On Earliest Deadline First Scheduling for Temporal Consiséncy Maintenance

Ming Xiong Qiong Wang Krithi Ramamritham
Bell Laboratories, Alcatel-Lucent India Institute of Technology Bombay
{xi ong, gwang}@ esearch. bell -1 abs. com krithi @se.iitb.ac.in
Abstract

A real-time object is one whose state may become invalidtivélpassage of time. A temporal validity interval is asso-
ciated with the object state, and the real-time obje¢emporally consisterif its temporal validity interval has not expired.
Clearly, the problem of maintaining temporal consistentgata is motivated by the need for a real-time system to track
its environment correctly. Hence, sensor transactionstrbaesable to execute periodically and also each instance of a
transaction should perform the relevant data update beifsrdeadline.

Unfortunately, the period and deadline assignment prolftarperiodic sensor transactions has not received the &tien
that it deserves. An exception is the More-Less schemehwhes thédeadline Monotoni¢DM) algorithm for scheduling
periodic sensor transactions. However, there is no workrasieing this problem from the perspective of dynamic pjori
scheduling. In this paper, we examine the problem of temmmmasistency maintenance using tharliest Deadline First
(EDF) algorithm in three steps:

First, the problem is transformed to another problem withuéfisient (but not necessary) condition for feasibly assign
periods and deadlines. An optimal solution for the probl@m lse found iinear time and the resulting processor utilization
is characterized and compared to a traditional approach.c@el, an algorithm to search for the optimal periods and
deadlines is proposed. The problem can be solved for serswdctions that require any arbitrary deadlines. Howetes
optimal algorithm does not scale well when the problem sizesases. Hence, thirdly, we propose a heuristic seargdetta

algorithm that is more efficient than the optimal algorithmdas capable of finding a solution if one exists.

1 Introduction

A real-time data object, e.g., the speed or position of ackehor the temperature in an enginetésporally consistent

(also known asemporally valid if its value reflects the current status of the correspagéintity in the environment. This

is usually achieved by associating the value veittemporal validity interval[15, 19, 11, 23, 22, 25, 24]. For example, if
position or velocity changes that can occur in 10 secondstiaffect any decisions made about the navigation of a vehicl
then the temporal validity interval associated with thesta@dlements is at least 10 seconds.

One important design goal of real-time and embedded dagadyetems is to always keep the real-time data temporally
consistent. Otherwise, the systems cannot detect andneé$pa@nvironmental changes in a timely fashion. Thus, senso
transactions that sample the latest status of the entiged o periodically refresh the values of real-time datacts;
before their old values expire. Givéamporal consistencsequirements for a set of sensor transactions, the probfem o
designing such sensor transactions encompasses two [22]e$l) the determination of the update period and deadlin
for each transaction from thaiemporal consistenagquirements; and (2) the schedulability of periodic sefremsactions.
Minimizing the update workload for maintaining temporahsistency is an important design issue because: (1) it allow
system to accomodate more sensor transactions; (2) itakhoal-time embedded system to consume less energy; and (3)
it leaves more processor capacity for other workload (&@nsactions triggered due to detected environmentalggsin

Temporal consistency maintenance can be described astmeadcheduling problem: Givem transactions (or tasks)
with computation time(;) and validity interval constraindy;), determine periodic tasks with deadling;} and period £;)

of minimum CPU utilization such that:
1. D;+ P, <V;,and
2. The task system is schedulable by a scheduling algorithm

A traditional method for maintaining temporal consisteisyhe Half-Half HHH) scheme [15, 11] in which the update
period and deadline for a real-time data object is set to Hfeohas temporal validity interval. To further reduce thpdate
workload, the More-LessL) scheme is proposed [3, 22]. Deadline monotobi], a fixed priority scheduling algorithm,
is used inML [3, 22, 25] to maintain temporal consisten8jL significantly reduces the update workload comparedtb
In [22], ML is designed only for those cases in which the assigned deadiia sensor transaction is not greater than its
corresponding period. In [3], BM based approach is proposed to allow transactions with thesdyjreater than their
periods. Ifarbitrary deadlines, i.e., deadlines that can be less than, equal goeater than their corresponding periods, are
allowed, then more sensor transactions with derived periodl deadlines can be scheduled by the system and fegsibilit
of sensor transactions can be improved. However, there vgonk addressing the deadline and period assignment problem
from the perspective of dynamic priority scheduling. Thégpr presents our recent studies on this topic.

We take the first step towards designing and analyzing appesausingEDF scheduling for temporal consistency main-
tenance, and shed light on the performance of those varfjureaches. The problem of usiedpF scheduling for temporal
consistency maintenance is first transformed to anothdsl@mowith a sufficient (but not necessary) feasibility cdioadi

by having a deadline no greater than its period. An optimhltem for the problem can be found Imear time and its

utilization is characterized and compared to a traditi@pgdroach. Second,lmanch and bountbased optimal search algo-
rithm is proposed for the more general problem. The problembe solved for sensor transactions that require any amnpitr
deadlines. However, the optimal algorithm does not scalewyen the problem size increases. Hence, thirdly, we psef@o
branch and boundased heuristic search algorithm that is more efficient thamptimal algorithm and is capable of finding
a solution if one exists.

This paper is organized as follows: Section 2 reviews rdlaterk. Section 3 introduces the concept of temporal con-
sistency and prior solutions for temporal consistency teaiance based on fixed priority scheduling algorithms. iSeet
gives a detailed analysis of designikly usingEDF scheduler with a sufficient feasibility condition whén < P; holds.
Section 5 presents two search algorithms, nand®$pr and HSgpr, for finding optimal and heuristic solutions for
the problem, respectively whearbitrary deadlines are allowed. This section also shows 8 pr can produce good

solutions efficiently. Finally, Section 7 concludes thegrap

2 Related Work

There has been extensive work in RTDBSs for guaranteeingalidity constraint(or similarity-constrain of real-time
data [19, 9, 10, 11, 4, 23, 8, 25, 6, 22, 24]. RTDB systems muaghtain data temporal consistency in addition to logical
consistency. Gustafsson and Hansson [6] present a vehappdication with embedded engine control systems, anchan o
demand scheduling algorithm for enforcing base and dedata freshness. They also propose an algorithm (ODTB) [5] fo
updating data items that can skip unnecessary updatesradidéar better utilization of the CPU in the vehicular apglion.

In the model introduced in [19], a real-time system congisfgeriodic tasks which are either read-only, write-onlyipdate
(read-write) transactions. Data objects are temporatigmsistent when their ages are greater than the absolethtiids,
or age differences among objects are greater than theveetatiesholds allowed by the application. Two-phase logkind
optimistic concurrency control algorithms, as well as ma@notonic and earliest deadline first scheduling algoréttare
studied in [19]. In [9, 10], real-time data semantics areegtigated and a class of real-time data access protoctdd GHP
(Similarity Stack Protocols) is proposed. The correctmdé<$SP is based on the concept of similarity which allowsedéht
but sufficiently timely data to be used in a computation withadversely affecting the outcome. In [11], similarityskd
principles are coupled with thdalf-Half approach to adjust real-time transaction load by skippimgetxecution of task
instances. The concept data-deadlinds proposed in [23]. It also proposes data-deadline baseeldsding, forced-wait
and similarity-based scheduling techniques to maintaneamporal validity of real-time data and meet transactigsdiines
in RTDBSs. The aforementioned work assumes that sensaaittions are executed periodically, and their deadlinds an
periods are given. As a result, it provides no answer to thiegp@and deadline assignment problem for maintaining temipo
consistency.

TheMore-Lessscheme [22], which will be reviewed in Section 3, solves tegqul and deadline assignment problem for

maintaining temporal consistency wibbeadline Monotonischeduling, dixedpriority scheduling algorithm. On the other
hand, the deferrable scheduling approach [24] fixed priority scheduling algorithm that follows an aperiodiceextion
model. It derives relative deadlines and irregular separatfor consecutive jobs adaptively to maintain tempoedidity.
The scheduling overhead is much higher than the periodeiding approaches. It also lacks the support theory todadae
transactions with arbitrary deadlines. In this paper, weeifoon periodic approaches. Distinct from past work basdiked
priority scheduling, we present our novel approaches basegnamicpriority scheduling.

Note that in this paper we focus on reducing update worklaad, more importantly, on improving feasibility of sen-
sor transactions usingDF scheduling. This is orthogonal to the ideas of using datalldess, forced wait [23] and data
similarity [11, 23] to improve real-time transaction perftance or reduce update workload. However, our design appro
can be coupled with those ideas to handle sensor and tridigenesactions. Our main contributions are to propose opti-
mal and efficient algorithms for temporal consistency nemance usingDF scheduling forarbitrary deadlines, and their
corresponding analysis.

In many computer-controlled real-time applications, tppleation tasks often have a maximal acceptable latendgewh
small latency is preferred. The interaction between chaptask periods to meet the individual latency requiremants
scheduling the resulting task set is investigated in [Lagigarliest deadline first scheduling. Similar problemnes aiso
investigated in [18] in which Seto et al. present algorithased on rate monotonic scheduling to determine optimager
for each task in a task set. Our work is different from [17, &8]we derive periods and deadlines based on temporal

consistency requirements, which are not considered in18]z,

3 Background

In this section, we introduce the concepttemporal consisten¢ynd present prior work for maintaining temporal con-

sistency of real-time objects based on fixed priority schiaduwalgorithms.
3.1 Temporal Consistency: Definition and Maintenance

To monitor the states of objects faithfully,real-time object must be refreshed by a sensor transabiidore it becomes
invalid (i.e., its temporal validity interval expires)he actual length of the temporal validity interval of alréime object
is application dependent. Temporal consistency (a.k.@olate consistency [15]) is proposed to determine the teatpo
validity of a real-time data object based on its update tim@ssuming that the highest rate of change in a real-time data
object is known. Sensor transactions have periodic jobgwdre generated by intelligent sensors that sample the I
real-time objects. One important design goal of RTDBs isuargntee that real-time data remain fresh, i.e., they arayal

valid. We assume that a sensor always samples the value aktme dataX; atr; ; (j = 1,2...), the beginning of itg*"

Symbol | Definition = b=V -
X; Real-time data :* dT r‘% 3 r‘?
T Sensor transaction updatidg; (Fr#D) (7P (51, #PaD) (51 +2Py)
Ji;j The jth job of ; Figure 1. lllustration of More-Less
C; Computation time of;

i | Cy | Vi | More-Less
Vi Validity (interval) length ofX;

D; | B

fi; Finishing time ofJ; ;

1]2 10 | 2 8
lij Release (Sampling) time of ;

2|5 |37 23
d; ; Absolute deadline of; ;

3|19 |37]20 |17
P; Period ofr;
D; Relative deadline of;

Table 2. Example 3.1
u Processor workload dfr; }i™

Table 1. Symbols and definitions.

update period. It should be clear that = (j — 1) - P; (j = 1,2...), whereP; is the period for updating;. A data value

for real-time dataX; sampled at time, ; will be valid for V; following thatr; ; up to(r; ; + V).

Definition 3.1: A real-time data objectX;) at timet is temporally consistent (or temporally valid) if, for itpdate jobJ; ;
finishing last before time, the sampling timer(;) plus the validity interval ¥;) of the data object is not less thani.e.,

ri; + Vi > t. O

From here on7 = {r;}/, refers to a set of periodic sensor transactions.&ne {X;}" , refers to a set of real-time
data. All real-time data are kept in main memory. Associatétl X; (1 < i < m) is a validity interval of length);:
transactionr; (1 < ¢ < m) updates the corresponding data with validity lengthV;. Because each sensor transaction
updates different data, no concurrency control is consilfar sensor transactions. We assume that the time of thensys
discrete, and the systemdggnchronougs.e., all the first jobs of sensor transactions are initiatthe same time”;, D; and
P; (1 <1i < m) denote the execution time, relative deadline, and peridthokactiorr;, respectively. The relative deadline
D; of thej*" job Ji ; of sensor transaction is defined ad); = d; ; - r; ;, whered; ; is the absolute deadline df ;, andr; ;
is the sampling (or release) time &f ;. Formal definitions of the frequently used symbols are gimefable 1. Deadlines of
sensor transactions are firm deadlines.l elenote the average processor workload of a set of periadisactiongr; }1 ,,
i.e.,. U = Zz’;l % The goal ofHH andML is to determineP; andD; (1 < ¢ < m) such that all the sensor transactions
are schedulable and processor worklpatesulting from sensor transactions is minimized. For coierece, we use terms

transaction and task interchangeably in this paper.

3.2 Prior Work with Fixed Priority Scheduling Algorithms

In order to guarantee the validity of real-time data in RTD#®& period and relative deadline of a sensor transactien ar
each typically set to be one half of the data validity intémahe Half-Half approach [15, 11]. The farthest distance (based
on the sampling time of a periodic transaction job and thslinig time of its next job) of two consecutive jobs of trarigat
7; 1S 2P;. If 2P; = V;, then the validity ofX; is guaranteed as long as jobsmgineet their deadlines. Next, we describe the

More-Lessapproach that improves the update workload comparetatbHalf.

3.2.1 More-Less UsindM Algorithm

A set of transactions isynchronousf all the first jobs of transactions are initiated at the sdime (e.g., time). It should be
noted that we only discusynchronousransactions in this paper. Given a set of transactionssidenthe longest response
time for any job of a periodic transaction. The response time for jolf; ; (j = 1,2...) of transactiorr; is the difference

between the job release timg () and its completion timef ;).

Lemma 3.1: Given a set of periodic transactiois= {7;}*, (D; < F;) that are synchronous, the response time of the first

jobof ; (1 < ¢ < m) is the longest among all of its jobs Deadline Monotoni§DM) scheduling. [14] o

A time instant after which a transaction has the longestaesp time is called aritical instant e.g., time0 is a critical
instant for all transactions iDM if those transactions asynchronou§l4]. To minimize the update workloa¥L is used
to guarantee temporal consistency with much less processtdoad tharHH [3, 22]. In ML, Deadline Monotoni¢DM)
is used to schedule periodic sensor transactions. Thusfesmtoethis scheme alL p,, in the rest of the paper. There are

three constraints to respect:

¢ Validity constraint the sum of the period and relative deadline of transactjas always less than or equal 13, the
validity length of the object updated, i.€% + D; < V;, as shown in Figure 1.

e Deadline constraintthe period of a sensor transaction is assigned to be monehidlfi of the validity length of the
object to be updated by the transaction, while its corredpmrelative deadline is assigned to be less than half of the
validity length. Forr; to be schedulabld); must be greater than or equaldp, the worst-case execution time qf
i.e.,C; < D; <P,

e Feasibility constraintfor a given set of sensor transactiobgadline Monotonischeduling algorithm [14] is used to

schedule the transactions. Conseque@ﬁ@ﬂ(%} -C;) < D; (1 <i<m).

MLpys assigns priorities to transactions in tingerseorder of validity length and resolves ties in favor of tractgans with

larger computation times. It assigns deadlines and petiodsas follows:

D;=f,qg—"rio, Pi=V;—Dj,

3.0

Figure 2. Infeasible schedule ofM L py; (D3 > Ps)

wheref, , andr; o are finishing and sampling times gf , respectively.

3.2.2 MLpys Extension

In MLp, the first job’s response time is the longest response tiris.assumption holds for deadline monotonic algorithm
whenD; < P;. A transaction set is not schedulable if there exists 7,f, , — 1,0 > % Next, we discuss whether the

restriction ofD; < P; can be relaxed faM Lp,y, i.e., whethetM L pj; can handle arbitrary deadlines.

Example 3.1: Transactions are listed in Table 2 with their transactiomber, computation time, and validity interval length.
MLpys is applied to the transaction set, and the resulting deaslland periods are shown in the Table. Note that the
relative deadline of each transaction is the same as itgdr'stresponse time iM L pj;, andD3 > Ps. Figure 2 depicts the
schedule of the transaction set. JBly, finishes at its deadline (tin29). AlthoughJs ; is released at time 17, it cannot start
until J3 o completes. It starts at tim0, but only completes8 time units by its deadline (tim&7) due to interruption from
higher priority transactions. This demonstrates that ttsé¢jfib’s response time is not necessarily the longest resptime

if the deadline is greater than its period. In this case, enguhat the first jobs’ response times are less than thepraetive

deadlines is not sufficient to guarantee the feasibilithof ;. O

Given a periodic task set with arbitrary deadlines, Lehgd2R] introducedevel< busy periodfor r;, and the longest

response time for jobs of as follows.

Definition 3.2: A level-i busy period is a time intervat, b] within which jobs of priority; or higher are processed throughout

[a, b] but no jobs of priorityi or higher are processed (n — €, a) or (b, b+ ¢) for sufficiently smalle > 0. O

Lemma 3.2: The longest response time for a jobmgfoccurs during a level-busy period initiated by a critical instant (e.g.,

time0).]

Lemma 3.2 states that the longest response timg@dcurs during a levelbusy period, buthis longest response time is
not necessarily the response time of the first jolg 0¥Vith unknown periods and deadlines, it is not possible &Misp 5, to
get the longest response time of jobs if a deadline may extepdriod. This is because the first job’s response timeaann

be used to derive the deadline and period of its correspgrdsk during a level-busy period. In [3], DM based approach

is proposed to deal with the case that the first response imetithe longest response time of a task. The idea is to solve
a recurrence relation for the response time establishadglardevel: busy period. Interested readers are referred to [3] for

details. In the following, we refer this approachiagended Mg (i.e.,EMLp s for short).

4 DesigningMore-LesdJsing EDF

This section presents a design for temporal consistencypteraince usingeDF while D; < P, holds. Section 4.1
formulates arEDF optimization problem forD; < P;. Section 4.2 presents feasibility conditions #DF scheduling.
Section 4.3 gives the design bfL usingEDF by solving the optimization problem under a sufficient (bat necessary)

feasibility condition.
4.1 Restricted Optimization Problem for ML Using EDF

The optimized solution has to minimize processor worklt¥aghile maintaining the temporal validity of real-time data
in RTDBs. This essentially formalizes the following optiration problem that minimizeg with variablesP andD. Note

thatP, D , C, andV given below are vectors.

Problem 4.1: Restricted EDF optimization probleniven a set of transactio’s = {r;}7, with knownC andV, determine

P andD for synchronous transactions to minimizei.e.,

Pyi[Iﬂ)lu, wherel/ = é% (1 <i<m),
subject to:

eValidity constraint P; + D; < V.

eDeadline constraintC; < D; < P;.

eFeasibility constraint 7 with derived deadlines and periods is feasible by u&ibd scheduling. o
As discusseddeadline constraintan be further generalized by havigg < min(D;, ;). In this sectionDeadline con-
straintin Problem 4.1 is used for our discussion unless specifiedraike. It is generalized in the next section. Next,
we consider a sufficient feasibility condition for desigmiMore-Lessusing EDF, namely MM Lgpr. The corresponding

feasibility test reduces the complexity of the problem.
4.2 Feasibility Conditions for EDF

The periodic task model is a special case ofgheradictask model discussed in [1, 2]. A taskin the sporadic task

model is characterized by three parameters — an executien(}, a deadlineD;, and a minimum separatioB; for the

arrival time of two successive jobs, withC; < min(D;, P;). If all jobs of a task arrive with the exact minimum sepamatio
P;, this sporadic task becomes a periodic task. Note that tiv@btime of a task job is the same as the sampling time of a
sensor transaction job.

Given periodic task; € 7 (1 < i < m), processodemand bound functi@nas explained in [1] are defined as follows:

- D;

Hi(t) = maz(0, (] 7 1 +1)-Cy), 1)
Hr(t) = ZHi(t)- 2)

H;(t) represents the processor demandrfain [0, ¢), i.e., the minimum amount of computation time that must becated
for =; before timet. Similarly, H7(¢) represents the processor demand for all tasks an [0, ¢). The following lemma is

from Lemma 3 in [1] for a set of periodic transactidhs
Lemma4.1: 7T is feasible iffHr(¢) < tforall ¢ > 0. O

Lemma 4.1 will be used in Section 5 to derive solutionsE&- scheduling. Next, we present a technical result that is a

sufficient condition for a set of periodic transactidh$o be feasible usingDF scheduler (see [20] for proof).

Lemma 4.2: Given a set of transactiors, if > < 1, thenT is feasible. O

C;
7:€7 min (P;,D;)

4.3 DesigningM L gpr Using a Sufficient Feasibility Condition

In this section, we investigate the design'efL g p using Lemma 4.2 for alt; with D; < P;. If Lemma 4.2 is used to
derive deadlines and periods bt the optimization problem fdEDF scheduling is essentially transformed to the following

problem.
Problem 4.2: EDF optimization problem with sufficient feasibility coticin:
minl{, wherelf = ig (1<i<m)
B i—1 P
subject to:

eValidity anddeadlineconstraints in Problem 4.1, and

eFeasibility constraint>7" | £ < 1. .

It should be obvious thd# is minimized only if P, + D, = V;. Otherwise,P; can always be increased and processor

utilization can be decreased. Without loss of generaligyassume that

D; = —V;, 3

Vi (4)

whereP; + D; = V; andN; > 2 in order to satisfy the validity and deadline constraintRinblem 4.2.

T T
09 Density Factor -]
’ Half-Half -
08 F ML(EDF) —— .~ i

0.7
0.6
0.5
0.4

L
il L L

CPU Utilization

01f -

|
0 0.1 0.2 0.3 0.4 0.5
Density Factor

Figure 3. Utilization comparison

Definition 4.1: Given a set of transactior’s, thedensity factoof 7, denoted as, is Y~ ; €— O

The following theorem provides a minimal solution for Prexinl 4.2.

Theorem 4.1: Given the minimization problem in Problem 4.2, there exastisiique minimal solution given by, = J\/,‘,’ﬁlt =

% (1 <k <m&0 <~ <0.5), which has minimum utilizatiot/’"’ () = - m|

Please refer to Appendix for proofs of all theorems and lesim&iven a sef of m sensor transactions, the optimization

problem defined in Problem 4.2 can be solve®@ipn). By discussion in Section 3, the utilizationldH is U, () = 2.
Theorem 4.2: Given a sef of sensor transaction8 € v < 0.5), Unu (v) — U (7) < 3 — 2v/2 ~ 0.172. O

The function curves of, Uy, (v) andU?%' () (0 < v < 0.5), are depicted in Figure 3. MLppr improves utilization

by solving Problem 4.2 in linear time. However, it does notewsarily produce an optimal solution for Problem 4.1 in
that the feasibility condition iIMLgpr (i.e., Lemma 4.2) is sufficient but not necessary. Theret & feasibility
conditions that are both sufficient and necessary [1, 2, B8l example, [16] presents a pseudo-polynomial algorithm
only for C; < D; < P;, whereas Lemma 4.1 [1] can be applied to any arbitrary deeaslli Next, we present our integer
programming based search algorithms, for assigning perod deadlines usingDF scheduling with relaxedeadline

constrainti.e.,C; < min(D;, P;).

5 DesigningSearchAlgorithms Using EDF

This section presents algorithms — using the sufficient awbssary feasibility condition f&DF in Lemma 4.1 — to
searchfor optimal periods and deadlines of sensor transactiorenabbitrary deadlines are allowed. Section 5.1 defines
a generaEDF optimization problem with relaxedeadline constrainti.e., C; < min(D;, ;). Section 5.2 shows the
optimality of EDF solutions compared to solutions produced by other perisdiedulers. Sections 5.3 and 5.4 present
branch and boundbased optimal and heuristic search algorithms, respégtiaad show that the general problem can be

solved efficiently without reducing schedulability.

10

5.1 Formalizing the GeneralEDF Optimization Problem

Following Lemma 4.1, Problem 4.1 can be generalized to the@fong problem.

Problem 5.1: General EDF optimization problem:

m CZ'
Ui e = 11131%1”7 wherel/ = Z =
’ i=1

2

subject to:
eValidity constraint P, + D; < V.
eDeadline constraintC; < min(D;, P;).

eFeasibility constraintVe, Hr (t) < t. O

The problem of deciding whether sporadic taskBewith arbitrary deadlines (i.e(’; < min(D;, F;)) is feasible with

given deadlines and periods is known to bee@gNP[1]. The feasibility test for7 with given deadlines and periods is a
sub-problem of the optimization problem in Problem 5.1, Reoblem 5.1 contains a knowen-NPproblem.

By definition of Eq. 1 and 2,
t—D;
P;

Hr(t) = Zmax((), (| | +1)-C). (5)

Note that the optimal solution can only be achieved wRen D; = V,. Thus,D; = V; — P;, and considering thdeadline

constraintin Problem 5.1, we derive thgeriod constraings follows by replacind; with V; — P; in thedeadline constraint
Ci <P <V, —C (6)

ReplacingD; with V; — P; in Eq. 5, thefeasibility constraintn Problem 5.1 is:

(t - Vl)
P,

Hr(t) = max(0, (] |+2)-C) <t (7)
=1

Eq. 7 is also referred a#me constraint Thus, Problem 5.1 can be transformed into minimizZihgubject to theperiod
constraint(Eqg. 6) andime constrain{Eq. 7). There are no existing solutions for this problemicllis difficult since it has
an unbounded variable Next, we present a lemma that gives a bound on the “time témgtcessary for determining the

feasibility.

Lemma 5.1: Given a set of transactiorswith i/ < 1, let

2211(2 - %)Cz

t5(P) = max(max(V; — 2C}), —u

).

7T is feasible iffvt < t(P), Hr(t) < t. O

11

Lemma 5.1 indicates that a feasibility testing algorithnesloot have to checkt < P, H7(t) < t, whereP is the least
common multiple of all periods. Thus a feasibility testidgaithm based on Lemma 5.1 can rurpseudo-polynomidime
for a large percentage of sensor transaction sets, althbisgéxponential in the worst-case. Its complexity is santio the
feasibility testing algorithms in [1, 16]. Note that Lemmad Ban only be applied wheH is known. It cannot be applied to

Problem 5.1 for feasibility test unlegdhas been determined.
5.2 Optimality of EDF Solutions

EDF is not the only scheduler that can be used to schedule periasks. One open question is whether an optimal
solution for Problem 5.1 minimizes utilization for all schders that can be used to derive periods and deadlin€s of

Problem 5.1 can be further generalized as follows.

Problem 5.2: General scheduler optimization problem:

2

minld, whereld = —

subject to:

eValidity anddeadlineconstraints in Problem 5.1.

eFeasibility constrainta periodic schedule from any scheduler that is feasibleéoiodic transaction séf.]

The following theorem shows optimality &DF solutions.

Theorem 5.1: An optimized utilization ofEDF solutions Uy, ., of Problem 5.1 is also optimal for Problem 5.2 in that if

there exists a periodic schedule that is feasible for Protie2 with utilizationt/, thenld 2, . < U. O

Next, we present a search algorithm, which usedthach and boundhethod in integer programming, to find an optimal

solution forEDF scheduling.
5.3 OSgpr: Optimal Search UsingEDF

This subsection presents ooptimal searchalgorithm usingeDF scheduling, namelpSgpr. It finds optimal]3 that
minimizes processor utilization in Problem 5.1. We firstegtiie high-level algorithm, then define its constituents.

OSEgpr is depicted in Algorithm 5.1. It first relaxes Problem 5.1 kefiding aproxy problem that initially has no time
constraint. It then solves the proxy problem and obtainahgolution PX (K =0,1,2,..). Atestingproblem is defined
to test if PX satisfies all time constraints. If not, a new time constrairadded to tighten the proxy problem. Then the
algorithm iterates to solve the proxy problem again. Thasation continues until the trial solutiaR™ satisfies all time

constraints, or the proxy problem becomes unsolvable.

12

Algorithm 5.1 OSgpF:

1. Define a relaxed version of Problem 5.1, namely phexy problem (see Problem 5.3). Problem 5.3 has no time
constraint in the first iteration. A new time constraint isded at each iteration. Therefore, Problem 5.3 has only a

limited number of time constraints in each iteration.

2. IntheK*"(K = 0,1,2,....) iteration, solve Problem 5.3 to obtain a trial solutid?® . Since Problem 5.3 does not
have all time constraints (in Eq. 7), the utilization of itdution, 2/’ , is no greater than that of the optimal solution to

Problem 5.1 ...

3. Given trial solutionPX, solve thetestingproblem (see Problem 5.4). This determines whether anydonstraint
(in Eq. 7) is violated. If so, the solution to Problem 5.4 itik@s a time pointf k., at which the time constraint is the
tightest for the giverﬁK (i.e.,]3K exceeds the constraint to the largest extentgt Then Problem 5.3 is updated by
adding a new time constraint a-. The trial solution to the updated Problem 5.3 in the nextiien is feasible for

more time constraints (in Eq. 7), or the problem becomesivabte.

4. Continue for Steps 2 and 3 until Problem 5.3 produces atisolihat violates no time constraint in Problem 5.1, as

determined by Problem 5.4.

Theproxyproblem in Algorithm 5.1 is defined as follows:

Problem 5.3: Proxy problem

m V,—C;
U =miny o 3 2 ®)
s = Y
subject to:
Vi—Ci
255 € {0, 1} and Z Zij = 1, (9)
j=C;
m V;—C; o~V
ZCZ' Z Zi,j 'IH&X{O, LMJ + 2} < tk, (10)
— et J
T J i
wherei, j, andk are integers,and=1,...m, j=C;, .. V; — C;, k=1,.., K. |

U*¥ is the minimized processor utilization at th&” iteration. Binary variable; ; determines the value @%; betweenC;
andV; — C;(1 < i < m). Constraint 9 indicates that one and only ane can be set td for eachr;. This implies that

Py =jforz; =1(C; < j <V;—C;). Note that

Vi—C
Z Jzij =B, (11)
j=C
Vi—Ci
Zi,j 1
/:F. (12)
EA '

13

Constraint 10 satisfies time constraints (Eq. 7) at seldatesl pointst = ¢4, ..., tx. In the first iteration (i.e. X = 0), no
time constraint is presenk is incremented in each iteration afterwards. Hence, PnoBI& only hask time constraints as
opposed to an infinite number of time constraints in Problelm 5

Lemma 5.2 demonstrates a relationship between Problenas8.9.3. It shows that the optimal utilization of Problem 5.3
for each iteratiof K = 1,2, ...,) constitutes a monotonically increasing sequence thatuasded by the optimal utilization

of Problem 5.1.

Lemma 5.2: Let zX be an optimal solution to Problem 5.3 in th&" iteration. IfZ/X is the minimized utilization in Eq. 8

wherez; j = 2 (1 <i <m, C; <j <V, —C;), then
0 1 K opt
U <u .. <U™ <UPyp,
wherel/7, .. is the optimized utilization to Problem 5.1. O

Lemma 5.2 implies that if” satisfies the time constraint at ahy> 0, then the correspondinﬁK must be an optimal
solution to Problem 5.1. Hence the solution obtained with. Al.1 has optimal utilization.

Considering Eq. 7, we define

—t—Zmax VJ+2)C)

To determine whethePX violates any time constraint, we examine the minimiita) in the K" iteration, namelyt"™. The

time constraint is violated if X < 0. This is formulated as an integer programming problem, mathe testing problem

Problem 5.4: Testing problem

FE = n;l%t— Zmax (yi +2)C;)] (13)
subject to:
) <y & qcicm), (14

wheret andy are integer variables, anfd, the trial solution from Problem 5.3 in the same iteratiaram input parameter.

Variabley is introduced to remove the floor function in the definitionfg(f). O
Lemma 5.3 gives the rationale for formulating and solvingtfiem 5.4.

Lemma5.3: Let 2% optimize Problem 5.3 in th&*" iteration, and

Vi—C;
Pl-K = Z jZi_’j, Z: 1, ., M.
7=C;
ThenPX is the optimal solution to Problem 5.1 if and onlyAf< > 0.]

14

i | Ci | Vi | OSEDF Problem 5.3 Problem 5.4

P; | D; K | u” pX tx | FX
11541 0 | 0751 | (4,12,24) | 6 | -5
21 3 |15]11| 4 1 0760 | (4,12,23) | 7 | —4

2 10773 | (4,12,22) | 8 | -3

316 |30|14] 16

Table 3. Example Parameters and Derived P; and

8 | 0951 | (4,11,14) | 16 | 0

D, for lllustration (D3 > P3)
Table 4. OSgpr lterative Process

It is noteworthy that Lemma 5.3 defines a stopping criterian, X > 0, for terminating the computation when an
optimal solution is found. Further, #% < 0, then the trial solution is infeasible for Problem 5.1. Byidiéion of Eq. 13,
the time at whichF"X reaches the minimum, denoted &y, is the tightest time constraint whef& exceeds the constraint
to the largest extent. We add the time constrainfato Problem 5.3 in the next iteration.

Since there are only limited choices for; (and thusP;) in Problem 5.3, the iteration in Algorithm 5.1 ends up in one
of two following situations: (1)F* in Problem 5.4 becomes non-negative, at which point an @tsmiution is found (by
Lemma 5.3); (2) as more time constraints are added to Eq.rb@]éPn 5.3 eventually becomes infeasible. This implies tha
there exists a subset of time constraints in Eq. 10 (thusgin7Ethat cannot be satisfied simultaneously. Note th&t p »
transforms Problem 5.1 to Problems 5.3 and 5.4, which aeatimteger programming models that can be solved by the
branch and boundnhethod [21] provided by commercial optimization softwaag.,CPLEX!.
lllustration : We demonstrate how Alg. 5.1 works with the example in Tablél&ble 4 depicts the iterative process for
finding an optimal solution for the transaction set in TableStarting fromK = 0 (i.e., the case of no time constraint),
the solution to Problem 5.3 i8° = (4,12,24). Solving the testing problem (Problem 5.4) = —5. By Lemma 5.3,
the solution violates the time constraint. The tightesetioonstraint occurs @t= 6, at whichF° = —5. Therefore, the

following time constraint aty = 6 is added to Problem 5.3:

m V,—C; 6—V
ZC; Z Zij max{O, _ - lJ + 2} <6.
-1 j=C,

J

Solving Problem 5.3 with updated constraints results intfE@osolutionP! = (4,12,23). The corresponding solution
of the testing problem i'! = —4. The new trial solutionP! again violates time constraint (Eg. 7). The violation letws
another addition of time constraint@at= 7 to Problem 5.3. The algorithm continues fomore iterations until it obtains a
solutionP® = (4,11, 14), which is the optimal solution to Problem 5.1 becaii§e= 0. Note that the example transactions

in Table 3 are feasible with neithévl Lz pr nor MLp .

Lhttp:/iwww.ilog.com/products/cplex

15

5.4 HSgpr: Heuristic Search UsingEDF

While OSgpr guarantees optimality, its applicability is limited by theoblem size. For each task, there &e- 2C; + 1
binary variables; ; in Problem 5.3 as indexis fromC; to V; — C;. If the number of tasks and valuesWf— 2C; are large,
then the model can involve a large number of binary varialaled the problem becomes difficult to solve. This is verified i
our experiments.

This section presents our heuristic algorithm, namtélz p r, which is more efficient for solving Problem 5. {Sgpr

is based on the following rationale.

1. The objective functioty (in Problem 5.1) is a strictly decreasing function/f Moreover, fort > V;,
Hi(t) = max{0, ([(t = Vi)/Pi] +2)Ci} (15)

decreases aB, increases. The larger the value Bf (1 < i < m), the easier to satisfy Eq. 7. Therefore, at the

beginning ofHSkpr, P; is set to be its largest possible valde,— C; (i = 1,..,m).

2. Under the period constraint (Eqg. 6), the initial solutdrives!/ to the minimum, which thus is the optimal solution if
it also satisfies the time constraint (Eq. 7) atalDn the other hand, far> V;(i = 1, ..,m), itis impossible to reduce
H;(t), since doing so requires increasiRgabove its upper boun; — C;. Therefore, if the initial solution violates

the time constraint (Eq. 7) affor ¢t > V,,,4., Where
Vmam = maX(Vl), (16)
then the problem is infeasible.

3. Lemmab5.1is used to testif a givﬁviolates any time constraint. Specifically, giv§r,1 we calculatetg(ﬁ) defined
in the lemma. For each < tz(P), we evaluateH, (t) according to Eq. 15. The summation & (t) givesHr (t),
which should not exceed Otherwise the constraint Eq. 7 is infeasible under thestuvalue ofP and an adjustment

is required. Note that onck is changed, the value 05;(]3) is changed correspondingly.

4. Suppose the test by Lemma 5.1 shows that the initial swlwiblates the time constraint (Eq. 7)tgti.e., Hr(t') > t'.
In this case, given sdtr; : C; <t' <V; — C;} andH,;(t') definition (Eq. 15),

01 Ci§H<Vi_t/a
Hi(t') = 17)
Ci, Vi—t' <P <V, —C;

For transaction; that satisfied;(t') = C;, H;(¢') can be reduced toby settingP, =V, —t' — 1if V; —t' — 1 > C,.

16

Otherwise it violates the period constraint (Eq. 6) at tivedoend. Note that ift{; (¢'),

>0 t' >V,
——] ¢ ==1 B>Vt &t <V, (18)
<2 P<V—t&t <V

These three cases p¥5Y: | are discussed below.

(a) L%J > 0 implies thatH;(¢') > 2C;. ReducingP; increase$;(t'). This does not help redu@ér (¢'). Thus,

P; should not be changed.

(b) L%J = —1 implies thatH;(#') = C;. If P; is reducedtd); —t' — 1 > C;, thenttl’}ﬂ = —2. In this case,

P7

H;(t') is reduced t®) from C;. Thus,H(t') is reduced.

i

(c) Lt,;ViJ < —2implies thatH;(t') = 0. If P; is reducedH,(t) stays0 butl/ is increased. S&; should not be

changed.

Thus, P, can only be changed in case (b). Let

-V

%

R(t) =A{m:|

|==1&V, -t —1>C;} (29)
be the set of transactions whose periods can be redudgdta’ — 1. Note thaty; — ¢’ — 1 > C; implies that
<V, —-Ci—1<V;.

If R(t') has a sufficient number of transactions, then reducing gerid some transactions may satisfy the time

constraint (Eq. 7) at'.

. Nevertheless, reducing always increasel. Specifically, if P, (r; € R(t')) is reduced toV; — ¢’ — 1, thenl/ is
increased by the following positive amount:

Ci Ci

L T Ry o

ReducingP; not only affects the objective functidd negatively, but also increaseés;(t) for time ¢ > V;, which
tightens the time constraint (Eq. 7) at those points. Tleegfcare needs to be taken to decide which transactions’
periods inR(t') should be reduced so that. (¢) is not overly increased far> V;, thereby maintainingt (¢) < ¢. In

HS epr, transactions are selected frdat’) for reducing their periods by solving the followisglection problem
Problem 5.5: Selection Problem:

min Z w;0; (20)
i=1

wi: Ti€R(E)

17

subject to:

w; € {0, 1} & Z Ciw; > HT(tl) — t/, (21)
G, ER(t)

wherew; : ; € R(t') are binary variables. a

By solving Problem 5.5P; (r; € R(t')) is reduced to); — t' — 1 if w; = 1, or unchanged ifv; = 0. Thus periods
are reduced in a manner that the incremertYaé minimized. Eq. 21 eliminates the deficit of the time coaisif,
Hr(t') —t/, att’, which makes Eq. 7 feasible &t i.e., H7(t') < ¢'. We consider Problem 5.1 infeasible if Problem

5.5 is unsolvable. Each instance of Problem 5.5Ksiapsacknodel that can be solved ISPLEX

Algorithm 5.2 HSgpp:

1. Initialization: P, = V; — C;, i = 1, .., m. With the initial solution, the time constraint is alwaydisied att = 0 as

H;(0) = 0. Set the starting time= 1.
2. Calculate utilizatiori/(P) (Problem 5.1). Stop #i(P) > 1, the problem is infeasible.

3. Calculatet(P) as given by Lemma 5.1.

If t = ¢5(P), stop and returnP* = P as the final solution.

4. If H7(t) < t, which means thalP does not violate Eq. 7 dt sett = ¢+ 1 and go to Step 3. Otherwise, solve Problem
5.5, resetP, =V, —t — 1 for ; € R(t) withw; = 1, and go to Step 2. If Problem 5.5 is unsolvable, then stop —
Problem 5.1 is infeasible.

One salient feature S gpr is that it only checks each time point once: if the algorite@aahes timé', it is not necessary

to check feasibility for < ¢ even if P has been changedi#t This property is supported by Theorem 5.2.

Theorem 5.2: Let7 (') be the transaction set with solutiét{¢') obtained after Step 4 in Alg. 5.2 at tile> 0. Then7 (')

with P(t') satisfies the time constraint at alk ¢'. That is, let

() = Y mas(0, (|52
i=1 v

thenH 7 (t) < tfort <t]

J+2)CZ)1

Theorem 5.2 indicates only one pass is needed for each timetda Alg. 5.2. The selection problem is solved when the
current solution violates the time constraint @ndR (¢) is not empty, which requires< V.. (Eq.16). Therefore, Alg.
5.2 at most solves the selection problep,, times, although it may iterate (P*) time points whereé®* is the final solution

of Alg. 5.2. At each iteration, Alg. 5.2 tests feasibilityrwdition H (¢) < t.

lllustration : To illustrateHS ppr, the algorithm is applied to the example in Table 3. Tabled@shthe iteration process.

At the starting pointP = V — C' = (4,12,24). As mentioned above, the solution always satisfies Eq. t7-a), so the

18

algorithm starts at = 1. The time constraint is first violated &= 3, H7(¢) exceeds by 1. Applying Pandt =3to Eq.
19,R(t') = {71, = }. At Step 4 of the algorithm,

Pl=V,—t—-1=1, P,=Vy—t—1=11,
5 =Cy(1/P] —1/Py) = 0.75, 62 = Co(1/Py —1/P,) = 0.022.
This produces the following instance of Problem 5.5:

min {0.75wy + 0.022ws : wy + 3wq > 1}, (22)

w1,ws
The solutionisw; = 0,w, = 1. Py is changed td1 and P; remains the same. It then proceeds to 4. OnceP is changed,
t5(P) also needs to be updated.

Astincrements and the iteration continues, either Eq<7(t) < t) is verified to hold at, in which casé’ is unchanged,
or the time constraint is violated ardis updated. In Table 5, an asterisk is added as supersciipe ifirst column for the
latter case. In these cas@$y(t) — ¢ in the fourth column is calculated before the change of thetism while P in the
second column is the new solution. Overailhas been changed eight times before 15 at which pointl3 = (4,11,14).
From timel5 to tg(ﬁ) = 38, Eq. 7 is satisfied ané remains unchanged. Following Lemma 5.1, no time constcaintbe
violated ift > tz(P) because ", C;/P; < 1. Therefore, the algorithm stopsiat= 38. Solution(4, 11, 14) is the same
as that obtained withS g p . This demonstrates thatS g pr andOS gpr can schedule a larger set of sensor transactions
than existing approaches.
OSgpr VS. HSgpr: Table 6 compares numbers of variables (Var#) and constré@ons#) in Problems 5.3, 5.4, and
5.5. ForOSgpr, the left number in a parenthesis represents Problem 5i& thie right one represents Problem 5.4. The
table also compares numbers of iterations (Iter#) in Alg.ehd 5.2 and along with optimization problem instances solved
by those algorithms (Inst#)OS gpr has significantly larger numbers of variables and congsalmanHSgpr. This is
why HS gpr is more efficient thatS gpr, andOS g pr does not scale well with the problem size. The comparisons of
numbers of iterations and solved optimization problemainsés are problem dependent. Note H&tzpr still involves
solving the Knapsack problem with theanch and boundnethod. Nevertheless, the number of variables is linedneo t
number of transactions.
Optimization for 7; with D; > P;: Both Alg. 5.1 and 5.2 enabEDF scheduling for transactions with deadlilagger than
period. Given transaction (1 < i < m) with D; and P, assigned by Alg. 5.2 (or Alg. 5.1), ib; > P,, itis possible to

skip certain transaction jobs given the following lemma:
Lemma 5.4: (Job Skipping) Given transaction; (1 < ¢ < m) with D; > P; derived from Alg. 5.2, and job$; ; andJ; ;1

j > 0),if J; ; cannot be started beforg; 1, thenJ; ; can be skipped and; ;; can be executed im; ;11,d; ;| while the
5] 3] 3] 3] 3] 3]

validity constraint is guaranteed.]

2Note thatP* is the final solution in Alg. 5.2.

19

t P U | He(t)—t | ts(P)
1 | (4,12,24) | 0.750 0 31
2 | (4,12,24) | 0.750 -1 31
3* | (4,11,24) | 0.773 1 32
4 | (4,11,24) | 0.773 0 32
15* | (4,11,14) | 0.951 1 38
38 | (4,11,14) | 0.951 —4 38
Table 5. HSgpr lterative Process
Alg. OSEepFr HSEDF
Variable# | (3°", (Vi —2Ci +1),m) m
Constraint# (K +m,m) 1
Iteration# K t5(P*)
Instance# K Vmaz

Table 6. OSgpr and HSgpr Comparison

6 Performance Evaluation

This section presents important results from our experiaistudies of the proposédS g pr and M Lgpr algorithms.

6.1 Simulation Model and Parameters

We have conducted experiments to compare the performari¢€ gh» and M Lgpr. In our experiments, we compare

the update transaction workloads produced®yzpr and M Lgpr. Itis demonstrated th&{S g pr produces lower CPU

workload thanM Lepr.

A summary of the parameters and default settings used irriexgets are presented in Table 7. The baseline values for
the parameters follow those used in [22], which are oridyrfabm air traffic control applications. For system configtions,
we only consider a single CPU, main memory based RTDBS. Theeuof real-time data objects is uniformly varied from
50 to 300 and it is assumed that the validity interval lendteach real-time data object is uniformly varied from 4000 to
8000 ms. For update transactions, it is assumed that eardation updates one real-time data object, and the CPUdime

each transaction is uniformly varied from 5 to 15 ms.

20

Parameter Meaning Value

No. of CPU 1
No. of real-time data objects [50, 300]

Validity interval of data objects (ms) [4000, 8000]

CPU time per data access (ms) [5, 15]

Update transaction length 1

Table 7. Experimental Parameters and Settings

12 | ‘ ‘ ‘ e
Density Factor -
1t HS(EDF) —— .~ -
0.8
0.6
&

0 L L L L
50 100 150 200 250 300

No. of Transactions

CPU Utilization

Figure 4 MLepr VS. HSEDF
6.2 Experimental Results

In our experiments, Alg. 5.2 is investigated with sensoraipdransaction sets, and its results are depicted in Figure
which the x-axis is the number of update transactions ang-thds is the average CPU workload. Results€8 ¢ are
compared with those oM L gpr. The density factor, which provides a lower bound of thezation, is also plotted.

For tested data set${Sgpr consistently outperforma1Lgpr. Its advantage becomes increasingly obvious when
the number of transactions gets larger. In particular, #1e0§300 transactions cannot be scheduled oYL zpr, but it
is schedulable undéSgpr. We have found out, through our experiments, the major readty HS gpr outperforms
MLEpr interms of CPU utilization is due to the more accurate scladaility condition in Lemma 4.1. We have also done
experiments with parameter settings different from Tabl&he results are similar to what is depicted in Figure 4.
Other Experiments: We conducted experiments for the comparisolML p s, EMLpy andHSgpr. We found out
that these algorithms produce about the same CPU worklotiet ifet of sensor transactions are schedulable by all the
algorithms, buHS gpr andE M Lp)y, can schedule a slightly larger set of sensor transactioasalthe fact thaHSgpr
allows arbitrary deadlines. However, it is difficult to quiéynhow much they can improve the feasibility 8#(L), as the

workload generation plays an important role in such a compar This issue needs further investigation, which is dsft

21

future work.

We also conducted another set of experiments by replacegghdline constraintin Problem 5.1 with < D; < P;, i.e.,
deadlines are not greater than their corresponding peribasn theHS gpr algorithm is slightly adjusted for the revised
problem. Compared t&{S g pr to Problem 5.1, there is little difference for the CPU uélibn resulting fron#{S g p for
both problems. This indicates that the relaxation of thadtiea constraint has little impact on the resulted CPU zaiiion

of transactions. It only slightly improves the set of sertsansactions that can be scheduled.

7 Conclusions

Consistency maintenance of data is an important probleraahktime applications. We have proposed three novel ap-
proaches, nameWM Legpr, OSgpr andHS gpr, using theEDF scheduling algorithmM L p g is a linear algorithm but
it only supports transactions with deadlines no greater thair corresponding periods (i.d); < P; for 7;). Our analysis
for MLgpr in Section 4.3 sheds light on how mudh L pr can improve over existinglH approach quantitatively. The
other two approaches outperfor Lz pr as they are derived from processor demand analysis (Lemijeadmore accu-
rate feasibility condition foEDF scheduling. This is clearly demonstrated in our experigeaesults. In contrast)Sgpr
and HSgpr support transactions with arbitrary deadlines. In palicWWSgpr is an algorithm that yields minimized
processor utilization for periodic sensor transactiotisoaigh it is not as efficient as the heuristic algoritht§ ;o . Our
experimental results demonstrate th&f ;o is an effective algorithm that assigns periods and deasliivign much lower
utilization thanMLgpr.

However, more investigation is necessary to understangaifermance difference of the alternate approaches stinlie
this paper. In particular, we need to better understand H®¥ pr performs in comparison tBMLp;,. For scheduling
transactions witharbitrary deadlines, one of the important open questions is whetleee tis any sufficient and necessary
condition for schedulability oEDF in temporal consistency maintenance. Further investigain those questions will help

shed light on existing approaches for temporal consistemiptenance.
References

[1] S. K. Baruah, A. K. Mok, L. E. Rosier, “Preemptively Schiidg Hard-Real-Time Sporadic Tasks on One Proces#8EE Real-
Time Systems Symposiubecember 1990.

[2] S.K.Baruah, R.R. Howell, L. E. Rosier, “Algorithms an@é@plexity Concerning the Preemptive Scheduling of Peciddieal-Time
Tasks on One ProcessoReal-Time System2(4), pp. 301-324, 1990.

[3] A.Burns and R. Davis, “Choosing task periods to mininsgstem utilisation in time triggered systems,liriormation Processing
Letters 58 (1996), pp. 223-229.

[4] R. Gerber, S. Hong and M. Saksena, “Guaranteeing ErehtbTiming Constraints by Calibrating Intermediate Preess |IEEE
Real-Time Systems Symposilacember 1994.

[5] T. Gustafsson, J. Hansson, “Data Management in Reak Bystems: a Case of On-Demand Updates in Vehicle Contrédi@gs
IEEE Real-Time and Embedded Technology and Applicatiomp&siumpp. 182-191, 2004.

[6] T. Gustafsson and J. Hansson, "Dynamic on-demand upglafidata in real-time database system&M SAC 2004.
[7] F. S. Hiller, G. J. Lieberman, “Introduction to Operat®Research McGraw-Hill Publishing Companyl1990.

[8] K. D. Kang, S. Son, J. A. Stankovic, and T. Abdelzaher, “A$3Sensitive Approach for Timeliness and Freshness Giggsim
Real-Time DatabasesZuroMicro Real-Time Systems Conferenbgne 2002.

22

[9] T. Kuo and A. K. Mok, “Real-Time Data Semantics and SimtiaBased Concurrency ControllEEE Real-Time Systems Sympo-
sium December 1992.

[10] T. Kuo and A. K. Mok, “SSP: a Semantics-Based Protocol Real-Time Data AccessJEEE Real-Time Systems Symposium
December 1993.

[11] S. Ho, T. Kuo, and A. K. Mok, “Similarity-Based Load Adjtment for Static Real-Time Transaction Systeni8FE Real-Time
Systems Symposiuta997.

[12] J. P. Lehoczky, “Fixed Priority Scheduling of Periodiask Sets with Arbitrary DeadlineslEEE Real-Time Systems Symposium
1990.

[13] C. L. Liu, and J. Layland, “Scheduling Algorithms for Miprogramming in a Hard Real-Time Environmenigurnal of the ACM
20(1), 1973.

[14] J. Leung and J. Whitehead, “On the Complexity of Fixethty Scheduling of Periodic Real-Time Task®&rformance Evaluatign
2(1982), 237-250.

[15] K. Ramamritham, “Real-Time DatabaseBjstributed and Parallel Databasel1993), pp. 199-226, 1993.
[16] 1. Ripoll, A. Crespo, and A. Mok, “Improvement in Featiity Testing for Real-Time TasksReal-Time System$1(1): 19-39, 1996.

[17] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On TashkeSalability in Real-Time Control System3EEE Real-Time Systems
SymposiunmDecember 1996.

[18] D. Seto, J. P. Lehoczky, L. Sha, “Task Period Selectiwh &chedulability in Real-Time System#EEE Real-Time Systems Sympo-
sium,December 1998.

[19] X. Song and J. W. S. Liu, “Maintaining Temporal Consigtg: Pessimistic vs. Optimistic Concurrency ContrdEEE Transactions
on Knowledge and Data Engineeringol. 7, No. 5, pp. 786-796, October 1995.

[20] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Ba#o, “Deadline Scheduling for Real-Time Systems: EDF aelitied
Algorithms,” Kluwer Academic Publishers, 1998.

[21] L. A. Wolsey, “Integer Programming,John Wiley & SonNew York, 1998.

[22] M. Xiong and K. Ramamritham, “Deriving Deadlines andriBds for Real-Time Update Transactiont#EE Real-Time Systems
Symposium1999.

[23] M. Xiong, K. Ramamritham, J. Stankovic, D. Towsley, &d\V. Sivasankaran, “Scheduling Transactions with Tengdoastraints:
Exploiting Data Semantics|EEE Transactions on Knowledge and Data Engineeritd(5), 1155-1166, 2002.

[24] M. Xiong, S. Han, and K.Y. Lam, “A Deferrable Scheduliddgorithm for Real-Time Transactions Maintaining Data $hraess,”
IEEE Real-Time Systems Symposianos.

[25] M. Xiong, B. Liang, K. Lam, and Y. Guo. “Quality of sengcguarantee for temporal consistency of real-time trafmsest IEEE
Transactions on Knowledge and Data Engineeribg(8), pp. 1097-1110, 2006.

Appendix

Proof of Theorem 4.1:From the deadline constraint in Problem 4.2, we have

N; —1 1
P>D; = i > —V; N; > 2,
> N, V, NiV:>
Vi

i

Following Eq. 3 and 4, Problem 4.2 is reduced to the following-linear programming problem with variahile

L NG
. _ _ NG
mj\lfnbi, wherel/ E =1 (1<i<m)
=1
subject to:

N; >2 (23)
Vi
—~>N; 24
e (24)

m Cz
N;-— <1 25

D Niigr < (25)

@
Il
=

23

It can be proved that the objective function and all threest@ints are&eonvexXunctions. Thus this is a convex programming
problem, and a local minimum is a global minimum for this desb [7]. Considering Eq. 25 and Eq. 23 together, we have
2.3 <Y Ni- G < 1. Thatis,

(26)

.MS
=R
IN
N =

Eq. 26 implies thaty < 1.
For convenience, lat; = G, v = 3270, §F = Y7, wy, @ = N; — 1. By definition oft/ and Eq. 41 = 307 | S

=31 sty ie U =30 w + Y

x; =1 x;

Following Eq. 23, 24 and 25, the problem is transformed to:

N W
mn o
=1
subject to:
;i —1>0 (27)
1
;=120 (28)
wj
1—’7—2101"5171'20 (29)
1=1

Introducing Lagrangian multipliers; ;, A2 ; ands, we write Kuhn-Tucker condition as following < i < m):

—% + Azw; — A2 + A =0, (30)
As(l—v— Zwlxl) =0, (31)
i=1

Az >0, (32)
)\Q,i(xi — 1) = 0, (33)
Aoi >0, (34)
Al,i(i — Xy — 1) = 0, (35)

wj
A1, > 0. (36)

We use above conditions to construct an optimal solutionppSse); ; = A2; = 0 andA; > 0. Following Eqg. 30,
=23 + Azw; = 0. Thereforeg; = ﬁ (A3 > 0& 1 <i<m). Following\s > 0 and Eqg. 31, we have

L—y =300 wax; =0.
Replacinge; with NoPL

1—7—\/%—32;11101-:0.

24

Replacing) """ | w; with ~,

1 _
s =0

Solving the above equation, we have= (==)2 It is easy to check that

1 1-
)\Li -)\2_’1' :07 Ag = (%)2 and T, = T = T’y
o VA3

satisfy Eq. 27 through Eqg. 36, which means tiataches a local minimum. Because the objective functionisex and

constraints are all lineaf is also a global optimal solution. Sinéé = x; + 1, U is minimized whenV; = N"”t = —, and
opt NOPt m C; %
the minimum utilization i$/°% (v) = N T i Y= T = =]
Proof of Theorem 4.2: Let D(v) = Unn(y) — U (v). From definitions ot/’" () andiy,,(7), it follows thatD(y) =
2~ — ﬁ To obtain the maximum dP(~y), we differentiateD(~y) with respect toy, and set the result to 0:
dD(v) _ 29%—4y+1 _
R (e L
Thus the maximum ob(7) is 3 — 2v/2 wheny = 1 — ¥2. i

Proof of Lemma 5.1: If T is not feasible, theft(s () > ¢ (Lemma 4.1). We need to find the maximal time- ¢;3(P) so

thatH+(t) > t may hold in[0, tz(P)). Because?; > C;, if
t > max(V; — 2C;), (37)
then(L(t VT)J +2) > 0 (Remember thab; > C;). Suppose Eg. 37 holds, we have

Hr () = K7Ly maz(0, (45 +2) - C)
= Z;’il(f*—‘ﬂ +2)-C;) {Eliminating the max functiohp

<> P?t + 3, Ci(2— ;) {Eliminating the floor functioh
If
ZF Z 2=) <t (38)

thenH(¢) < t. Solving Eq. 38, we have

Considering Eq. 37, we hadé(t) < t if
t > maz(max(V; — 2C;),

Following Lemma 4.17 is feasible iffvt < tz(P), Hr(t) < t. m|
Proof of Theorem 5.1: Given a solutionC of Problem 5.2 with deadlines and periods derived from adaleeS, suppose

that utilization ofiC is Uy, andlU < UE%F. K is feasible if it is scheduled h§. SinceEDF is an optimal scheduler [20],

25

if £ can be scheduled hy then it can also be scheduled BIPF. Thus, K is also a feasible solution for Problem 5.1. But
Ui < U, contradicts that/ph, . is the optimized (minimized) utilization for Problem 5.1hTsi/yf, .. is optimal for
Problem 5.2. O
Proof of Lemma 5.2: First, we prove that/ < L{g’gF Supposd3* is the optimal solution to Problem 5.1, thélf (i =

1,...,m) is an integer betweefl; andV; — C; that can be expressed as

V;—C;
. %
= E J%5,5
j=C;

wherez; ; = 1if j = P;; otherwisez; ; = 0. Note that

Vi=Ci
(39)

§i=C;
Foranyk =0,1,.., K, 2/, (C; < j < V; — C;) (which determineﬁ*) is thus a feasible solution to Problem 5.3 because
(1) P* satisfies Constraint 9; (2) the set of time constraints oblm 5.3 (Constraint 10) is subsebf that of Problem 5.1

(Eq. 7). Following Eq. 10,

Sy G Y 2y max(0, | B+ 2)
= Y max(0, (| 452 | +2)Cy)

{Moving C; andz} ; into the max function, and by Eq. 39
<t, {P7 satisfying Eq. 7}

By definition of Problem 5.3, all feasible solutions thaisfgtProblem 5.3z; ; = zZKJ produces the minimud . Therefore,
Ut <Ugfpy.

We can prove thay" ! <" (1 < n < K) similarly. a
Proof of Lemma 5.3: 1. (If) By the definition of ¥, if X > 0 then

t>Zmax{O VJ+2)C’}

This implies that Eq. 7 holds. SHK satisfies both th@eriod and time constraints in Problem 5.1. By Lemma 5.2,
UK <uy .. ThusPX also minimizes processor utilization in Problem 5.1, arigl é#n optimal solution.

2. (Only if) This can be proved in a manner similar to thease. |
Proof of Theorem 5.2: If P(t') is obtained after Step 4 in Alg. 5.2 at timié > 0, thenH 7 (t') < t' for P(t')'s
corresponding transaction s&tt'). First, P(0) must be feasible for the time constraintat= 0. Otherwise, the selection
problem is unsolvable and the algorithm is terminated, tviigccontradictory to the assumption tHé(tt’) is obtained after
Step 4 at time’ > 0.

Suppose thaP(t') satisfies the time constraint at &k ¢/, .., Hyu(t) <t If P(t') also satisfied{ (1’ +1) <t' +1

at timet’ + 1, then setP(¢' + 1) = P(t') andHz((t) < t holds fort € [0,# + 1]. Otherwise,P;(t') (r; € R(t')) is

26

reduced, ands(t’) is changed toa(t’ + 1), which satisfies the time constrainttatt 1 (by Step 4). Furthermord; is only
changed for; € R(¢'). By R(t') definition (Eq. 19), we have

P(t'+1) = P(t)ift'+1>V;, (40)

Pt +1) < P{)ift'+1<V,. (41)

Givent < t' 4+ 1 and the definition 0¥ 7 ;1) (%),

B n (t —Vi)

< zm:max(o, (L(tp__(;);)J +2)-C;) {ByEq.40,41,and - V; < 0if ' +1 < V;}
=1 v

= HT(t’)(t)

< t {By induction assumption

Therefore, for alk < ¢’ + 1, Hy(41)(t) < t, which proves the theorem. m]
Proof of Lemma 5.4: Note thatJ; ; is guaranteed bgDF scheduling to complete lf ; (note that; ;1 < d; ; if D; > P).
If it cannot be executed before timg;,1, then it will haveC; time units allocated from the processor for its execution in

[Fi.j+1,d; ;]. SuchC; time units can also be used by ;41 if J; ; is skipped. O

27

