Real-Time Syst (2009) 41: 27-51
DOI 10.1007/s11241-008-9060-7

The space of EDF deadlines: the exact region
and a convex approximation

Enrico Bini - Giorgio Buttazzo

Published online: 1 October 2008
© Springer Science+Business Media, LLC 2008

Abstract It is well known that the performance of computer controlled systems is
heavily affected by delays and jitter occurring in the control loops, which are mainly
caused by the interference introduced by other concurrent activities. A common ap-
proach adopted to reduce delay and jitter in periodic task systems is to decrease rela-
tive deadlines as much as possible, but without jeopardizing the schedulability of the
task set.

In this paper, we formally characterize the region of admissible deadlines so that
the system designer can appropriately select the desired values to maximize a given
performance index defined over the task set. Finally we also provide a sufficient re-
gion of feasible deadlines which is proved to be convex.

Keywords Earliest deadline first - Deadline assignment - Performance optimization

1 Introduction

The software of control systems is typically implemented through a set of periodic
activities performing data sampling, sensory processing, control, action planning, and
actuation. Although not strictly necessary, periodic execution simplifies the design of
control algorithms and allows to use standard control theory to guarantee system
stability and meet performance requirements.

When several of such activities execute concurrently in the same processor, how-
ever, each control task may experience a variable delay and jitter, mainly due to the
interference created by the other tasks. The amount of delay and jitter experienced

E. Bini (X) - G. Buttazzo
Scuola Superiore Sant’ Anna, Pisa, Italy
e-mail: e.bini @sssup.it

G. Buttazzo
e-mail: giorgio@sssup.it

@ Springer

mailto:e.bini@sssup.it
mailto:giorgio@sssup.it

28 Real-Time Syst (2009) 41: 27-51

by each task depends on several factors, including the dispatching policy in force,
the overall workload, and the task parameters (computation times, periods, and dead-
lines). If not properly taken into account, delays and jitter may degrade the perfor-
mance of the system and even jeopardize its stability (Kalman and Bertram 1959;
Kushner and Tobias 1969; Davidson 1973).

The problem of jitter in real-time control applications has received increasing at-
tention during the last decade and several techniques have been proposed to cope with
it. Nilsson et al. (1998) analyzed the stability and performance of real-time control
systems with random delays and derived an optimal, jitter-compensating controller.
Marti et al. (2001) proposed a compensation technique for controllers based on the
pole-placement design method. Di Natale and Stankovic (2000) proposed the use of
simulated annealing to find the optimal configuration of task offsets that minimizes
jitter, according to some user-defined cost function. Cervin et al. (2004) presented
a method for finding an upper bound of the input-output jitter of each task under
EDF scheduling, and introduced the concept of jitter margin to simplify the analysis
of control systems and guarantee their stability when certain conditions on jitter are
satisfied.

A common practice to reduce jitter in control applications is to separate each con-
trol task into three distinct sub-tasks performing data input, processing, and control
output. Then, the input-output jitter is reduced by postponing the input-output sub-
tasks to some later point in time, thereby trading jitter with delay (Crespo et al. 1999).
Cervin (1999) proposed to split the control algorithm into two parts (Calculate Out-
put and Update State), which are scheduled as separate tasks. This method works fine
for simple control applications, but introduces a number of problems. In particular,
jitter reduction is obtained by inserting extra delays in task execution, since the input
and output parts are always separated by exactly one period, while the average delay
could be smaller. The effect of a longer delay in the control loop has to be carefully
analyzed, since it could be worse than the effect of jitter. A recent performance study
involving several LQG controllers (with a direct term) indicates that delay is worse
than jitter, except when the sampling rate is extremely low (Lluesma et al. 2006).

Another approach widely adopted for reducing jitter and delay is to limit the
execution interval of each task by setting a suitable relative deadline. Working on
this line, Baruah et al. (1999) proposed two methods (with different complexity and
performance) for assigning shorter relative deadlines to tasks and guaranteeing the
schedulability of the task set. A comparative evaluation of different jitter reduction
approaches has been presented by Buttazzo and Cervin (2006).

Several authors (Zheng and Shin 1994; Buttazzo and Sensini 1999; Balbastre et al.
2006; Hoang et al. 2006) independently proposed different algorithms for computing
the minimum deadline of a newly arrived task, assuming the existing task set is feasi-
bly schedulable by EDF (Liu and Layland 1973). The problem with these methods is
that they can hardly be extended to reduce a set of arbitrary deadlines, but can only be
applied to a single task at a time, following a given order, as suggested by Hoang et al.
(2006). In this way, however, the only task which experiences a significant deadline
reduction is the first task in the sequence, since it can use all the slack available in
the task set to minimize its deadline, leaving little margin for the remaining tasks. To
apply a more uniform deadline reduction in the task set, Balbastre et al. (2006) pro-
posed an algorithm able to scale all deadlines by the same factor. The problem with

@ Springer

Real-Time Syst (2009) 41: 27-51 29

this approach, however, is that a uniform deadline reduction may not achieve a sig-
nificant improvement in terms of jitter and delays, because all deadlines are reduced
and, in some cases, the schedule could even remain unchanged.

In this paper, we present a general analysis methodology for identifying the feasi-
bility region of the task deadlines, when tasks are scheduled by EDF. The knowledge
of such a region is very useful in the design process, since it allows the designer to
perform sensitivity analysis and select the set of relative deadlines that maximizes a
given performance index defined over the task set.

Different methods for optimizing the performance of periodic task sets have been
proposed in the literature, both under fixed priority (Bini and Di Natale 2005) and
EDF (Seto et al. 1996), but only with respect to periods. Sensitivity analysis in the
domain of computation times has also been addressed in Bini et al. (2006), while
sensitivity analysis of any parameters was proposed at the cost of high complexity
by Racu et al. (2006) using binary search. Hence, this paper fills the missing gap,
allowing the designer to reason also in the space of task deadlines.

The rest of the paper is organized as follows. Section 2 presents the system model,
the terminology and the basic assumptions. Section 3 formally defines the problem to
be solved and provides a simplified explanation of the approach, deriving the feasi-
bility region for two tasks. Sections 4 and 5 describe the general method for n tasks,
and presents the algorithm for deriving the region. Section 6 presents an approxi-
mate solution to reduce the complexity of the approach. Finally, Sect. 8 presents our
conclusions and our plans for future work.

2 Terminology and assumptions

We consider aset 7 = {71, 12, ..., Ty} of n periodic tasks that have to be executed on
a uni-processor system under the Earliest Deadline First (EDF) scheduling algorithm.
Each periodic task 7; consists of an infinite sequence of task instances, or jobs, having
the same worst-case execution time (WCET), the same relative deadline, and the
same interarrival period. The following notation is used throughout the paper:

;5 denotes the k-th job of task z;, with k € \/;

C; denotes the worst-case execution time (WCET) of task t;, that is, the WCET of
each job of 7;. The vector of all the computation times (C1, ..., Cy) is denoted
by C;

T; denotes the period of task 7;;

denotes the relative deadline of task t;, that is, the latest completion time allowed

for any job, relative to the its activation time. The vector of all the deadlines

(D1, ..., Dy)is denoted by D;

rik denotes the release time of job t;. If the first job is released at time r; | = &;,
also referred to as the task phase, the generic k-th job is released at time

>

rik = @i + (k= DTy

di; denotes the absolute deadline of job t;i, that is the latest absolute time by which
job i is allowed to complete;

@ Springer

30 Real-Time Syst (2009) 41: 27-51

U; denotes the utilization of task t;, that is, the fraction of CPU time used by t;
(Ui =Ci/T);

U denotes the total utilization of the task set, that is, the sum of all tasks utilizations
Ui =321 Up).

We assume all tasks are fully preemptive and are simultaneously activated at time
t =0 (that is, ®; =0, for all tasks).

3 Problem statement

We consider the problem of determining the region of the feasible task deadlines (also
called the D-space), when tasks are scheduled by the Earliest Deadline First algo-
rithm. Reasoning in such a region allows the designer to perform sensitivity analysis
or to select the set of relative deadlines that maximizes a given performance index de-
fined over the task set. Later in Sect. 6, we will also propose an approximate method,
based on a simpler sufficient feasibility condition, to identify a convex region entirely
contained in the D-space.

Before entering into the mathematical details of the proposed approach, we intro-
duce a simple example to visualize such a feasibility region of task deadlines. This
example will be used throughout the paper as a sample application of the theoretical
results.

Example 1 Let us consider two periodic tasks, 71 and 1o, with computation times
C1 =2 and Cy = 3, and periods 71 = 4 and T> = 7, respectively. By setting the
relative deadlines equal to periods, the task set is feasible by EDF, since the processor
utilization factor is less than one, in fact

2 3 13

U=>+=

=— <1
4 7 14

Figure 1 illustrates the corresponding schedule (in the figures, consecutive jobs are
drawn using alternated colors).

Now note that if we shorten the deadline of 71 as much as possible, that is if we
set D1 = C1, the maximum response time of 7, becomes R, = 7, meaning that D;
cannot be less than 7 if the task set must be feasible. The corresponding schedule
produced by EDF with D; =2 and D, =7 is shown in Fig. 2.

Similarly, if we shorten the deadline of 1> back to its computation time, setting
D, = C, =3, the maximum response time for t; becomes R; = 5, meaning that D

T

{
!
0 4
1

L)

0 2 4 6 8 0 12 14 16 18 20 22 24 26 28

Fig.1 EDF schedule when D; =T;

@ Springer

Real-Time Syst (2009) 41: 27-51 31

(=}
o 4
N
[=))
©
—_
(=)
—
[
—
~
—_
[=))
—_
=)
)
[=)
)
[
[\
=
[
[=2)
[
o

Fig. 3 EDF schedule when minimizing Dy

e W e I s W s e B e

P S Iy iy I

2 4 6 8 10

Fig. 4 Schedule with Dy =3 and D, =5

cannot be less than 5 to keep the task set schedulable. The corresponding schedule
produced by EDF with D; =5 and D; =3 is shown in Fig. 3.

Notice, however, that a feasible schedule can also be achieved with D; = 3 and
D, =5, as shown in Fig. 4.

Moreover, we know that EDF on a single processor is sustainable with respect to
task deadlines, meaning that if EDF can feasibly schedule a task set 7, then it can
also feasibly schedule any task set 7" with the same computation times and periods
as in 7 and larger deadlines (Baruah and Burns 2006).

From this observation and the cases reported above, we can state that all deadlines
corresponding to points in the gray area depicted in Fig. 5 generate a feasible EDF
schedule (in the figure the deadline values previously discussed are indicated by a
black thick dot). Hence, we can observe:

Observation 1 When C = (2,3) and T = (4, 7), the exact region of EDF feasible
deadlines is larger than or equal to the gray area shown in Fig. 5.

In the remainder of the paper we will show that the region in Fig. 5 is necessary
and sufficient, and then we will also present a method for deriving such a region.

@ Springer

32 Real-Time Syst (2009) 41: 27-51

Fig. 5 Space of feasible

deadlines D
12 1
10 4
8 -
6
4 .
- L
2 l
0 T T T T T T T T T T T T

4 The space of EDF feasible deadlines

Unfortunately, the feasibility region cannot be described by a closed formula. In fact,
as shown by Baruah et al. (1990), a set of periodic tasks simultaneously activated at
time ¢ = 0 is schedulable by EDF if and only if U < 1 and

n
t+T;, — D;
V>0 Zmax{o, {%J}Cift (1)
i=1 i

The difficulty of finding a closed formulation in terms of the deadlines is due
to the presence of the floor operator in (1). To overcome this problem we follow the
intuition used by Seto et al. (1998) to find all the admissible periods in a fixed priority
scheduler.

We introduce a set of n functions K; : R4 x Ry — N defined as

t+7T;, — D
Ki(t, D;) =max{0, \‘TJ} 2)

Each function K; (¢, D;) denotes the number of jobs of task 7; whose release time
and absolute deadline are both within the interval [0, #]. We also observe that, by the
definition of (2), K; (¢, D;) is the unique integer satisfying the following constraint:

3

Ki(z, Di) =0 ift —D; <0
2L < Ki(t, D) < 5PE+ 1 otherwise

Finally, all the n integer functions can be condensed in a single function K :
R4 x R% — N” defined as

K, D) = (Ki(t, D1), ..., Ku(t, Dn)) “)

The introduction of function K is very convenient to write the schedulability condi-
tions with a more compact notation. For example the necessary and sufficient schedu-

@ Springer

Real-Time Syst (2009) 41: 27-51 33

lability condition by Baruah et al. expressed in (1) becomes
Vi>0 K(#,D)-C<t)

We are now ready to move forward. The condition resulting from (1), and its equiv-
alent (5), has the disadvantage that it is not clear how to extract a constraint on task
deadlines D. The following lemma provides a necessary and sufficient condition from
which deadlines constraints can be derived. Although seemingly more complex than
condition (5), Lemma 1 allows to find a closed formulation of the EDF schedulability
condition.

Lemma 1 A set of periodic tasks T is feasibly schedulable by EDF if and only if
U <1 and:

Vi>0, VkeN' (k=K(,D)Ak-C<1)Vvk#K(t,D) 6)

Proof We prove the lemma by showing that (6) is equivalent to (1).
Equation (6) = (1). The proof is performed by contradiction. Let us assume
that (1) is false, meaning that

n *

t T; — D;

I* >0 ZmaX{O, {%”Q > t*. @)
i=1 !

Let us denote, for all i, k¥ = max{0, LW#D"J} which is also equal to K; (t*, D;) by
the definition of K given in (2), and k* = (k], ..., k). We show that for such special
t* and k*, (6) is false as well. In fact, (7) can be rewritten as

¥*>0 k-C>t*
and k* = K(¢t*, D). Hence we have that

3 >0, Ik* e N" (K* =K(t*, D) AK* - C > t¥)

which implies that (6) is false, as required.
Equation (1) = (6). Again we proceed by contradiction showing that when (6) is
false then (1) is false as well. From the negation of (6), we have that

3t >0, IK* e N" (K" #£K(@E*, D) vk*-C>r*) A kK" =K(#*, D) 8)
which is equivalent to
3t >0, Ik* eN", k*-C>t" A K" =K(*,D)

>0, K D)-C>t*

n
3t* >0, ZKi(I*,D) C; > t*
i=1

@ Springer

34 Real-Time Syst (2009) 41: 27-51

n

t*+T; — D;
3r* >0, Zmax{o, L%J}C, > t*
l

i=1

which contradicts (1) and proves the lemma. [l

Lemma 1 has the clear advantage that it is possible to find a constraint on the task
deadlines D starting from the relationship k = K(z, D). In fact from (3) it follows that

k =K(,D)
ki=0 ift—D; <0
=D < '_T# + 1 otherwise 9)
D; >t ifk; =0
t—k;T; < D; <t— (k; — 1)T; otherwise

which gives us the desired constraint on the deadline values, when exactly k; jobs of
7; are in the interval [0, 7].

The set of deadlines satisfying the constraint of (9), for a specific selection of ¢
and Kk, is denoted by domD(¢, k), and its complement is denoted by dom D¢ (¢, D).
Due to the equivalence between (3) and (9), we have

k=K(#,D) < DedomD(z,k) (10)
k#K(,D) < DedomDe(, k)

As it can be noticed from (9), the region dom D(¢, k) is a multi-dimensional box in
the space of deadlines, which reduces to a simple rectangle if n = 2. If some k; in k
is equal to zero, then dom D(#, K) is a degenerate box because its projection on the ith
axis is a right-unbounded interval. Figure 6 shows some examples of domD for the
same task parameters used in the previous example. In the figure it can be also noticed
that, when some k; = 0, then the corresponding deadline D; is not upper bounded in
domD. Another property that will be used later is that for the same value of Kk, as ¢
increases by a certain amount A, the corresponding box translates by A along all the

Fig. 6 Samples of dom D, when
T=4,7)

10- | domD(16, (2, 1))

61 idomD(lQ,(Q,l))

i domD(7, (2,0))

T
-2 2 4 6 L_8.___ 0___12___14___16___18 Dy

@ Springer

Real-Time Syst (2009) 41: 27-51 35

coordinates. Finally, the complement dom D¢(z, D) basically is “all the space with a
boxed hole” defined by domD(t, D).

Using the definition of region domD, it is possible to formulate a result which
describes the space of all feasible deadlines.

Theorem 1 A set of periodic tasks T is feasibly schedulable by EDF if and only if
U<1and

VkeN!' Vie[0,k-C) DedomD (k) an
where the set of deadlines dom D(¢, K) is defined by

D; >t ifki=0 (12)
t—kiT; <D; <t— (ki — 1)T; otherwise

and dom D€ denotes its complement.

Proof From Lemma 1 and the equivalence expressed by (10) it follows that the task
set 7 is feasible by EDF if and only if

Vi>0, VkeN" DedomD(r,k) v (DedomD(t,k) Ak-C <r) (13)

Since the two “for all” quantifiers do not depend on each other, they can be exchanged
to obtain the following condition

VkeN', Vi>0 DedomD(t, k) v (DedomD(, k) Ak-C<1).

Let us now study how the condition depends on 7.

First of all, we recall that V¢ > 0 means that the condition must be intersected
for all values of ¢ greater than or equal to zero. For arbitrarily large values of ¢ the
condition k - C <t is always true. Hence, for arbitrarily large ¢ the resulting space
is the union of dom D(¢, k) with its complement dom D€ (¢, k), which is trivially the
entire space. Thus, we can say that large values of ¢ do not constraint vector D in
any way. As ¢ becomes smaller than k - C, then the condition k - C < ¢ becomes
false and the region of the admissible deadlines becomes domD¢(z, k). Since we
are performing the intersection as ¢ varies, we can get rid of the big values of 7 by
reformulating the necessary and sufficient EDF schedulability condition as follows:

VkeN' Vie[0,k-C) DedomD(z,k)
as required. d

It is quite insightful to study (11). As explained earlier, region dom D(¢, k) is the
entire space with a boxed hole described by (12) (remember that the box becomes
upper unbounded along the i coordinate when k; = 0). As ¢ increases by A, the hole
linearly translates by the same amount along all coordinates, in the space of deadlines.
Figure 7 shows the intersection of the regions dom D€ (¢, k) for all 7 in the interval
[0,k - C), as indicated by (11). The figure is drawn assuming the same computation
times and periods as in Example 1, thatis, C=(2,3) and T = 4, 7).

@ Springer

36 Real-Time Syst (2009) 41: 27-51

Fig. 7 Intersection of

dom D€ (7, k) b
6 c
ﬂ domD®(¢, k)
o te[0,k-C)
Dvert
E § 10D,

Figure 7 also highlights a special deadline vector, called deepest vertex DY*"(k) =
(Dlvert, ..., DY), associated with a given value of k. The coordinates corre-
sponding to a deepest vertex are the largest deadlines on the boundary of region
domD(k - C, k). In particular, each coordinate D}*" is the upper bound of the dead-
line interval from (12), when r =k - C. As it can be noticed from (12), such an upper
bound Dl.Vert is finite only when the corresponding integer k; is strictly greater than
zero. In fact, if k; = 0, then the interval is right-unbounded and we set D;’ert = +00.
By replacing t = k - C in (12), we find that the coordinates of the deepest vertex
DYer'(k) are

k-C—(k; —DT; ifk;#£0
Divert(k)z C— (k)T; 1 i £ (14)
ifk; =0
Let us evaluate the vertex in some special cases. When k = (0,...,0,1,0,...,0),

with a 1 at the ith position, then D;’ert = C; and the feasibility condition of (11)
becomes D; > DiVert = C;, which means that the deadline must be not smaller than
the computation time, as it is reasonable to expect.

More in general, as we intersect the regions ﬂte[(),kC) dom D€(¢, k) (also shown
in Fig. 7) for all possible integers k, the resulting space of feasible deadlines becomes
very similar to the one shown in Fig. 5. Hence, the region of feasible deadlines can
also be expressed by

D;i>k-C— (ki — DT;. (15)
N u

keN" ik;£0

From (15) it follows that the EDF schedulability region in the space of task dead-
lines can be derived by computing the deepest vertices, for all vectors k € N* \ {0},
since when all k; = 0 we have no constraint. However, as it will be shown in the next
section, the number of vertices to be computed can be drastically reduced, because
certain regions (those associated with small k;’s) dominate all the others, due to the
intersection operator.

Below we show that only four deepest vertices need to be computed for completely
describing the region illustrated in Fig. 5.

@ Springer

Real-Time Syst (2009) 41: 27-51 37

Table 1 Vertices for the sample

task set k= (k. k2) DYert (k) D:Ym (k)
(1,0 Ci=2 +00
0, 1) 400 Cy=3
(1, 1) Ci1+Cr=5 Ci+Cr=5
2,1 2C1+Cr,—T1 =3 2C1+Cr =7
0,2) —+00 20, —Th=-1
(1,2) C1+2C, =38 C1+2C0,-Th=1
2,2) 2C1+2C, —T1 =6 2C1+2C, —Tp =3
3,2) 3C) +2C, — 2T =4 3C1+2C, —T» =5
Fig. 8 Feasible region resulting
from th s i Dy
rom the 8 deepest vertices :1& T (O 1) prert (2’ 2)
Vel ’ Dverzgl, 1;
I ver
vert i Dvert 2 D 3, 2
D (07 2) : (’) / Dvert (27 1)
1 6
! -
]
o /
I
: 2— Dvert(l’ 0)
I
D D,
27T 2 A TE6 T8 T 2 i
I
1

Example 1 Let us take the initial task set considered throughout the paper, with two
periodic tasks having C = (2, 3) and T = (4, 7). By applying (14), we can compute
the deepest vertices associated with a set of integer vectors purposely selected for the
example. For each selected vector k, Table 1 shows the two resulting coordinates of
the corresponding deepest vertex DY (k) derived by (14). The deepest vertices com-
puted in Table 1 are also graphically illustrated in Fig. 8, which shows the intersection
of the 8 corresponding regions. Note that the first four vertices dominate the others,
meaning that the region described by them is not restricted by the other constraints.
In fact, DY*(1, 0) and D¥'*(0, 1) are degenerate and correspond to the thick horizon-
tal and vertical lines, whereas DY®''(1, 1) and D¥®'*(2, 1) fall on the internal vertices
and are denoted by black dots. The other four vertices (the three white dots and the
vertical dashed line) fall outside the region (or on its border) and do not alter it.

It is worth observing that continuing to intersect regions for other values of k
may, eventually, only reduce the region depicted in Fig. 8. As a consequence, we can
observe:

Observation 2 When C = (2,3) and T = (4, 7), the exact region of EDF feasible
deadlines is smaller than or equal to the one shown in Fig. 8.

@ Springer

38 Real-Time Syst (2009) 41: 27-51

From Observations 1 and 2 we conclude that the gray area illustrated in both
Figs. 5 and 8 is the exact feasible region, for the considered task set.

This example suggests that the exact feasibility region can be simply computed
from a finite set of integer vectors. The next section provides a method for determin-
ing such a set, by removing redundant points.

5 Reducing the set of k’s

The derivation of the feasible deadline space based on (15) is impractical, because it
requires the intersection of infinite regions, derived from all possible k’s ranging in
N\ {0} However, as we observed in the previous section, a region associated to a
vector k can be neglected if its corresponding vertex DVe™t (k) is dominated by some
other vertex. For instance, in Fig. 8, D¥*''(3, 2) = (4, 5) is dominated by DV''(1, 1) =
(5, 5). In this section we formally define the idea of domination, and we will exploit
this property to make an effective computation of the deadline space.

Definition 1 We say that an integer vector k is dominated by the integer vector k if

Vi=1,...,n D"(k) < D)*"(k) (16)

In fact, if all the coordinates of D"m(f() are smaller than or equal to the corre-
sponding coordinates of D¥''(k), then the intersection with the region associated
with k cannot eliminate any point in the space of deadlines that has not already been
eliminated by the region associated with k. To translate (16) as a constraint on the
integers k= (kl, .. k), let us define Ix = {i : k; # 0}. From (16) we have that

Viel DY(k) < Dy(k)
Vig Ik DY(k) < D}*"(k)

7)

Vielk DY(k)<k-C— (ki —DT;
Vi¢ I D}*(k) < +oo

Vielk k-C—(ki—DT; <k-C— (ki — DT;
Viel (ki—k)(T—Ci)=Y ki —kj)Cj=0

For a given k, (17) describes the region of the integer vectors k that are dominated
by k. Such a region is a cone with vertex at k, which can be formally defined by

cone(k, Iy) = {12 eN":Vi el (ki —k)(T; — Ci) = Y _(k; —kj)Cj = 0} (18)
J#

These cones are important because they allow a significant reduction in the number of
integer vectors to be tested. In fact, suppose there is a finite subset of integer vectors

@ Springer

Real-Time Syst (2009) 41: 27-51 39

domK C N" \ {0} such that

N'\{0}= | J cone(k,) (19)
kedomK

then the necessary and sufficient condition of (15) becomes equivalent to

ﬂ UD,-zk-C—(k,-—l)T,-. (20)

kedomK iely

In fact, the vectors in domK are explicitly checked by the test of (20), whereas the
vectors in

L (cone(k, i\ (k})

kedomK

which are the points in the cones except the vertices, need not be tested because
they are dominated by some vector in domK. Hence, a key problem is to find the
smallest dom K which has the desirable property of (19), since a small dom K results
in a faster computation of the D-space from (20). It is quite clear that for large cones
the set domK can be reduced, because a large cone permits to dominate more vectors,
and consequently the number of integer vectors that need to be explicitly checked is
smaller.

In order to derive the properties of the cones, it can be noticed that the coeffi-
cients of the hyperplanes delimiting the cone do not change with k, meaning that the
“shape” of the cone remains unaltered for the same set of non-zero indexes /. More
formally, we can state the property of “invariance for translation” as follows

cone(k, Ix) =cone(0, Ix) + k 21

with the implicit meaning that the plus sign at the right-hand side of (21) means a
translation of the set.

The indexes in Ik simply denote the constraints delimiting cone(k, Ix). Fig. 9
shows three examples of cone(k, Ix). The black dots represent three possible vertices
of the cones (resp. (0, 2), (1, 1), and (4, 0)), whereas the white dots represent the
sets of integers which are dominated by cone((0, 2), {2}), cone((1, 1), {1, 2}), and
cone((4,0), {1}) respectively.

Due to the translation property of (21), we can restrict the study to cone(0, /) and
then extend the results to the other cones by translation.

The following theorem allows the definition of a suitable finite subset domK.

Fig. 9 Examples on
cone(k, Ix)

@ Springer

40 Real-Time Syst (2009) 41: 27-51

Theorem 2 Let kK™ € cone(0, {1, ...,n}), K™ £0. Then
domK={k e N"\ {0}:0 < k; <k/"™} (22)
satisfies the property of (19).

Proof We have to prove that N" \ {0} can be covered by cones whose vertices
are in domK. Given k € N” \ {0} we will build the proper k € domK such that
ke cone(k, Ix).

Using Euclidean division, let’s define ¢; and r; as follows

Vi=l,...n ki=qk™ —ri geN 0<r<k"™ -1

and let us set ¢ = max;{g;}. Since k # 0 we have ¢ > 1. Let us also set I = {i =
1,...,n:q; = q}. We claim that the cone vertex k such that k € cone(k, Ix) is defined
as follows

(23)

k[,:kl;nax_ri ifiel
ki=0 ifigl

First of all, we verify that k € domK. Since 0 <r; < k}“ax, it follows that 1 <k; <
k"®*. Moreover k # 0 because I is not empty. A posteriori we verify that such a
definition of k permits to assert that I = {i : k; # 0} = Ik. In fact

iel =k :k;nax_ri:ki #0=1i¢€lk
i¢l=k=0=1i¢lk

Finally, we verify that the constructed k dominates K, as required:

k e cone(k, Ix) =cone(k, 1) < Viel (ki—k)(T;—C)—> (kj—kj)C; =0
J#

(24)

We will proceed by finding lower estimates of the previous inequality, foralli € I:

i —ki)(Ti = Cy = D (kj—kpCj— > (kj—k))C;
J#, jel JF#L JE1
= (qiki™ —ri — ("™ —r))(T; — Ci)

— > @K = —k)Ci = Y kiCy

J#i, jel J#L ¢l
=(q— DK™ (Ti—=C)—(g—1) Y K'™Cj— Y ki
J#i jel J#L jEl
>(q— DK™ —C)—(q—1) Y k™C;— Y (g DK™,
J#i jel J# jEl
=(q— 1)(k,‘-“a"(T,~ —Ci)— Zk;“a"c,-) >0
J#

@ Springer

Real-Time Syst (2009) 41: 27-51 41

because g > 1 and k™** € cone(0, {1, ..., n}). Hence the inequality of (24) is proved
and the theorem follows. O

Theorem 2 allows to reduce the problem of computing the EDF feasible deadlines
to the problem of finding an integer vector k™®* in cone(0, {1, ..., n}) other than the
vertex 0. If this point is found, then (20) permits to compute the space of EDF fea-
sible deadlines. Unfortunately, the complexity is still proportional to the cardinality
of domK, which is [T/_, (k™ + 1) — 1. How do we search for a suitable point k™**
that minimizes the complexity?

We propose to span onto all the integer vectors in cone(0, {1, ..., n}), moving to
the direction of the vertex. This strategy can be effectively treated as an Integer Linear
Programming (ILP) problem.

The first constraint of the ILP problem must translate the property that k €

cone(0, {1, ...,n}). From (18), it follows that the constraint is expressed by the in-
equality
Vi=1,....n ki(]}—Ci)—ijCjZO. (25)
J#L

Then a second constraint must erase the vertex from the cone because we require (see
Theorem 2) that k # 0. Hence we add

Zk,‘ >1 (26)
i=1

which erases only 0 from N".

Finally, we set the minimization direction for reducing the cardinality of domK.
The goal of the problem is to minimize [[; (k; + 1). However this function is not well
suited for the ILP problem because it is not linear. Hence we choose the following
convenient linear cost function

n
minimize Zk,- (27)
i=1

which approximates |dom K] at the first order in the point 0.

Now, it is worth showing how the previous result can be applied to compute the set
domK for the task set of the Example 1. When C = (2, 3) and T = (4, 7), the solution
of the ILP problem is k™** = (2, 1). In Fig. 10, black dots represent the integers that
belong to domK. For each k € domK we also represent cone(k, k). It can be seen
that all the integers are dominated by some k € domK, as proved in Theorem 2. It can
also be noticed that cone((2, 0), {1}) € cone((1, 0), {1}) meaning that in this example
it would be enough to consider domK = {(1, 0), (0, 1), (1, 1), (2, 1)}, erasing (2, 0).
However this tighter reduction of points in domK is extremely challenging when it
has to be generalized to an n-dimensional space.

In the next subsection we investigate what parameters affect the complexity of the
set domK.

@ Springer

42 Real-Time Syst (2009) 41: 27-51

5.1 Complexity of domK

From Figs. 9 and 10 it is quite clear that the solution to the ILP problem described
in (25), (26), and (27) depends on the width of the cone. The wider the cone, the
smaller the solution, and consequently the fewer points in domK.

For measuring the cone width we translated the n hyperplanes of the boundary in
such way the ith hyperplane passes through the vector e;, which has all zeros except
in the ith, position where it has 1 (see Fig. 11 for a graphical representation). Then,
we computed the intersection point k'™: if k"™ has large coordinates then the cone is
narrow, and vice versa. The coordinates of ki"* are the solution of the following linear
system:

T, — C; —C> —Cy T, — Ci
—C Tn—Cy ... —Cy) T, —Cy

.) i . k"M =)
—C) .. T,—C, T, — C,

and, by Cramer’s rule, we find

(T =CHA =3, Up+>,,C;iA-Uj))
Ti(1-U)

kit = (28)

The coordinates of ki™ are inversely proportional to 1 — U, whereby the set domK
grows as U approaches 1. Therefore, for small values of U, the size of dom K is small.
On the other hand, as the total utilization U approaches 1, the size of dom K increases
and, consequently, the complexity of (20) grows exponentially with 7.

Fig. 10 An example of domK

Fig. 11 Finding the width of

the cone 8 k2
6 -
4 - hyperplane 2
2 -
d hyperplane 1
yperp kl

@ Springer

Real-Time Syst (2009) 41: 27-51 43

Note that the dependency of the complexity on the total processor utilization U
is also typical of the processor demand test proposed by Baruah et al. (1990), which
requires to test all the absolute deadline not exceeding Z’(Tl’%f’w’ This confirms
that, as the total utilization U approaches 1, the EDF schedulability guarantee tests

become intrinsically more complex.

U approaching 1 ~ Although real-time systems should be designed to have a total uti-
lization well below 1, overload conditions can occur for several reasons, so it is inter-
esting to analyze what happens when the total processor utilization U approaches the
value of 1. We already observed that as U approaches 1, the cone cone(0, {1, ..., n})
becomes narrower. When U is exactly 1, the cone becomes an half-line and the solu-
tion of the ILP problem may become impractical.

Let us explicitly consider the case when n =2 and U = U; 4+ U, = 1. When
formulating the ILP problem, the constraints of the cone (25) become

(T1 — Cky — C2ka =0
—Cik1 — (I — C2)k2 = 0

(1 = Uk — ToUzkz = 0
TUiky — To(1 = U2)ka =0 (29)

Tiky — Toko >0
Tiky — Tokr <0

Tk = Trky
The integers (ki, k2) which solves (29) are k| = % and kp = %, where m is the
greatest number such that Ty =rym, To =rom,and ri,r, € N.

This solution suggests that when the total utilization U is equal to 1 then the
complexity of the set domK becomes tightly related with the integer relationships
among the task periods. Such a remark is in accordance to the well-known property
of the EDF guarantee test (Baruah et al. 1990), which becomes more complex as the
least common multiple of the periods increases.

In the next subsection we show some simulations which confirm the previous ob-
servations.

5.2 Simulations

In these experiments we explored the dependency of the cardinality of domK on the
utilization U and the harmonicity of the periods, which we define as the ratio between
the least common multiple and the greatest common divisor of all the periods. The
cardinality of domK is measured by [[; (k]"** + 1), where k™* is the optimum of the
ILP problem described in (25)—(27).

In all the experiment the number of tasks has been set equal to 5, since the de-
pendency on the number of tasks is exponential and it didn’t require further investi-
gation. The task utilizations are real numbers extracted randomly using the UUniFast

@ Springer

44 Real-Time Syst (2009) 41: 27-51

Fig. 12 Dependency of the _————
utilization

9

—_
S

—
(=]
|/

—_
(=)
)

|

cardinality of domK

o

T T T T T T T T T
01 02 03 04 05 06 07 08 09 1
task set utilization

algorithm (Bini and Buttazzo 2005), which generates uniform utilizations. The task
periods are integers generated as the product of four factors extracted randomly in
the set {1, 2, 3, 4, 5}, in order to reproduce different values of harmonicity.

Dependency on the utilization In the first experiment we explored the dependency
of the cardinality of dom K on the task set utilization U. 10000 random task sets have
been generated for each utilization value. The result is reported in Fig. 12. It can
be noticed that, as expected, the cardinality of domK (plotted in log scale), grows
with U. As the utilization gets closer to 1, |[dom K| grows up to very high values.

Dependency on the harmonicity In the second experiment we explored the depen-
dency on the harmonicity of the task set, defined as the ratio between the least com-
mon multiple (LCM) and the greatest common divisor (GCD) of the periods. We
selected three possible utilizations (1, 0.95 and 0.5). For each utilization value we
generated 1000 task set and we plotted the resulting value of [domK] (see Fig. 13.
Both axes are in log scale). In the figure we also plot the linear interpolation of the
points. We can notice a clear dependency on the harmonicity. In the extreme case
U =1 this dependency becomes very significant.

These experiments confirm the results regarding the complexity shown in
Sect. 5.1.

6 A convex approximation of the D-space

Considering the high complexity of the method for determining the region of the fea-
sible deadlines, in this section we propose a simpler approach for deriving an approx-
imate region. We will prove that the resulting sufficient region is convex, allowing
convex optimization routines to efficiently find the optimal deadline assignment.

The complexity of finding the exact region mainly comes from the floor operator,
which forced us to introduce the integer variables k; .

@ Springer

Real-Time Syst (2009) 41: 27-51 45

©

Fig. 13 Dependency on the
harmonicity

—_
(=]

—_
<
>

._.
o
=

cardinality of domK
S

10° 10" 10° 10° 10* 10° 10°
harmonicity (LCM/GCD)

Now we attempt to simplify the feasibility condition of (1) by relaxing the floor
operator. Clearly, the resulting analysis loses necessity, but it gains greater simplicity
with respect to the exact approach.

We start from the classical processor demand tests, which asserts that a set 7 =
{r1,..., 1,} of n periodic tasks is schedulable by EDF if and only if

" t+ 7T, — D;
vVt € diSet Zmax {0, L%J } C; <t (30)
i=1 i

where dISet is the set of deadlines within the least common multiple of the task
periods H (called hyperperiod) not exceeding the value

Yo (Ti — D)U; }
1-U

Lmaxzmax{Dl,...,Dn,

Hence, we can say that condition (30) has to be tested V¢ € dISet, where
diSet = {d;i is an absolute deadline | d;; < min(Lmyax, H)}. 31

A first simplification can be done by removing the “max” operator. As shown by
Chantem et al. (2006), the max operator can be removed when the second term is
greater than or equal to zero. That is when

t+T —D;
Vt € diSet, Vi L¥Jzo

T;
t+T;,— D;
- >0
T, - (32)
VtedlSet,Vi t+7T;,—D; >0

Vit ediSet,Vi D; <t+T;
Vi Di =< Tz + Dmin

Vt € dISet, Vi

@ Springer

46 Real-Time Syst (2009) 41: 27-51

Fig. 14 The approximated
region

0 T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 Dy

where Dpi, denotes the minimum deadline. Under this assumption, the necessary
and sufficient condition becomes:

n

t+ T — D,
ViedSet {%J Ci <t. (33)
i=1 !

By removing the floor we easily find the following sufficient condition:

n

t+T — D;
ViedsSet Y %Ci <t (34)
i=1 i

from which it directly follows that the feasible deadlines must satisfy

n n n
Vi € diSet ZUiDizZCi—t<l—ZUi> (35)
i=1 i=1 i=1

Now we observe that (35) must be intersected for all values of ¢ in dISet. The
condition becomes more and more stringent as ¢ decreases. Hence, the most stringent
condition is achieved when t = Dyy;,, which is the minimum deadline. As a conse-
quence, the sufficient schedulability condition becomes

n n n
Y UiDi=) Ci— Dmm<1 - ZU,) (36)
i=1 i=1 i=1

In Fig. 14 we compare the approximated region (darker) with the exact region of
Example 1.

Convexity We now investigate whether the resulting region is convex or not. First
of all we recall that (36) is valid only in the hypothesis of (32), which can be restated

@ Springer

Real-Time Syst (2009) 41: 27-51 47

as follows:
Vi D; = T; + Dmin
Vi,j Di <T;+ Dmin <T; + D; (37)
Vi,j Di—D;<T;

which is convex because it is the intersection of half spaces. Similarly, the condition
in (36) is equivalent to

Vj Dj<l—ZU,~>+ZU,~D,-zZC,~ (38)

i=1 i=1 i=1

which is convex for the same reason. Since the overall region is determined by inter-
secting (37) and (38) it is also convex, and delimited by n? linear constraints.

Efficiency The convexity of the approximated region allows to efficiently find the
solution of the optimal deadline assignment problem on the region described by (36).
However, the cost of approximating the exact region by the convex sub-region is not
clear. To evaluate such a penalty, let J : R” — R be the system cost to be minimized
expressed as a function of the task deadlines. We say that the cost J is deadline
increasing when

VD, Vi Di<D, = J(D.....Di,....D,)<J(Dy,....D},....D,) (39)

This property is very natural, since it is expected that reducing any deadline can only
reduce the system cost.

In the hypothesis of a deadline increasing system cost, then deadline assignment
D is always superior to all the assignments within the region {D’ € R" : Vi D! > D;}.
Hence, under this assumption, a solution within the convex constraint of (36) is al-
ways superior to all the deadline assignments within the darker grey region depicted
in Fig. 15. From the figure, we can see that the solution found on the convex ap-
proximation has a better performance of a large portion of the space of all feasible

Fig. 15 Quality of the solution

on the convex sub-region Bl,
0
¢
6
o]
)]
07““””“””
o 2 4 6 8 10 12 14 16 18Dy

@ Springer

48 Real-Time Syst (2009) 41: 27-51

deadlines. The only part that is not covered is the area around the staircase boundary
that needs to be explored explicitly. However the solution on the convex sub-region
can be an excellent starting point for further improvement.

7 Application of the D-space

The natural application of the D-space is the selection of feasible task deadlines that
optimizes a given performance function. Hence the work presented in this paper can
only be considered a first step toward the final goal of performing the optimization of
task deadlines.

To clarify the benefit of the knowledge of the D-space, we propose a simple exam-
ple with two tasks. We choose only two tasks to simplify the graphical representation.
In the rest of the explanation we will stress the aspects that are negatively affected by
the number of tasks.

Example 2 Let us consider a task set with parameters 77 = Dy =4, C; = 2,
T, = Dy =7, and C, = 3.5. Suppose that our goal is to modify the deadlines such
that D% + D% is minimized. If we apply the existing deadline minimization algo-
rithm (Balbastre et al. 2006; Hoang et al. 2000) starting from the given implicit dead-
line assignment, we find D = 3.5 and D, = 7 if we start minimizing D1, or D; =4
and D, = 6.5 if we start minimizing D;. In these two cases, we achieve a cost of
D% + D% = 61.25 and 58.25, respectively. However previous research papers do not
permit to determine whether a better deadline assignment is possible or not.

If we attempt to find the region of feasible deadlines, first we need to find a finite
set domK that has the covering property of (19). In fact, this set of integer vectors
allows us to define the feasible deadlines (20).

Theorem 2 suggests that if we find K™ € cone(0, 1, ..., n), k™ £ 0, then the
set domK = {0 < ky < k"™, 0 < k < ky'*, Kk # 0} has the desired property. K™**
can be found by solving the ILP problem constrained by (25) and (26) whose goal is
given by (27). In the example that we are considering, the ILP problem becomes

minimize k; + k>

Tiky =Thky = 4k =Tk
subjectto {k; +kr >0
k] , kz eN

whose solution is (k1, k2) = (7, 4). Notice that if the number of tasks grows, solving
the ILP problem can be very time consuming.

By applying Theorem 2, we have that domK = {0,...,7} x {0, ...,4}\ {(0,0)}
allows the description of the exact region of feasible deadlines, which is depicted in
Fig. 16. In the figure, we denote by a white dot the nominal values of the deadlines
D=4,7).

Since the goal of the deadline selection is the minimization of D + D3, the level
curves of the cost function are circles centered in the origin. Hence, from the figure,
we can notice that by assigning the deadlines D; = 5.5 and D, =5 (or equivalently

@ Springer

Real-Time Syst (2009) 41: 27-51 49

Fig. 16 Feasible deadlines of
the example

D; =5 and D, = 5.5) we achieve the minimum cost (55.25), which is lower than the
cost found using the previous methods (Balbastre et al. 2006; Hoang et al. 2006).

In the figure it can be noticed also that, if the convex set of feasible deadlines
is used, then the solution found is D1 = D, = 5.5, achieving a cost of 60.5. The
simplicity for finding the solution onto the convex constraint is paid in terms of an
increase of cost.

However, we must say that for a large number of tasks, this process would be
very inefficient, since it requires the enumeration of all the possible local minima.
We are currently investigating whether it is possible to perform the optimal deadline
assignment more efficiently.

8 Conclusions

In this paper we addressed the problem of finding the region of feasible deadlines
for a periodic task set scheduled by EDF. In particular, we presented a general analy-
sis technique to describe the exact region and we provided a method to reduce the
number of points so as to decrease the complexity of the computation.

We finally presented an O (%) method for identifying an approximate convex re-
gion, which can be efficiently used to apply performance optimization.

We believe that the present approach is promising for enhancing the performance
of delay/jitter sensitive applications and applying sensitivity analysis in the deadline
domain.

References

Balbastre P, Ripoll I, Crespo A (2006) Optimal deadline assignment for periodic real-time tasks in dynamic
priority systems. In: Proceedings of the 18th Euromicro conference on real-time systems, Dresden,
Germany, July 2006, pp 65-74

Baruah SK, Burns A (2006) Sustainable schedulability analysis. In: Proceedings of the 27th IEEE real-time
systems symposium, Rio de Janeiro, Brazil, December 2006, pp 159-168

Baruah SK, Howell R, Rosier L (1990) Algorithms and complexity concerning the preemptive scheduling
of periodic, real-time tasks on one processor. Real-Time Systems 2:301-324

@ Springer

50 Real-Time Syst (2009) 41: 27-51

Baruah SK, Buttazzo G, Gorinsky S, Lipari G (1999) Scheduling periodic task systems to minimize out-
put jitter. In: Proceedings of the 6th international conference on real-time computing systems and
applications, Hong Kong, December 1999, pp 62-69

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Systems
30(1-2):129-154

Bini E, Di Natale M (2005) Optimal task rate selection in fixed priority systems. In: Proceedings of the
26th IEEE real-time systems symposium, Miami, FL, USA, December 2005, pp 399409

Bini E, Di Natale M, Buttazzo GC (2006) Sensitivity analysis for fixed-priority real-time systems. In:
Proceedings of the 18th Euromicro conference on real-time systems, Dresden, Germany, July 2006,
pp 13-22

Buttazzo G, Cervin A (2006) Analysis and evaluation of jitter control methods. Technical report RETIS-
TRO06-01, Scuola Superiore Sant’ Anna, Pisa, Italy

Buttazzo G, Sensini F (1999) Optimal deadline assignment for scheduling soft aperiodic task in hard real-
time environments. IEEE Trans Comput 48(10):1035-1052

Cervin A (1999) Improved scheduling of control tasks. In: Proceedings of the 11th Euromicro conference
on real-time systems, York, UK, June 1999, pp 4-10

Cervin A, Lincoln B, Eker J, Arzén K-E, Buttazzo G (2004) The jitter margin and its application in the
design of real-time control systems. In: Proceedings of the 10th international conference on real-time
and embedded computing systems and applications, Goteborg, Sweden, August 2004

Chantem T, Sharon Hu X, Lemmon MD (2006) Generalized elastic scheduling. In: Proceedings of the
27th IEEE real-time systems symposium, Rio de Janeiro, Brazil, December 2006, pp 236-245

Crespo A, Ripoll I, Albertos P (1999) Reducing delays in RT control: the control action interval. In:
Proceedings of the 14th IFAC World Congress, Beijing, China, July 1999, pp 257-262

Davidson C (1973) Random sampling and random delays in optimal control. PhD thesis, Department of
Optimization and Systems Theory, Royal Institute of Technology, Sweden

Di Natale M, Stankovic JA (2000) Scheduling distributed real-time tasks with minimum jitter. IEEE Trans
Comput 49(4):303-316

Hoang H, Buttazzo G, Jonsson M, Karlsson S (2006) Computing the minimum EDF feasible deadline
in periodic systems. In: Proceedings of the 12th IEEE international conference on embedded and
real-time computing systems and applications, Sydney, Australia, August 2006, pp 125-134

Kalman RE, Bertram JE (1959) A unified approach to the theory of sampling systems. J Franklin Inst
267:405-436

Kushner HJ, Tobias L (1969) On the stability of randomly sampled systems. IEEE Trans Autom Control
14(4):319-324

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.
J Assoc Comput Mach 20(1):46-61

Lluesma M, Cervin A, Balbastre P, Ripoll I, Crespo A (2006) Jitter evaluation of real-time control systems.
In: Proceedings of the 12th IEEE international conference on embedded and real-time computing
systems and applications, Sydney, Australia, August 2006, pp 257-260

Marti P, Fuertes JM, Ramamritham K, Fohler G (2001) Jitter compensation for real-time control systems.
In: Proceedings of the 22nd IEEE real-time system symposium, London, UK, December 2001, pp 39—
48

Nilsson J, Bernhardsson B, Wittenmark B (1998) Stochastic analysis and control of real-time systems with
random time delays. Automatica 34(1):57-64

Racu R, Hamann A, Emnst R (2006) A formal approach to multidimensional sensitivity analysis of em-
bedded real-time systems. In: Proceedings of the 18th Euromicro conference on real-time systems,
Dresden, Germany, July 2006, pp 3-12

Seto D, Lehoczky JP, Sha L, Shin KG (1996) On task schedulability in real-time control systems. In:
Proceedings of the 17th IEEE real-time systems symposium, Washington, DC, USA, December 1996,
pp 13-21

Seto D, Lehoczky JP, Sha L (1998) Task period selection and schedulability in real-time systems. In:
Proceedings of the 19th IEEE real-time systems symposium, Madrid, Spain, December 1998, pp 188—
198

Zheng Q, Shin KG (1994) On the ability of establishing real-time channels in point-to-point packet-
switched networks. IEEE Trans Commun 42(2-4):1096-1105

@ Springer

Real-Time Syst (2009) 41: 27-51

51

Enrico Bini is assistant professor at the Scuola Superiore Sant’ Anna
in Pisa. He received the Ph.D. in Computer Engineering from the
same institution in October 2004. In 2000 he received the Laurea de-
gree in Computer Engineering from “Universita di Pisa” and, one year
later, he obtained the “Diploma di Licenza” from the Scuola Superiore
Sant’Anna.

In 1999 he studied at Technische Universiteit Delft, in the Netherlands,
by the Erasmus student exchange program. In 2001 he worked at Erics-
son Lab Italy in Roma. In 2003 he was a visiting student at University of
North Carolina at Chapel Hill, collaborating with prof. Sanjoy Baruah.
His research interests cover scheduling algorithms, real-time operating
systems, embedded systems design and optimization techniques.

Giorgio Buttazzo is Full Professor of Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa. His main research interests in-
clude real-time operating systems, dynamic scheduling algorithms,
quality of service control, multimedia systems, advanced robotics ap-
plications, and neural networks. Prof. Buttazzo has been Program Chair
and General Chair of the major international conferences on real-time
systems. He is a member of the IEEE Technical Committee on Real-
Time Systems and of the Euromicro Executive Board on Real-Time
Systems. He has authored 6 books on real-time systems and over 200
papers in the field of real-time systems, robotics, and neural networks.
For the importance of results achieved in his research, in 2005 Prof.
Buttazzo received the title of Senior Member of IEEE.

@ Springer

	The space of EDF deadlines: the exact region and a convex approximation
	Abstract
	Introduction
	Terminology and assumptions
	Problem statement
	The space of EDF feasible deadlines
	Reducing the set of k's
	Complexity of domK
	U approaching 1

	Simulations
	Dependency on the utilization
	Dependency on the harmonicity

	A convex approximation of the D-space
	Convexity
	Efficiency

	Application of the D-space
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

