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Abstract The steadily growing embedded-systems market comprises many applica-
tion domains in which real-time constraints must be satisfied. To guarantee that these
constraints are met, the analysis of the worst-case execution time (WCET) of software
components is mandatory. In general WCET analysis needs additional control-flow
information, which may be provided manually by the user or calculated automatically
by program analysis. For flexibility and simplicity reasons it is desirable to specify
the flow information at the same level at which the program is developed, i.e., at the
source level. In contrast, to obtain precise WCET bounds the WCET analysis has to
be performed at machine-code level. Mapping and transforming the flow information
from the source-level down to the machine code, where flow information is used in
the WCET analysis, is challenging, even more so if the compiler generates highly
optimized code.

In this article we present a method for transforming flow information from source
code to machine code. To obtain a mapping that is safe and accurate, flow informa-
tion is transformed in parallel to code transformations performed by an optimizing
compiler. This mapping is not only useful for transforming manual code annotations
but also if platform-independent flow information is automatically calculated at the
source level.
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We show that our method can be applied to every type of semantics-preserving
code transformation. The precision of this flow-information transformation allows its
users to calculate tight WCET bounds.

Keywords Worst-case execution time analysis · Real-time languages · Compiler
optimizations · Code transformation · Abstract interpretation · Graph transformation

Abbreviations
WCET Worst-case execution time
BCET Best-case execution time
IPET Implicit path enumeration technique
LCFG Control-flow graph with loop-scope information

1 Introduction

The calculation of a WCET bound is necessary to guarantee the timeliness of real-
time computer systems. To calculate a tight WCET bound one has to consider infor-
mation about the possible control-flow paths of the program. We call this information
flow information, typically given as program annotation. Due to the complexity of
program analysis, it is not possible to extract all flow information directly from the
source code (Kirner and Puschner 2003).

There are two reasons for using program annotations for WCET analysis at the
source-code level: (1) When calculating flow information automatically, the static
program analysis can take advantage of the abstract system view of the source-
code level with availability of explicit information about the program, like control-
flow structure or alias information. This allows to use compiler-independent gen-
eration of flow information. (2) When manually written flow information is added
to refine the automatically generated flow information, it is much more convenient
for the developer to specify them at the source-code level. Annotating the ma-
chine code is not a desirable solution as it requires that the programmer studies the
compiler-generated machine code and understands the code transformations done
by the compiler. Therefore, if there is need for annotations, the preferred solution
is to annotate the program source with flow information and to transform the flow
information automatically, while optimizing the code (Kirner and Puschner 2001;
Engblom et al. 1998).

However, in contrast to this plea for the source-code level, WCET analysis has
to be performed at the machine-code level to be able to calculate tight upper WCET
bounds. At the machine-code level the exact timing of all operations and the exact
addresses of memory locations accessed is known (Wilhelm et al. 2008; Ferdinand et
al. 2001), and therefore an accurate modeling of the timing behavior is possible.

When code is translated by means of an optimizing compiler it is in general not
possible to find a safe and precise match of the source-code flow information to the
machine code (Engblom et al. 1998). Annotating flow information at the machine-
code level is the state-of-the-art workaround to this problem in industry.

Performing code optimizations for real-time systems is important, because real-
time systems typically use embedded processors with restricted processing resources.
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The requirement to restrict processing resources is due to the cost pressure from
mass-market applications or low power consumption requirements for mobile de-
vices. For example, our project partners from the automotive industry sector ex-
pressed the wish to support the annotation of source code for optimizing com-
pilation. Typical code optimizations that improve performance are loop optimiza-
tions, since most of the execution time is typically spent within loops. Examples
of loop optimizations are loop blocking for improving the locality of memory ac-
cesses and loop unrolling, which enables loop scheduling. Such transformations
change the structure of the program significantly and require non-trivial adaptions
of flow information. Marlowe et al. reported on a case in which the application of
several code transformations for reducing the average execution time had serious
impacts on code timing and caused deadline misses (Marlowe and Masticola 1992;
Younis et al. 1996).

In general, a code optimization consists of an applicability check (verifying its
precondition) and a code transformation (establishing its postcondition). Our safe
update of flow information depends only on the performed code transformation but
not on the operations performed to check the precondition. In contrast to empiric
flow information gathered by code profiling (Ball and Larus 1996), we focus on the
precise update of flow information during compilation.

2 Related work

While the research community has spent lots of efforts to develop WCET analysis
methods and to model many different types of target processors and hardware ar-
chitectures, the implications of using optimizing compilers for WCET analysis have
received little attention.

Mok et al. (1989) use special event markers to keep a mapping between the C
source and the assembly code. These event markers are automatically inserted as
annotations into the source code by a tool. A modified compiler is used to transform
the annotations to assembly code and to generate a timing analysis language (TAL)
script. The approach demands considerable high user interactions, as the generated
TAL script has to be edited manually to specify flow information.

Park et al. modified the GNU C compiler to perform WCET analysis on programs
written in a subset of the C language (Park and Shaw 1991; Park 1993). The analysis
is done at source code by predicting the code that is generated by the compiler with
deactivated optimizations. This WCET-analysis approach works well only with the
absence of code optimizations performed by the compiler.

Extensive research has been done on using debug information to perform sym-
bolic analysis of optimized code (Jaramillo et al. 1998). However, the use of such
transformed debug information does not help to perform WCET analysis on opti-
mized code because symbolic debugging uses only a structural mapping, but does
not reflect the exact changes of control-flow logic. Thus, the support of symbolic
debugging is not sufficient to reconstruct flow information at machine-code level.

Ferdinand et al. (2001) describe a WCET framework that allows the programmer
to express flow information like loop/recursion bounds at the source code. Since the
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authors use an external tool for the transformation of flow information, without sup-
port by the compiler, the applicability of their approach requires to restrict the set of
permitted code optimizations.

Compilers have also been used to output information describing the control flow
or memory-access addresses (Lim et al. 1995; Healy et al. 1999). These described
approaches mostly focus on providing information to model the target hardware for
WCET analysis, whereas they do not describe the modification of flow information in
case of structure-changing code optimizations. Healy et al. (2000) extended a com-
piler to calculate loop bounds automatically for certain types of loops and to cal-
culate certain branch constraints (Healy and Whalley 2002). Thus, their approach
reduces the number of required code annotations. A similar loop analysis has been
implemented by Cullmann and Martin (2007). More generic methods for calculating
flow information have been developed by Gustafsson et al. (2006), Gustafsson and
Ermedahl (1998) and Lokuciejewski et al. (2009). Both approaches are based on ab-
stract interpretation. Such calculation techniques for deriving flow information are
valuable and helpful, but they cannot calculate all types of flow information, i.e., they
do not completely eliminate the need for manual flow-information annotations and
automatic transformation of flow information.

Vrchoticky (1994) developed a fully integrated code compilation and WCET
analysis for the Modula/R language. The optimizations performed by the compiler are
rather simple and do not support structure-changing code optimizations. Lokuciejew-
ski (2007) extended a research compiler to minimize the WCET based on feedback
from WCET-analysis.

Lim et al. (1998) let the compiler generate information that characterizes the op-
timizations performed during compilation. Their WCET analysis method is based
on the extended timing schema and loop bounds are the only type of supported flow
information. By using labels and transformation rules, their approach is powerful
enough, for example, to model the construction of a new loop from two loops in the
original code. However, instead of calculating the new loop bound automatically, this
approach requires to user to compute the new loop bound manually.

Engblom et al. (1998) published a more advanced approach for compiler-
generated optimization traces, called co-transformation. They designed an optimiza-
tion description language (ODL) to describe the code optimizations performed by
the compiler. A more detailed discussion about the capabilities of ODL is given in
Engblom (1997).

The co-transformer of Engblom et al. is currently the most advanced related ap-
proach published that deals with updates of flow information that reflect code trans-
formations. The approach presented in this article provides the following advances:

– By linking flow information to basic blocks, the co-transformer is incapable of
supporting many common code optimizations, for example, branch optimization.

The technique we present in this article links flow information to control-flow
edges, which in combination with the transition rules described in Sect. 5 allows
us to support arbitrary code transformations for which it is possible to bound the
iteration count for all loops in the transformed program.

– The flow-information domain of the co-transformer allows to express bounds on
the execution frequency of basic blocks. This flow-information domain does not
allow to express other forms of flow information to describe infeasible paths.
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We support a wider range of flow information based on linear flow constraints,
as described in Sect. 4. Further, our approach supports the update of flow informa-
tion for hierarchical program representations by introducing special predicates that
represent all relevant information about flow information within composed blocks.
The latter enables the precise support of code optimizations like, for example, loop
unrolling.

Our flow transformation framework works on the inter-procedural control-flow
graph, which enables the support of inter-procedural program optimizations.

3 WCET calculation with flow information

As we will in the following focus on transformations of flow information, this section
describes the use of flow information that is supported.

The WCET analysis method used with the proposed framework is based on the im-
plicit path enumeration technique (IPET) (Li and Malik 1995; Puschner and Schedl
1997). This method is quite flexible and allows to model the whole program or func-
tion as one IPET problem. This method allows to specify flow information that de-
scribes dependencies between the execution frequency of arbitrary parts of a program.

For calculating a WCET bound via IPET, the structure of a program’s control-
flow graph (CFG) is translated into a set of flow constraints on a graph. Solving the
resulting IPET problem yields a WCET bound. The solution can be calculated using
standard methods like integer linear programming. We give a short introduction to
IPET-based WCET analysis to demonstrate the expressiveness of the described flow
information.

The structure of a program is given by its control-flow graph CFG = 〈N,E, s, t〉,
where N is the set of program nodes (basic blocks) and E ⊆ N × N is the set of
control-flow edges. We assume a unique entry node s and exit node t . An edge e =
AB ∈ E denotes control-flow passing from node A to node B .1

Each control-flow edge ei ∈ E is labeled with the maximum execution time τi of
the corresponding code statements. The flow (total execution count) of an edge ei ∈ E

is denoted as fi . Using the IPET method, the WCET is expressed by the following
target function using the variables fi and the constants τi :

WCET = max
∑

ei∈E

fi · τi (1)

A flow variable fi represents the overall execution count of the edge ei after one exe-
cution of the program. Note that in case of complex processors it would be necessary
to split the execution count into different contexts, like cache hit or miss (Ferdinand
et al. 2001).

The CFG is modeled by a set of constraints over the flow variables fi . Further-
more, it is assumed that each such flow variable holds a positive integer.

1In practice it can happen that temporarily there exists more than one edge between two nodes during
code transformations. In such cases it would be necessary to model edges with an additional identifier:
E ⊆ N × N × ID. For simplicity of presentation we omit such an identifier and simply use E ⊆ N × N .
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Fig. 1 Modeling program
structures

The structure of the resulting IPET constraints is explained with help of two ex-
amples, with P standing for predecessor node and S for successor node (Fig. 1).

Figure 1a gives an example of a CFG that represents conditionals. Besides the
constraints describing the static structure, no additional flow information is required
to model the control flow of this CFG. The possible control flow can be expressed by
the IPET constraints given in (2). These constraints simply express that for each node
the incoming flow is equal to the outgoing flow.

fPA = fAB + fAC

fAB = fBD

fAC = fCD

fBD + fCD = fDS

(2)

Let us assume, analysis of the code determined that the execution count of edge AB
is at most half of the execution count of edge AC. This information can be expressed
by the following additional flow constraint:

2 · fAB ≤ fAC

An example of a loop is given in Fig. 1b. Besides the constraints describing the
loop structure, WCET analysis requires at least some flow information that describes
the upper loop bound of each loop. The lower loop bound (LLB) and the upper loop
bound (ULB) are a lower and upper bound of a loop’s iteration count:

0 ≤ LLB ≤ loop_iteration ≤ ULB

The flow equations of the loop construct are as follows:

fPA + fBA = fAB + fAS

fAB = fBA

The upper loop bound ULB is expressed by the following flow constraint:

fAB ≤ ULB · fPA

In addition to upper loop bounds, flow information can be used to express further
knowledge about the control-flow behavior of the code. Such flow information can be
derived, for example, by static code analysis or from explicit annotations given by the
programmer who has additional knowledge about the input parameters. A program-
ming language that allows to specify flow information in the form of source-code
annotations is described in Kirner (2002).
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To summarize, the control-flow structure and all available flow information is
translated into IPET constraints. A WCET bound is calculated by searching the max-
imum flow fulfilling these IPET constraints.

4 The flow-information domain of the transformation framework

In this section we present the domain of flow information we support by our flow-
information transformation framework.

To demonstrate the application of the flow-information domain we use the small
sample code given in Fig. 2a. This code contains two loops and a simple conditional
statement. For the outer loop we assume that static code analysis has found the pos-
sible number of iterations to be within the interval [1 . . .4]. The inner loop has a
hard-coded loop bound of 8. The function even(n) �→ {0,1} returns 1 iff the argu-
ment n is a multiple of 2. The corresponding CFG for the code is shown in Fig. 2b.

4.1 The abstract program representation

A code optimization requires a precondition to be fulfilled for applying a code trans-
formation Ft . The transformation of flow information does not depend on all the low-
level operation details of the concrete code transformation, like individual rewritings,
duplications, or placements of code. Instead, the update of the flow information only
needs to deploy knowledge about the precondition of the code optimization and the
transformation of the control-flow structure.

To filter out unneeded complexity, we focus on an abstraction F̃t (F̃t : LCFG →
LCFG) of the program transformation, operating on the control-flow structure of the
code. This abstraction works on the control-flow domain LCFG shown in Table 1,
where CFG is simply the control-flow graph, either in intra-procedural form or inter-
procedural form. The latter is needed if we want to support inter-procedural code

Fig. 2 Example code including
loop and conditional
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Table 1 LCFG—the
control-flow domain LCFG CFG×LOOPSCOPE

CFG ℘(EDGE) ∪ ℘(CALL)

LOOPSCOPE ℘(LID×LID×LBEGIN×LEND)

EDGE BB×BB . . . control-flow edge

CALL BB×BB . . . call edge

LBEGIN, LEND BB . . . first/last basic block of a loop

BB . . . reference to basic block

LID . . . loop-scope identifier

optimizations. The CFG nodes BB of EDGE refer to single basic blocks of the pro-
gram P . The two CFG nodes BB of CALL describe a call edge, denoted by the
basic block ending with the function call and the basic block of the callee entry.
The loop scope information LOOPSCOPE is used to describe the code boundaries of
loops. LOOPSCOPE has a tree structure that represents the nesting levels of loops.
LID×LID are the unique identifiers of the enclosing loop scope and the current loop
scope. LBEGIN×LEND is used to identify the code of the loop body in address or-
dering. Non-structured loops are also supported, since the loop body identification
with LBEGIN and LEND does not restrict the structure of the loop, e.g., the number
of loop entries.

Typically, LCFG does not have to be calculated explicitly since in most compiler
architectures it is implicitly given by the internal representation of intermediate code.
In most cases it will suffice to augment the existing CFG with the loop scope infor-
mation.

Example Consider the program code given in Fig. 2a with the corresponding CFG
given in Fig. 2b: The syntactic program structure CFG and the loop scope informa-
tion LOOPSCOPE are given in Fig. 2c. For an outermost loop the identifier of the
surrounding loop scope is written as “_”.

The domain LCFG contains only information that can be extracted from the code
structure. The CFG is constructed by parsing the code. LOOPSCOPE can be con-
structed from the syntactic code structure or can also be calculated by domination
relations in case of reducible loops.2 In case of nonreducible loops more complicated
algorithms are needed (Ramalingam 2002).

4.2 Supported flow information

The set of possible execution paths of a program P is described by its control-
flow structure LCFG together with the flow information fi. We define the domain
of flow information as shown in Table 2. This domain represents all the informa-
tion that is needed for a safe update of flow information by the induced function Ffi

(Ffi : FI → FI).

2A node X is said to dominate a node Y in a CFG if every possible path from s to Y goes through X.
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Table 2 FI—the domain of
flow information FI CONSTR×LBOUND

CONSTR ℘(TERMS×REL×TERMS)

TERMS ℘(NUM×EDGE ∪ NUM)

REL {=,<,≤}

LBOUND ℘(LID×LOWER×UPPER)

LOWER,UPPER NUM (non-negative integers)

FI represents the flow information and consists of a set of flow constraints
(CONSTR) and a set of lower and upper loop bounds (LBOUND). The flow informa-
tion can be used to calculate both the WCET and the BCET. Note that loop bounds
could be represented the same way as all other flow constraints, i.e., the loop bounds
given in LBOUND could be expressed indirectly by flow constraints. However, we de-
cided to handle loop bounds separately: Explicit knowledge of loop bounds is needed
for the precise transformation of flow information in case of code optimizations like
loop interchange or loop blocking (Kirner 2008). If we represent loop bounds only as
a set of flow constraints, it would be necessary to recompute the explicit loop bounds
before transforming the flow information in case of such code transformations. Keep-
ing the loop bounds explicit thus improves the performance of the flow-information
transformation, since the recalculation of the loop bounds would require to solve an
optimization problem for each loop that is to be optimized. Finally, when constructing
the IPET problem, we translate loop bounds into a set of flow constraints. While flow
constraints tend to be global flow information, i.e., constraints being able to relate the
overall execution count of arbitrary code locations in the program, the loop bounds
are always local to their loop, even if expressed by flow constraints. In case of nested
loops with non-rectangular iteration spaces (Muchnick 1997) there are, besides loop
bounds, additional flow constraints necessary to tightly express the iteration count of
the inner loop.

The structure LBOUND includes an upper bound (UPPER) and a lower bound
(LOWER) of the iteration count of each loop. UPPER and LOWER are of type NUM,
which represents the non-negative integer values. For the final calculation of a WCET
bound only the upper loop bound and for a BCET calculation only the lower loop
bound is necessary. But for the calculation of flow information and the safe update
of flow information in case of certain loop transformations, the lower and the upper
loop bounds are both needed. For example, for loop unrolling new constraints based
on the lower bound as well as the upper bound of the loop are necessary to maintain
the original precision of the flow information (Kirner 2003).

Example To give an example for the application of the flow-information domain, the
program code given in Fig. 2a is used. The loop scope information together with the
intervals [1 . . .4] and [8 . . .8] as boundaries of the loop iterations is modeled by the
data domain LBOUND:

LBOUND = {〈L1, 〈1,4〉〉, 〈L2, 〈8,8〉〉}
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The data domain LBOUND contains the additional flow information required to build
the LCFG of the code.

By analyzing the code of Fig. 2a it is possible to refine the information about
(in)feasible paths. The following linear flow constraints can be added:

– 2 · fCD ≤ 8 · fAB. This constraint models the fact that the then-path (edge “CD”:
even(i)=1) of the if-statement in the inner loop (with a constant iteration count
of 8) is executed in at most half of the loop iterations of the outer loop (edge “AB”).
This is because the outer loop starts with an uneven index. Note that the same flow
information could be equivalently expressed as 2 ·fCD ≤ 1 ·fBC; we chose the first
variant to maintain a symmetric form to the flow information described next.

– 2 · fCE ≤ 8 · fAB + 8 · fPA. This constraint models the fact that the else-path (edge
“CE”, even(i)=0) of the if-statement is executed at most 
 lic

2 �·8 times, where
lic denotes the concrete loop iteration count of the outer loop. The least upper
bound in 
 lic

2 � · 8 is necessary to compensate the case where lic is uneven, since
the else-path of the if-statement is executed every second iteration of the outer
loop, starting with the first iteration. This least upper bound is taken into account
by the flow variable fPA, which is equivalent to the entry count of the outer loop.

As a result, the set CONSTR contains the following flow constraints:

CONSTR = {〈〈〈2,CD〉〉,≤, 〈〈8,AB〉〉〉,
〈〈〈2,CE〉〉,≤, 〈〈8,AB〉, 〈8,PA〉〉〉}

4.3 Transformation of flow information

Having defined the domain of flow information we now present the foundations for
the transformation of flow information.

We induce the construction of the flow-information transformation function fi′ =
Ffi(fi) directly from the control-flow transformation LCFG′ = F̃t (LCFG) by abstract-
ing from the concrete program transformation Ft to its corresponding control-flow
transformation F̃t . This abstraction helps to reduce the complexity of deriving Ffi.
The upper part of Fig. 3 forms a commutative diagram for the calculation of the
updated control-flow structure LCFG. Transforming the concrete program (Ft ) and
abstracting it then to its control-flow structure (α) is equivalent to first abstracting the
concrete program to its control-flow structure (α) and then performing the abstract
transformation of the control-flow structure (F̃t ). This is because the transformation
of flow information is independent of the low-level implementation details of a code

Fig. 3 Derivation of the
flow-information update Ffi
from the control-flow
transformation F̃t
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Table 3 INDTRANS—a
framework for induced update
of flow information
(Ffi = INDTRANS(〈OPT, F̃t 〉))

OPT . . . identification of code optimization

F̃t LCFG −→ LCFG

Ffi TRANSCONSTR × TRANSLBOUND

TRANSCONSTR TERMS −→ TERMS

TRANSLBOUND LBOUND −→ LBOUND

transformation. The lower part of Fig. 3 visualizes that Ffi is induced from the control-
flow update F̃t .

Based on the assumption that the given flow information is safe according to De-
finition 4.1, our goal is to derive flow information for the transformed program that
is also safe. Note that this definition of safe flow information is equivalent to being
timing invariants at the corresponding annotation layer (Kirner et al. 2008).

Definition 4.1 (Safe Flow Information) A flow information fi of a program P is safe
iff for all possible initial states of program P the flow information fi is fulfilled for
the execution of P .

Typical compiler optimizations consist of a program analysis phase and a sub-
sequent program transformation phase which can also be interleaved. By using the
abstract program transformation function F̃t one can find whether different code op-
timizations fall into the same class of abstract LCFG transformations. This fact sim-
plifies the design of a transformation function Ffi that is both complete and safe.
Code optimizations at the instruction level do not require an update of flow informa-
tion. Only transformations that change the control flow, i.e., the data domain LCFG,
affect the flow information.

5 A framework for flow-information transformation

To specify the flow-information updates induced by a code transformation, we have
developed a graph transformation framework that supports graph hierarchies with
“boundary-crossing” edges (Drewes et al. 2002).

The fact that the flow-information update function Ffi is induced from knowl-
edge about the concrete code transformation OPT and the LCFG update is denoted
as Ffi = INDTRANS(〈OPT, F̃t 〉). The signatures of the transformation functions are
summarized in Table 3. In the following, each of these basic components of the in-
duced flow-information update framework is described.

We use loop interchange (Fig. 4) as a running example within this section. Loop
interchange is a code transformation that exchanges the position of two loops within
a loop nest. The loop nest has to be a perfect loop nest.3 A typical application of loop
interchange is to increase data-access locality or to produce loop-invariant expres-
sions of the inner loop. Another application domain is to enable vectorization of the
innermost loop on vector architectures.

3In a perfect loop nest the body of every loop, except the innermost one, consists of only the nested loop.
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Original Program Transformed Program
(with interchanged loops)

for i:=1 to n step 1 do

for j:=1 to 8 step 1 do

if even(i)=1 then

a[i] := a[i] + j;

else

skip;

for j:=1 to 8 step 1 do

for i:=1 to n step 1 do

if even(i)=1 then

a[i] := a[i] + j;

else

skip;

Fig. 4 Example of loop interchange

Fig. 5 LCFG Representation symbols for modeling the transformation F̃t

5.1 F̃t : specification of LCFG transformations

The specification of the performed LCFG transformation F̃t is given by a graph repre-
sentation supporting hierarchic transformations. Its modules are shown in Fig. 5. The
graph representation greatly simplifies the matching of control-flow edges between
the original and the transformed program.

The specification of a basic block Ni with edges to arbitrary predecessor nodes
Pi and arbitrary successor nodes Si that are not modified during the transformation
uses the symbols of Fig. 5a. The number of such arbitrary edges is not specified and
may be even zero. To modify these multi-edges, we use the generic name for the
predecessor nodes Pi and the successor nodes Si .

We use graph hierarchies to specify composed blocks (Fig. 5b) Such blocks can
consist of an arbitrary subgraph of composed or basic blocks. Composed blocks use
the same notation for arbitrary edges as basic blocks.

A single edge between two nodes involved in a transformation is shown in Fig. 5c.
It is important to note that each node is assumed to have only the edges explicitly
given by single edges or arbitrary predecessor and successor multi-edges.

A loop scope with loop identifier Lx and lower/upper loop bound is given in
Fig. 5d. The direct nesting of such loop scopes is shown in Fig. 5e. Arbitrary nest-
ing levels of loop scopes are denoted by the symbol given in Fig. 5f. The individual
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Fig. 6 Special highlighting for
control-flow edges of the LCFG

nested loop scopes Ly,i are marked by an additional index i with 1 ≤ i ≤ n. For ex-
ample, if we have a loop scope Ly,n with loop nesting level n relative to a loop scope
Lx then there exists a chain {Ly,i |1 ≤ i ≤ n − 1} of nested loops between them. The
iteration count of the body of loop Ly,n is therefore a multiple within the interval
[∏n

i=1 Y1,i . . .
∏n

i=1 Y2,i] of the loop bound of the body of loop Lx . These arbitrary
loop nesting levels are used to graphically describe code transformations that work
on loops with arbitrary nesting levels without modifying the nested loops between
them.

The structural description of code transformations by the graphical notation given
in Fig. 5 is used to reflect the structural control-flow changes. Additional semantic
information about the possible execution-frequency changes of control-flow edges is
given implicitly by the type of the performed code optimization. This semantic infor-
mation is available to the compiler and will be used to induce the flow-information
update function Ffi. To further support the visual development of Ffi we defined a
graphical notation that discerns different types of control-flow edges involved in the
described code transformation. The different types of control-flow edges and their
meanings are summarized in Fig. 6.

To demonstrate the use of the abstract code transformation F̃t based on the nota-
tion of Figs. 5 and 6 we use our running example of loop interchange (Fig. 4). The
transformation of the LCFG for loop interchange is shown in Fig. 7a. From Fig. 7a
we see that the control-flow structure of the program does not change, but the loop
bounds of the two loops are swapped.

The flow information of the original program, as described in Sect. 4.2, is
shown on the left of Fig. 7b using the syntax defined in Table 2. The right side of
Fig. 7b shows the updated flow information after loop interchange. The formal flow-
information transformation rules that have to be applied for loop interchange are
described by (3) in Sect. 7.1. The meaning of the assumed flow information is as
follows:

– Flow information 1 and 2 represent the loop bounds that got swapped due to the
loop interchange.

– Flow information 3 and 4 are the additional flow constraints as described in
Sect. 4.2. These two flow constraints refer both to edges CD and CE, which are
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Fig. 7 LCFG transformation and flow-information update on loop interchange

hidden in the LCFG transformation given in Fig. 7a. Since the execution count of
the body of the inner loop is not changed by loop inversion, the execution count of
edges in the inner loop body does not need to be changed. Thus, the details of the
body can be hidden for simplicity.

In this example the transformation of the flow information was without loss of pre-
cision. However, if we study the flow-information transition rules of loop interchange
given in (3) of Sect. 7.1, we will see that this would not be the case if the iteration
count of the inner loop had been variable, instead of iterating constantly 8 times.

5.2 Ffi: induced transformation of flow-information

In the following we describe the two components of the flow-information update
Ffi = TRANSCONSTR×TRANSLBOUND. Examples for their application to concrete
code optimizations are given in Sect. 7.

5.2.1 TRANSCONSTR: update of flow constraints

The transition
C−→ changes constraint terms 〈n0 · AB〉 ∈ TERMS of flow constraints.

The specification of TRANSCONSTR has the following syntax:

〈n0 · fAB〉 C−→ {〈n1 · fCD〉, 〈n2 · fEF〉, . . .}
The semantics of this transition is to replace the term 〈n0 · fAB〉 on the left and right
side of all flow constraints by the list of terms {〈n1 · fCD〉, 〈n2 · fEF〉, . . .}. If the term
〈n0 · fAB〉 does not occur in any flow constraint, such a transition has no effect.
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To give an example, lets assume we have the use update rule 〈n · fCE〉 C−→
{〈n · fGH〉, 〈3·n · fLM〉}. The flow constraint “5 · fAB ≤ 2 · fBC” will not be changed,
since the edges AB and CE do not occur within the left side of the transition
rule. In contrast, the flow constraint “2 · fCE ≤ 5 · fRS” will be transformed into
“2 · fGH + 6 · fLM ≤ 5 · fRS”.

If there is more than one transition with the same term on the left side, the seman-
tics is to create copies of these flow constraints so that all term updates are visible.
All transitions have to be applied simultaneously. If we want to delete a constraint
term, we write

〈n · fAB〉 C−→ ∅
For example, the flow constraint “5 · fAB + 1 · fCE = 1 · fGH” will be transformed by
above rule into “1 · fCE = 1 · fGH”.

If any of the two term sets of a flow constraint is empty, it is implicitly replaced
by the constant “0”.

Scaling constraint terms by an interval If the scaling value of
C−→ is a single value,

it can be directly applied to a constraint term by changing its multiplication value.
For some code transformations the relative change of the iteration count cannot

be bounded by a single scaling value. Instead, it is expressed by an interval giving
the lower and upper bound for the relative change. For example, when one moves a
block out of a loop scope where the lower and upper loop bound of the involved loop
are not equal, the relative change of the iteration count needs to be represented by an
interval.

The resulting transition has the following form:

〈n0 · fAB〉 C−→ {〈[n11 . . . n12] · fCD〉,
〈[n21 . . . n22] · fEF〉, . . .}

The semantics of this transition depends on the type of relation REL used by the flow
constraint in which the replacement is made:

REL ∈ {“<”, “≤”}: If the term 〈n0 · fAB〉 occurs in the term list on the left of the
relation we use the lower bound of the interval in the new term. Analogously, we
use the upper interval bound if the term to be updated is in the right term list.

To give an example, lets assume we have to use the update rule 〈n · fCE〉 C−→
{〈[n·3 . . . n·7] · fGH〉}. The flow constraint “5 · fAB ≤ 2 · fCE” will be transformed
into “5 · fAB ≤ 14 · fCE”. In contrast, the flow constraint “2 · fCE ≤ 5 · fRS” will be
transformed into “6 · fCE ≤ 5 · fRS”.

REL = “=”: Terms in flow constraints with an equality relation (“=”) cannot be di-
rectly updated by one of the two bounds of the scaling interval of the transition
rule. Before applying the transformation rule we first have to normalize the equality
constraint into two inequality constraints, i.e., a constraint of the form “A = B” is
replaced by the two constraints “A ≤ B” and “B ≤ A”. After this normalization the
transformation semantics for constraints with inequality relations applies.
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A further example of how to update constraint terms by an interval is given in
Sect. 7.1 for loop interchange.

Handling composed blocks The function bedges(B) represents all control-flow
edges in a composed block B . We can replace all terms referring to edges of block B

by other terms referring to edges of block C or just delete them.
The direct replacement of terms referring to edges in B by terms referring to edges

in C works if both blocks have the same syntactical structure and execution counts.
The transition of constraint terms referring to edges of the composed block B to terms
referring to edges in C is written as:

〈n0 · bedges(B)〉 C−→ 〈n1 · bedges(C)〉
The transition of constraint terms referring to edges of a composed block B also
allows to replace terms by a list of the terms of composed blocks C,D, . . .:

〈n0 · bedges(B)〉 C−→ {〈n1 · bedges(C)〉, 〈n2 · bedges(D)〉, . . .}
The typical applications of the composed block handling are optimizations that

copy a code block with optionally slight modifications. For example, loop unrolling
with an unrolling factor k replaces the loop body B by k copies B1, . . . ,Bk and one
copy Bk+1 in the remainder loop (Kirner 2008). All k + 1 code copies have the same
internal structure as the original code block B and the execution count of every edges
in B is equal to the sum of the execution count of the corresponding edges in all new
copies B1, . . . ,Bk+1:

〈n · bedges(B)〉 C−→ {〈n · bedges(B1)〉, . . . , 〈n · bedges(Bk+1)〉}
Another example for the application of composed block handling is procedure in-
lining, where each inlining creates a code copy of the procedure body. Thus, as in
the example with loop unrolling, any flow-constraint term referring to an edge of the
subroutine has to be extended by an additional term that refers to the corresponding
edge in the inlined code.

5.2.2 TRANSLBOUND: update of loop bounds

The transition
L−→ changes loop bounds 〈Lx, 〈l, u〉〉 ∈ LBOUND. Lx is the loop iden-

tifier and 〈l, u〉 represents a lower (l) and upper (u) iteration bound of this loop
(l ≤ u). For a compact representation, a loop frame 〈Lx, 〈l, u〉〉 ∈ LBOUND is de-
noted as Lx〈l, u〉. The induced update of loop bounds is given by a transition se-
quence of the following form:

Lx〈l0, u0〉 L−→ {Ly〈l1, u1〉,Lz〈l2, u2〉, . . .}
This transition removes the original loop bounds Lx〈l0, u0〉 and creates the new loop
bounds {Ly〈l1, u1〉,Lz〈l2, u2〉, . . .} instead. If no loop bounds with the key Lx exists,
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the transition has no effect. If the loop bounds are to be deleted, we write:

Lx〈l0, u0〉 L−→ ∅
If a new loop Lx with loop bounds 〈l, u〉 is introduced, we write:

∅ L−→ Lx〈l, u〉
The basic operations defined above are used to compose the flow-information up-

date function Ffi = TRANSCONSTR × TRANSLBOUND.

5.3 Grouping flow-information transitions for each code optimization

Let us assume that the following two constraint-term transitions belong to the same
code optimization:

〈n · fAB〉 C−→ 〈n·k · fBC〉
〈n · fBC〉 C−→ {〈n · fBC〉, 〈n · fCD〉}

Executing these two transitions in sequence yields an illegal scaling of the constraint
terms that could be expressed by the following unintended transition:

〈n · fAB〉 C−→ {〈n·k · fBC〉, 〈n·k · fCD〉}
For this reason, all transitions belonging to the flow-information update of a single

code optimization have to be executed simultaneously. The compiler has to generate
the set of flow-information transitions and group them for each code optimization.

5.4 Specification of flow transformations

To derive a correct and precise flow-information transformation Ffi (as described in
Sect. 5.2) from the LCFG transformations (described in Sect. 5.1) is a non-trivial
task. We do this in a systematic way with the following steps:

1. Determine the loop bound transitions
L−→ for the transformed program based on

the flow information of the original program and the knowledge about the code
transformation.

2. Determine the constraint-term transitions
C−→ for the transformed program based

on the knowledge about the code transformation.
3. Delete flow information that cannot be adequately transformed. The deletion of

flow information is also necessary if the transformation framework has been im-
plemented only partially. Note: this may result in a loss of precision and higher
pessimism of the successive WCET analysis. However, no flow information nec-
essary for computing a WCET bound will be deleted.

4. Create new flow constraints for the transformed program based on the knowledge
about the code transformation.
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Fig. 8 Example: deduction of flow transformations from flow relations

5. Annotate the code of the program transformation with the transformation func-
tion Ffi.

Based on our experience the derivation of
C−→ in step 2 is the most complex part

in determining the transformation function Ffi. Thus we developed a method to derive

the constraint-term transitions
C−→ from flow relations between the original and the

transformed program.
A flow relation is a directed acyclic graph (DAG) starting at an edge of the orig-

inal program and its leaves ending either at edges of the transformed program or at
so-called absolute flow declarations. Each intermediate node of a flow relation DAG
(DAGFR) consists of a term rewrite rule Ci : TERMS → TERMS. The derivation of

the transition rule
C−→ is done in a hierarchical way to cover all paths in the DAGFR.

For example, given the DAGFR in Fig. 8a, the resulting transition rule
C−→ is cal-

culated with the formula given in Fig. 8b. Note that we do not draw the directions
of the DAGFR edges because by convention all edges are directed from left (original
program) to right (transformed program). And if we interpret a code transformation
in the inverse direction then by convention all DAGFR edges are directed from right
to left.

By studying typical code optimizations we identified a number of useful flow-
relation operators to be used as DAGFR intermediate nodes. These flow-relation op-
erators and their semantics given as term rewrite rules are shown in Fig. 9.

Each DAGFR consists of exactly one of the flow-relation operators given in
Figs. 9a–c, which partitions the DAGFR into two parts, a left-hand and a right-hand
part. The two parts themselves are composed by zero or more flow-modifier nodes
as given in Figs. 9d–g. The numerical identifier aside the flow-relation operators in
Figs. 9a–c is used to identify its resulting flow-information transition rule.

Equal flow between the original and the transformed program is specified with the
symbol given in Fig. 9a. If the flow of the original program cannot be exactly matched
to a flow in the transformed program, we have to bound the original flow by the two
inequality symbols given in Figs. 9b and 9c.

To build matching flow relations for code transformations that change the execu-
tion counts of some edge(s), the flow of control-flow edges can be multiplied by a
constant k, as shown in Fig. 9d.
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Fig. 9 Semantics of symbols for modeling flow transformations

If the flow of an edge is split into several edges, this can be modeled by the symbol
given Fig. 9e. This symbol can also be applied in the opposite direction, i.e., if a code
transformation merges the flow of several edges into a single edge.

If the original flow is to be replaced with the flow of a new edge independently
of the original flow, this can be modeled by the symbol of Fig. 9f. Similarly, if the
original flow is to be replaced with an absolute flow declaration independently of the
flow in the new edges, this can be modeled by the symbol of Fig. 9g.

The flow-relation nodes presented above allow to derive any
C−→ (as described

in Sect. 5.2) where the constraint term transition is based on linear scalings and ab-
solute and relative flow declarations. This has proven to be sufficient to derive the
constraint-term transitions for the many different code transformations (Kirner 2008)
we investigated.

5.4.1 Examples of DAGFR and
C−→ derivation

Once the flow relations between the original and the transformed program have been

specified, the constraint-term transitions
C−→ described in Sect. 5.2 can be calculated

automatically.
Figure 10 shows some examples of DAGFR and the resulting constraint-term tran-

sitions
C−→. Since a code transformation can also be applied in the reverse direction,

the figure shows how the derived flow-information transitions are calculated for both
directions.

Relation 1 shows the update of a constraint term if the flow of an edge e in the
original program relates to the flow of an edge e′ in the transformed program by a
rational number k1

k2
, i.e., e · k1

k2
= e′. If the flow of the edge e equals the flow of edge e′,

we have the special case of k1 = 1 and k2 = 1.
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Fig. 10 Examples of flow transformations derived from flow relations

As we see in Relation 2 and 3 of Fig. 10, any DAGFR with inequalities is a source
of precision loss during the transformation, as it will result in a scaling of constraint
terms by an interval, as described in Sect. 5.2.1. These two flow relations are grouped
together, because each of them alone would result in a scaling interval either without
upper bound or lower bound.

The flow relations of Fig. 10 that include a flow summation (Relation 4) can be
directly translated from left to right. The other direction is only precise when every
original flow constraint that contains one of the terms of the right side also contains
all the other terms of the right side. If it does not contain of the given terms, then
the reverse direction of these flow relations will result in a precision loss. Flow Re-
lation 5, which is based on a relative flow declaration, shows an extreme case where
the interpretation of the DAGFR from right to left results in a scaling interval with no
upper bound. This means that any original flow in equation (<,≤) that contains the
term 〈n ·e′〉 on its right side becomes completely noneffective after its transformation.

5.4.2 Modeling flow relations of loop interchange

To demonstrate the use of our flow relations, we again use our loop interchange ex-
ample. Adding the flow relations to the specification of the LCFG transformation
given in Fig. 7, we get the flow relations shown in Fig. 11.

For each code transformation rule of the compiler the flow relations have to be
specified based on the semantics of the transformation. In our example, Relation 1
says that the flow of edge PA in the original program is equal to the flow of edge PB
in the transformed program. Relation 2 says that the flow of edge AB in the original
program multiplied by the constant Y2 (the upper loop bound of the inner loop) is at
least as high as the flow of edge AC′ in the transformed program. As a complement to
Relation 2, Relation 3 provides an upper bound for the flow of edge AB in the original
program: Relation 3 says that the flow of edge AB in the original program multiplied
by the constant Y1 (the lower loop bound of the inner loop) is at most as high as the
flow of edge AC′ in the transformed program. Relation 2 and 3 together represent the
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Fig. 11 Flow relations on loop interchange

fact that no precise flow scaling for edge AB of the original program has been found,
but a lower and upper bound have been identified in the transformed program. The
meaning of Relations 4 to 7 is analogous.

Concrete examples for the calculation of constraint term transitions
C−→ from flow

relations of several code optimizations are given in Sect. 7.

6 The completeness of the approach

Having defined the flow-information transformation framework we want to answer
the question if a safe transformation of flow information can be induced for any type
of code transformation (completeness). This section shows the completeness of the
presented flow-information update framework Ffi.

The transition
C−→ is the key operation to describe the update of information about

infeasible paths. With this operation it is possible to replace information about the
control flow of a specific control-flow edge by an arbitrary set of control-flow edges,
each edge scaled by an individual scaling value. By using intervals for scaling, the

transition type
C−→ can also be used to model the flow-information update for the

transformation of code with variable execution counts. Examples of code with vari-
able execution counts are conditional constructs or loops with a variable iteration
count. For the construction of safe and accurate flow-information transitions in case
of variable execution counts of control-flow edges, the extended format of

C−→ is
used, which allows to scale constraint terms by intervals.

The transition
C−→ is powerful enough to model arbitrary control-flow transfor-

mations of the code provided that the iteration count of all loops in the transformed
program can be bounded. The interesting question for modeling flow-information
updates is how it is possible to know which control-flow transformation has been
performed. As already described, there is sufficient information available to the com-
piler:
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– Information about the structure of the code. For several optimizations a certain
code structure or semantics is a precondition to ensure the safe application of a
given code transformation.

– Semantic information about the applied code transformation. This semantic infor-
mation includes information about the control flow update. This information is
a static property of the applied code optimization and is therefore known by the
compiler.

For example, a code transformation can be formally described by its precondi-
tions, postconditions, and invariants.

Lemma 6.1 The transition
C−→ can express the split of control flow from an edge

e in the original program P into the edges e′
1, e

′
2, . . . in the transformed program

P ′ = Ft(P ) by a flow-information transition of the form

〈n0 · fe〉 C−→ {〈n1 · fe′
1
〉, 〈n2 · fe′

2
〉, . . .}

where the constants ni > 0 have to be set appropriately to obtain a safe and precise
update of flow information.

Lemma 6.2 The transition
C−→ can express the merge of a set of control-flow edges

S = {e1, e2, . . .} in the original program P into a single edge e′ in the transformed
program P ′ = Ft(P ) by using a separate flow-information transition for each edge
e ∈ S of the form

〈n · fe〉 C−→ 〈[0 . . . n] · fe′ 〉
where the interval [0 . . . n] is a safe default approximation that has to be refined by
information available in the semantics of the code transformation Ft . If there is no
information available in Ft to refine the interval [0 . . . n] then the interval [0 . . . n] is
already the most precise scaling interval that can be obtained from the structure of a
program P .

Theorem 6.3 shows the completeness of the flow-information transformation
framework.

Theorem 6.3 For any program transformation Ft : P → P, for which the iteration
count of loops in the transformed program P ′ = Ft (P ) can be bounded relative to the
execution count of control-flow edges or to loop bounds in the original program P , the

flexible applicability of the constraint term transition
C−→ together with knowledge of

the structure of the original program P allows to specify updates of flow information
in a safe and precise way.

Proof First, we show the support for safety. We have to bear in mind that a flow
variable fe represents the execution count of its control-flow edge e ∈ CFG. The
code transformation maps the set CFG of control-flow edges of the original program
code into a new set CFG’. Since we only focus on the WCET analysis of programs
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with finite execution time there exists always a lower bound be (be ≥ 0) and upper
bound ce (ce < ∞) for the execution count of each control-flow edge e ∈ CFG:

∀e ∈ CFG: be ≤ fe ≤ ce

Given that the original program P has finite execution time then based on the as-
sumption used in the theorem it follows that the execution count of each control-flow
edge of the transformed program P ′ is also guaranteed to be bounded:

∀e′ ∈ CFG′: be′ ≤ fe′ ≤ ce′

It is assumed that based on the knowledge of the original program P and the seman-
tics of the code transformation Ft : P → P it is possible to bound the iteration count
of any loop in the transformed program P ′ = Ft(P ) relative to the execution count
of control-flow edges or to loop bounds in the original program P . Thus, we can use
for the safe update of the flow-information a constraint-term transition of the form

〈n · fe〉 C−→
∑

e∈CFG′
〈[le′ . . . ue′ ] · fe′ 〉

where the interval bounds le′ ,ue′ of each involved target edge e′ ∈ CFG’ are to be set
such that the following safety condition is met:

∑

e′∈CFG′
le′ · fe′ ≤ n · fe ≤

∑

e′∈CFG′
ue′ · fe′

It is a safety condition because it ensures that constraints of the original program may
only lose precision after the transformation (due to the scaling interval) but never
become unsafe according to Definition 4.1.

Second, we show the precision with respect to the information that is available dur-
ing code transformation. Using above safety condition, a constraint-term transition is
precise if it minimizes the following precision term:

∑

e′∈CFG′
|ue′ − le′ | · fe′

The maximum execution count fe of any control-flow edge e ∈ CFG is not known
at the transformation time of the code. But the execution-count is approximated by
the relative execution counts of the changed CFG edges, which are derived from
the structure of the code and the semantic precondition of the specific code trans-
formation. Thus, the precision criteria can be fulfilled by directly setting the proper

scaling values of
C−→ to minimize above precision term. Code transformations that

do not involve loops can only split and join control flow. Following from Lemmas 6.1
and 6.2 such transformations can be directly expressed by the flow-information tran-

sition
C−→, where the precision is set by the scaling values on the right side of the

transition. Since the scaling values are freely chosen, the most precise scaling val-
ues based on the semantics of the code transformation Ft can be selected. If loops
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are involved in the code transformation, then any split or merge of control flow can
be modeled with the maximal possible precision by taking into account the relative
iteration counts of involved loops. This is based on the assumption that the iteration
count of loops in the transformed program P ′ can be derived relative to the control
flow in the original program. �

Concluding, the framework is able to precisely update arbitrary linear flow con-
straints on the control-flow of a program. The framework is applicable to all code
transformations where loop bounds of the transformed program can be obtained from
the original program for arbitrary code structures, which is the case for almost all
code optimizations. Flow information about loop bounds is managed explicitly rather
than expressing them also as linear constraints, because this allows to transform flow
information more precisely in case of optimizations that change the iteration space
of loops. Although the specification of loop bounds and also the application of cer-
tain loop transformations is only suitable for natural loops,4 the flow-information
transformation framework can be applied to generic code structures as well by using
general constraints instead of loop bounds.

The framework in its current form cannot be applied to program transformations
which introduce loops in the code that cannot be bounded from knowledge about the
structure of the original program and the semantics of the code transformation.

7 Examples of flow-information transformation rules

The application of the flow-information transformation framework is demonstrated
by constructing the flow-information transformation rules for our loop interchange
example. Furthermore, the flow-information transformation for code optimizations
that introduce new loops is briefly discussed.

7.1 Loop interchange

The abstract code transformation F̃t for loop interchange (Fig. 4) is given in Fig. 7a.
It describes the structural control-flow transformation together with the execution-
count changes caused by the specific code optimization.

By analyzing the abstract code transformation function F̃t we get the flow relations
specified in Fig. 11. Using these flow relations and the calculation schema described
in Sect. 5.4 we directly get the following set of flow-information transitions for the

4Natural loops are loops with only a single entry point.
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flow-information transformation function Ffi:

L1〈X1,X2〉 L−→ L1〈Y1, Y2〉, L2〈Y1, Y2〉 L−→ L2〈X1,X2〉

〈n · fAB〉 C−→
〈[

n
1

Y2
. . . n

1

Y1

]
· fAC′

〉
(Relations 2, 3)

〈n · fBF〉 C−→
〈[

n
1

Y2
. . . n

1

Y1

]
· fC′F

〉
(Relations 5, 6)

〈n · fPA〉 C−→ 〈n · fPB〉 (Relation 1)

〈n · fBC′ 〉 C−→ 〈n · fAC′ 〉 (Relation 4)

〈n · fAS〉 C−→ 〈n · fBS〉 (Relation 7)

(3)

Using the transformation rules of (3) provides the concrete flow-information up-
date shown in Fig. 7b.

7.2 Introduction of new loops

Code transformations that change the iteration count of loops or even introduce new
loops are illustrative examples to demonstrate the capability of the presented flow-
information transformation framework. As discussed in Sect. 6, the new flow infor-
mation is calculated from the current flow information by considering the structure
of the code and the semantic information of the applied code transformation.

For code transformations that introduce new loops we discuss the update of
the loop bounds (see Sect. 5.2.2). The flow-information update of the control-
flow edges can be constructed in a similar way. The method is based on the as-
sumption that for every introduced loop a loop bound can be derived from the
loop bounds of existing loops and the semantics of the code optimization. New
loops are inserted by, for example, loop blocking, loop distribution, loop peel-
ing, loop unswitching and sometimes also by procedure inlining (Muchnick 1997;
Kirner 2008). For this type of code optimizations it is possible to derive the loop
bound of newly introduced loops from the original code and loop bounds.

However, there are also some code transformations that introduce loops for which
the loop bound cannot be derived directly from the original code and loop bounds,
for example, inserting a busy-waiting loop to wait for the write cycle of an flash
memory. In this case the worst-case loop bound to be used has to be specified by the
compiler developer, which could be made adjustable via compiler switches describing
the target platform.

As an example for the introduction of new loops we take loop blocking, which is a
code transformation that splits the iteration space of a loop into a sequence of smaller
iteration spaces of length k by inserting an extra loop (Kirner 2008). The abstract
code transformation F̃t for this form of loop blocking is given in Fig. 12.

By analyzing the abstract code transformation function F̃t we get the flow relations
specified in Fig. 13. This flow relations are relatively simple, since loop blocking al-
lows to find a direct equality flow relation for each edge of the original program.
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Fig. 12 CFG transformation on
loop blocking

Fig. 13 Flow relations on loop
blocking

Using these flow relations and the calculation schema described in Sect. 5.4 we di-
rectly get the following set of flow-information transitions for the flow-information
transformation function Ffi:

L1〈X1,X2〉 L−→ L1〈1, k〉, L2

〈⌈
X1

k

⌉
,

⌈
X2

k

⌉〉

〈n · fPiA〉 C−→ 〈n · fPiD〉 (Relation 1)

〈n · fAS〉 C−→ 〈n · fDS〉 (Relation 3)

The following two flow constraints are added to reuse the loop bound information
of the original loop:

1 · fAB ≥ X1 · fPiD

1 · fAB ≤ X2 · fPiD

This example demonstrates that even for complex control-flow transformations
the update of flow information is determined by the abstract code transformation
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function F̃t . Further examples of flow-information transformation rules for concrete
code optimizations can be found in Kirner (2003, 2008). First results with a prototype
implementation have shown that supporting code optimizations for WCET analysis
yields WCET bounds that can be more than three times smaller than when code
optimizations are disabled (Kirner and Puschner 2003).

8 Implementation in a compiler system

Proof-of-concept implementations of the flow-information transformation framework
described in this article were performed in the following two compiler systems:

– The first implementation was done for the GNU C Compiler (GCC) version
2.7.2 (Kirner 2003). This implementation has been able to show only some basic
capabilities of the flow-information transformation framework, since GCC 2.7.2 at
that time implemented only a small number of code transformations that change
the control flow of a program significantly.

– In more recent work, Schulte integrated flow-information transformation into
a research compiler that is also able to perform WCET-aware code optimiza-
tions (Schulte 2007). Schulte added transformations for additional annotations that
are supported by the WCET analysis tool aiT.

Both of the above implementations tightly integrate the handling and transforma-
tion of flow information with the compiler. Such an approach involves a substantial
engagement in the compiler internals and is only feasible when it is integrated with
the main development branch of the compiler. Experiences with the first implementa-
tion show that maintaining flow-information handling as an add-on patch can be very
time-consuming. These complications inspired the development of a more portable
solution: Considering that not every optimizing transformation alters the control
flow graph, the optimizations can be divided into two groups, control-flow-invariant
and control-flow-modifying. A majority of the control-flow-modifying transforma-
tions are loop optimizations (Kirner 2003), which can be implemented effectively
as source-to-source transformations, an approach traditionally taken by Fortran com-
pilers (Allen and Kennedy 2002). Recent versions of GCC also use a near-source
internal representation to perform high-level loop optimizations (Pop et al. 2006).
By carrying out control-flow-modifying optimizations as source-to-source transfor-
mations, the subsequent target compiler needs only to perform a direct translation to
machine code, leaving the control flow intact. It is still safe to apply control-flow-
invariant transformations in the target compiler.5

The prototypical work-flow of the high-level source-to-source compiler is shown
in Fig. 14 (Prantl 2007a): In the first step, annotations and source code are separated.
Each annotation is associated a unique label that identifies its corresponding location
in the source code. In the second step, the source-to-source optimization is performed.

5In current compiler systems like GCC or LLVM this can be achieved by starting with the -O0 optimiza-
tion level and manually enabling safe transformations using the respective command line flags.
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Fig. 14 Work-flow of the source-to-source high-level compiler

The optimizer generates a trace of the performed program transformations. The op-
timization trace together with the original annotations is then the input for the flow
information transformation engine. This engine contains a rule base describing the
flow constraint update for each type of optimization (cf. Sect. 7). In the final step, the
transformed annotations are merged with the transformed source code.

8.1 Experiences with the TuBound implementation

The TuBound WCET analysis tool contains an implementation of this source-to-
source work flow, based on a C++ port of the Fortran D loop optimizer included
with the source-to-source compiler ROSE (Quinlan et al. 2004). Even though the
performed high-level optimizations target the average-case execution time, first mea-
surements indicate a positive effect also on the analyzed worst-case performance of
the optimized programs (Prantl 2007b; Prantl et al. 2008).

8.1.1 Transformation rules example

While the source-to-source infrastructure is targeting a subset of C++, the low-level
compiler and rest of the tool chain is currently restricted to C as input language. The
analysis results (loop bounds, flow constraints) found by TuBound are annotated into
the source code as #pragma directives. The concrete syntax of these annotations was
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% loop interchange
% -----------
% interchanged(+Loop1, +Loop2, +Annotations, +OldAnnotation, -NewAnnotations)
%
interchanged(Loop1, Loop2, _, annotation(Loop1, wcet_loopbound(Lo..Up)),

[annotation(Loop2, wcet_loopbound(Lo..Up))]).

interchanged(Loop1, Loop2, _, annotation(Loop2, wcet_loopbound(Lo..Up)),
[annotation(Loop1, wcet_loopbound(Lo..Up))]).

interchanged(Loop1, Loop2, Annotations,
annotation(M_Annot, wcet_constraint(Lhs=<Rhs)),
[annotation(M_Annot, wcet_constraint(Lhs1=<Rhs1))]) :-

member(annotation(Loop2, wcet_loopbound(Lo..Up)), Annotations),
replace(Lhs, Loop1, Loop2/Lo, Lhs1),

replace(Rhs, Loop1, Loop2/Up, Rhs1).

Fig. 15 Flow transformation specification for loop interchange

designed such that each annotation is also a legal Prolog term. This makes it possible
to use Prolog as specification language for the flow information update rules.

Figure 15 shows the rules for loop interchange: Processing the optimizations in
the trace, these rules are applied to each annotation. The first two arguments contain
information from the optimization trace (the labels of the interchanged loops Loop1
and Loop2). The third argument is the list of all annotations before the transforma-
tion. This is followed by the annotation to be transformed: An annotation is associ-
ated a location (=a marker) and a body: Valid bodies are loopbounds, constraints and
markers. Markers are labels to basic blocks or specific edges in the CFG and follow
a unique hierarchical naming scheme that encodes the location in the abstract syntax
tree of the program. The last argument is unified with a list of annotations generated
by the transformation rule. The first two clauses in Fig. 15 swap the loopbounds of
the interchanged loops. The third clause updates flow constraints similar to (3). The
helper predicate replace is used to replace all occurrences of Loop1 on the left-
hand-side with Loop2 divided by its lower loop bound and vice versa. After the rules
are applied, the resulting constraints are normalized to remove the division operator
and allow further processing by other tools.

8.1.2 Benchmarks

To give an impression of the potential of the high-level optimizations, Fig. 16
shows results for the standardized set of WCET analysis benchmarks collected by
Mälardalen University (MRTC Benchmarks 2009). Using the benchmarks that could
be fully annotated at source level by an unassisted TuBound, the diagram shows the
WCET bound for several combinations of optimizations. The WCET bound calcu-
lation was done using the calc_wcetC167 back end of TuBound. This back end uses
the 16-bit Infineon C167 microcontroller as target hardware (INFINEON 2000). The
C167 processor features a four-stage pipeline and a jump cache. The jump cache re-
members the last jump target and is used for branch prediction. Due to the lack of a
data cache, alignment optimizations such as loop blocking do not improve the per-
formance on the C167. From left to right the diagram shows four columns for each
benchmark:
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Fig. 16 Benchmark results (vertical bars show analyzed WCET relative to the unoptimized program)

1. WCET bound of the unoptimized program.
2. WCET of the high-level loop optimized program.
3. WCET with low-level control-flow insensitive optimizations.
4. WCET when combining both types of optimizations.

Each value is scaled by the WCET bound of the unoptimized program (column 1).
Loop optimizations are performed by the source-to-source optimizer which uses the
upper and lower loop bound information found by TuBound. For this reason the ap-
plied loop optimizations improve the analyzed WCET in most cases. The low-level
optimizations are performed by the target compiler and do not to alter the control
flow any more.

The benchmarks indicate that the potential for optimizations is significant, espe-
cially when keeping in mind that the used high-level optimizations (loop unrolling,
fusion, interchange, splitting), generally target the average case performance. Outliers
like whet show that careful selection of the different optimization phases is very im-
portant. This process, however, can be supported by an automatic WCET analysis,
which can be used to guide the optimizer by judging the improvement of a program
transformation (Lokuciejewski and Marwedel 2009).

The described format of the flow information in the flow-information transforma-
tion framework is suitable to annotate intra-procedural flow information. For simpli-
fication we use a notation were flow variables represent the overall execution of a
program location. To get the most benefit from inter-procedural flow information, the
syntax of the flow information has to be extended to support call contexts (Kirner
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et al. 2008). Typical inter-procedural code optimizations that require the update of
inter-procedural flow information are procedure cloning (Lokuciejewski et al. 2008)
or procedure inlining.

9 Summary and conclusion

So far, the industrial acceptance of WCET analysis is limited due to the fact that a
developer is forced to examine and understand the machine code in case the WCET
tool needs additional code annotations to guide the analysis. In this article we pre-
sented a novel method to support precise WCET analysis at the machine-code level
by taking advantage of the flow information provided at the source-code level. We de-
scribed a transformation framework that is capable of transforming more generic flow
information from source-code level to machine-code level than previous approaches
with even better precision. In our framework it is possible to support arbitrary code
transformations. Since this approach is based on the semantics of the performed code
transformations it can be systematically integrated into a compiler. With the TuBound
tool we have shown how to use the approach with a commercial-off-the-shelf (COTS)
compiler by using source-to-source code transformations and deactivating control-
flow changing optimizations in the COTS compiler.

Another benefit of the presented approach is that the update of flow information
for every code transformation is expressed by a short sequence of primitive flow-
information update functions. Therefore, this approach requires relatively small im-
plementation effort. All that is needed is a compiler that maintains an abstract rep-
resentation of the code in form of a standard control-flow graph with an additional
loop scope hierarchy. As every code transformation is handled in a safe way, this ap-
proach allows the timing analysis tool to calculate safe bounds for both the WCET
and BCET.

The presented flow-information transformation framework supports inter-proce-
dural program transformations and flow constraints. To take more advantage of this
feature, it is advisable to include support for specifying call-context sensitive flow
information. Before extending the framework, appropriate types of flow information
have to be developed. As a first step in this direction, we announced the WCET An-
notation Language Challenge in 2007 to get feedback from the community towards
a common annotation language (Kirner et al. 2007).

The currently used flow-information update functions have been developed man-
ually with the help of a graphical transformation-description language that we de-
veloped for that purpose. As a future research it would be useful to automate the
construction of flow-information update functions based on a formal description of
the code transformation.
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