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Abstract Cluster scheduling, where processors are grouped into clusters and the
tasks that are allocated to one cluster are scheduled by a global scheduler, has at-
tracted attention in multiprocessor real-time systems research recently. In this paper,
assuming that an optimal global scheduler is adopted within each cluster, we investi-
gate the worst-case utilization bounds for cluster scheduling with different task allo-
cation/partitioning heuristics. First, we develop a lower limit on the utilization bounds
for cluster scheduling with any reasonable task allocation scheme. Then, the lower
limit is shown to be the exact utilization bound for cluster scheduling with the worst-
fit task allocation scheme. For other task allocation heuristics (such as first-fit, best-
fit, first-fit decreasing, best-fit decreasing and worst-fit decreasing), higher utilization
bounds are derived for systems with both homogeneous clusters (where each cluster
has the same number of processors) and heterogeneous clusters (where clusters have
different number of processors). In addition, focusing on an efficient optimal global
scheduler, namely the boundary-fair (Bfair) algorithm, we propose a period-aware
task allocation heuristic with the goal of reducing the scheduling overhead (e.g., the
number of scheduling points, context switches and task migrations). Simulation re-
sults indicate that the percentage of task sets that can be scheduled is significantly
improved under cluster scheduling even for small-size clusters, compared to that of
the partitioned scheduling. Moreover, when comparing to the simple generic task
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allocation scheme (e.g., first-fit), the proposed period-aware task allocation heuris-
tic markedly reduces the scheduling overhead of cluster scheduling with the Bfair
scheduler.

Keywords Real-time systems - Multiprocessors - Cluster scheduling - Utilization
bound - Bfair algorithm - Scheduling overhead

1 Introduction

Real-time scheduling theory has been studied for decades and many well-known
scheduling algorithms have been developed for various real-time tasks for both
single-processor and multiprocessor systems (Baruah et al. 1996; Dertouzos and Mok
1989; Dhall and Liu 1978; Liu and Layland 1973). With the emergence of multi-
core processors, there is a reviving interest in the multiprocessor real-time schedul-
ing problem and many results have been reported recently (Andersson et al. 2008;
Baruah and Baker 2008; Davis and Burns 2009a; Devi and Anderson 2005; Guan et
al. 2009, 2010; Kato and Yamasaki 2007; Levin et al. 2010).

Traditionally, there have been two major approaches to the scheduling problem
in multiprocessor real-time systems: partitioned and global scheduling (Dertouzos
and Mok 1989; Dhall and Liu 1978). In partitioned scheduling, tasks are statically
assigned to processors and a task can only run on its designated processor. Al-
though well-established uniprocessor scheduling algorithms (e.g., earliest-deadline-
first (EDF) and rate-monotonic scheduling (RMS) (Liu and Layland 1973)) can be
employed on each processor, finding a feasible task allocation/partition was shown
to be NP-hard (Dertouzos and Mok 1989; Dhall and Liu 1978). Based on the sim-
ple task allocation heuristics (such as first-fit, best-fit and worst-fit), the utiliza-
tion bounds have been developed for partitioned scheduling with both EDF (Dar-
era 2006; Lopez et al. 2000, 2004) and RMS (Darera 2006; Lopez et al. 2001;
Oh and Baker 1998), which can be used in efficient schedulability tests. To further
improve system utilization, semi-partitioning based scheduling has been studied re-
cently where most tasks are statically allocated to processors and only a few tasks may
migrate among processors at run time (Andersson and Tovar 2006; Guan et al. 2010;
Kato et al. 2009; Kato and Yamasaki 2007, 2008).

In global scheduling, on the other hand, all tasks are put into a shared queue and
each idle processor fetches the next highest-priority ready task for execution from
the global queue. Despite its flexibility that allows tasks to migrate and execute on
different processors, it has been shown that simple global scheduling policies (e.g.,
global-EDF and global-RMS) could fail to schedule task sets with very low system
utilization (Dhall and Liu 1978). For task sets where the maximum task utilization is
limited, some utilization bounds have also been studied for global-EDF and global-
RMS scheduling algorithms (Andersson et al. 2001; Baker 2003; Goossens et al.
2003).

Several optimal global scheduling algorithms, which can schedule any periodic
task set whose total utilization does not exceed the computing capacity of a multi-
processor system and thus achieve full system utilization, have been studied as well.
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For continuous-time based systems, the 7-L plane based scheduling algorithms were
studied in Cho et al. (2006), Funaoka et al. (2008). More recently, a generalized
deadline-partitioned fair (DP-Fair) scheduling model was investigated in Levin et
al. (2010). However, those algorithms may generate arbitrarily small time alloca-
tion to tasks due to the continuous-time property and thus incur very high schedul-
ing overhead. As the well-known quantum-based optimal global scheduler, the
proportional fair (Pfair) scheduling algorithm enforces proportional progress (i.e.,
fairness) for each task in every time quantum (Baruah et al. 1996). Several sophisti-
cated variations of Pfair algorithm have also been studied, such as PD (Baruah et al.
1995) and PD? (Anderson and Srinivasan 2000a). However, by making scheduling
decisions in every time quantum, these algorithms could also lead to high schedul-
ing overhead. Observing that a periodic real-time task can only miss its deadline at
its period boundary, another optimal boundary-fair (Bfair) scheduling algorithm that
can also achieve full system utilization was proposed (Zhu et al. 2003). By making
scheduling decisions and ensuring fairness for tasks only at the period boundaries,
Bfair can significantly reduce the scheduling overhead (Zhu et al. 2003, 2009).

Recently, as a general and hierarchical approach, cluster scheduling has been
investigated. In this approach, processors are grouped into clusters and tasks are
partitioned among different clusters. For tasks that are allocated to a cluster, dif-
ferent global scheduling policies (e.g., global-EDF) can be adopted (Baruah 2007;
Bletsas and Andersson 2009; Calandrino et al. 2007; Shin et al. 2008). Note that,
cluster scheduling is a general approach, which will reduce to partitioned schedul-
ing when there is only one processor in each cluster. For the case of a single cluster
containing all the processors, it will reduce to global scheduling. As multicore pro-
cessors will be widely employed in modern real-time systems and processing cores
on a chip may be organized into a few groups (i.e., clusters), where cores sharing
on-chip caches (and even voltage supply through voltage-island techniques) belong
to one group (Herbert and Marculescu 2007; Qi and Zhu 2008), additional analysis of
cluster scheduling is warranted. Moreover, although the schedulability test and sys-
tem utilization bounds have been studied for both partitioned and global scheduling
approaches, such results are not readily available for cluster scheduling.

In this paper, assuming an optimal global scheduler which can fully utilize the
computational capacity within each cluster, we derive the worst-case utilization
bounds for cluster scheduling with different task allocation/partitioning schemes.
Moreover, focusing on the Bfair algorithm that has been shown to be an efficient
optimal global scheduler (Zhu et al. 2003, 2009), we propose a period-aware task
allocation/partition heuristic that exploits the harmonicity of tasks’ periods to fur-
ther reduce scheduling overhead. To the best of our knowledge, this is the first work
that adopts optimal global schedulers in cluster scheduling and analyzes its corre-
sponding worst-case utilization bounds. The main contributions of this work can be
summarized as follows:

— A lower limit on the utilization bounds for cluster scheduling with any reasonable
task allocation scheme (Lopez et al. 2004) is derived.

— The exact utilization bound for cluster scheduling with worst-fit task allocation is
shown to coincide with this lower limit, regardless of the number of tasks in each
cluster.
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— For other task allocation heuristics (such as first-fit, best-fit, first-fit decreasing,
best-fit decreasing and worst-fit decreasing), the utilization bounds for cluster
scheduling are developed for both homogeneous clusters (which have the same
number of processors) and heterogeneous clusters (where clusters have different
number of processors).

— For cluster scheduling with the Bfair scheduler, an efficient period-aware task al-
location heuristic is proposed.

— Finally, the effects of cluster size and the proposed period-aware task alloca-
tion heuristic on the performance of cluster scheduling are thoroughly evaluated
through extensive simulations.

The remainder of this paper is organized as follows. The related work is reviewed
in Sect. 2. Section 3 presents the system model and the problem that is addressed in
this work. In Sect. 4, the Bfair scheduler is reviewed and an efficient period-aware
task allocation heuristic is proposed. The worst-case utilization bounds for cluster
scheduling with different task allocation heuristics are derived in Sect. 5. Simulation
results are presented and discussed in Sect. 6. Section 7 concludes the paper.

2 Related work

Although rate monotonic (RM) scheduling and earliest deadline first (EDF) policies
have been shown to be optimal for static and dynamic priority assignments respec-
tively, for periodic real-time applications running on uni-processor systems (Liu and
Layland 1973), neither of them is optimal in multiprocessor settings (Dhall and Liu
1978). Based on partitioned scheduling, Oh and Baker studied the rate-monotonic
first-fit (RMFF) heuristic and showed that RMFF can schedule any system of periodic
tasks with total utilization bounded by m (2!/? — 1), where m is the number of proces-
sors in the system (Oh and Baker 1998). Later, a better bound of (m + HYm+D 1)
for RMFF was derived in Lopez et al. (2001). In Andersson and Jonsson (2003), An-
dersson and Jonsson proved that the system utilization bound can reach 50% for a
partitioned RM scheduling by exploiting the harmonicity of tasks’ periods. For the
partitioned scheduling with earliest deadline first (EDF) first-fit heuristic, Lopez et
al. showed that any task set can be successfully scheduled if the total utilization is
no more than (8 - m + 1)/(B + 1), where § = |1/«] and « is the maximum task
utilization of the tasks under consideration (Lopez et al. 2004; Lopez et al. 2000).
Following similar techniques, the utilization bounds for partitioned-EDF in uniform
multiprocessor systems (where the processors have the same functionalities but dif-
ferent processing speeds) were developed by Darera (2006).

For global-EDF scheduling, it has been shown that a task set is schedulable on m
processors if the total utilization does not exceed m (1 —«) + o (Goossens et al. 2003).
Similarly, for global-RMS scheduling, a system utilization of (m/2)(1 — o) + « can
be guaranteed (Baker 2003). Andersson et al. also studied the scheduling algorithm
RM-US, where tasks with utilization higher than some threshold 6 have the highest
priority (Andersson et al. 2001). For 8 = % Baker showed that RM-US can guarantee
a system utilization of (m + 1)/3 (Baker 2003).
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To further improve the achievable system utilization and reduce the scheduling
overhead, Andersson et al. proposed the EKG algorithm based on the concept of por-
tion tasks (Andersson and Tovar 2006). In EKG, a separator is defined as SEP = kk?
for cases where k < m (m is the number of processors) and SEP = 1 for the case of
k = m. The heavy tasks with utilization larger than SEP are allocated to their dedi-
cated processors following the conventional partitioned-EDF scheduling. Each light
task (with utilization no greater than SEP) is split into two portion tasks only if nec-
essary, where the portion tasks are assigned to adjacent processors. The worst-case
system utilization bound that can be achieved by EKG is 66% when it is configured
with k = 2 which results in a small number of preemptions. Full (i.e., 100%) sys-
tem utilization can be achieved by setting k = m, which can result in high schedul-
ing overhead with many preemptions as EKG may allocate arbitrarily small share of
time to tasks. In the same line of research, several semi-partitioning based schedul-
ing algorithms have been proposed very recently, with different handling mecha-
nisms for portion tasks and different system utilization bounds (Guan et al. 2010;
Kato et al. 2009; Kato and Yamasaki 2007, 2008).

The first global scheduling algorithm based on discrete quantum time model, the
proportional fair (Pfair) algorithm, can achieve full system utilization and hence is
optimal (Baruah et al. 1996). The basic idea in Pfair algorithm is to enforce propor-
tional progress (i.e., fairness) for all tasks at each time unit, which actually imposes
a more strict requirement for the problem. Any Pfair schedule for a set of periodic
real-time tasks will ensure that all task instances can complete their executions be-
fore their deadlines, as long as the total utilization does not exceed the total number of
processors. By separating tasks as light (with weights no greater than 50%) and heavy
(with weights larger than 50%), a more efficient Pfair algorithm, PD, is proposed in
Baruah et al. (1995). A simplified PD algorithm, PD?, uses two fewer parameters
than PD to compare the priorities of tasks (Anderson and Srinivasan 2001). How-
ever, both algorithms have the same asymptotic complexity of O (min{n,mlgn}),
where 7 is the number of tasks and m is the number of processors. A variant of Pfair
scheduling, early-release scheduling, was also proposed in Anderson and Srinivasan
(2000a). By considering intra-sporadic tasks, where subtasks may be released later,
the same authors proposed another polynomial-time scheduling algorithm, EPDF,
which is optimal for systems with one or two processors (Anderson and Srinivasan
2000b).

The supertask approach was first proposed to support non-migratory tasks in Moir
and Ramamurthy (1999): tasks bound to a specific processor are combined into a sin-
gle supertask which is then scheduled as an ordinary Pfair task. When a supertask is
scheduled, one of its component tasks is selected for execution using EDF policy. Un-
fortunately, the supertask approach cannot ensure all the non-migratory component
tasks to meet their deadline even when the supertask is scheduled in a Pfair manner.!
Based on the concept of supertask, a re-weighting technique has been studied, which
inflates a supertask’s weight to ensure that its component tasks meet their deadlines
if the supertask is scheduled in a Pfair manner (Holman and Anderson 2001). While

11t has been shown that Pfair schedules with such mapping constraints do exist (Liu and Lee 2004), how-
ever, finding the efficient scheduling algorithm to obtain such Pfair schedules remains an open problem.
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this technique ensures that the supertask’s non-migratory component tasks meet their
deadlines, the available system utilization is reduced.

Assuming a continuous time domain and arbitrarily small time allocations to tasks,
several optimal T-L plane based scheduling algorithms have been studied. These algo-
rithms can also achieve full system utilization and guarantee all the timing constraints
of tasks (Cho et al. 2006, 2010; Funaoka et al. 2008). More recently, by adopting the
idea of deadline partitioning, a general scheduling model named DP-Fair was studied
for continuous-time systems by Levin et al. (2010). In addition to periodic tasks, the
authors also showed how to extend DP-Fair to sporadic task sets with unconstrained
deadlines. More detailed discussions for the existing work on multiprocessor real-
time scheduling can be found in the recent survey paper (Davis and Burns 2009b).

The results reported for cluster scheduling in this paper are different from the ex-
isting work, although similar techniques have been employed to derive the utilization
bounds for partitioned-EDF (Darera 2006; Lopez et al. 2000, 2004). In addition, for
cluster scheduling with the Bfair scheduler, an efficient period-aware task allocation
scheme is proposed to further reduce the scheduling overhead. The effects of cluster
configuration (such as different number of processors within a cluster) and the pro-
posed period-aware task allocation heuristic on the performance of cluster scheduling
are thoroughly evaluated through extensive simulations.

3 System models and problem description

In this section, we first present the system models and state our assumptions. Then,
the fundamentals of cluster scheduling are reviewed, followed by the description of
the problem to be addressed in this work.

3.1 System models

In this work, we consider a shared memory multiprocessor (or multicore) system
with m identical processors/cores (which can execute any task at the same processing
speed). A set of n periodic real-time tasks I' = {11, 12, ..., 7,} are to be executed on
this platform. It is assumed that there is no dependency between the tasks. Each task
7; is defined by a tuple (c¢;, pi), where ¢; is the task’s worst-case execution time
(WCET) and p; is its period. Here, p; is also the relative deadline of task t; (i.e.,
we consider real-time tasks with implicit-deadlines). Both ¢; and p; are assumed to
be integers, expressed as a multiple of the system time quantum value. Each task
generates a sequence of infinite number of task instances (or jobs) and the first task
instances of all tasks are assumed to arrive at time O (i.e., tasks are synchronous). The
Jj’s task instance of task t; arrives at time (j — 1) - p; and needs to finish its execution
by its deadline at time j - p; (j > 1).

The utilization (or weight) of a task 7; is defined as u; = % The system utiliza-
tion of a task set I' is defined as U(I") = Zr,—er u;. With the assumption that a task
cannot execute in parallel on more than one processors at any time, we have u; < 1.
Moreover, the maximum utilization of all tasks is denoted as & = max{u;|t; € I'}.

For scheduling and other considerations (such as power management in multicore
processors (Herbert and Marculescu 2007; Qi and Zhu 2008)), the processors can

@ Springer



Real-Time Syst (2011) 47: 253-284 259

be grouped into clusters, where each cluster has several processors. In this work, we
assume that m processors are grouped into b clusters and the number of processors
inthe i’thclusteris k; > 1 (i =1, ..., b). That is, the smallest cluster has at least one
processor. Moreover, we have m = Zle ki.

3.2 Cluster scheduling and problem description

There are two main steps in cluster scheduling: first, tasks are partitioned/allocated to
clusters; then, within each cluster, tasks are scheduled by a global scheduler (Baruah
2007; Calandrino et al. 2007; Shin et al. 2008). It can be seen that, the schedula-
bility of a task set under cluster scheduling depends not only on the task alloca-
tion/partitioning schemes, but also on the global scheduler adopted within each clus-
ter, in addition to the number of clusters and processors in a system.

Shin et al. (2008) carried out the schedulability analysis for a virtual cluster
scheduling mechanism, where the global-EDF scheduler is adopted within each clus-
ter. However, it is well-known that global-EDF can lead to low system utilization
(Dhall and Liu 1978). The effect of cluster sizes on the utilization of a notional
processor scheduler (NPS) is also investigated in Bletsas and Andersson (2009). To
achieve the maximum system utilization, in this work, we assume that an optimal
global scheduler that can fully utilize all processors is adopted within each cluster.
In particular, we consider an efficient optimal global scheduler: the boundary-fair
(Bfair) scheduling algorithm (Zhu et al. 2003) which will be reviewed in the next
section.

Note that, with an optimal global scheduler in each cluster, any subset of tasks that
are allocated to a cluster can be successfully scheduled provided that the aggregate
utilization of these tasks is no more than the number of processors in that cluster. That
is, the maximum system utilization that can be achieved under cluster scheduling in
the worst-case scenario will be determined by its task allocation/partitioning scheme.
Finding an optimal task partitioning scheme has been shown to be NP-hard and many
simple heuristic approaches have been proposed, such as First-Fit (FF), Best-Fit (BF)
and Worst-Fit (WF), which are part of the class of reasonable task allocation schemes.
In Lopez et al. (2000, 2004), a reasonable task allocation algorithm is defined as the
one that always allocates a task 7, to one of the processors as long as there exists a
processor with current available capacity no smaller than u,.

Problem Description In this paper, assuming an optimal global scheduler within
each cluster, we investigate the utilization bound for cluster scheduling with dif-
ferent reasonable task allocation heuristics. More specifically, for a given system
with m processors that are grouped into b clusters, the worst-case achievable utiliza-
tion bound for cluster scheduling with a given reasonable task allocation scheme RA
is defined as a real number U [fﬁm 4O that may depend on m, b and the number of
processors in each cluster, such that:

— Any periodic task set I' with system utilization U(I") < Uf(ﬁmd() is guaranteed
to be schedulable under cluster scheduling with the corresponding task allocation
scheme RA;
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— For any system utilization U’ > Uﬁm 40, it is always possible to find a task set
with system utilization U’, that cannot be scheduled under cluster scheduling with
the reasonable task allocation scheme RA.

Moreover, for systems with different cluster configurations, we also study the
scheduling overhead (such as the scheduler time overhead at each scheduling point,
the number of context switches and task migrations) under cluster scheduling with
Bfair.

4 Bfair scheduler and period-aware task allocation

Before presenting the utilization bounds for cluster scheduling, we first review an op-
timal and efficient global scheduling algorithm: The Boundary-fair (Bfair) scheduler.
Then, a period-aware task allocation/partition scheme is proposed, with the objective
of minimizing the scheduling overhead by reducing the number of scheduling points,
context switches, and task migrations.

4.1 An efficient optimal global scheduling algorithm: Bfair

Several optimal global scheduling algorithms that can achieve full system utilization
have been studied for both continuous-time and discrete-time based multiprocessor
real-time systems (Sect. 1). But the continuous-time based optimal global schedulers
may either require scheduling decisions at any time instant (Cho et al. 2006; Funaoka
et al. 2008) or yield arbitrary small CPU time allocation to individual tasks (Levin
et al. 2010). Moreover, the well-known discrete-time based Pfair scheduler and its
variations (Anderson and Srinivasan 2000a; Buruah et al. 1995, 1996) could incur
quite high scheduling overhead by making scheduling decision at every time unit,
especially for systems with small time quantum. Therefore, in this work, we adopt
the discrete-time based boundary-fair (Bfair) scheduling algorithm, which is also
optimal but makes scheduling decisions (and ensures fairness to tasks) only at tasks’
period boundaries (Zhu et al. 2003).

More specifically, for a subset Iy of periodic real-time tasks to be executed on a
cluster of k processors, we can define the period boundary points as B = {bo, ..., b},
where bp =0and b; < b1 (j=0,..., f—1).Forevery b, there exists t; € I'y and
an integer a, such that b; = a - p;. Moreover, due to the periodicity of the settings,
we consider only the schedule up to the time point that corresponds to the LCM
(least common multiple) of the tasks’ periods. That is, by = LCM{p;|t; € I'y}. Ata
boundary time point b;(€ B), Bfair allocates processors to tasks for the time units
between b; and b; 11 (Zhu et al. 2003).

Define the allocation error for task t; (€ I'y) at a boundary time b;(€ B) as
8(i, j) = X;(bj) — bj - u;, where X;(b;) represents the total number of time units
that are allocated to task 7; from time O to time b; under the Bfair scheduler. Bfair
ensures that for any task 7; (€ I'y), at any boundary time b;(€ B), |§(i, j)| <1 (i.e.,
the allocation error is within one time unit). By ensuring this property, it was proven
that all tasks can meet their deadlines under Bfair if U (T'y) = erel“y u; <k (.e., the
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112|341 1[2(3(4|1]|4|1|2{3] 1 (4|2]|3] 1 [2/4(3| 1|2|3|4

5 645‘65‘64‘5‘6 5‘65‘64564 5 |6

0 5 6 10 12 15 18 20 24 25 30
a) The boundary fair schedule [45]
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0 56 10 12 15 18 20 24 25 30
b) The proportional fair schedule [11]

Fig. 1 The schedules for the example task set I' = { 71(2,5), 7(3, 15), 13(3, 15), ©4(2, 6), 75(20, 30),
76(6, 30)} (the dotted lines denote the period boundaries)

system utilization of the subset of tasks is no greater than the number of available
processors) (Zhu et al. 2003).

The detailed steps of the Bfair algorithm are omitted here and can be found in
(Zhu et al. 2003). We illustrate the idea through an example: consider a task set
with 6 periodic tasks to be executed on a cluster of two processors: I' = {71(2, 5),
(3, 15), 13(3, 15), 14(2, 6), 15(20, 30), 76(6, 30)}. Here, we have U = 21-621 ui =2
and LCM = 30. Figure 1a shows the schedule generated by the Bfair algorithm (Zhu
et al. 2003), where the dotted lines in the figure are the period boundaries of the tasks.
The numbers in the rectangles denote the task numbers. For comparison, the schedule
obtained from the Pfair algorithm (Baruah et al. 1996) is shown in Fig. 1b.

From these schedules, we can see that there are only 10 scheduling points for
Bfair, while the number of scheduling points for Pfair is 30 (the number of quanta
within LCM). Our recent results showed that, compared to Pfair, Bfair can reduce the
number of scheduling points by up to 94% (Zhu et al. 2009). Moreover, by aggregat-
ing CPU time allocation to tasks within each inter-boundary interval, Bfair can also
significantly reduce the number of context switches, which occur when a processor
starts executing a different task. For instance, within the first boundary interval from
t =0tot =35, the top processor has context switches at time 2, 3 and 4 and the bot-
tom processor has only one context switch at time 3 in the Bfair schedule (Fig. 1a).
In the above example, there are 45 context switches in the Bfair schedule and this
number is 52 for the Pfair schedule within one LCM. Our recent study showed that,
compared to Pfair, Bfair can reduce the number of context switches by up to 82%
(Zhu et al. 2009). In addition, due to the same reasons, Bfair can effectively reduce
the number of task migrations (which happens when a task resumes its execution
on a different processor) by up to 85% (Zhu et al. 2009). Such reduction in context
switches and task migrations is critical to reduce the run-time overhead in real-time
systems.

Considering its optimality and low scheduling overhead, we will adopt Bfair as the
global scheduler within each cluster in this work. However, we would like to point
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out that the utilization bound developed for cluster scheduling in the next section is
not specific to Bfair. The use of any optimal global scheduler (e.g. Pfair variants
(Anderson and Srinivasan 2000a, Buruah et al. 1995, 1996) T-L plane algorithms
(Cho et al. 2006; Funaoka et al. 2008) and DP-Fair scheduler (Levin et al. 2010))
that can fully utilize all processors within each cluster will lead to the same utilization
bound.

4.2 Period-aware task allocation

From the above discussion, we can see that the scheduling points for the Bfair sched-
uler within each cluster are all the period boundaries of the tasks allocated to that clus-
ter. That is, the periods of tasks allocated to a cluster have a significant effect on the
scheduling overhead for cluster scheduling with the Bfair scheduler. Note that, in im-
plementation of real systems, the system designers have often the flexibility of select-
ing the periods of (some subset of) tasks being harmonic (Liu 2000). In fact, there are
studies that exploit the harmonicity relationships between the task periods to improve
the schedulability under rate-monotonic scheduling (Andersson and Jonsson 2003;
Burchard et al. 1996; Lauzac et al. 2003). Along the same lines, but this time with the
objective of minimizing the scheduling overhead, we propose a period-aware task
allocation scheme, which exploits the harmonicity of tasks’ periods to reduce the
scheduling overhead in cluster scheduling with Bfair.

Specifically, if we can allocate tasks with harmonic periods to a cluster, all the
period boundaries will be determined by the tasks with the smallest period and tasks
with larger periods will not increase the number of scheduling points for Bfair within
that cluster. Moreover, for tasks with non-harmonic periods, by separating tasks with
small periods from the ones with large periods and allocating them to different clus-
ters, the effects of small period tasks on the number of scheduling points will be
constrained within their clusters and the number of scheduling points for clusters
with large period tasks can be significantly reduced.

Following these guidelines, we propose the period-aware first-fit (PA-FF) task
allocation scheme, as a variant of the first-fit heuristic. The detailed steps of the PA-
FF scheme are shown in Algorithm 1. First, the task with the smallest period p, is put
in a task set (HarmonicSet), which is followed by tasks with periods harmonic with
px (lines 4 to 17). Then, all tasks in the harmonic task set are added to an ordered task
list (LIST) in the order of increasing periods of tasks (line 18). The above process is
repeated until all tasks are put in the ordered task list (lines 3 to 19). Then, in the same
order as in the ordered task list, the tasks are allocated to clusters following the first-
fit heuristic (line 20). The superiority of the new PA-FF task allocation scheme over
the simple first-fit heuristic on reducing the scheduling overhead (e.g., the number of
scheduling points, context switches and task migrations) of cluster scheduling with
Bfair is evaluated and discussed in Sect. 6.

5 Utilization bounds for cluster scheduling with optimal global schedulers

As mentioned earlier, with an optimal global scheduler within each cluster, the tasks
that are allocated to one cluster will be schedulable as long as their aggregate utiliza-
tion is no more than the number of processors within that cluster. Therefore, the task
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Algorithm 1 Period-Aware First-Fit (PA-FF) Heuristic
1: Set pmax = max} p;;
2: Initialize an ordered task list: LIST = (;
3: while (Task set ' # @ ) do
4:  Find a task 7, with p, = min{p;|t; € T'};
5 HarmonicSet = {1, }; '— = {1, };
6: LCM=p,;j=1;
7 while (LCM - j < pmax) do
8
9

if (3t; € I with p; =LCM - j) then
for all (z; with p; =LCM - j) do

10: HarmonicSet+ = {t;}; I'— = {1;};
11: end for

12: LCM =LCM - j,

13: j=1;

14: else

15: j=Jj+1

16: end if

17:  end while

18:  Move all tasks in HarmonicSet in increasing period order to LIST;

19: end while

20: Allocate tasks in the ordered list LIST to clusters with First-Fit heuristic;

allocation/partitioning phase of cluster scheduling becomes essentially a bin-packing
problem of how to successfully pack » items into b bins, where the size of each item
is no more than « (< 1) and each bin has a size of k; (i =1, ..., b). However, un-
like the bin-packing problem where the goal is to minimize the number of bins to be
used or to maximize the number of items to be packed, we are interested in deriving
the utilization bound that can be used in efficient schedulability tests. That is, any
task set with system utilization no greater than the bound should be guaranteed to be
schedulable under cluster scheduling.

It is easy to see that, for cluster scheduling with optimal global schedulers, the
utilization bound will depend on its task allocation/partitioning scheme as well as the
number of clusters and processors in the system under consideration. Recall that, the
maximum task utilization is denoted by « (< 1). For a cluster with k; processors, the
minimum number of tasks that fit in that cluster is given by g; = L%J . Similarly, for a
system with b clusters where the i ’th cluster has k; processors, the minimum number
of tasks that can be handled by that system can be found as Bgum = Zle Bi. That
is, if the number of tasks in a task set satisfies n < B, regardless of the system
utilization and (reasonable) task allocation scheme, all tasks are guaranteed to be
schedulable under cluster scheduling with optimal global schedulers. Therefore, in
what follows, we assume that n > Bg,,.

In partitioned scheduling, several well-known partition heuristics have been stud-
ied, such as first-fit (FF), best-fit (BF) and worst-fit (WF) (Lopez et al. 2000, 2004),
which can also be adopted to allocate tasks to clusters in cluster scheduling. Note that,
these partitioning heuristics have different features (e.g., WF typically yields better
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balanced partitions, while FF and BF provide better system utilization), which will
lead to different utilization bounds. Following (Lopez et al. 2000, 2004), we define a
task allocation scheme for cluster scheduling to be reasonable if it always performs
allocation of a task (to a cluster) whenever the utilization of the task does not exceed
the available remaining capacity of at least one cluster. More specifically, suppose
that the subset of tasks that have been allocated to the i’th cluster (i = 1,...,b)
is I'; and the next task to be allocated is 7. A reasonable allocation (RA) scheme
will allocate the task t, to one cluster provided that there exists a cluster such that
uy < ki — Uy), where U(T';) = erer‘,- (u;). Note that, all the above mentioned
heuristics (WF, FF and BF) qualify as reasonable allocation schemes.

In what follows, following the similar reasonings as those for the utilization
bounds of partitioned-EDF scheduling in uniprocessor systems (Darera 2006; Lopez
et al. 2000, 2004), we first derive a lower limit on the utilization bounds for cluster
scheduling with any reasonable task allocation scheme. Then, the exact bound for
the WF allocation heuristic is presented. Finally, the bounds for other partitioning
heuristics are obtained, for both homogeneous and heterogeneous clusters (that have
the same and different number of processors, respectively).

5.1 Lower limit for the utilization bounds

For a system with a given cluster configuration (defined by m, b and k;, where

i =1,...,b), the utilization bound for cluster scheduling with a reasonable allo-
cation of tasks to clusters is denoted as U,ﬁfﬁmd(m, b,ki,...,kp, ). In this section,

we will derive a lower limit U li(;t‘:n d for such a utilization bound. That is, for clus-

ter scheduling with any reasonable task allocation scheme, the utilization bound will
. RA low

Satley Ubolmd () z Ubouna' .

Theorem 1 For a real-time system with m processors that are grouped into b clus-
ters, where the i’'th cluster has k; processors, if the number of tasks n > Bsym, the
utilization bound for cluster scheduling with any reasonable task allocation scheme
Uﬁnd() will satisfy the following expression:

U am. b, ky, .. k) = USY =m—(b—1) -« (1

Proof The proof follows the similar approach as that for Theorem 1 in Lopez et al.
(2004). That is, we will prove the theorem by showing that, for any task set I" that is
not schedulable under cluster scheduling with any reasonable task allocation scheme,
U)> U  holds.

Without loss of generality, suppose that I' = {zy, ..., 7,} and tasks are allocated to
clusters in the increasing order of tasks’ indices. Let task 7; (j < n) be the first task
that cannot fit into any of the clusters. We have:

uj>k,~—U(Fl~), i=1,...,b 2)

where I'; is the subset of tasks that have been allocated to the i’th cluster and U (T';)
denotes the aggregate utilization of tasks in I';. Note that, the first (j — 1) tasks have
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been successfully allocated to the clusters. That is,

-1

uy =y U

x=1 i=1

~.

Therefore, we have:

b j n
wj+Y UTH=Y uy <Y uy=U() 3)
x=1 x=1

i=1

From (2), we can get

b b b b
ZU(Fi)>Z(ki—uj)=Zki—Zuj =m-—>b-u;
1 i=1 i=1

i=1 i=
Substituting the above inequality into (3), we have:
UD)>uj+m—b-uj=m—(b-1) u; (@)
By definition, « is the maximum task utilization. That is, u; < «. Hence:
UD)>m—-—Gb-1)-« 5)

That is, for any task set I" that cannot be scheduled by cluster scheduling, the above
inequality holds. Consequently, any task set with system utilization <m — (b — 1)«
should be schedulable under cluster scheduling, concluding the proof. U

From Theorem 1, we can see that, regardless of whether the number of proces-
sors within each cluster is the same (homogeneous clusters) or not (heterogeneous
clusters), the lowest achievable utilization bound for cluster scheduling with reason-
able allocation schemes depends only on the maximum task utilization, the number
of clusters and the total number of processors. For a system with a fixed number of
processors, when the number of clusters increases, the lowest achievable utilization
bound for cluster scheduling decreases.

5.2 Utilization bound for the worst-fit task allocation scheme

In this section, we show that the lower limit derived in the above section is also the
upper limit on the utilization bounds for cluster scheduling with the worst-fit task
allocation. That is, it is the actual utilization bound for cluster scheduling with the
worst-fit task allocation. Suppose that, during task allocation, the remaining capacity
on the i’th cluster is R; = k; — U(T";), where k; is the number of processors in the
cluster and I'; represents the subset of tasks that have been allocated to the cluster. In
the worst-fit task allocation, tasks are allocated to clusters sequentially and a task 7; is
always allocated to the cluster with the largest remaining capacity R, = maxf?:1 {Ri},
provided that Ry > u;.
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Theorem 2 For a real-time system with m processors that are grouped into b clus-
ters, where the i’'th cluster has k; processors, if the number of tasks n > Bsum, the
utilization bound for cluster scheduling with worst-fit task allocation U I}gﬁn 40 is:

U;Ygl;ld(m,b,a)zm_(b_ 1) -«a (6)

Proof We will prove the theorem by showing that m — (b — 1) - « is also the upper
limit on the utilization bound for cluster scheduling with the worst-fit task allocation.
That is, we will prove the existence of a set of n (> Byu) tasks with the system
utilization of m — (b — 1) - @ 4+ & (where ¢ — 01) that cannot fit into b clusters under
the worst-fit task allocation algorithm.

The proof adopts similar techniques as those used in the proof of Theorem 3
in Lopez et al. (2004), with three parts: (1). The task set is first constructed; (2). The
task set is shown to be valid (i.e., for any task 7; in the set, u; < « holds); (3). Fi-
nally, it is shown that the task set cannot fit into the clusters under the worst-fit task
allocation scheme.

Part 1: The task set with n tasks is constructed as follows. First, we construct b
subset of tasks, where the i’th subset I'; has §; tasks and the total number of tasks is
Bsum = Z?:l Bi. The tasks in the i’th subset I';, have the same task utilization equal
to:
k,’ — + & r
Ui = , Tiel;
! ﬂi 2. ﬂsum !
An additional set I'p1 of (n — Bsum — 1) tasks are constructed where the tasks have
identical utilization as m The last task has the utilization of «. Hence, there
sum

are Boun + (M — Byum — 1) + 1 = n tasks in the task set I.

Part 2: From Part 1, we can find that the system utilization of the task set I" is U (") =
m—((b—1)-a+e. Since ¢ — 0T, for any task 7; in the set I'p41, u; < . By
definition, for the last task t,, we have u,, < «.

For any task 7; in the subset I';, from the definition of g; = L%J, we have:

k,' k,' — o
Bi>——1=
o
That is, k"/;“ < «. Since ¢ — 0T, we have:
kl‘ — &
uj=—— <«
,31' 2',Bsum

Therefore, the task utilization of any task constructed in Part 1 is no more than « and
the task set is valid.

Part 3: In what follows, we show that it is always possible to order the tasks in ", in

such a way that the worst-fit technique will fail to generate a feasible allocation of
the tasks on b clusters.
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This special task order ® will have the following features: In ®, first the tasks
in the b subsets ['; (i = 1,...,b) will appear, followed by the tasks in the subset
I'p4+1 with identical utilizations, and finally, by the task t, with utilization u, = «.
Moreover, when tasks in I" are processed by the worst-fit technique in the order given
by ©, the tasks in the i’th subset I'; will be allocated to the i’th cluster that has k;
processors. We will show that (i) it is always possible to come up with such a task
order ®, and, (ii) when the worst-fit heuristic processes the tasks in the order ®, the
last task T, cannot fit in any of the clusters.

To show (i) above, we will provide a deterministic algorithm to generate the spe-
cific order for tasks in I'1, ..., I'p in ® (because the position of tasks in ', and 7,
are already fixed). Then, we will prove the statement given in (ii) above.

For (i), first note that, under the worst-fit allocation, the next task in ® (regard-
less of its utilization) will be allocated to the cluster that has the largest remaining
capacity. For cases where more than one clusters have the same largest remaining
capacity, we assume that the task is allocated to the cluster with smaller index. Then
the specific order for tasks in I'f, ..., ', in ® can be found through the following
3-step procedure:

— Step I: The remaining capacity for the i’th cluster is initialized as RC; = k;; i =
1,...,b. An ordered task list is initialized to be LIST = (/.

— Step 2: Find the maximum remaining capacity among all clusters, that is, RCipax =
max{RC;li =1, ..., b}. Suppose that RCy, = RCpax. If there are more than one
clusters that have the same maximum remaining capacity RCpax, X is the smallest
index of all such clusters. Remove one task from the x’th subset and add it to the
end of the ordered task list LIST. Recall that all tasks in the x’th subset have the
same utilization u, . Update RC, = RCy — uy.

— Step 3: If there is any subset that still contains task(s), repeat the above Step 2.

Note that, the second step in the above procedure relies on an implicit condition:
When the above procedure is applied to the tasks in 'y, ..., Ty, if there are tasks that
have not been added to the ordered list and the x 'th cluster has the largest remaining
capacity RCy, the subset I'y should contain at least one task. Next, we prove that such
a condition always holds through contradiction. That is, suppose that the x’th cluster
has the largest remaining capacity RC, during the execution of the above procedure,
I"y is empty and there exists another subset I'y (y # x) that still contains task(s), there
will be a contradiction as we show in what follows.

For the tasks that are already in the ordered list LIST, after allocating them to the
clusters under the worst-fit allocation, we know that all tasks in I", will be allocated
to the x’th cluster. That is, the remaining capacity of the x’th cluster is:

ky — o I3 )_ By - &

+ =a—
ﬂx 2. ﬂsum 2. ﬁsum

Note that, at least one task in the subset I'y is not in the ordered list yet and at most
(By — 1) tasks in I'y, can be allocated to the y’th cluster. Therefore, we have

Rszkx_U(rx)zkx_,Bx<

RCy >k —(ﬁ,—l)-<k”—“+ ° )
v ! IBy z'ﬂsum

@ Springer



268 Real-Time Syst (2011) 47: 253-284

. a ky —a & ky —a &
—ky IBy ( ﬂy +2'ﬂxum>+( :3)’ +2',35um)
_ By ky —a &€

- Z'ﬂsum +( /Sy +2',Bsum>

Since ¢ — 01, we can see that RC y > RCy, which contradicts with the assumption
that the maximum remaining capacity is RC,. Therefore, the condition always holds
(and thus the second step can complete) during the execution of the above procedure.

Thus the order ® consists of tasks in I'y, ..., I'p as yielded by the 3-step procedure
above, followed by the tasks in I',41 and t,. Now we show that with this specific
order ®, the worst-fit heuristic will not be able to allocate the last task 7, to any of
the clusters.

Note that, under the above procedure, all tasks in the first b subsets can be added to
the ordered list. Moreover, when the tasks are allocated to clusters under the worst-fit
allocation in the order ®, all tasks in the i’th subset I'; will be allocated to the i’th
cluster (i =1, ..., b). After allocating all tasks in I'(, ..., [y, the remaining capacity
for the i’th cluster will be

+ =« <o

ki —« e Bi ¢
RCi =ki — Bi -
ﬁi 2. ﬂsum 2. ﬂsum

That is, after further allocating the tasks in the subset [',4| to the clusters as in the
order ®, the remaining capacity of any cluster is less than « and the last task t,, that
has the utilization of & cannot fit into any of the clusters.

Therefore, U ;Zf g <m — (b — 1) - a. Note that, from Theorem 1, we have also
ulF 0=m— (-1 -a Thus, UM ()=m — (b —1) - «, which concludes the

proof. g

From Theorem 2, we can see that the utilization bound for cluster scheduling with
the worst-fit task allocation scheme does not depend on the number of processors
within each individual cluster. Instead, it depends only on the total number of proces-
sors and the number of clusters in the system as well as the maximum task utilization
for the tasks under consideration.

For a system with 64 processors, Fig. 2 shows the normalized utilization bound
(i.e. W) for the worst-fit task allocation when the processors are orga-
nized into different number of clusters. We can see that, when there are more clusters,
the utilization bound becomes lower as more segmented processor capacity can be
wasted in the worst-case scenario. Moreover, with increasing maximum task utiliza-
tion «, the utilization bound decreases due to larger segmented processor capacity
wasted in each cluster. For the case where each processor forms a cluster and o = 1,
the utilization bound for the worst-fit allocation can be extremely small (as low as 1
regardless of the number of processors in the system), which coincides with previous
results on partitioned scheduling with the worst-fit task allocation scheme (Dhall and
Liu 1978; Lopez et al. 2004).
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5.3 Utilization bound for reasonable allocation decreasing schemes

To improve the utilization bound, instead of allocating tasks in the random order, we
can allocate tasks in the decreasing order of their utilizations (Lopez et al. 2004).
In what follows, for such reasonable allocation decreasing (RAD) schemes, which
include first-fit decreasing (FFD), best-fit decreasing (BFD) and worst-fit decreasing
(WFD), we will develop higher utilization bounds for cluster scheduling with optimal
global schedulers. We first consider the case with homogeneous clusters (where all
clusters have the same number of processors) in Sect. 5.3.1. The utilization bound
for heterogeneous clusters (where clusters have different number of processors) is
studied in Sect. 5.3.2.

5.3.1 The case for homogeneous clusters

In this section, we consider the case with homogeneous clusters where each cluster
has the same number of processors. That is, k; =k (i =1,...,b) and m = b - k.
Note that, when k = 1 (i.e., there is only one processor within each cluster), the
problem can be reduced to that of finding the utilization bound for the partitioned-
EDF scheduling, which has been studied by Lopez et al. (2000, 2004). Specifically,
for reasonable allocation decreasing (RAD) heuristics, the utilization bound for the
partitioned-EDF is given as (Lopez et al. 2000, 2004):

_Bp-m+1

Upartition—EDF ( ’ )
B+1

bound 0
where m is the number of processors in the system; and § = Léj denotes the maxi-
mum number of tasks that can fit in one processor when all tasks have the maximum
task utilization & (< 1). When o = 1, the bound reduces to (rm + 1) /2. That is, for sys-
tems with large number of processors and « = 1, partitioned-EDF can only achieve
around 50% of the system utilization in the worst-case scenario.

For the cases where each cluster has more processors, by extending the result
in (7), we can obtain the following theorem regarding the utilization bound for cluster
scheduling with reasonable allocation decreasing schemes.
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Theorem 3 For a real-time system with m processors that are grouped into b clusters
with each cluster having k processors (i.e., m = b - k), if an optimal global scheduler
is adopted within each cluster and a reasonable allocation decreasing (e.g., FFD,
BFD or WFD) heuristic is used, the worst-case utilization bound is:

k-b+1

baund(b k) k+1 -k (8)

Proof We will prove the theorem by transforming the problem of cluster scheduling
to that of partitioned-EDF scheduling problem. Recall that the necessary and suffi-
cient condition for a set of tasks to be schedulable on a uniprocessor system under
EDF scheduling is the aggregate utilization of the tasks being no more than one (Liu
and Layland 1973).

Therefore, for any problem of scheduling a set of tasks I' = {7;|i = 1,...,n} on b
clusters each with k processors under cluster scheduling, we can construct a cor-
responding partitioned-EDF scheduling problem with a set of tasks I'' = {t/[i =
1,...,n} and b processors each of unit capacity, where the utilization of task ri’ is
% of that of the task 7;. That is, u} = % fori=1,...,n.

We can see that, for any task allocation heuristic, if it can successfully allocate the
tasks in task set I'” on b processors without exceeding each processor’s capacity, the
same heuristic will be able to allocate the tasks in task set I' on b clusters without
exceeding each cluster’s capacity, which is k.

Note that, for every task t; € I', wehaveu; <1 (i =1, ..., n). Therefore, the max-
imum task utilization for tasks in I'" will be o’ = max{uj|i = 1,...,n} =max{F|i =
L,...,n} < 1. From (7), we know that, for any of the reasonable allocation decreas-

ing heuristics the task set I can be successfully allocated on b processors if the
T ats /s r_~xon o Ld/e)]-b+1 k-b+1
system utilization of.F. sU =) ju; < /a1 = T
Hence, for the original task set I', the same task allocation scheme can allocate
all tasks on b clusters each with k processors if the system utilization U =)} u; =

kY tui=k-U < ka+11 k, which concludes the proof. O

Following the same reasoning, if the maximum task utilization in task set I' is
o (< 1), the utilization bound can be generalized as:

B-b+1

pib ko) ="——— 5 -k )

houn
where 8 = |k/a] denotes the maximum number of tasks that can fit in one cluster
of k processors if all tasks have the utilization as «. In Lopez et al. (2000, 2004),
it is shown that the utilization bounds for FF and BF coincide with those for the
reasonable allocation decreasing heuristics. Therefore, following the same reasoning
as in proof of Theorem 3, we have

B-b+1
buund(b k, Ol) bound(b k, )_ W -k (10)

Note that, if the cluster size is one (i.e., k = 1 and b = m), the bounds given in the
two equations above are reduced to the worst-case utilization bounds for partitioned-

@ Springer



Real-Time Syst (2011) 47: 253-284 271

Fig. 3 Utilization bounds for 11— ; — *
cluster scheduling with RAD e T
schemes in a 64-processor . 0.95 - 0,*‘ - ]
system that is configured with S 0.9 Fy 1
homogeneous clusters 8 0.85 n .
c ' :
S
k= 0.8 ¥ B
N
= 0.75 1
=}
3 0.7 | 1
N
© 0.65 1
£
s 067 =1 ]
0.55 |- =05 i
o=025 - -%- -
05 Il Il Il Il
12 4 8 16 32

number of processors per cluster

EDF scheduling studied by Lopez et al. (2000, 2004). Moreover, if all processors
belong to one cluster (i.e., » = 1 and k = m), the utilization bound will be m, the
number of processors in the system, which coincides with the assumption that the
optimal global scheduler can schedule any task set with system utilization not ex-
ceeding the number of processors.

From the above equations, we observe that, for a system with a given number of
processors, the organization of the clusters (i.e., size and number of clusters) has a di-
rect effect on the worst-case utilization bound. To illustrate such effects, Fig. 3 shows
the bound for a 64-processor system with different organizations of the clusters. The
X -axis represents the number of processors per cluster (i.e., k) and the Y-axis depicts
the normalized utilization bound (which is defined as UMD ()/64).

As expected, for a given value of the maximum task utilization «, the utilization
bound increases when the number of processors in each cluster increases and fewer
clusters are organized. For instance, if the processors are organized as 4 clusters with
16 processors each, the normalized utilization bound is 0.95, while the bound is only
0.8 for the organization of 16 clusters each with 4 processors. This is because the
smaller the clusters, the more significant is the utilization loss due to fragmenta-
tion caused during the course of partitioning algorithm. Moreover, the effect of «
on the utilization bound is more prominent for smaller clusters. However, as shown
in Sect. 6, it can be beneficial to organize the processors as smaller clusters to re-
duce scheduling overhead. That is, for smaller clusters, there will be relatively fewer
number of the tasks within each cluster and the number of scheduling points (i.e.,
period boundaries) can be significantly reduced for cluster scheduling with the Bfair
scheduler, leading to lower scheduling overhead.

5.3.2 The case for heterogeneous clusters

Due to resource and/or power management consideration, the clusters in a sys-
tem may have different number of processors (Herbert and Marculescu 2007;
Qi and Zhu 2008). For cluster scheduling with reasonable allocation decreasing

schemes, we derive the utilization bound for systems with heterogeneous clusters in
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this section. The main idea is similar to the one used in the derivation of the utilization
bounds for the partitioned-EDF scheduler in systems with non-identical uniform pro-
cessors (which have the same functionalities but different processing speeds), which
have been studied by Darera (2006).

Theorem 4 For a real-time system with m processors that are grouped into b clus-
ters, where the i’th cluster has k; (> 1) processors and m = Zle ki, if an opti-
mal global scheduler is adopted within each cluster and a reasonable allocation de-
creasing (e.g., FFD, BFD or WFD) partitioning heuristic is employed, the utilization
bound U ﬁg 4O satisfies the following expression:

‘(ﬁsum"l‘l)
URAD (m bk, ... k. > 1 Poum T 1) 11
bound(m 1 by O) = Bom + b (11)

where Bgum = Y"0_, Bi and p; = | % ].

Proof The proof has the steps similar to those of Theorem 1. That is, we will show
that, for any task set I" that is not schedulable in the system that has heterogeneous
clusters under cluster scheduling with any reasonable allocation decreasing scheme,
the following inequality holds: U (I") > 2-PumtD

Consider a set of tasks that cannot be scheduled I' = {t1,72,...,Tj,..., Tu}. We
assume that u;_1 > u; for 1 < j < n. Suppose that task 7; (j < n) is the first task
that cannot be allocated to any of the b clusters after successfully allocating the first
(j — 1) tasks. That is, the remaining capacity of any cluster is less than the task z;’s
utilization u ;:

ki—UTy) <uj, i=1,...,b

where I'; presents the subset of tasks that have been allocated to the i’th cluster. We
have

Uly)>ki—u;, i=1,...,b
b b
ZU(Fi)>Zki—b~uj=m—b-uj
i=1 i=1

Note that, the aggregate utilization of the first j tasks is:

J

> =)

x=1 i=1

UT) +u;j

From the above two equations, we get
J
Zux >m—(b—Du;

x=1
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Since tasks are allocated in the decreasing order of their utilization, we have
> _jux>j-uj. Thatis,
;:1 Ux

>U;
j-
J

Therefore, we have

Zux>m—(b—1)

x=1

. Zi:l Ux
J

After re-arranging the above equation, we get:
j .
O
x> T

= j+b—1
Note that, with the maximum task utilization «, the minimum number of tasks that
can fit into the i’th cluster is 8; = L%J and the minimum number of tasks that are
guaranteed to be schedulable in the system is B, = Zf:l Bi. Therefore, we have
J = Bsum + 1. Combining this with the fact that the right side of the above inequality
increases monotonically with increasing j, we obtain:

u / jom o meBam+1)
UD) =) uy> Y uy>- > (12)
XX_; * ; * ]+b_l ﬂsmn+b

Therefore, any set of tasks with utilization < M’ﬁbl) is schedulable under cluster
sum

scheduling with a reasonable allocation decreasing scheme in a system with hetero-
geneous clusters, which concludes the proof. g

From Theorem 4, we can see that, in addition to the maximum task utilization
and the number of processors and clusters, the utilization bound of cluster scheduling
in systems with heterogeneous clusters depends on the number of processors within
each individual cluster (i.e., ;). Note that, when clusters have the same number of
processors (i.e., homogeneous clusters), the bound in (11) will reduce to the one given
in (9).

6 Evaluations and discussions

Note that the utilization bounds derived in the preceding section correspond to the
worst-case scenario. That is, it is still possible to have task sets schedulable with uti-
lizations larger than the given bounds. In this section, we will empirically evaluate
the performance of different task allocation heuristics as well as the effects of differ-
ent cluster configurations in a system with a given number of processors, in terms of
success ratio of synthetically generated task sets (which is defined as the ratio of the
number of schedulable task sets over the total number of task sets generated).
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Moreover, the performance of the proposed period-aware first-fit (PA-FF) task
allocation heuristic on reducing the scheduling overhead (in terms of invocation time
at each scheduling point, the number of context switches and task migrations) is also
evaluated for cluster scheduling with the Bfair global scheduler through extensive
simulations. For comparison, the simple first-fit decreasing (FFD) heuristic is also
considered.

In the simulations, synthetic task sets are generated from a set of parameters: the
system utilization of task sets Uy, the maximum task utilization ¢, the minimum
task period Ppip, and the maximum task period Ppgax. In this section, we consider
systems with m = 16 and m = 64 processors, separately. Moreover, we define the
normalized system utilization as % which will vary from 0.75 to 1.0. The maximum
task utilization « varies in the range of [0.2, 1.0]. Unless specified otherwise, when
generating the periods of tasks, we considered Ppj, = 10 and Ppax = 100.

For a given setting, the period and utilization of a task are first generated within
the range of [ Pmin, Pmax] and (0, ], respectively, following the uniform distribution.
Then, to ensure the integer property of the task’s worst-case execution time (WCET),
its utilization value is adjusted so as not to exceed «. Additional tasks are generated
iteratively provided that their cumulative utilization does not exceed Uy, the target
system utilization. When the difference between Uy, and the summation utilization
of generated tasks is less than «, the last task takes its utilization as the difference
(i.e., the system utilization of the task set is exactly Uy,,). Therefore, the number of
tasks in a task set depends on both its system utilization Uy, and the maximum task
utilization «. For task sets with the same system utilization, more tasks are generally
contained in the set with smaller value of «.

6.1 Success ratio
6.1.1 Worst-fit allocation

Recall from Sect. 5.2 that the utilization bound for cluster scheduling with worst-fit
task allocation heuristic can be very low, especially for systems with large number of
clusters. In this section, for task sets with different system utilizations, we first evalu-
ate the number of task sets that can be successfully scheduled under cluster schedul-
ing with Bfair and worst-fit allocation heuristic. Here, the maximum task utilization
is set to o = 1.0 and 1,000,000 task sets are generated for each setting following the
aforementioned steps.

Figures 4a and 4b show the success ratio of the synthetic task sets for systems with
16 and 64 processors, respectively. Here, the X -axis represents the normalized system
utilization (i.e., %) of the task sets under consideration. From the figures, we can
see that, a large number of task sets with system utilization well above the utilization
bound are schedulable. For instance, with o = 1.0, the normalized utilization bound

for the system with 16 processors and 16 cluster is W = 11—6 = 0.0625.
However, from Fig. 4a, we can see that almost all task sets with normalized system
utilization < 0.4 are schedulable and more than 95% of the task sets with normal-
ized system utilization 0.5 are schedulable. As the number of clusters decreases, the
utilization bound for the worst-fit allocation increases and more task sets with higher
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normalized system utilization become schedulable. For systems with 64 processors,
similar results are obtained as shown in Fig. 4b. For the same number of clusters
(e.g., b =16), more task sets with higher normalized system utilizations are schedu-
lable for systems with more processors, which is consistent with the utilization bound

whose value increases with the number of processors when the number of clusters is
fixed.

6.1.2 Period-aware first-fit allocation

Recall that the utilization bounds for reasonable allocation decreasing (RAD) heuris-
tics (including FFD, BFD and WFD) are the same for systems with both homoge-
neous and heterogeneous clusters (see Sect. 5.3). Moreover, for systems with ho-
mogeneous clusters, the bounds for FF and BF heuristics are the same as that for
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the RAD heuristics. In this section, we show the success ratio of the synthetic task
sets for our newly proposed period-aware first-fit (PA-FF) scheme, a variant of FF
heuristic. For comparison, the success ratio of the task sets under partitioned-EDF
scheduling with first-fit heuristic (pEDF-FF) is also presented (Lopez et al. 2000,
2004). The results for RAD heuristics are very close to that of PA-FF for the same
cluster configuration, and are not shown in the figures for clarity.

As before, we consider systems with 16 and 64 processors. The success ratios of
task sets with different normalized system utilizations are shown in Figs. 5a and 5b,
respectively. Here, for systems with homogeneous clusters, only the results for cluster
size of k =2 and k = 4 are presented. For larger clusters with more processors each,
the success ratio of task sets under cluster scheduling with PA-FF is almost 1 even
for very high normalized system utilization. Moreover, when the system is configured
with heterogeneous clusters, there are many different possible cluster configurations.
In this work, we consider one special buddy heterogeneous cluster configuration fol-
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lowing the similar idea of buddy memory allocation in operating systems. Here, the
first cluster has 1/2 of the processors, the second cluster has 1/2 of the remaining
processors, and so on. For instance, for systems with 16 processors, there are five
clusters, with 8, 4, 2, 1 and 1 processor(s) each, respectively.

First, from Fig. 5a, we can see that, the cluster scheduling can successfully sched-
ule almost all task sets that have the normalized system utilization < 0.87 even when
the 16-processor system is configured as 8 homogeneous clusters of size two (i.e.,
k = 2). Not surprisingly, the cluster scheduling performs better with larger clusters
(and fewer number of clusters) as the wasted utilization fragmentation becomes rel-
atively less. For instance, for the case where each cluster has four processors (i.e.,
k = 4), the normalized system utilization limit can reach 0.95 and almost all task
sets are still schedulable. In contrast, the partitioned-EDF with the first-fit heuristic
(denoted as pEDF-FF) can only schedule almost all task sets when the normalized
system utilization of task sets does not exceed 0.77. For the case of heterogeneous
buddy cluster configuration with 5 clusters, the number of successfully scheduled
task sets falls between that for homogeneous clusters of k = 2 (with 8 clusters) and
k = 4 (with 4 clusters). Almost all task sets with normalized system utilization < 0.92
are schedulable.

When the maximum task utilization becomes smaller (e.g., & = 0.5), better suc-
cess ratios have been obtained for both PA-FF and pEDF-FF. The results follow the
similar pattern as that for « = 1.0 and are not shown in the paper due to space limi-
tations. However, it is worth noting that the cluster scheduling with PA-FF still out-
performs partitioned-EDF with first-fit heuristic. Moreover, for systems with more
processors, more clusters can be formed and tasks have more chance to fit into one
of the clusters. For instance, for systems with 64 processors, Fig. 5b shows that both
the cluster scheduling with PA-FF and partitioned-EDF with FF perform better and
can schedule more task sets with higher normalized system utilization. Furthermore,
PA-FF performs almost same for systems with 16 homogeneous clusters each having
4 processors (i.e., k = 4) and the ones with buddy heterogeneous clusters that have
only 7 clusters.

6.2 Scheduling overhead for cluster scheduling with Bfair

For systems with a given number of processors, although cluster scheduling can suc-
cessfully schedule more task sets with higher system utilization for larger clusters
each having more processors (i.e., smaller number of clusters), larger clusters could
lead to higher scheduling overhead. When more tasks are allocated to each clus-
ter, there are more scheduling points for the Bfair global scheduler and the interval
between adjacent period boundaries can become smaller. Therefore, in addition to
the time overhead for invoking the Bfair scheduler at each scheduling point (which
largely depends on the number of tasks in a cluster), the generated schedule can re-
quire more context switches and task migrations due to shorter continuous execution
of tasks within each interval between period boundaries (Zhu et al. 2003, 2009).

In this section, for systems where the processors are organized as different size
of homogeneous clusters, the scheduling overhead of cluster scheduling with Bfair is
also evaluated through extensive simulations. Here, to ensure that most of the gener-
ated task sets are schedulable, we set the normalized system utilization to Yt — (),95,

m
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Moreover, we set Ppin = 10 and Ppax = 100. The value of the maximum task uti-
lization « is varied from 0.2 to 1.0. As mentioned earlier, for a given (normalized)
system utilization, varying « effectively affects the number of tasks in the task sets
under consideration, where smaller values of « lead to more tasks for each task set.
For each data point in the following figures, 100 schedulable task sets are generated
and the average result is reported.

6.2.1 Scheduler time overhead at each scheduling point

For cluster scheduling with PA-FF, Figs. 6a and 6b first show the invocation time
overhead of the Bfair scheduler at each scheduling point for 16-processor and
64-processor systems, respectively, when the systems are configured as different ho-
mogeneous clusters. Here, the Bfair algorithm is implemented in C and runs on a
Linux machine with an Intel 2.4 GHz processor. Note that, when all processors in a
system form a single cluster (i.e., k = m), the cluster scheduling essentially becomes
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to be the global Bfair scheduling (Zhu et al. 2003), which is labeled as “Global” and
used for comparison.

As shown in Zhu et al. (2003, 2009), the time overhead of Bfair at each schedul-
ing point depends largely on the number of tasks to be scheduled together. For the
cluster scheduling under consideration, after tasks are allocated/partitioned to clus-
ters, the scheduling decisions of Bfair for each cluster can be made independently.
Therefore, as we can see from Fig. 6a, when the cluster size becomes smaller (i.e.,
smaller values of k), the time overhead at a scheduling point within a cluster can be
significantly reduced. This is because fewer tasks are allocated to a smaller cluster.
Moreover, as o becomes smaller, more tasks will be contained in each task set. That
is, more tasks will be allocated to each cluster, and the time overhead of Bfair at each
scheduling point generally increases. However, the effect of « is more prominent for
larger clusters, especially for the global Bfair where there is only one cluster and all
tasks are handled together. For systems with more processors as shown in Fig. 6b,
there are more tasks that can be scheduled and the time overhead at each scheduling
point becomes larger, which is consistent with our previous results reported in (Zhu
et al. 2003, 2009).

6.2.2 Number of context switches and task migrations

Next, we evaluate the schedules generated by cluster scheduling with Bfair for dif-
ferent sizes of clusters in terms of the required number of context switches and task
migrations. Here, the maximum task utilization is fixed as « = 1.0 and the normalized
system utilization is set as % = 0.95. With fixed Ppax = 100, we vary Py, from
10 to 90 and evaluate the effects of tasks’ periods on cluster scheduling with Bfair.
The proposed PA-FF heuristic is evaluated against the simple first-fit (FF) allocation
heuristic where tasks are randomly ordered. For easy comparison, the schedules gen-
erated by the global Bfair (i.e., with cluster size being k = m) are used as the baseline
and normalized results are reported.

Figures 7a and 7b show the normalized number of context switches for the sched-
ules generated by cluster scheduling with Bfair for systems with 16 and 64 proces-
sors, respectively. From the results, we can see that, compared to that of the schedules
generated by the global Bfair where all tasks are scheduled together, the number of
context switches in the schedules generated by cluster scheduling decreases drasti-
cally when cluster size becomes smaller. For instance, when the cluster size is k = 2,
the number of context switches can be reduced by more than 90%. The reason is that,
with fewer tasks in a smaller cluster, the scheduling points that are the tasks’ period
boundaries become fewer, which in turn provides more opportunities for tasks to run
longer before the next scheduling point and thus to reduce the number of context
switches. Moreover, by allocating harmonic tasks together, the proposed PA-FF allo-
cation scheme can further reduce the number of context switches significantly when
compared to that of the simple FF heuristic, especially for the ones with large size
clusters and systems with more processors.

Furthermore, when Ppx is fixed as 100, more tasks are likely to have the same
period as Pp;, increases. That is, the number of scheduling points becomes less for
both global Bfair and cluster scheduling within each cluster. However, the reduction
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in scheduling points is more significant for global Bfair algorithm, which leads to
a much reduced number of context switches (Zhu et al. 2003, 2009). Therefore, for
the simple FF heuristic, the normalized number of context switches for the schedules
generated by cluster scheduling increases slightly as Ppi, increases. However, for
the proposed PA-FF allocation scheme that allocates tasks with harmonic periods
together, the normalized number of context switches stays roughly the same.

Figures 8a and 8b further show the normalized number of task migrations for the
schedules generated by cluster scheduling with Bfair. Due to the similar reasons, the
number of task migrations is also reduced under cluster scheduling, especially with
smaller clusters and the PA-FF allocation scheme.

7 Conclusions

As a hierarchical approach to address the multiprocessor real-time scheduling prob-
lem, cluster scheduling has been studied recently, where processors are grouped into
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clusters and tasks allocated to one cluster are scheduled by a global scheduler. In
this paper, by adopting an optimal global scheduler within each cluster, we stud-
ied the worst-case utilization bound for cluster scheduling with different task allo-
cation/partition heuristics. First, we obtained a lower limit on the utilization bounds
for cluster scheduling with any reasonable task allocation schemes. Then, the lower
limit is shown to be the utilization bound for cluster scheduling with the worst-fit task
allocation scheme. For other task allocation heuristics (such as first-fit, best-fit, first-
fit decreasing, best-fit decreasing and worst-fit-decreasing), higher utilization bounds
were derived for systems with both homogeneous clusters (where each cluster has the
same number of processors) and heterogeneous clusters (where clusters have different
number of processors). In addition, focusing on an efficient optimal global scheduler,
namely the boundary-fair (Bfair) algorithm, we propose a period-aware task alloca-
tion heuristic with the goal of reducing the scheduling overhead (e.g., the number of
scheduling points, context switches and task migrations). The proposed schemes are
evaluated through extensive simulations with synthetic real-time tasks and the simu-
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lation results showed that, compared to that of the partitioned scheduling, the success
ratio of schedulable task sets can be significantly improved under cluster schedul-
ing even with small size clusters (e.g., k = 2). In addition, when compared to global
Bfair scheduling, cluster scheduling can drastically reduce the scheduling overhead
(such as execution time of the scheduler, and the number of context switches and task
migrations for the generated schedules). Moreover, when comparing to the simple
generic task allocation scheme (e.g., first-fit), the proposed period-aware task alloca-
tion heuristic can further reduce the scheduling overhead of cluster scheduling with
the Bfair scheduler.
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