model.

(a) (b) (c)

Fig. 7 Data collection environment display. (a) Stable environment. (b) Pedestrian moving
scene. (c) Car moving scene.

Table 1 Device parameters

Parameters Values
Versions Keras versions = 2.4.3

Tensorflow versions = 2.4.0
Reader Model = Speedway R420

Operating Region = China 920-925MHz
Antennas = 1

Tx power = 30dBm
Rx sensitivity = -70dBm

Tags Common RFID electronic tags
WISP tags

We collect training data in both stable and unstable environments. Stable
environment refers to the situation where the position of the node remains
unchanged and there is no interference in the surrounding environment. An
unstable environment refers to a situation where a node moves or is blocked
or there is other signal interference around it. In the stable environment, we
consider different distances and tag types. As shown in Fig. 7(a), we arranged
7 interference tags and 1 target tag, and collected the RSSI value of the target
tag channel for 20 minutes. In the unstable environment, we considered the
pedestrian movement scene and the car movement scene, as in Figs. 7(b), 7(c),
respectively. We attached the target tags to the wrist of the pedestrian and
the side of the car, and then collected the RSSI values of the channels for 20
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minutes in an environment with 6 and 8 interfering tags, respectively. In the
experiment, the pedestrian walks back and forth between the antenna and the
table. The car moves along the table at a speed of approximately 0.25m/s
back and forth. It is a challenge for our prediction task because of the huge
variation in data in unstable environments. Therefore we collect more data in
unstable environments than in stable ones.

4.2 Evaluation index

The main metrics used for evaluation are RMSE, Mean Absolute Error (MAE)
and Relative Error (RE). RMSE and MAE capture the error in the absolute
prediction, and RE captures the ratio of the error in the prediction to the
actual channel change. The specific calculation formula is as follows:





RMSEj =

√∑m

i=1
(ŷij − yij)2

m

MAEj =

∑m

i=1
|ŷij − yij |

m

REj =

∑m

i=1

|ŷij−yij |
yij

m

(5)

where ŷij and yij are the predicted value and the true value of the i test
sample of the j prediction step, and m is the number of test samples. In most
papers related to channel prediction, the researchers mainly use RMSE as
an evaluation method [16]. For consistency, we also use RMSE as the main
evaluation metric for this paper, supplemented by MAE and RE.

4.3 The effect of prediction step size and training data

length

In the following, we discuss the effect of the prediction step size and training
data length of the EDChannel algorithm on the prediction accuracy. Since the
channel prediction effect of EDChannel in a stable environment is much better
than that in an unstable environment, we will mainly discuss the prediction
step size and training data length in an unstable environment below.

A. The effect of prediction step size

We use a controlling variable approach to discuss the effect of the prediction
step size of the EDChannel algorithm on the prediction accuracy. We first
fixed the length of the training data to 600 and the number of iterations to
500-5000, then we varied only the prediction step size. The range of prediction
step size was 1-30, each step size was added 1 compared to the previous one,
and the experiment was repeated 3 times for each same step size. At the end,
the differences in RMSE values at different step sizes were evaluated together.

Fig. 8(a) shows the variation of the received signal strength in a real envi-
ronment. We find that the data fluctuates more steadily in the car movement
scene, while the data fluctuates more dramatically in the pedestrian movement
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Fig. 8 Effect of prediction step size on prediction accuracy. (a) Variation of received signal
strength in real scenes. (b) RMSE values corresponding to different prediction steps.
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Fig. 9 Effect of training data length on prediction accuracy. (a) Variation of received signal
strength in real scenes. (b) RMSE values corresponding to different training data lengths.

scene. Fig. 8(b) shows the variation of RMSE values from 1 to 30 prediction
steps for each of the two scenes. We found that the RMSE value of EDChannel
increases slowly with the increase of the time step in the scene of moving the
car. In a pedestrian moving scene, the RMSE value of EDChannel is very high
when the step length is short. But as the step size increases, the RMSE value
begins to decrease. And until the step size increases to 10, the RMSE value
starts to increase with the increase of the step size. The main reason is that
the data fluctuates greatly when the data is unstable. However, as a whole,
EDChannel’s RMSE values in both cases continue to increase slowly with the
predicted time step.

B. The effect of training data length

We still use the controlling variable approach, fix the prediction step size to
10, and the number of iterations to 500-5000. Then, we varied the training data
length only. The range of training data is 10-660, each training data length
is added 10 compared to the previous one, and the experiment is repeated 3
times for each same training data length.

Fig. 9(a) shows the variation of the received signal strength in a real envi-
ronment. We find that the data fluctuates more steadily in the car movement
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scene, while the data fluctuates more dramatically in the pedestrian move-
ment scene. Fig. 9(b) shows the variation of RMSE values from 10 to 660 for
the training data length in the two scenes, respectively. In the car movement
scene, the RMSE value of EDChannel is poorly predicted when the training
data is small. The reason for this is mainly that the training data cannot meet
the generalization requirements of the EDChannel model, and the variety of
fluctuation cases of the training data is smaller than the variety of fluctua-
tion cases of the predicted data, which cannot fully learn the data fluctuation
cases. However, as the data volume of training data increases, the RMSE of
EDChannel is limited to fluctuate around 2, and the prediction effect can meet
the expected requirements. In the pedestrian movement scene, we found that
the RMSE value of EDChannel is very poor in prediction when the training
data is small. However, as the training data increases, the RMSE of EDChan-
nel is limited to fluctuate between 5 and 6, and the prediction results can meet
the expected requirements.

C. Summary

Fig. 8(a) and Fig. 9(a) shows the received signal strength variation in a real
scene. We found that the data fluctuations in the scene of the car movement
are relatively stable, while the data fluctuations in the scene of the pedestrian
movement are more severe. From Fig. 8(a) and Fig. 8(b), we found that setting
the prediction step size at 10 is more suitable for both the car movement
scene and the pedestrian movement scene, and the computational overhead is
also small. However, it is worth noting that the longest stay time of a single
channel of the backscatter communication network varies according to regional
regulations. For example, in North America, the FCC allows a single channel
to reach 0.4 seconds in 10 seconds. In China, the maximum stay time is 2
seconds [6]. Therefore, we set the prediction time to 2 seconds, which means
that the prediction is re-predicted every 2 seconds. At the same time, we can
predict the data changes in the next 2 seconds through multi-step forecasting.
From Fig. 9(b), we found that the training data length is between 200 and
600, and the fluctuation of the RMSE value is relatively stable, which is more
suitable for the scenes of car movement and pedestrian movement. But from
Fig. 8(a) and Fig. 9(a), we found that in an unstable environment, the channel
quality changes quickly. So in order to collect more training data, we set the
training data length between 300 and 500. In this way, historical data can
be fully learned to meet the prediction of future data, and the computational
overhead can be controlled within a reasonable range to meet the high-speed
iteration of the model. In the actual data collection process, our equipment can
collect approximately 39 data points per second. Therefore, to predict the data
for the next 2 seconds when the step length is 10, we need to predict about
8 steps. The training data length of 300 to 500 requires us to continuously
collect about 7.5s to 13s for a channel.
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4.4 Initialization parameters

When using new data to execute the EDChannel algorithm, we need to
repeatedly estimate the parameters, which is very low in computational effi-
ciency. For the sequence-to-sequence prediction model of channel metrics for
backscattered communication networks, we give the initialisation parameters
for the EDChannel model, as shown in Table 2. Hence we can improve the
computational efficiency by initialising the parameter search.

As mentioned earlier (Section 3.2), in EDChannel, both the encoder and
decoder use deep RNNs. The encoder uses CNN+LSTM as the basic unit, and
the decoder only uses LSTM as the basic unit. We observe that in order to pro-
vide the best performance, the optimal parameter configuration of EDChannel
varies with the consideration of the data set. An encoder or decoder is com-
posed of 1 or 2 layers of basic unit stacks, and each layer has 20 to 100 hidden
units. The 1D CNN layer uses 8, 16 or 32 filters, 1 convolution kernel, 1 max-
pooling layer, and the activation function is ReLU. The number of neurons in
the LSTM layer stacked with the CNN and the LSTM layer as the decoder are
both 20-100, and the activation function is also ReLU. The objective function
of the model is MSE, and the optimizer is Adam. It usually requires 500-10000
times of training. By balancing performance and training time, the number of
times is selected based on experience.

Table 2 Device parameters

Parameters Values
Conv1D Filters = 8/16/32

Convolution kernel size = 1
Activation = Relu

Max pooling size = 1
LSTM The number of neurons = 20-100

Activation = Relu
Training Optimizer = Adam

Loss function = MSE
Max.number of epoches = 500-10000

Data length = 300-500
Prediction Step length = 10

Data length = 100

4.5 Channel prediction evaluation in stable environment

We will firstly compare the performance of EDChannel with Linear, AR, and
ARIMA in a stable environment. The AR and ARIMA (p, d, q) algorithms
also consider the history of 300-500 samples in the past to predict the future
10 data and predict the data values of 10 time steps. And Linear considers the
history of the past 10 samples to fit the data values of the future 10 samples,
and also predicts ten steps.

The RSSI results of the real value and the predicted value of EDChannel,
Linear, AR and ARIMA are shown in Fig. 10. The RSSI value in a stable
environment tends to be stable for a long time, fluctuating between -51 and
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Fig. 10 Comparison of the true value and the predicted value in a stable environment. (a)
EDChannel and ARIMA. (b) EDChannel and Linear. (c) EDChannel and AR.
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Fig. 11 RMSE of predicted channel data for stable environment.

-50. And the predicted value and true value of EDChannel and the three
comparison algorithms are not much different. From Fig. 11, we found that the
RMSE value between the predicted value and the true value of EDChannel is
always less than 0.6. Compared with Section 4.6, the prediction effect under
the unstable environment is excellent. The experimental results show that our
method exhibits excellent performance in a stable environment.

4.6 Channel prediction evaluation in unstable

environment

In this section, we will compare the performance of EDChannel with Linear,
AR, and ARIMA in unstable environments. The parameter settings of the
three algorithms are the same as in Section 4.5.

A. Channel prediction for car moving scene

Fig. 12 shows the comparison between the predicted value of RSSI and the
true value in the scene of a moving car. We found that the prediction results of
EDChannel, ARIMA and Linear are more consistent with the real situation.
The AR gradually loses its predictive function at 20 steps and is less effective in
prediction. From Fig. 13, we found that the RMSE of the EDChannel algorithm
at most time steps is less than that of the three comparison algorithms. And as
the time step increases, the accuracy of the EDChannel algorithm is still high.

B. Pedestrian movement scene channel prediction

Fig. 14 shows the comparison between the predicted value of RSSI and the
true value in a pedestrian moving scene. We found that the prediction effect of
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Fig. 12 Comparison of the true value and the predicted value in the moving scene of the
car. (a) EDChannel and ARIMA. (b) EDChannel and Linear. (c) EDChannel and AR.
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Fig. 13 The RMSE of the predicted value and the true value of the channel data in the
moving scene of the car.
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Fig. 14 Comparison of real and predicted values in pedestrian movement scenes. (a)
EDChannel and ARIMA. (b) EDChannel and Linear. (c) EDChannel and AR

ARIMA and EDChannel is better, while the prediction effect of Linear in the
initial stage is poor. The AR algorithm gradually loses its predictive function
at 30 steps, and the predictive effect is poor. From Fig. 15, we found that the
RMSE of the EDChannel algorithm is smaller than the comparison algorithm
at most time steps. And as the time step increases, the EDChannel algorithm
can still maintain the accuracy of the prediction.

C. Summary

In summary, from Fig. 12(c) and Fig. 14(c), we found that the AR algo-
rithm is effective when the prediction step is short. However, as time goes
by, the predictive performance of AR algorithms gradually deteriorates. This
shows that the information extracted by the AR algorithm in the past 300-500
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Fig. 15 The RMSE of the predicted value and the true value of the channel data in the
pedestrian moving scene.

samples is not enough to support multi-step prediction. Since AR failed to cap-
ture the time correlation of the wireless channel, the prediction performance is
poor. In the following experiments, we will only compare the prediction results
of EDChannel, Linear and ARIMA. In Fig. 13 and Fig. 15, we observed that
the performance of the EDChannel algorithm is more competitive than Lin-
ear and ARIMA in general. In addition, compared with Linear and ARIMA,
the RMSE value of EDChannel increases more slowly with the time step. It
means that EDChannel can predict the future better than other algorithms.
But the predictive performance of all models decreases as they go further into
the future predictions.

4.7 Results of RE and MAE

The following we use two other evaluation metrics, RE and MAE, for addi-
tional illustration of the experiment. Table 3 shows the results of RE and
MAE of EDChannel algorithm, ARIMA and Linear algorithm in a variety of
environment prediction data and real data.

Table 3 Results of RE and MAE of EDChannel, ARIMA, and Linear algorithms in
different environments

Environment
RE MAE

EDChannel ARIME Linear EDChannel ARIME Linear

Stable environment 0.836 0.992 1.015 0.423 0.502 0.513
Car moving scene 5.110 6.178 7.438 2.279 2.756 3.317

Pedestrian moving scene 9.748 12.069 12.549 4.524 5.601 5.824

We found that the performance of the EDChannel algorithm is also bet-
ter than the comparison algorithm under the evaluation of the RE and MAE
metrics. Moreover, the performance improvement of EDChannel in unstable
environments is more obvious than that of ARIMA and Linear. In general,
experiments have proved the accuracy and applicability of EDChannel in
predicting received signal strength in a variety of environments.
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Fig. 16 Normalized mean, variance and channel coefficient of 16 channels. (a) Stable
environment. (b) Unstable environment.
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Fig. 17 Comparison of throughput between channel selection and random frequency
hopping in stable and unstable environments

4.8 Channel selection through channel prediction

In the following we evaluate the effectiveness of our prediction algorithm
through simulation experiments and five passive tags. In order to obtain exper-
imental data, we use the reader to read the data of each channel in turn under
the same circumstances, and collect the RSSI value of each channel. In a sta-
ble environment, it is easier to keep the environment unchanged and collect
16 channels of data. Under unstable conditions, however, it is more difficult
to ensure that the tag is in the same state of motion for each experiment. To
ensure that the conditions are consistent from one collection to the next, we
attach the labels to the pendulum and release them from the same height each
time. We consider that the errors under these experimental conditions do not
affect the experimental results. Then, we model and predict each channel sep-
arately, and get the prediction sequence of each channel for a period of time.
Finally, we select the channel according to the channel coefficient γ of each
channel prediction sequence. And compare our method with random frequency
hopping.

In Fig. 16, channel 11 and channel 7 have the largest channel coefficients
in stable and unstable environments, so we choose channel 11 and channel 7
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respectively as the communication channel for the next time period. Then,
we compare the channel selected according to γ with the channel selected by
random frequency hopping in each of the two cases. The comparison result
of the throughput of communication which is 4 s is shown in Fig. 17. In con-
trast to random frequency hopping, channel selection in a stable environment
has a small increase in throughput, which is only increased by about 2.9%.
We attribute it to the fact that each channel in a stable environment is bet-
ter, and the channel selection does not show enough superiority. Compared
with random frequency hopping, channel selection in an unstable environment
improves throughput more significantly, increasing by about 17.4%. On the one
hand, because of the channel changing drastically in an unstable environment,
channel selection can maintain a better channel for communication. On the
other hand, it is because random frequency hopping can avoid difficult chan-
nels though. However, it is less stable due to randomness. The experimental
results show that the method of channel selection through channel prediction
can effectively increase the network throughput.

5 Conclusion

In this paper, we design a deep learning channel prediction method for the
problem of channel prediction in backscatter communication networks. Firstly,
we developed EDChannel, a sequence-to-sequence deep learning model based
on encoder-decoder. It predicts future changes in channel metrics by learning
from changes in previous channel metrics. Secondly, the RMSE of the sequence
of measured values and the sequence of predicted values is used as a trigger for
channel detection to determine whether to perform a new channel detection.
Finally, channel selection is performed based on channel coefficients composed
of mean and variance. Experiments show that EDChannel outperforms the
comparative algorithms ARIMA, Linear, and AR in terms of interference resis-
tance and applicability in a wide range of environments. Our prediction method
improves the throughput of the network by approximately 2.9% and 17.4%
in stable and unstable environments compared with the widely used random
frequency hopping.
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