mzuriCh ETH Library

Applying real-time interface
and calculus for dynamic power
management in hard real-time
systems

Journal Article

Author(s):
Huang, Kai; Santinelli, Luca; Chen, Jian-Jia; Thiele, Lothar; Buttazzo, Giorgio C.

Publication date:
2011-03

Permanent link:
https://doi.org/10.3929/ethz-b-000034757

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Real-time Systems 47(2), https://doi.org/10.1007/s11241-011-9115-z

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://doi.org/10.3929/ethz-b-000034757
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11241-011-9115-z
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Real-Time Syst (2011) 47: 163-193
DOI 10.1007/s11241-011-9115-z

Applying real-time interface and calculus for dynamic
power management in hard real-time systems

Kai Huang - Luca Santinelli - Jian-Jia Chen -
Lothar Thiele - Giorgio C. Buttazzo

Published online: 26 January 2011
© Springer Science+Business Media, LLC 2011

Abstract Power dissipation has been an important design issue for a wide range
of computer systems in the past decades. Dynamic power consumption due to sig-
nal switching activities and static power consumption due to leakage current are the
two major sources of power consumption in a CMOS circuit. As CMOS technology
advances towards deep sub-micron domain, static power dissipation is comparable
to or even more than dynamic power dissipation. This article explores how to ap-
ply dynamic power management to reduce static power for hard real-time systems.
We propose online algorithms that adaptively control the power mode of a system,
procrastinating the processing of arrived events as late as possible. To cope with mul-
tiple event streams with different characteristics, we provide solutions for preemptive
earliest-deadline-first and fixed-priority scheduling policies. By adopting a worst-
case interval-based abstraction, our approach can not only tackle arbitrary event ar-
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rivals, e.g., with burstiness, but also guarantee hard real-time requirements with re-
spect to both timing and backlog constraints. We also present extensive simulation
results to demonstrate the effectiveness of our approaches.

Keywords Power management - Real-time event streams - Real-time calculus -
Real-time interface

1 Introduction

Power dissipation has been an important design issue in a wide range of computer
systems in the past decades. Power management with energy efficiency considera-
tions is not only useful for mobile devices for the improvement on operating duration
but also helpful for server systems to reduce power bills. It has been shown in APC
(American Power Conversion) (2003) that for server systems the electricity cost re-
mains significant even if servers do not always operate with the maximum power
consumption. For mobile devices, ITRS reports the slow growth of energy density of
batteries lacks far behind the tremendous increase of demands (International technol-
ogy roadmap for semiconductors 2009). Because of these facts, power consumption
becomes one of the first-class design concerns for modern computer systems.

Two major sources of power consumption of a CMOS circuit are dynamic power
consumption due to switching activities and static power consumption mainly due to
leakage current (Jejurikar et al. 2004). For micrometer-scale semiconductor technol-
ogy, dynamic power dominates the power consumption of a processor. However, as
modern VLSI technology is scaling down to deep sub-micron domain, the tremen-
dous amount of transistors integrated within a chip consumes significantly more sta-
tic power. The leakage current that originates in the dramatic increase in both sub-
threshold current and gate-oxide leakage current is projected to account for as much
as 50 percentage of the total power dissipation for high-end processors in 90 nm
technologies (Austin et al. 2004). The ITRS expects static power in the future will
be much greater than their calculated value due to variability and temperature ef-
fects (International technology roadmap for semiconductors 2009).

This article explores how to apply dynamic power management (DPM) to reduce
static power consumption while satisfying real-time constraints. We consider a sys-
tem that consists of a device with active, standby, and s1eep modes with dif-
ferent power consumptions and a controller that decides when to change the power
modes of the device. Intuitively, the device can be switched off to the sleep mode
to reduce the power consumption when it becomes idle and switched on again to
active mode upon the arrival of an event. These switching operations, however,
need more careful consideration. On the one hand, the sleep period of the device af-
ter switching-off should be long enough to recuperate mode-switch overheads. On
the other hand, when to activate the device is even more involved due to the possible
burstiness of future event arrivals. For every switching-on operation, sufficient time
has to be reserved to serve the possible burstiness of future events in order to prevent
deadline violation of events or overflow of system backlog.

To resolve these concerns, we propose online algorithms that are applicable for the
controller. This article summarizes and extends the results built in Huang et al. (2009,
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2010). We apply Real-Time Calculus (Thiele et al. 2000) to predict future event ar-
rivals and Real-Time Interface (Thiele et al. 2006) for schedulability analysis. Our
algorithms adaptively predict the next mode-switch moment by considering both his-
torical and future event arrivals, and procrastinate the buffered and future events as
late as possible. By adopting the worst-case interval-based abstraction in Real-Time
Calculus, our algorithms can not only tackle arbitrary event arrivals, e.g. with bursti-
ness, but also guarantee hard real-time requirements with respect to both timing and
backlog constraints. To handle multiple event streams, we propose solutions for two
preemptive scheduling, i.e., earliest-deadline-first (EDF) and fixed priority (FP) poli-
cies, as well as two backlog allocation schemes, i.e., individual and global backlog
allocation.

The rest of this article is organized as follows: In the next section, related work in
the literature is reviewed. Section 3 provides system models and problem definition.
Section 4 presents a set of new routines that will be used throughout the article.
Section 5 presents our algorithms for single event stream, while Sect. 6 provides
solutions for multiple event streams. Simulation results are presented in Sect. 7 and
Sect. 9 concludes the article.

2 Related work

The dynamic voltage scaling (DVS) technique was introduced to reduce the dy-
namic energy consumption by trading the performance for energy savings. For DVS
processors, a higher supply voltage, generally, leads to not only a higher execution
speed/frequency but also higher power consumption. As a result, DVS scheduling al-
gorithms, e.g., Yao et al. (1995), Zhang et al. (2002), Aydin et al. (2001), tend to exe-
cute events as slowly as possible, without any violation of timing constraints. On the
other hand, dynamic power management (DPM) with clock gating or voltage gating
can be applied to change the device power mode, e.g., to a sleep mode, to consume
less (static/leakage) power. For devices with the sleep mode, Baptiste (2006) pro-
poses an algorithm based on dynamic programming to control when to turn on/off a
device for aperiodic real-time events with the same execution time. For multiple low-
power modes, Augustine et al. (2004) determine the mode that a processor should
enter for aperiodic real-time events and propose a competitive algorithm for online
use. Swaminathan and Chakrabarty (2005) explore dynamic power management of
real-time events in controlling shutting down and waking up system devices for en-
ergy efficiency. To aggregate the idle time for energy reduction, Shrivastava et al.
(2005) propose a framework for code transformations.

There also exists work that considers platforms with both DPM and DVS. Chen
and Kuo (2007) propose to execute tasks at a certain speed (mostly at the critical
speed) and to control the procrastination of real-time events. By turning the device to
the sleep mode, the execution of the procrastinated real-time events is aggregated in
a busy interval to reduce energy consumption. Heo et al. (2007) explore how to in-
tegrate different power management policies in a server farm. Alternatively, Devadas
and Aydin (2008, 2010) consider the interplay between DVS and DPM for a system
with a DVS-capable processor and multiple devices. Based on the concept of device
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forbidden regions, the authors propose algorithms to determine the optimal proces-
sor speed as well as transition decisions of device states to minimize overall system
energy for periodic real-time tasks.

Most of the above approaches require either precise information of event ar-
rivals, such as periodic real-time events (Chen and Kuo 2007), or aperiodic real-
time events with known arrival time (Baptiste 2006; Augustine et al. 2004; Irani
et al. 2003). However, in practice, the precise timing information of event ar-
rivals might not be known in advance since the arrival time depends on many fac-
tors. When the precise timing of event arrivals is unknown, to our best knowl-
edge, the only known approaches are to apply the online algorithms proposed
by Irani et al. (2003) and Augustine et al. (2004) to control when to turn on
the device. However, since the online algorithms in Augustine et al. (2004), Irani
et al. (2003) greedily stay in the sleep mode as long as possible without refer-
ring to incoming events in the near future, the resulting schedule might make an
event miss its deadline. Such algorithms are not applicable for hard real-time sys-
tems.

To model such irregular events, Real-Time Calculus, extended from Network Cal-
culus (Cruz 1991), was proposed by Thiele et al. (2000), Wandeler et al. (2006)
to characterize events with arrival curves. The arrival curve of an event stream de-
scribes the upper and lower bounds of the number of events arriving to the system
for a specified interval. Therefore, schedulability analysis can be done based on the
arrival curves of event streams. Maxiaguine et al. (2005) apply Real-Time Calcu-
lus within the DVS context and compute a safe frequency at periodical intervals
with predefined length to prevent buffer overflow of a system. Chen et al. (2009)
explore the schedulability for on-line DVS scheduling algorithms when the event
arrivals are constrained by a given upper arrival curve. In contrast to these clos-
est approaches, we focus on dynamic power management. In Huang et al. (2009),
we propose offline algorithms to find periodic time-driven patterns to turn on/off
devices for energy saving without sacrificing timing guarantees. The light run-time
overhead of the periodic schemes in Huang et al. (2009) is very suitable for embed-
ded systems that only have limited power on computation. Alternatively, we propose
online algorithms in this article. The on-off decisions are dynamic and adaptively
vary according to the actual arrivals of events. Furthermore, we provide solutions
on multiple event-stream scenarios where event streams with different characteristics
can be tackled with both earliest-deadline-first and fixed-priority scheduling poli-
cies.

Notes that researches (Agarwal et al. 2006; Roy et al. 2003; Stephan 2007) have
shown that the static power of a CMOS circuit is depended on the temperature of
the circuit and there are also work (Yang et al. 2010; Bao et al. 2010) on the saving
of temperature-aware static power. In this work, we focus on I/O peripheral devices
which are less affected by temperature. Therefore, we do not consider the temperature
impact on the static power.
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Fig. 1 The abstract system
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Fig.2 The state transit of a device, where the 2-tuple on each transit defines timing and energy overheads

3 System models and problem definition

The system we consider consists of a device and a controller. The device is responsi-
ble for event processing. The controller conducts three tasks: a) handles event arrivals,
e.g., storing unprocessed events into system backlog, b) controls the power mode of
the device to serve the arrived events, e.g., turning on and off the device, and c) dis-
patches events in the system backlog to the device with certain scheduling policy. An
abstract model of our system is shown in Fig. 1, where the controller and the device
could be, for instance, an operating system and an I/O peripheral device, respectively.
Parameters «, D, and 8 G in Fig. 1 will be introduced later on.

The device has three power modes, namely active, standby, and sleep
modes. The power consumption in sleep mode is P, . To serve an event, the device
must be in active mode with power consumption P,, in which P, > P,. Once
there is no event to serve, the device can enter sleep mode. However, switching
from the sleep mode to active mode and back takes time, denoted by f, o, and
Isw,sleep» and incurs energy overhead, denoted by Ejy, o and Ejgy sieep, TESPECtively.
To prevent the device from frequent mode switches, the device can also stay in the
standby mode. The power consumption Ps in the standby mode, by definition, is no
more than P, and is more than P,. We assume that switching between standby
mode and active mode has negligible overhead, the same assumption as in Zhuo
and Chakrabarti (2005), Yang et al. (2007). Figure 2 illustrates the state chart of our
power model.

Several event streams are given as inputs of the system. We denote & =
{S1,...,Sn} as a stream set containing N event streams with different character-
istics. To buffer incoming events of streams in S, the controller maintains a backlog
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Fig. 3 Examples for arrival curves for: (a) periodic events with period p, (b) events with minimal in-
ter-arrival distance p and maximal inter-arrival distance p’ = 1.5p, and (c) events with period p, jitter
J = p, and minimal inter-arrival distance d = 0.4p

of unprocessed events. Buffering more events than the size of the backlog incurs a
backlog overflow and causes a controller failure. To buffer unprocessed events of
different event streams, the system buffer can be shared by all event streams to ef-
ficiently utilize the system buffer or split into independent buffers, each of which is
private for an event stream, to reduce runtime overhead. Therefore, we discuss two
types of backlog managements: a) global backlog where all event streams in S share
one buffer, and b) individual backlog where each event stream has its private buffer.
The size of the buffer in either case is assumed given. How to decide a proper size
of the system buffer is a different research problem and thus is not considered in this
article.

3.1 Worst-case interval-based streaming model

To model irregular arrival of events, we adopt arrival curves a(A) = [a”(A), al(A)]
from Real-Time Calculus (Thiele et al. 2000), in which a;'(A) and &f.(A) are the
upper and lower bounds on the number of arrival events for a stream S; in any time
interval of length A, respectively. The concept of arrival curves unifies many tradi-
tional timing models of real-time event streams such as sporadic, periodic, periodic
with jitter, or any other arrival pattern. For example, a periodic event stream can be
modeled by step functions a*(A) = L%J +1anda/(A) = L%J. For a sporadic event
stream with minimal inter arrival distance p and maximal inter arrival distance p’,
the upper and lower arrival curve is " (A) = I_%J +1,d(A) = L%J, respectively.
Moreover, for an event stream with period p, jitter j, and minimal inter arrival dis-
tance d, the upper arrival curve is " (A) = min{ [%] , (%1 }. Figure 3 illustrates the
arrival curves for the preceding cases. To be complete, we also assume «(A) = 0 for
A <O.

Analogous to arrival curves that provide an abstract event stream model, a 2-tuple
B(A) =[B"(A), ,61 (A)] of upper and lower service curves then provides an abstract
resource model. The upper and lower service curve provides an upper and lower
bound on the available resources in any time interval of length A. Further details are
referred to Thiele et al. (2000).

Note that an arrival curve «;(A) specifies the number of events of stream S;
whereas a service curve B(A) specifies the available amount of time for execution,
for interval length A. Therefore, ¢&; (A) has to be transformed to «; (A) to indicate the
amount of computation time required for the arrived events in intervals. Suppose that
the execution time of any event in stream S; is w;. The transformation can be done
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by af = w;aj, af = wi&f and back by &} = a" /w;, &f =o' /w; thereof. For vari-
able workloads in an event stream, our algorithms can be revised slightly by adopting
the workload curves in Maxiaguine et al. (2004). Moreover, to satisfy the real-time
constraint, the response time of an event in event stream S; must be no more than
its specified relative deadline D;, where the response time of an event is its finishing
time minus the arrival time of the event. On the arrival of an event ¢; ; of stream §;
at time ¢, the absolute deadline is ¢t + D;.

3.2 Worst-case scheduling analysis using arrival curves

Using this interval-based model, one can perform worst-case scheduling analysis by
means of Real-Time Calculus (Maxiaguine et al. 2005) and Real-Time Interface (Roy
et al. 2003). Within this context, a device is said to provide guaranteed output service
BY(A). For instance, if the device offers computation time A in any time interval of
length A, then 8% (A) = A. Suppose now that an event stream S; needs service curve
BA(A), denoted as service demand, to operate correctly, i.e., to satisfy responsiveness
constraints. The device is schedulable if and only if the condition

BE(A) = BA(A), VA>0 (1

holds.

For example, if the relative deadline D; of each event in stream S; is given, one can
say the device has to provide at least ,BA (A) = a; (A — D;) service to prevent deadline
misses of events in S;. In the rest of this article, we show how to properly construct
BC(A) and BA(A) for a given system to not only reduce static power consumption
but also guarantee hard real-time properties.

3.3 Problem definition

This article explores how to effectively minimize the energy consumption with dy-
namic power management schemes when serving a stream set S of N event streams.
Intuitively, energy saving can be obtained by turning the device to s leep mode when
no event to process and staying at s1eep mode as no event arrives. However, switch-
ing from/to s1eep mode incurs both timing and energy overheads. Similar to Cheng
and Goddard (2006), we define a break-even time to model these overheads.

Definition 1 (Break Even Time) Suppose that switching the device to sleep mode
takes yy sieep time and switching back to active mode takes fy,, o, time, the cor-
responding energy consumption for the switching activities are Egy sieep and Eyy on,
and the static power is P; — Ps. The break-even time is defined as:

Esw,on + Esw,sleep } (2)

def
Tger = max{tsw,on + Lsw,sleeps P, — Py

Consider the case that the device is switched to sleep mode. If the interval that
the device can stay in s1eep mode is shorter than TpgT, the mode-switch overheads
are larger than the energy saving. Therefore, such mode switch is not worthwhile.
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On the other hand, retaining the device longer in s1leep mode might incur backlog
overflow or deadline misses for burst event arrivals in the near future. The question
is what is a proper time to conduct a mode switch of the device.

We say that a scheduling decision is to decide when to perform a mode-switch
of the device. A scheduling decision is feasible if it is always possible to meet the
timing and backlog constraints for any event trace constrained by an arrival curve. An
algorithm is feasible if it always generates feasible scheduling decisions. Therefore,
the problem studied in this article is to decide a feasible schedule for a) when fo turn
the device to s1eep mode to reduce the static power, and b) when to turn the device
Jfrom sleep mode to active mode to serve events.

4 Real-time calculus routines

In this section, we present basic routines to construct service guarantee and demand.
4.1 Bounded delay

A service curve $(A) can be constructed as a bounded delay function.

Definition 2 (Bounded Delay Service Curve (Le Boudec 1998)) A bounded delay
service curve is defined as no service provided for at most 7 units of time:

def

bdf(A,r):max{O, (A—r)}, VYA >0 3)

We say that a sleep interval is the time for which the device retains in sleep
mode. The t in Definition 4 can be considered as such a sleep interval. In the case
that the device provides full service, t is 0, i.e., the device never switches to sleep
mode.

Definition 3 (Longest Feasible Sleep Interval) The longest feasible sleep interval 7*
with respect to a given service demand 4 (A) is thereby defined as:

t* =max{t :bdf (A, 1) > BA(A), YA >0} )

Definition 4 (Deadline Service Demand (Thiele et al. 2006)) Suppose an event
stream S; with relative deadline D;. To satisfy the required relative deadline D;, the
minimum service demand of stream S; is

B°(A) = a(A — D) 5)

Definition 5 (Backlog-size Service Demand) Suppose a system has a backlog of
size Q; to buffer un-processed events for stream S;. To prevent backlog overflow, the
minimum service demand of stream S; is

def

BT (A E e (A) —wi - 0} (6)

where {a}T = max{a, 0}.
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Fig. 4 An example for the
bounded delay function for
event stream S with upper
arrival curve af (A). Only part
of the arrival curve is presented
for simplicity

Combining both deadline and backlog service demands, the t* in (4) can be re-
fined as

t* =max{t : bdf (A, 1) > max{p’(A), B7(A)}} @)

Figure 4 depicts an example for above constructions for single event stream. Based
on these constructions, we state the following lemma.

Lemma 1 Given t™ computed from (7) which is larger than Tggt, at any time instant
t when the device is active and no event to process, it is feasible to switch the device to
sleep mode for [t,t + t*) interval without violating the deadline and backlog-size
requirements of for any event in stream S;.

Proof The service demand B in (5) is constructed as horizontally right shifting o
with D; distance, which represents the tightest bound that guarantees the deadline
constraint. Similarly, the service demand 87 in (6) obtained by vertically shifting o
down by w; - Q distance defines the tightest bound that prevents backlog overflow.
The bounded delay function bdf (A, t*) constructs a ¢ that bounds both 8° and
BT, thus fulfills (1). O

4.2 Future prediction with historical information

We keep track of event arrivals in the past as a history. Because the total amount of
arrived events in any time interval is constrained by the corresponding arrival curves,
one can predict future event arrivals based on a certain length of historical information
of event arrivals in the recent past. If a burstiness has been observed recently, for
instance, it can be foreseen that sparse events will arrive in the near future. To make
use of historical information, we define a history curve.

Definition 6 (History Curve) Suppose ¢ is the current time and R;(¢) is the accu-
mulated number of events of stream S; in interval [0, 7). The length of the history
window of which controller can maintain is A”, i.e., historical information for only
A" time units is recorded. At time 7, a history curve for stream S; is define as

def Rl(t)_Rl(t_A)5 lfASAh9

H;(A,t)= 8
(.0 R; (1) — Ri(t — A", otherwise ®)
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Fig. 5 The control flow of our approach

The maximal future event arrivals in the near future from time ¢ to ¢t + A, denoted as
al'(A,1),is

&'(A.1) = inf {a}'(A+2) = H;(x.1)) ©
We use (9) to predict future event arrivals for any time instant.
4.3 Backlogged demand

Analogously, we can preciously define the service demand of those backlogged
events. We denote the set of unfinished events of S; in the backlog at time ¢ as E; (t).
Note that although the absolute deadline D; ; for event ¢; ; € E;(t) does not change,
the relative deadline is not D; anymore. It varies according to relative distance from 7.

Definition 7 (Backlogged Demand) Suppose that events in E;(¢#) are indexed as
€i1,€i2,...,¢ E; ) from the earliest deadline to the latest. A backlog demand curve
for stream S; at time ¢ is defined as

ef '_1, D—t A<D _t,
Bi(A. ) Sy AU~ D Dij =t <A=Dijp

(10)
|E;(t)], A>DiE;mn —1,

in which D; g is defined as ¢ for brevity.

5 Basic algorithms for single stream

In general, we have to decide when to turn the device from sleep mode to active
mode and turn it back to sleep mode in order to reduce static power. Therefore, we
have to deal with deactivation scheduling decisions and activation scheduling deci-
sions to switch safely and effectively. An overview of our approach is illustrated in
Fig. 5.

For deactivation scheduling decisions, when the device is in active mode and
there is no event in the backlog, we have to decide whether the device has to switch
to sleep mode instantly or it should remain active/standby for a while for serv-
ing the next incoming event (we assume the device switches between active and
standby modes automatically). For brevity, for the rest of this article, time instants
for deactivation scheduling decisions are denoted by 7.

After the device is switched to s1eep mode, it has to be switched active again for
event processing. The activation scheduling decision is evaluated at the time instant
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upon the arrival of an event or expiration of the sleep interval that the controller pre-
viously set. A scheduler has to decide whether the device has to change to active
mode instantly to serve events, or it should remain in sleep mode for a while to
aggregate more events and prevent unnecessary mode switches. For brevity, time in-
stants for activation scheduling decisions are denoted by ¢ for the rest of this article.

In this section, we present our approach to minimize static power. The assumption
of our approach is that both deadline and backlog requirements can be guaranteed if
the device always provides full service, i.e., the device never turns to sleep mode.
For simplicity, we consider only single event stream case, says S;. We first present
how to deal with deactivation of scheduling decisions and then propose two methods
for the scheduling decisions of the activation. The solutions to multiple event streams
are presented in the subsequent two sections.

5.1 Our deactivation algorithm

The History-Aware Deactivation (HAD) algorithm analyzes whether the device
should be turned to sleep mode from active mode. The principle is to switch
the device only when energy saving is possible. One obvious fact is that as long as
there are events in the system backlog, the device can be kept busy in active mode
and no energy overhead for mode switching is introduced. In order to reduce static
power, the deactivation decision thereby makes sense only when the device is in ac-
tive mode while there is no new arrival of any event as well as no event in system
backlog. Suppose that ¢ | is such a time instant.

Turning the device instantly at time 7| to s1eep mode, however, does not always
help still. The reason is that we pay overheads for mode switches. In the case there
are events arriving in the very near future, the device has to be switched active again
to process these events. If the energy saving obtained from a short sleep interval can-
not counteract the switching overheads, this mode switch only introduces additional
energy consumption. Therefore, the idea is firstly to compute the maximal possible
sleep interval 7* and check whether this t* is sufficient to cover the break-even time.
Specifically, we calculate the arrival curve &} (A, tT)attimes " by (9) and refine the
service demands in (5) and (6) as

B°(A)=a¥(A—Dy,t") (11)
Bi(a)={at (A, 1T =01 wy)” (12)

By applying (11) and (12) to (7), the maximal sleep interval 7* is computed. If 7* is
larger than TpET, the device is switched to s1leep mode at time ¢ 7. Otherwise, the
device is retained in active mode. The pseudo code of the algorithm is depicted in
Algorithm 1.

The algorithm leads to the following theorem:

Theorem 1 Algorithm HAD guarantees a feasible scheduling upon a deactivation
decision at any time t" for single event-stream system, if the device provides full

service from time t ' + T* on, where T* is computed from Line 1 in the algorithm.
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Algorithm 1 HAD deactivation

procedure at time instant t;-:
1: compute T* of (7) by #° and B7in (11) and (12);
2: if t* > Tppr then
3: deactivate the device;
4: end if

Proof The theorem states that at any time instant 7T at which Algorithm HAD de-
cides to deactivate the device, the latest activation time to prevent constraint viola-
tions is # | 4 t*. We prove this theorem by contradiction. Suppose at time # ' + A,
the deadline of an event which comes within the interval [ ', 7" + M) is missed. We
denote the number of events arrived within this interval as u. Because of the deadline
missing, the service demand u - w; in this interval is larger than our constructed ser-
vice supply bd f (A, T*) which actually bounds the service demand of the maximum
number of events that can arrival, i.e., wj - o"zi’(k, tT). The inequality u > &’f(k, tT)
contradicts to the definition in (9). Therefore, the theorem holds. O

5.2 Our activation algorithms

Once the device is in sleep mode, the controller needs to switch it back to ac-
tive mode at a later moment for event processing. How to decide the actual switch
moment needs more consideration. On the one hand, it is preferable to aggregate as
many events as possible for each switch operation to not only reduce the standby
period but also minimize the number of switch operations. On the other hand, the
real-time constraints of the aggregated and future events need to be guaranteed. In
addition, a polling mechanism is not desirable which will overload the controller. In
this section, we present two algorithms, namely worst-case-greedy (WCGQG) algorithm
and event-driven-greedy (EDG) algorithm, for the activation scheduling decisions.
The differences between these two algorithms are in the following:

— Algorithm WCG is time-triggered. It conservatively assumes worst-case event ar-
rivals and predicts the earliest switch moment. If the worst case does not occur
when the predicted time comes, a new prediction is conducted and the switch de-
cision is deferred to a later moment.

— Unlike WCG, Algorithm EDG works in an event-triggered manner. It optimisti-
cally considers the least event arrivals and predicts the latest time for mode
switches. Upon the new arrival of an event before the predicted time, the decision
is reevaluated and it is shifted earlier if necessary.

Therefore, the time instant t~ for the evaluation of the activation scheduling de-
cisions can be at either event arrivals or the predicted activation time. We identify
these two cases by event arrival and wake-up alarm arrival, designated as tj and tj,
respectively.

5.2.1 Worst-case-greedy (WCG) activation

Algorithm WCG works in a time-triggered manner. It reacts to each wake-up alarm
and performs two tasks: a) check whether the device has to be switched to active
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mode for the current alarm; b) if not, determine a new wake-up alarm. In the case that
worst-case burst happens before the wake-up alarm tuf, i.e., our previous prediction
is correct, the mode switch has to be carried on at the current wake-up alarm. If
the actual arrivals of events are less than the worst case, switching the device at the
current #;- will reserve too much service than actual needs. The device can stay in
sleep mode for a longer period.

To evaluate the activation decision and predict the next wake-up alarm, we again
apply the bounded-delay function (7) to find a next possible sleep interval. To obtain
tight results, the deadline and backlog service demand in (5) and (6) can be improved.
At the current wake-up alarm tj;, the deadline service demand ,Bb includes those
events that are already stored in the system backlog, i.e., Bi (A, tj;) defined in (10),
besides the history-refined worst-case event arrival aﬁ’ (A — Dy, tj;). Similarly, the
current size of the available backlog is the original size subtracted by the number of
backlogged events, i.e., | E(t+)| defined in Sect. 4.3. The deadline service demand p”
and the backlog-size service demand B are thus refined as

B°(A) =a¥(A — Dy, 1) +wi - Bi(A, 1) (13)
BT (A) = (A, 15 — (01 — EGD)]) - wi) T (14)

Using (13) and (14), the next sleep interval t* is computed. If 7* > 0, the next
wake-up alarm is set to time tj; + t*. Otherwise, the device is switched to active
mode. The pseudo code of Algorithm WCG is depicted in Algorithm 2.

Algorithm 2 WCG activation

procedure event arrival at time t;-:

1: do nothing;
procedure wake-up alarm arrival at time tj;:

1: compute t* of (7) with 8” and 87 by (13) and (14);
2: if ™ > 0 then
3 new wake-up alarm at time ¢, < £;- + *;
4: else
5
6

wakeup the device;
. end if

The constructed A” in (13) bounds the future arrival demands from tul) on and g7
in (14) guarantees the backlog constraint, leading to following theorem:

Theorem 2 Algorithm WCG guarantees a feasible scheduling upon an activation de-
cision at any wake-up alarm ti for single event-stream system, if the device provides
full service from time tj on.

We omit the proof due to the similarity to Theorem 1. Algorithm WCG is effective
in the sense that it greedily extends the sleep period as long as a scheduling decision

is feasible. It is efficient as well when actual event arrivals are close to the worst case,
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where the reevaluation of the wake-up alarm does not take place often. Furthermore,
the number of reevaluation is bounded by o (D1 — wy).

The last question is where the first wake-up alarm is. There are two possibilities:
a) at the time the first arrived event after the device is deactivated, and b) at the deacti-
vation time instant | 4+ t* (t* is computed by (11) and (12) in the HAD algorithm).
Both approaches are effective. For consistency, we adopt the second approach, such
that Algorithm WCG is purely time-driven.

5.2.2 Event-driven-greedy (EDG) activation

In contrast to Algorithm WCG that predicts the earliest wake-up alarm tlﬁ, Algorithm
EDG predicts the latest one. It computes the latest moment by assuming the least
event arrivals in the near future. Unlike Algorithm WCG where the evaluation of
the activation scheduling decisions takes place upon each wake-up alarm arrives, the
decision here is refined upon event arrivals.

At time tl at which event e ; arrives, when is the corresponding latest wake-up
alarm tL is not that obvious. One intuitive guess is t .+ D{ — wj. This time instant
is however too optimistic except for the first event e, 1 ‘after the device is deactivated.
Our EDG algorithm works i 1n the following manner. For the first arrived event e 1,
the wake-up alarm is set to ¢ e ., T D1 — w;. For any subsequent event el i, wake-up
alarm is set to the smaller value of the previous 7> and 7> — (wy — (£ o tle ).
This new ;> is not yet always a feasible activation time instant. If t* computed from
this time instant is not larger than 0, the activation is set to an earlier time, i.e., the
earliest activation time as if worst-case event arrival happen at ¢ c1 -

For an event e; ; arrived at time tjl ,» the service demand for the newly computed
wake-up alarm #;- includes a) the possible burst from 7.~ on, which is bounded by
'“(A IL) b) the backlog until z‘L and c) the estimated least event arrival between
[t on w) constrained by o (A) To compute a precise oc”(A ) we first revise the
historical information Hj(A, tuL)) by advancing the time from tjli to t,j to include
those events which definitely have to come between [tjl,_, tlﬁ). We denote such a

1 1y.
trace as H' (A, t;):

&l(e)—&ll(e—A), if A <e,
H{(A,ty) = Hi(A, 1} o )+ e, ife <A <A —¢, (15)
Hi(A" — et o L) +al(e), otherwise,

where € =t — tjl-l_ for abbreviation. The curve Hj can be considered as the con-
catenation of the historical information H; until tjl-l_ and the time inversion of &ll in

the interval [0, €). The worst-case arrival curve after time tj; with the new historical
information Hj is

(A, 1) = inf (G (A+2) = H{(h 1)} (16)
and & (A, ;) = wy - & (A, 1.
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The corresponding backlog demand curve that encapsulates the estimated least
arrival events within the interval [tj1 Iy tlﬁ) is

j=1, Dij—ty <A<Dj 41—t

B/(A, 1) =
&) =1 A> D¢ —tk

a7

where £ = |E1(l Dl +a (€),e = tL — tjl ,and D g is defined as tL
With the reﬁned h1storlcal 1nformat10n and backlog demand, the two service de-

mands B° and 87 can be refined as
B (A) =af (A — Dy, ty) +wi - B{(A, ) (18)
BT(A) =t (A, 1) — (@1 — |E@H)| - & () - wi )T (19)

By applying (18) and (19), the sleep interval t* in (7) is computed for event ey ;.
If T* > 0, the wakeup alarm is valid. Otherwise, the new wakeup alarm is set to an
earlier moment. The pseudo code of the algorithm is depicted in Algorithm 3.

Algorithm 3 EDG activation

procedure event arrival at time tjl ;'
It (=t s w) My — (wy — (6, —

€l €li—1 elll)

2: calculate t* at time tj; by (15-19);
3: if T* <0 then
4

tl<—tjll+r where t

L computed from (5)—(7)

5. end if
procedure wake-up alarm arrival at time tj;:
1: activate the device;

Theorem 3 Algorithm EDG guarantees a feasible scheduling upon an activation
decision at any wakeup alarm tj; for single event-stream system, if the device provides
full service from time tj on

Proof We differentiate the mode switch decisions into two cases: decisions by hitting
Line 4 of the algorithm or without. In the case of without hitting, the feasibility of
the decision is guaranteed by (15)—(19) where the events actually arrived before time
¢ and the potential burstiness after are considered in each evaluation. In the case
of hitting, we need to prove the arrival time tj;l, of event e; ; is always earlier than

tj]- + 7. For time instant teJI- L at which e j arrives, the maximum number of events

can be stored in the system backlog is min{Q1, & («H - 1}, denoted as u. Based on
the construction in Line 1, Line 4 hits only if the number of arrived events reaches this
maximum. According to the subadditivity of an upper arrival curve and the linearity
of the bounded delay service curve, the time interval to generate u events is bounded
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by 7+, i.e., the inequality (@“)~! () > u always holds'. Therefore, tjl_.l +1t > tjl_i.
Because tju + ¢ assumes the worst-case event arrivals happen at the time instant
of the arrival of the first event after the device is switched to s1eep mode, switching
the processing core to act ive mode at this time always results in a feasible schedul-
ing decision. Since the scheduling decisions are feasible for both cases, the theorem

holds. U

The activation decision in Line 4 is pessimistic. It is possible to refine #;- when
* < 0 happens, instead of setting the prediction back to tgl_,l + 7. However, such
refinement demands more computation. Algorithm EDG is designed for scenarios
where events come sparsely and the worst case seldom occurs. In such cases, the algo-
rithm is effective because Line 4 will seldom be hit. The algorithm is efficient as well.
The theoretical upper bound of the number of reevaluations is min{Q1, &i’(TL)}. In
practices, the number of reevaluations is approximately equal to the number of events
actually arrived. Furthermore, 7+ can be computed offline as it is a constant given the
specification of the stream.

6 Our algorithms for multiple streams

To tackle multiple event streams, an essential problem is to compute the total service
demand for a stream set S. The total service demand for S depends on not only the
service demand of individual streams but also the scheduling policy as well as the sys-
tem backlog organization. The scheduling in this section refers to the policy by which
events of different streams in the system backlog are chosen to feed the device. In this
work, we consider two preemptive scheduling, i.e., earliest-deadline-first (EDF) and
fixed-priority (FP) policies, as they are most commonly used policies in the real-time
systems. With respect to the backlog organization, two different schemes, i.e., indi-
vidual and global backlog, are investigated. In the case of individual backlog, each
event stream S; owns its private backlog with size Q;. In the case of global backlog,
all event streams in S share the same backlog.

In this section, we present solutions of how to compute the total service of S by
applying Real-Time Interface (Wandeler and Thiele 2006) theory. Again, the basic
assumption of our solutions is that the deadline and backlog requirements for all
event streams can be guaranteed if the device always provides full service, i.e., the
device never turns to s1leep mode. Without loss of generality, we consider a stream
set S with N event streams, where N > 2. We present solutions only for Algorithm
EDG. The solutions for the HAD and WCG algorithms are similar to Algorithm EDG
and can be easily adapted. Note that the refinements of the history curve and backlog
demand in (15) and (17) can be applied to individual stream, denoted as Hi’ and Bi’
for briefness.

1Symbol @1 represents the inverse function of a*.

@ Springer



Real-Time Syst (2011) 47: 163-193 179
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Fig. 6 The flow for computing the total service demand for the FP scheduling with distributed backlog

6.1 FP scheduling with individual backlog

Unlike a system with single event stream where a bounded delay is applied directly
to the computed service demand of the event stream, we compute first the individual
service demand of every stream, denoted as ,BZ.A , then derive the total service demand
of the set S, denoted as ﬁfzm ;- With the computed ﬁém ;» the bounded delay is applied
to calculate the feasible sleep interval t*.

Without loss of generality, the event streams S, Sz, ..., Sy in S are ordered ac-
cording to their priorities. The priority of stream S; is higher than that of S; when
k > i. Event streams can thereby be modeled as an ordered chain according to their
priorities and a lower priority stream can only make use of the resource left from a
higher priority stream. To compute the service demand of a higher priority stream, a
backward approach is applied by considering the service demand from the directly
lower priority stream, as shown in Fig. 6.

For the activation scheduling decision of the arrival of an event ey ;, the service
demand of stream Sy at time tj; is computed as

Ba(A, ) = max{By (A, 1), B (A, 15)),  where (20)
Br(A, 15y =alh (A — Dy, 15) + By (A, 1:1) @21)
BL (A1) = {ak (A 1) — (On — |Ex ()| — ahy (6 — 1)) -wn )T (22)

a}‘v(A,tlf)‘)sz-(ir;%{&;‘v(A+)»)—HN()\,ti‘)}> 23)

To derive ,Bf‘, we have to compute the service bounds ﬂf\‘,_l, /31‘\‘,_2, e ,BZA, sequen-
tially. Suppose that ,3,? has been derived, the resource constraint is that the remaining
service curve should be guaranteed to be no less than ,8,?, ie.,

B zinflp:BlA D = swp (BO)—af_ 0] @4
0=<r=<A

By inverting (24), we can derive /32_1 as:

Bi (D) =B A=)+l (A=A 1h)
where A = sup {7 : B (A — 7, 10) = B (A, 1)) (25)
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To guarantee the timing constraint of event stream Si_1, we also know that 8 1?—1 must
be no less than its own demand. Therefore, we know that

B (D) =max [B_,(A), By, (A, 1), Bl (A, 1)) (26)

where
B (A tp) =af_|(A—Dio1. 1) + Bi_ (A, 1)) 27
Bl (A1) = {eft_ (A 1) — (Qkt — | Exma ()] — &y (1 — 125 ) - wer )
(28)
o (8.t =it - (inf (& (A +2) = Hoi (i)} (29)

By applying (26) fork =N — 1, N —2,...,2, the service demand ﬂf‘ of stream
S is derived.

Based on this approach, the computed service demand for the highest priority
stream S can be also seen as the total service demand ,3;(‘” 1 for stream set S under
the fixed-priority scheduling. Therefore, the timing as well as backlog constraints for
all streams in S can be guaranteed by the sleep interval T* with which bd f (A, t*)
bounds ,BIA:

t* =max{t : bdf (A, 1) > {1 (A), YA > 0} (30)
6.2 EDF scheduling with individual backlog

For earliest-deadline-first scheduling, the total service demand ﬂf;ml for all N
streams can be bounded by the sum of their service demands. The ﬂ;}” .1 computed
in this manner, however, is not sufficient to guarantee the backlog constraint of any
stream in S. When an event of a stream S; is happened to have the latest deadline,
events in any stream of S\ {S;} will be assigned a higher priority. S; will suffer from
backlog overflow.

To compute a correct service demand which satisfies the backlog constraint for
stream S, S; has to be considered as the lowest priority. Similar back-forward ap-
proach is applied, as shown in Fig. 7. Instead of tracing back stepwise, the service
demand needed for higher-priority streams is the sum of all streams from S\ {S;}.

Again, we present the revision of the EDG algorithm as an example. The service ﬂf.

to guarantee the lowest priority stream S; should be more than the demand ,3;.‘ of §;,
i.e.,

0<A<A

B (A)>1nf{ﬁ ﬂ (A,tw)_ sup {,B(A) Za (A,t }} (€29

i#]j
Fig. 7 The computation flow ) )
for the total service demand for i l Zi#j Qi
the EDF scheduling with S BA
distributed backlog A \ i) A total
ﬁ J B 7, total
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By inverting (31), we can derive ﬂ?(A) as:

N
5}(A)=ﬁ;‘(A—x,t,ﬁ)+Za;‘(A—x,t$) (32)
i#]
where A = sup {7 : ,BJA(A —T,1h) = ,BJA(A, t,j)}, and

BA, 1) =max(B}(A, 1), Bl (A, 1)) (33)

where ,3; and ,BJT. are from (27) and (29). To guarantee the timing constraint of all

A
Jstota

of S\ {S;} as well. Therefore, we know that at time tj;,

higher-priority streams, we also know that g ; must be no less than the demand

N
lBﬁtotal(A) =max[,6?(A), ZﬁlA(Avti)} (34)
i#]

Applying (34) to each steam in S, the service demand for each steam is computed.
Because each stream could be the lowest priority in the worst case, only the maximum
of them can be seen as the total service demand for stream set S. Therefore, the
timing and backlog constraints for S can be guaranteed by t* with which bd f (A, t*)
bounds the maximum of individual streams:

o =max{rbdf(A,7) = max (B, (M)}, VA = o] (35)

6.3 EDF scheduling with global backlog

The approach to get the total service demand of S for global backlog is different
to the approach for individual backlog. Without loss of generality, we assume that a
backlog with size Q is shared by all event streams of S.

From Wandeler and Thiele (2006), the total service demand for all N streams with
respect to EDF scheduling can be bounded by the sum of their arrival curves:

N
B = al(A—D)) (36)
i=1

Based on this result, we refine our algorithms.

For the HAD algorithm, because there is no backlog for each evaluation, the re-
lated deadline for each event ¢; ; in every stream S; remains D;. Therefore, the ser-
vice demand to guarantee deadline requirement of all streams is

N
B(A) =) af(A=D;,1") (37)

i=1
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In the case of (13) of the WCG algorithm, the backlogs of different streams needs
to be considered. We apply the backlog demands fro all streams thereof’:

N

B (D)= (ai(A =Dy, 1) +wi - Bi(A, 1) (38)
i=1

The same applies to (18) of the EDG algorithm at time tj;.

Now we consider the backlog-size constraint. Besides the sum of all arrival curves,
the constraint in (12) additionally needs to consider events with the longest execution
time, i.e., max;ey {w;}. Therefore, it is revised as

N +
BT (A)= {Za;’(A) - Q~riréa}3<{wi}} (39)

i=1

The backlog constraint in (14) is more complex, because the backlog is not empty
and contains events from different streams. The remaining capacity of the backlog is

[E¢H N

AUTR D O AR @

j=1 i=1

where x; ; = 1,V for Stream S;, otherwise 0. Therefore, it is revised as

N IE¢H)| N +
Br(A) = !Za;‘(A,H) - (rlréa}é({wi} 0= D D xiye w,~>} (41)

i=1 j=1 i=1

The last revision is (19) of the EDG algorithm, where the estimated future events
of all streams need to be counted. Therefore it is revised as

N [EG)| N N +
ﬂ*(A)={Zaf‘(A,tu%)—(%c{wi}-Q— > Zx,-,,-~wi—2a§<e)>}

i=1 j=1 =l i=1
(42)

7 Performance evaluations

This section provides simulation results for the proposed adaptive dynamic power
management schemes. All the results are obtained from an AMD Opteron 2.6 GHz
processor with 8 GB RAM. The simulator is implemented in MATLAB by applying
MPA and RTS tools from Wandeler and Thiele (2006).

7.1 Simulation setup
We take the event streams studied in Huang et al. (2009), Hamann and Ernst (2005)

for our case studies. The specifications of these streams are depicted in Table 1. Para-
meters period, jitter, and delay are used for generating arrival curves defined
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Table 1 Event stream setting according to Huang et al. (2009), Hamann and Ernst (2005)

S1 S2 53 S Ss S6 N Sg S9 S10

Period (msec) 198 102 283 354 239 194 148 114 313 119

Jitter (msec) 387 70 269 387 222 260 91 13 302 187
Deday (msec) 48 45 58 17 65 32 78 - 86 89
Wecet (msec) 12 7 7 11 8 5 13 14 5 6

Table 2 Power profiles for

devices according to Cheng and ~ Device name Pa (W) Py (W) Fo (W) t5u (S) Esy (m])

Goddard (2006)
Realtek Ethernet  0.19 0.125  0.085 0.01 0.8
Maxstream 0.75 0.1 0.05 0.04 7.6
IBM Microdrive 1.3 0.5 0.1 0.012 9.6
SST Flash 0.125  0.05 0.001 0.001  0.098

in Sect. 3.1 and wcet represents the worst-case execution time of an event. The rel-
ative deadline D; of a stream §; is defined by a deadline factor, denoted as x, of its
period, i.e., D; = x * p;. To compare the impact of different algorithms, we simulate
traces with a 10sec time span. The traces are generated by the RTS tools (Wandeler
and Thiele 2006) and conformed to the arrival curve specifications. The history win-
dow A’ is set to five times of the longest period in a stream set. In our simulations,
we adopt the power profiles for four different devices in Cheng and Goddard (2006),
depicted in Table 2.

In this work, we evaluate two PPM schemes, i.e., switching to sleep with the HAD
algorithm and switching back with the WCG or EDG algorithm, denoted as WCG-
HAD and EDG-HAD. To show the effects of our scheme, we report the average idle
power that is computed as the total idle energy consumption divided by the time span
of the simulation:

E, - number_switches + Y _ on_time - Py

43
total_time_span “3)

For comparison, two other power management schemes described in Huang et al.
(2009) are measured as well, i.e., a periodic scheme (PS) and a naive event-driven
scheme (ED). The PS scheme is a periodic power management (PPM) scheme which
controls the device with a fixed on-off period, as proposed in Huang et al. (2009). The
lengths of the on and off periods are optimally computed with respect to the average
idle power by an offline algorithm. The ED scheme turns on the device whenever an
event arrives and turns off when the device becomes idle.

We simulate different cases of single and multiple streams. For multiple streams,
we only report results for random subsets of the 10-stream set due to space limita-
tion. S(3,4), for instance, represents a case considering only streams S3 and Sy in
Table 1. For FP scheduling policy of a multiple-stream set, the stream index defines
the priority of a stream. Considering again stream set S(3, 4), for instance, S3 has
higher priority than Sj.

@ Springer



184 Real-Time Syst (2011) 47: 163-193

7.2 Simulation results

In the following section, we report simulation results for single-stream cases,
multiple-stream cases, and computational expenses.

7.2.1 Single stream

First, we show the effectiveness of the proposed WCG-HAD and EDG-HAD schemes
comparing to the PS and ED schemes for single-stream cases. Because PS does not
consider the size of the system backlog, for fair comparison, we smooth out the
backlog-size effect by setting backlog size to a relative large number, i.e., 60 events
for this experiment. Figure 8 shows the normalized values of average idle power with
respect to PS for streams in Table 1 individually running on all four devices in Ta-
ble 2. As depicted in the figure, both our proposed schemes in this article outperform
the pure event-driven scheme as well as the optimal PPM scheme for all cases. On
average, 25% of the average idle power is saved with respect to PS for the deadline
factor x = 1.6.

In general, larger ratio of jitter and smaller ratio of wcet with respect to a
given period result in better energy saving, for instance, the cases for streams S;
and Se. On the contrary, the chance to reduce static power is less with larger wcet
ratio, as in the case of streams $7, S7, and Sg. Sg has the biggest wcet-periodratio,
thereby conducting the least energy saving for all four devices. Another observation is
that the overhead caused by the break-even time does not really affect the optimality
of the average idle power. As shown in Fig. 8, the normalized values for a given
stream does not change significantly for different devices, although the break-even
time is considerably different for the four devices, e.g., 18.2 ms for the SST Flash
and 152 ms for the Maxstream.

We also outline how the average idle power changes when the relative deadline of
a stream varies. Figure 9 compares the four schemes by varying the deadline factor x
for streams Sg and S4. As shown in Fig. 9, our online schemes again outperform the
other two. Another observation is that PS can achieve good results only when the rel-
ative deadline is large. For the cases of small relative deadlines, it is even worse than
ED. Our online schemes, on the contrary, can tackle different deadlines smoothly.
The reason is that our online schemes consider the actual arrivals of event, result-
ing in a more precise analysis of the scheduling decision. Note that ideally our two
online schemes, i.e., WCG-HAD and EDG-HAD, should produce identical results,
because the WCG and EDG algorithms should theoretically converge to the same
mode-switch moment, given a same trace. The slight deviation depicted in these two
figures is due to the pessimistic activation decision in Line 4 of the EDG algorithm.
This deviation is expected to become larger for multiple stream cases.

7.2.2 Multiple streams
We also present results for multiple-stream cases. Figures 10 and 11 depict simula-
tion results for stream set S(6,9, 10) running on Realtek Ethernet with individual

and global backlog allocation schemes, respectively. Note that the smallest backlog
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Fig. 10 Average idle power consumption with respect to different deadline and backlog settings on Real-
tek Ethernet for stream set S(6, 9, 10) under individual backlog allocation
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Fig. 11 Average idle power consumption with respect to different deadline and backlog settings for stream
set S(6,9, 10) running on Realtek Ethernet under global backlog allocation and EDF scheduling policy
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Fig. 12 Numbers of activations for different deadline settings of stream sets S(3,4), S(3-6), and
S(1, 3-6,9) running on Realtek Ethernet under individual backlog allocation with individual backlog size
of 10 events

size of Fig. 11 is set to three events, because the stream set used in this experiment
contains exactly three event streams. A backlog size smaller than three will results in
no sleep interval for any relative deadline setting.

The results from Figs. 10 and 11 demonstrate the effectiveness of our solutions for
multiple streams. These results confirm as well as following statements: a) When the
relative deadline and backlog size are small, the average idle power is large, where
the chances to turn off the device are slim. b) Increasing the relative deadline or
backlog size individually helps reduce the idle power for only a certain degree. More
increments do not conduct further improvements. c) Increasing both relative deadline
and backlog size can effectively reduce the idle power, where more arrived events can
be procrastinated and accumulated for each activation of the device.

Another observation is that EDG is more sensitive than WCG for small backlog
sizes on both global and individual backlog schemes. As Figs. 10(b) and 11(b) shown,
when the backlog sizes increase from 1 to 2 and from 3 to 4 for individual and global
backlog schemes, respectively, the idle power drops significantly. The reason is the
pessimistic activation decision in Line 4 of Algorithm EDG.

7.2.3 Computation expense

We also demonstrate the efficiency of our schemes by reporting the computational
expenses. Figure 12 shows the numbers of activations of our algorithms and Fig. 13
depicts the worst, best, and average case computational expenses for an activation.
From Fig. 12, we can find out that, given a same stream set, the numbers of activa-
tions for the EDG algorithm do not vary often as the relative deadline changes, which
confirms to the principle of the algorithm. The fluctuations are caused by event ar-
rivals when the device is at active mode. Such events do not activate the algorithm.
The second observation is that the numbers of activations for EDG are depended on
the numbers of streams running on the device while the numbers of activations for
WCG quickly converge even more streams are involved. The reason is that the activa-
tions of WCG are determined by the predicted turn-on moments that are depended on
the backlog size and relative deadline. When the backlog size and relative deadline
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Fig. 13 Worst, best, and average case computation expenses of an activation of the proposed algorithms
with respect to different deadline factors for three different 4-stream sets S(1-4), S(3-6), and S(2, 4, 6, 8)
individually running on Realtek Ethernet

are large enough, the number of activations is one, no matter how many streams are
added to the system.

From above facts, one might conclude that WCG is better. EDG is, however, mean-
ingful in the case when event arrivals are sparse. In such cases, the number of acti-
vations of EDG will be less than that of WCG. The results shown in the figure are
caused by the dense-event trace generated by the RTS tools.

Figure 13 presents the worst, best, and average case computational expenses of
an activation of the proposed algorithms with respect to different deadline factors for
stream sets S(1-4), S(3-6), and S(2, 4, 6, 8) individually running on Realtek Eth-
ernet. Results for FP scheduling coupled with individual backlog scheme and EDF
scheduling coupled with global backlog scheme are shown in Figs. 13(a) and 13(b),
respectively. We neglect the results for EDF scheduling with individual backlog
scheme due to the similarity to the FP case.

From the figure, we can conclude that both our algorithms are efficient. The
worst/best/average case computation expenses of each activation are within the range
of millisecond and are acceptable to the stream set in Table 1. With the new con-
struction of the bounded delay function, the computation time are retained almost
constant even with large relative deadlines. In general, EDG is more expensive than
WCG and HAD, which are confirmed with the definition in Sect. 5. The last obser-
vation is that the computation expenses are not negligible. There are also means to
tackle this problem, for instance, setting the computation overhead as a safe margin
for the computed sleep period or putting the activation itself as the highest priority
events of the system. We do not elaborate them here, since they are not the focus of
this article.

8 Complexity analysis

The computational overhead related to our algorithms can be attributed to three parts,
i.e., computing the service demand ,BIA for each event stream S;, the total service
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demand ,Bf(‘)m ; for stream set S in the case of multiple event streams, and the longest
feasible sleep interval t*.

To compute ﬂiA for an event stream S;, the most computational intensive part con-
sists of numerical operations on curves, for instance, the max-plus de-convolution
used in the derivation of the history-aware arrival curve in formula (9). If two curves
are periodic, the computational expense depends on the least common multiple of the
two periods. If they are aperiodic, the computational expense depends on the number
of aperiodic segments.

The timing complexity to compute the total service demand ,Bt/zm ; for event stream
set S is different for EDF and FP scheduling policies. In the case of FP scheduling,
O (N) operations on curves are needed because of the backward approach where the
service demand of a higher priority stream is derived from the directly lower priority
stream. In the case of EDF scheduling, O (N?) operations on curves are needed since
each event stream could be the lowest priority during runtime.

To compute T*, a binary search can be applied since max{8”(A), 87(A)} in (8)
is monotonically increasing. Therefore, assuming the possible number of t* is m,
computing t* needs O (logm) operations on curves.

9 Conclusions and future work

This article explores how to apply dynamic power management to reduce the static
power consumption for hard real-time embedded systems pertaining to both timing
and backlog constraints. We propose algorithms to adaptively control the power mode
of a device (system) based on the actual arrival of events, tackling multiple event
streams with irregular event arrival patterns under both earliest deadline first and fixed
priority preemptive scheduling. Proof-of-concept simulation results demonstrate the
effectiveness of approaches.

Note that the computational expenses of our approach are not negligible, espe-
cially for Algorithm EDG. These computation expenses are caused by the expen-
sive numerical (de)convolution for curve operations, for instance, the derivation of
history-aware arrival curves. We are currently working on new methods, trying to
replace the expensive numerical operations with light-weight analytical approach for
curve predictions.

Another fact is that although our algorithms are designed to reduce the energy
consumption while satisfying the timing constraints, the energy reduction of our al-
gorithms are, however, not proved to be competitive. For future work, we would like
to explore the competitiveness of our algorithms for the static power minimization
problem to provide worst-case guarantees and hopefully also average case improve-
ments.

Furthermore, another interesting future work would be to support non-preemptive
scheduling. Methods to support non-preemptive fix-priority scheduling in the context
of Real-Time Calculus have been developed in Haid and Thiele (2007), the idea of
which could be used to compute service demands for a set of event streams under non-
preemptive scheduling. In addition, supporting multiple devices is also an interesting
topic, which requires methods to support the analysis of global scheduling for a set
of devices. We are also investigating new methods in these directions.
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