Document downloaded from:

http://hdl.handle.net/10251/37526

This paper must be cited as:

Enrique Hernandez-Orallo; Vila Carbo, JA. (2012). On the nature and impact of self-
similarity in real-time systems. Real-Time Systems. 48(3):294-319. doi:10.1007/s11241-
012-9146-0.

The final publication is available at

http://link.springer.com/article/10.1007/s11241-012-9146-0

C ight
opyng Springer Verlag (Germany)

Noname manuscript No.
(will be inserted by the editor)

On the nature and impact of self-similarity in real-time
systems

Enrique Hernandez-Orallo and
Joan Vila-Carbé

the date of receipt and acceptance should be inserted later

Abstract In real-time systems with highly variable task execution times sim-
plistic task models are insufficient to accurately model and to analyze the
system. Variability can be tackled using distributions rather than a single
value, but the proper characterization depends on the degree of variability.
Self-similarity is one of the deepest kinds of variability. It characterizes the
fact that a workload is not only highly variable, but it is also bursty on many
time-scales. This paper identifies in which situations this source of indeter-
minism can appear in a real-time system: the combination of variability in
task inter-arrival times and execution times. Although self-similarity is not a
claim for all systems with variable execution times, it is not unusual in some
applications with real-time requirements, like video processing, networking and
gaming.

The paper shows how to properly model and to analyze self-similar task
sets and how improper modeling can mask deadline misses. The paper derives
an analytical expression for the dependence of the deadline miss ratio on the
degree of self-similarity and proofs its negative impact on real-time systems
performance through system’s modeling and simulation. This study about the
nature and impact of self-similarity on soft real-time systems can help to reduce
its effects, to choose the proper scheduling policies, and to avoid its causes at
system design time.

1 Introduction

The simplest way of characterizing the execution time of a real-time task is
by describing it with its WCET (Worst-Case Execution Time). The analysis
of hard real-time systems is mostly based on this parameter. However, in

Departamento de Informética de Sistemas y Computadores.
Universidad Politécnica de Valencia. Valencia, Spain.
E-mail: ehernandez@disca.upv.es - E-mail: jvilaQdisca.upv.es

multimedia and network based real-time systems, workloads are highly variable
and the WCET approach faces important drawbacks: on one hand, the problem
of accurately determining the WCET is difficult and, on the other, this WCET
usually leads to poor resource utilization.

Typical multimedia applications are similar to hard real-time systems in
many ways: they periodically process a set of input data (like video frames)
and they must complete this processing before a deadline. The main differences
with traditional systems is in a major degree of non-determinism: execution
is much more variable. This, in turn, motivates different system requirements:
CPU bandwidth requirements become more important while deadline require-
ments can be relaxed to a certain point.

Variability in multimedia tasks mainly affects two parameters: the task
execution time and the task inter-arrival time. Although these parameters
usually move around a steady mean value, they experience a high dispersion
in their values. That introduces considerable trouble in task scheduling and
analysis.

The variability of multimedia execution times is due to several factors. One
is the nature of the workload: there are multiple video frame types (I, P and B
in MPEG) exploiting different types of redundancy, and unexpected sequences
of these frames. Another factor is the nature of the algorithms: frame and image
processing algorithms are complex; the percentage of ALU (integer and float-
ing point), branch,and memory instructions in each run can vary significantly,
leading to different execution traces. Finally, a third factor comprises archi-
tectural issues: variations in memory access times due to cache accesses and
bus arbitration can also affect seriously the execution times. The experiments
of [21] evaluate these factors in MPEG decoding. They show that, despite the
differences in frame types, execution time is rather predictable: 90% of the
frames has execution times within 10% of the immediately preceding frame.
However a 10% of unpredictable cases is still high. Contrary to the common
perception, experiments also show that aggressive architectural features and
caches have a limited effect on execution time variability, at least on these
applications. The variability is shown to be mostly caused by the application
algorithm and the amount of media input.

According to previous studies, the variability of task inter-arrival times
is one of the main reasons for variability. In multimedia systems tasks are
triggered by data arriving periodically from communication channels or events
produced by sensors. The unpredictability of communication systems (such as
wireless networks) and external events makes task activation times to have a
high jitter or variable period.

Because of the fatal combination of the variability of task inter-arrival
times and execution times, the processing time of tasks over a sampling pe-
riod may vary across non-trivial ranges, even when these distributions spread
around a well known mean value. However, this high variability does not al-
ways implies self-similarity.

Self-similarity [25, 38] characterizes the fact that a workload is not only
highly variable, but it is also bursty on many time-scales or, in other words the

bursty behavior may itself be bursty. The degree of self-similarity is measured
by the Hurst parameter.

Closely related to self-similarity are heavy-tailed distributions. In the last
decade it was stated that network traffic shows two properties [22, 29, 37]:
i) self-similarity: counts of packet arrivals in equally-spaced intervals of time
are long-range, time-dependent and have a large coefficient of deviation; and
ii) heavy-tailed: packet inter-arrival times have a marginal distribution that
has a longer tail than the exponential distribution. The Pareto and Weibull
distributions are often used to characterize heavy-tailed distributions. Some
studies show that multimedia streams exhibit self-similar properties with Hurst
values between 0.75 and 0.95 [14, 31]. The frame sizes of VBR video (MPEG)
are best matched with a heavy-tailed Pareto distribution [14].

This paper analyzes in which situations the workload of a real-time sys-
tem can be regarded as self-similar, its characterization, its modeling and its
implications on system performance and on the schedulability analysis.

The impact of self-similarity and heavy-tailed distributions on non real-
time scheduling disciplines has been studied in related fields, like Unix schedul-
ing, network traffic, and web servers.

In [4, 17, 23] it is shown that CPU requirements of Unix processes are
self-similar and have heavy-tailed distributions. This finding was very impor-
tant from the scheduling point of view because it motivated to reevaluate
Unix scheduling disciplines in terms of their behavior with these heavy-tailed
workloads [16].

The strong impact of self-similarity on packet scheduling has been clearly
shown [8, 11, 12, 20, 30]. The main effect is an increase in the packet loss rate
and in the packet delays due to greater buffer delays.

Finally, studies of the response times (sojourn times) for heavy-tailed and
self-similar workloads on web server applications show that FCFS and other
non-preemptive scheduling disciplines, perform very poorly [4] while, in con-
trast, Priority Sharing (PS) and Shortest Remaining Processing Time (SRPT)
are optimal [7, 15].

The influence of variability on real-time scheduling has been recently ad-
dressed. Several statistical characterizations and analysis methods have been
proposed [2, 10, 13, 32, 35, 36] but they have not taken into account the self-
similar nature of media workloads. Nevertheless, it is important to note the
strong impact of variability on soft real-time scheduling in the experiments of
[32].

This paper models tasks variability using an “on-off” model [5] where the
“on” state represents time intervals where the task is active and the “off”
state represents the intervals of task inactivity. The duration of the “on” or
“off” states are assumed to be highly variable. Such a set of tasks behaves
statistically as a fractional Brownian motion (fBm). The analytical analysis
of schedulability is based on applying the concept of synthetic utilization [1]
to the previous “on-off” model. Results show the dependency of schedula-
bility on the Hurst parameter. Furthermore, in a set of periodic and aperi-
odic tasks, the aperiodic workload can seriously jeopardize the schedulability

of periodic tasks. Analytical results are further checked and confirmed via
simulations. The study allows us to conclude that a bandwidth isolation or
reservation mechanism (such as the Constant Bandwidth Server (CBS) [3]) is
recommended for environments with a mix of hard-deadline periodic tasks and
soft-deadline sporadic tasks. As proven in the experiments, the CBS scheduler
assures the hard-deadline of the periodic tasks independently of the level of
self-similarity of the sporadic tasks.

This paper extends the work in [19] in several ways. First, it introduces
some motivating examples taken from real applications where the self-similarity
property is detected and its impact shown. It also proposes a simplified system
model and a workload modeling method. Finally, it uses a new schedulability
analysis based on the concept of deadline tightness. Experiments have also
been extended and updated.

The remainder of the paper is organized as follows: first, section 2 presents
two motivating examples that shows the impact of self-similarity in scheduling
efficiency; section 3 introduces the model and assumptions of real-time system
used in this paper; section 4 presents the basic “on-off” model and its applica-
tion to modeling real-time tasks; section 5 contains the schedulability analy-
sis; section 6 evaluates the influence of self-similarity on the Earliest Deadline
First (EDF) scheduler, and section 7 presents some concluding remarks. Fi-
nally, appendix A reviews the concepts and definitions of self-similarity and
heavy-tailed distributions and it is intended for those readers not familiar with
the self-similarity background.

2 Motivation

This section presents some examples that prove the existence of highly vari-
able and self-similar real-time computations in multimedia and network appli-
cations and motivate the proposed task characterization and analysis of the
following sections. The impact of such workloads on real-time systems schedul-
ing is also outlined through a simple experiment.

2.1 Analysis of a self-similar multimedia workload

Figure 1a shows a workload trace of a video processing system in a Unix system
that comprises 8 tasks: 6 periodic tasks and 2 sporadic tasks. The trace W;
was captured using the DTrace utility and it represents the time evolution of
the computation intensity, that is, the amount of CPU load over a sampling
period T of 0.04s. This workload produces the probability distribution shown
in Figure 1b (top). This distribution is highly variable and can be modeled as
a heavy-tailed distribution.

An interesting question about the variability level concerns its dependence
on the sampling period. Intuitively, it could be expected that increasing the
sampling period would smooth the variability in the computation intensity.

3
0.08
0.06
0.04
0.02
00 200 400 600 . 800 1000 1200 1400 1600
time(S)
(a)
0.2
S |
0\:0'1
0 . . .
0 0.05 0.1 0.15 0.2
Load (period = 0,04s)
0.2
x |
5_10.1*
0 . . 2 . . ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Load (period = 0,4s)
0.2
x |
IO.‘I*
O L L i Lo
0 0.5 1 1.5 2 2.5
Load (period = 4s)
(b)
[T(sec) [EWt) [Var(Wy) [EW)/T | Var(We)/T |
0.04 0.014558 | 0.000015 0.364 0.000382
0.4 0.145583 | 0.000234 0.364 0.000584
4 1.455833 | 0.005427 0.364 0.001357
(c)

Fig. 1: Workload trace of a Unix system processing video image. (a) Workload
versus time using a period of 0.04s and duration of 1,600s. (b) Distribution
using three periods: 0.04s, 0.4 and 4s. (c¢) Mean value and variance for different

sampling periods.

This would allow to apply more conventional analysis methods and obtain
more deterministic long-term results. However, we surprisingly observed that
this does not hold for these workloads. Figure 1b also shows the workload
distribution for two greater sampling periods: 0.4, and 4s (that is, an increase
of 10 and 100 over the original period). It can be observed that the variability
remains and the shape of the distributions are very similar. This is confirmed
through table 1c that shows the average computation time, its variance, and
their normalized values (that is, divided by the sampling period). It can be
observed that, although the normalized mean value is the same, the normalized
variance increases with the sampling period more than expected. This shows
the fact that the workload is bursty on many time scales or, in other words,
self-similar.

It is important to note that a self-similar workload is not a white noise.
Figure 2a compares the previous results to a random traffic workload. It is also
a bursty workload, but if we examine the distributions in Figure 2b, the shapes
of the distributions get narrow and the variability decreases with the sampling
period. This allows to state that a white noise is only bursty in small time
scales. In this case, the normalized variance remains constant. Moreover, if
the workload is shuffled (that is, workload positions are exchanged randomly),
results are similar. That is, the shuffled workload is bursty only in low scales
and it is an evidence that a variable workload is not equivalent to a self-similar
workload.

The self-similarity nature of a workload can be shown and measured us-
ing a wvariance-time plot. This plot represents the normalized variance versus
the increment of the period in a log scale. Figure 3 shows the points for the
variance-time plot of the video and white noise workloads. It also represents
the least-square lines for these points. The slope of this line is known as 5. The
Hurst parameter that characterizes self-similar workloads, can be calculated
as H=1- @ Self-similarity holds when 0.5 < H < 1. In the case of the white
noise (and also the shuffled multimedia workload) the slope is -1, so H = 0.5
and the workload is not self-similar. But in the case of the video workload,
that has a flatter slope, H = 0.73, evidencing its self-similar nature.

2.2 Impact of self-similarity on schedulability

The strong impact of self similarity on schedulability can be also shown through
a simple example.

Consider a real-time system with four deterministic tasks with a period
(equal to deadline) of 1 and a utilization of 0.25. This workload will be re-
ferred as NO-VAR and it has a full processor utilization of 1. The systems is
schedulable because this full utilization is achievable with equal task periods.
Now we introduce a variability in the system by making the execution time
and inter-arrival time (period) variable. Four set of tasks, or workloads, will
be formed using the same distribution of execution times and four different
degrees of variability (variance) in the inter-arrival times. These workloads are

=
0.08
0.06
0.04
0.02
% 200 400 600 800 1000 1200 1400 1600
time(S)
(a)
0.2
=
= 0.1r B
! T ! |
GO 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Load (period = 0,04s)
0.2
XoqL i
Fig 0.1
M“
0 . . |
0 0.05 0.1 0.15 0.2
Load (period = 0,4s)
0.2
=
011 //-/\/\\\W B
0 . ! ! ! ! ! |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Load (period = 4s)
(b)

Fig. 2: Synthetic workload trace (white noise). a) Workload versus time using
a period of 0.04s and duration of 1,600s. b) Distribution using three periods:
0.04s, 0.4 and 4s.

shown in table 1 and are referred as LOW-VAR, HIGH-VAR, SELF-SIM1 and
SELF-SIM2.

The distribution of the execution time for all workloads is a normal dis-
tribution with a mean of 0.25s and a variance of 0.05. The inter-arrival times
distributions has also a common mean value of 1 but each workload has a dif-
ferent variability of the inter-arrival time: normal distribution with variance
0.05 for the LOW-VAR workload, normal distribution with variance 0.5 for
the HIGH-VAR workload, and finally, two self-similar workloads SELF-SIM1
and SELF-SIM2 using Pareto distributions with a Hurst parameter of 0.75

100 ¢ T
< R —slope -1
L + Video workload
e - Hurst fit
107k . Tl ° White Noise
< o
8 Tl
S0 RN E
3 ° t T
N Ss
ﬁ o
E o
2107 E
o
g
107 E
o
10’5 | | |

Fig. 3: Variance time plot of the video workload and white noise workload The

10

1

log10 sampling period increment

10°

Hurst parameter for the video workload is 0.72.

10

10

‘Workload Execution time | Inter-arrival time | Deadline miss ratio %
Mean [Var Mean [Var D=1 [D=2
NO-VAR 0.25 0 1 0 0 0
LOW-VAR 0.25 0.05 1 0.05 4.975 2.478
HIGH-VAR 0.25 0.05 1 0.5 6.175 2.761
SELF-SIM1 0.25 0.05 1 H=0.75 7.823 6.062
SELF-SIM2 0.25 0.05 1 H=0.9 12.387 9.246

Table 1: Motivating example: deadline miss ratio depending on the variability
of the task set

and 0.9 respectively. How these self-similar tasks are modeled, generated and
evaluated is further detailed in this paper.

The workloads were scheduled using an EDF scheduler using two deadlines:
a tight deadline D = 1 and a loose deadline D = 2. The deadline miss ratio for
each workload is shown in the table. Results are very illustrative: increasing
the variance has a great impact on the efficiency of the EDF scheduler, as
shown for the HIGH-VAR workload. This is a very well known fact in real-time
systems [32]. However, the results for the self-similar workloads (SELF-SIM1
and SELF-SIM2) shows a more important increase in the deadline miss ratio
over the HIGH-VAR workload, and this effect is more important for loose
deadlines.

This simple example shows the impact of self-similarity workloads in real-

time system scheduling and motivates the need for the correct modeling and
analysis of these tasks in soft real-time systems. How to properly model such

Media Player

Playback
Buffer Processor

Media
Buffer P
Buffer Processor

Fig. 4: Multimedia pipeline processing

A\ 4

a self-similar workload, the effect of the sampling period and the Hurst pa-
rameter on schedulability is further analyzed in the following sections.

3 System Model

The model of real-time systems assumed in this work was originally devised
in the scope of multimedia transmission and processing, although it can be
generalized to task systems with highly variable processing times.

Computations in a media processing system are usually structured in a
pipeline fashion as shown in Figure 4. Data are produced continuously by
media sources (encoders) at highly variable rates. Each task of the pipeline
reads data, processes it and sends it to the next task. Tasks are interconnected
through buffers. The last task of a pipeline is usually a media player, and its
input buffer is usually known as the playback buffer. Arrival patterns determine
whether tasks will be treated as periodic or sporadic. Periodic tasks, such as
video rendering, execute their invocations within strict regular time intervals,
but their computation time is highly variable. Periods are usually related to
application parameters, like video frame frequency or audio sampling period.
Sporadic tasks, such as video encoding and video processing, are usually data-
driven. These tasks are defined to be activated at arbitrary points in time with
a defined minimum inter-arrival times between two consecutive invocations.
In our system, sporadic tasks model tasks triggered by data arriving with a
variable period. This period is highly variable around a mean value. This is
also often referred as jitter. Buffering plays a key role in these systems: it
allows to pipeline periodic and sporadic tasks asynchronously.

The task model proposed for the above system is really a statistical exten-
sion of the classical real-time task model. The model assumes a mix of periodic
(P?) and sporadic tasks (S?) with the following attributes (see Figure 5):

— Computation time (C%): it is defined as the intensity or CPU load of a
task. It is specified as an statistical distribution. It differs from the classical
real-time model where C" is a deterministic value that corresponds to the
worst-case execution time (WCET).

— Inter-arrival time (I?): it is defined as the time between the arrival of two
consecutive task invocations (jobs). For periodic tasks it is a determinis-
tic value which specifies the period. For sporadic tasks it is an statistical
distribution.

10

Sporadic tasks (S') t

Fig. 5: Task model for periodic and sporadic tasks. Task arrivals are repre-
sented as up-arrows. They are equally spaced for periodic tasks and variably
spaced for sporadic tasks. Computation times are represented as variable-
length boxes. Deadlines are represented as down-arrows and they are always
constant.

— Deadline (D?%): it is a deterministic value that expresses the maximum
allowed time between task arrival and time completion.

Statistical characterizations were used by the authors of this paper in pre-
vious studies [18, 36] and also by other authors [2, 13, 35]. The novelty of this
paper is in properly modeling highly variable tasks using heavy-tailed distri-
butions and extending task characterization with the inclusion of the Hurst
parameter.

4 A Self-similar Workload Model

This section presents a self-similar workload model for real-time tasks. The
goal of this model is to enable a performance analysis of a real-time system
with highly variable tasks. The analysis method can be either analytical, as
the one presented in section 5, or simulation based, as the one presented in
section 6.

Real-time computations with variable execution times can be modeled as
an “on-off” process. This model is based on a proposal of [39] to describe the
random nature of the network traffic, originally due to Mandelbrot [5]. Using
this model a real-time task could be modeled as a task that goes through two
states that strictly alternate: “on” and “off” . The arrival of a task instance
triggers the start of the “on” state whose duration is given by the computation
time. The “off” state represents the time between task termination and the
arrival of the next task instance (or job). Figure 6 shows a system example
with 3 tasks. The first job of task one arrives at time 1 and has an expected
execution of 3.8 time units. The next job of this task is at time 9.1 and has
an execution time of 2. The first job of task two arrives at time 1.9 and has
an expected execution time of 2.5. Note that the model parameters reflect the

11

) 1 on off Al(t)
0 —-r—r—r—r—-—v—-—r—r—v'—v—P
ton tofr t
/ 2
] A%
0 T - T T T T T T - T T T T T l T :
t
4 A
] I 0
0 J T T T T T T T T T T T T T T l T T T ”
t
34 A(t)
24
14
0
t
T 5222015 12213119111 11309 gy,
2
1—
0

t

Fig. 6: Example of superposition of 3 on-off streams. Note that A(t) is
continuous-time and that W; is discrete-time so it is represented using bars.

arrival and the execution times of the jobs and not when the jobs are executed
(this will depend on the scheduler).

The superimposition of many “on-off” tasks, where the “on” and “off”
periods strictly alternate, can be proved to be a self-similar workload and sta-
tistically behaves as a fractional Brownian motion under certain requirements
on the distributions of the “on” and “off” states.

4.1 Formal “on-off” model

Let {A(t) : t > 0} ({A(t)} for short) be a continuous-time stationary process
that is the superimposition or aggregation of N-independent, “on-off” tasks
in which:

1, for interval “on”

0, for interval ‘off” i=123,....,N (1)

m@:{

A =Y A @

Consider the cumulative process {A*(t) : ¢ > 0} defined as:

A(t) = /0 A(u)du (3)

12

The increment process {W; : t = 1,2,...} ({W}} for short) is defined as:

T
Wy =A*(tT) — A*((t - 1)T) = / A(u)du (4)
(t—1)T
where T is the sampling period. Then, W; is a discrete-time random variable
representing the amount of workload entering a system during the ¢** sampling
interval (that is, the workload trace)!.
The mean intensity (or utilization) of the workload W is defined as E[W;]/T.
A sample realization of processes {A(t)} and {W,} are shown in Figure 6.
The behavior of process {W;} depends on the distributions of the “on”
and “oft” periods (t,, and t,fs for short). Define P,, as the probability that
a task is in the “on” state:

tO'n.
P =_°a" 5
on ton + toff ()
where t,, and t,5s are the mean of the “on” and “off” periods respectively.
Self-similarity requires that either the distributions of t,, or t,s; are heavy-
tailed, or both [39]. This is formally stated in the following theorem:

Theorem 1 [28]: Ift,, is Pareto distributed with index o and for large N and
m (aggregation factor), the cumulative process {A*(mt)} behaves statistically
like: 35— o

. (6)
where Zy (t) is a fractional Brownian motion (fBM) with parameter H, and
C > 0 is a constant depending on the distribution of to, and tors. Thus
{A*(mt)} asymptotically behaves as a fractional Brownian motion (that is,
equation 23) fluctuating with mean p = Pyp Nmt and variance o = CNY2mH
with Hurst parameter H.

P,oNmt 4+ CNY?mH 7 (t) H =

If {A*(mt)} is asymptotically self-similar, then its increment process {W,}
is also asymptotically self-similar [28]. Thus, {W;} with t,, described by a
Pareto distribution and with ¢,y independently distributed is asymptotically
second-order self-similar with a Hurst parameter given by H = (3—«)/2. The
same holds if the “off” states are heavy-tailed, or both.

Theorem 1 holds for homogenous sources, that is, all the streams have
the same « and d parameters. There is a generalization of this theorem for
heterogeneous sources:

Theorem 2 [34]: Assume M types of sources. For i = 1,2,..., M let o'
and d* be the characteristics of source i. This theorem states that {A*(mt)}
asymptotically behaves as fractional Brownian with a Hurst parameter given
by:

3 — amin

== @)

1 Note that the aggregate process of Wy can be obtained as Wt(m) = (ttT—T)Tm A(u)du

13

This means that the smallest « ultimately dominates the Hurst parameter.
Note that this theorem allows the distribution to be not self-similar for some
source type.

Using the previous theorems, we can define our task model as an “on-off”
model using the Pareto distribution for the “on” state. This implies that this
model is self-similar with Hurst parameter H given by equations 6 or 7. The
average time interval for an “on” state for 1 < o < 2 is (the Pareto mean):

_ d
io= (8)

For the “off” state, we can use any distribution or even a constant value. The
only requirement is that it must be statistically independent from the “on”
distribution. Using equation 5, we can obtain the probability that a task is in
the “on” state so the expected intensity of a given on-off stream is given by:

E[A'(t)] = Pon, i=1,2,...,N (9)

and the overall intensity (or system load L) is:

L—E{lﬁ;Ai(t)} =N-P,, (10)

Figure 7a shows a synthetic workload trace of 10 tasks (N = 10), with
a Hurst parameter of H = 0.8. This trace was generated for a time of 1000
seconds with a sampling period T' = 0.01s. The “on” period was Pareto dis-
tributed with d = 0.01 and o = 1.4 (3 — 2-0.8). The average time for t,, can
be calculated using equation 8 and is 0.035. In order to have an intensity for
each stream of about 0.1, t,rs was obtained using equation 5. Thus, t,s is
constant with value 0.315. The mean intensity or load of this workload is 1.
In order to test the self-similarity of this workload, we used the variance time
log plot. Figure 7b shows the variance time plot of the workload using a base
period of 0.01s. The least-square line with slope 5 = —1 determines whether a
traffic is self-similar or not. If the variance plot is above this line, the traffic is
self-similar; otherwise, the traffic is not self-similar. The fitted line has slope
B = —0.4 that corresponds to a Hurst parameter of H = 1 — |§\ = (.8, which
is the expected value.

4.2 Modeling real-time tasks

This section describes how to generate an “on-off” workload whose first-order
(mean) and second-order (self-similarity) statistics properties are equivalent to
a given set of periodic and sporadic tasks. The goal is setting the parameters
of the “on-off” model of the periodic and sporadic tasks described in section
3. The process is depicted in figure 8 and comprises the following steps:

14

200 400 600 800 1000
time(s)
(a)
10° s ‘
Tt slope -1
Tl e + Trace data
Tl --- Hurst fit
o107 el —
o ~ + .
= Ssl +
8 S
s T
>
ks
N —2
= 10 E
E
(=}
z
o
g
=107]
—4
10 \ \ \
10° ! 0o 10° 10*

log10 M (aggregation size)

(b)

Fig. 7: a) Workload trace for H = 0.8, N = 10 and T

= 0.01s. b) Variance

time plot of the workload (base period for m=1 is 0.01s).

1. Obtaining a trace of all task invocations of the evaluated system that pro-
vides the following parameters for each task invocation: task id (), arrival
time (¢), and computation time (Cy). This can be done using a high reso-

lution monitor.

2. Processing the previous trace to filter each task separately, providing the
following parameters: inter-arrival time (I;), and computation time (C)
3. Fitting the inter-arrival time and computation of tasks to an statistical

distribution.

One of the most important aspects is to fit each task to a distribution.
This is a manual procedure where statistical fitting tools may be needed. It

15

load trace tasks traces workload model

tlifec| "] o | Task| C I

o |1]o1 4 i
0 0.1 [P | co1) | o1
- 001 [0] 02 : atistical

Monitor YCREREE 004 | 02 fitting P2 [N(0.1,0.1)] 0.2
: : 003 | o1 S' |U(0.2,0.1)| PAR(...)

1222 1 [0.04 —
001 | ooa s | PAR(.) |PAR(.)

Fig. 8: Process for modeling real-time tasks

Type | Description
C(c) | Constant distribution with value ¢
U(a,b) | Uniform over interval (a,b)
min + EXP(\) | Exponential with a min value
N(p,0) | Normal
PAR(d,) | Pareto

Table 2: Distribution classes for the workload model

starts by checking whether the inter-arrival time is constant, so periodic and
sporadic tasks can be identified. Then, computation times (and inter-arrival
times) must be adjusted to some typical distribution, as the ones shown in
Table 2 (some other distributions can be used as well). Some periodic tasks,
like video playing, have heavy-tailed distributions for computation times, while
others may have variable computation times, but not necessarily heavy-tailed.
Sporadic tasks usually have an inter-arrival distribution which is heavy-tailed,
specially those processing inputs delivered through the network. On the other
hand, data processing can also be heavy-tailed and independent from the inter-
arrival distribution. Using theorem 2, this mix of periodic and sporadic tasks
generates a self-similar workload. Using this model we can generate a workload
trace that can be used to analyze a real-time system. Tasks are modeled using
a ton which corresponds to the computation time (C?) and torr = E[I] — ton,
where E[I'] is the mean inter-arrival time. Finally, the deadlines (D?) are
obtained from the requirements of each task.

As an example, let’s make a synthetic workload model for the real system
described in section 2.1. The system has 6 periodic tasks and 2 sporadic tasks.
The most important task is P!, which models a task that processes a video
stream. Sporadic tasks (S and S?) are associated with network streams and,
thus, their inter-arrival distributions are heavy-tailed. We generated a work-
load trace for a time of 1600s with a period of 0.04s. The result was similar
to the traffic trace of Figure la. The mean utilization of this workload trace
is 0.45 and is shown in Figure 9a. Figure 9b shows the variance time plot of
the workload using a base period of 0.01s. It can be seen that the calculated
variance values are almost linearly distributed and can be adjusted to a line.
The slope of the line corresponds to a Hurst parameter of 0.72, which allows
us to state that the workload generated is self-similar.

16

Task | C7 D’ I L7
P | PAR(0.002,1.4) (H=10.8) | 1 0.04 0.175
P2 | C(0.1) 1 25 0.004
P3 | U(0.02,0.03) 0.05 | 0.05 0.013
P* | N(0.01,0.001) 0.1 | 01 0.1
P5 | 0.001 4+ EXP(0.001) 0.1 0.1 0.01
PS | U(0.001,0.002) 0.01 | 0.1 0.015
S1 | PAR(0.01,1.2) (H =0.9) | 0.5 | PAR(0.2,1.2) | 0.047
S2 | U(0.01,0.05) 0.1 | PAR(0.1,1.2) | 0.047

Table 3: Sample real-time workload. The first columnis the task id: P? for
periodic and S? for sporadic. The last column L’ shows the intensity or load
of each task. All time values are in seconds.

5 Schedulability Analysis

This section shows how the schedulability probability of a self-similar workload
depends on the Hurst parameter and how not accounting for the self-similar
property of the workload can lead to optimistic performance predictions.

There is a clear evidence of the importance of the Hurst parameter in
network traffic models based on traditional queueing models [8, 11, 20, 26].
This paper shows the importance in real-time analysis too.

The analysis described in this section is based on a recent schedulability
test by [1] that basically requires the synthetic utilization, denoted as U (t),
to be under a certain utilization bound B. Using this expression, we derive a
new schedulability test, that is based on the pending computation at time t
(C(t)). For the previously proposed “on-off” task model, this pending compu-
tation can be obtained from the expression of the accumulated workload A*(t)
given by equation 6. The final expression is the probability of not passing this
schedulability test that is P(C(t)) > z). The calculus of this expression per-
formed below shows that schedulability clearly depends on the Hurst factor.

A straight approach for analyzing the schedulability of a real-time system is
via the utilization bounds. The seminal work [24] established a bound for ape-
riodic tasks when deadline equals to their period. In a recent work [1], a bound
for aperiodic tasks was derived using a utilization-like metric called synthetic
utilization. The synthetic utilization is defined as the utilization contributed
by the set of current task invocations at time ¢, given by the expression:

Ci
vn=Y 5 (11)
TIES(t)

where S(t) is defined as the set of all task invocations 7¢ (jobs) that have
arrived after the last CPU idle time s (known as CPU gap) but whose deadlines
have not expired. According to this test, a system is schedulable if:

1 1
54‘% n<3

R T (12)
1+\/ %(1_ni1) " - 3

U(t)<B{

17

0.18

0.16[- 1

0.14- B

0.12- 1

0.1F i

Wt

80 1000 1200 1400 1600
time(s)
(a)
10°
\“\ —slope -1
Tl + Trace data
e, -= Hurst fit
0107 T 1
o S
= Se
s .
c TN .
> S ~
S S~ ~
R, Sl *
=10 ¢ el
g ~
o
b4
o
8
=107 1
—4
10 . . .
10° ! 10° 10° 10*
log10 M (aggregation size)
(b)

Fig. 9: a) Workload trace generated using the workload described in Table 3
b) Variance time plot of the workload (Base period for m=1 is 0.01s). The
Hurst parameter is 0.72.

where n is the number of current tasks (that is, the size of S(t)). When n
increases the bound approaches B = L_ . This bound is for the optimal

14+4/1/2

time-independent scheduling policy Deadline Monotonic (DM). For dynamic
priority scheduling policies, such as Earliest Deadline First (EDF), this bound
is 1.

18

Ll\
CPU gap 'A;(Sl)+(t-51)
A*(t) | !
I
| C(t) :"..... : :
| + I |
HRH o)t (tso)! |
o | :
| 1
o I I
4= SR

S0 €o S1 t

Fig. 10: Evolution of the workload. A*(t) is the accumulated workload. so and
s are CPU gaps.

The goal now is to calculate the expression of U(t) for a self-similar ar-
rival process A(t). According to Theorem 1 (and 2), our “on-off” task model
asymptotically behaves like a fractional Brownian motion and the accumulated
workload has the following expression:

A(t) = pt + 0 Zg (1) (13)

where p is the mean load, and o is the variance and can be calculated using
the expressions of Theorem 1.

Assuming a processor with capacity 1 (that is, in one second it processes
one unit of workload) and p < 1 (the stability condition) the current workload
pending to execute can be expressed using the Reich’s formula:

C(t) = sups<i(A™(t) — A™(s) = (¢ = s)) (14)

C(t) is also known as the fractional Brownian storage model [27]. The frac-
tional Brownian storage model is the simplest long-range dependent storage
system having strictly self-similar input variation. The impact of the Hurst
parameter can be very clearly illustrated with this model.

The graphical interpretation of this storage model is shown in Figure 10. It
can be seen that up to time s there is no overload (load is less than 1). This
means that jobs are not enqueued and all jobs are immediately dispatched.
This is equivalent to the definition of a CPU gap. At time sy load increases
and jobs are enqueued, so there are pending tasks. The end of this interval
(eg) is when all pending jobs are dispatched. The expression of the pending
workload through this interval is C(t) = A*(t) — A*(sg) — (t — sp). After e
there is a CPU gap. A new pending workload interval starts at time s;.

19

Assuming that all deadlines are the sameQ (that is, D; = D Vi) then, by
definition, C(t) is equivalent to > i g C'. Therefore, the synthetic utiliza-
tion can be expressed as:

ct o O(t)

U(t) = L2y

n-y &-d (15)
TES(t)

Our goal is to calculate the probability that U(t) is greater than the schedu-

lability bound B: P(U(t) > B), and how it depends on the Hurst parameter

H. Note that P(U(t) > B) represents the non-schedulability probability:

P(U(t) > B) = P(C(t)/D > B) = P(C(t) > D - B) (16)

If we set x = D - B, then, this problem is reduced to evaluate the tail behavior
(P(C(t)) > x)) of a storage process C(t) with a fractional Brownian workload
as input. A bound of this tail behavior was introduced in [26]:

P(CH) >) >1 @(1(1;“)}1(1 _xH)l_H> (17)

g

where @(y) is the standard normal probability distribution, p is the mean
value of A*(t) of equation 13 (that is, E[A*(t)]), o is its variance, H is the
Hurst parameter, and = is D+ B (B is 1 for EDF scheduling). The value of p is
equivalent to the mean intensity or load L as defined in equation 10. Therefore,
the deadline D must be greater than p (¢ < D). Note that the ratio /D gives
an idea of how tight is the deadline: lower values (loose deadlines) are easy to
schedule than higher values (tight deadlines).
An asymptotic approximation to the tail distribution of equation 17 is:

P(C(t) > x) ~ e 2 (18)
where c¢ is a constant. It is easy to see that for H = 1/2 the previous expres-
sion is reduced to the well-known exponential asymptotic for a system with a
Poisson arrival process:

P(C(t)>z)~e " z— 00 (19)

Formulas 18 and 19 are essentially different. The second allows more optimistic
forecasts compared to the first one. Nevertheless, these formulas are asymp-
totical bounds that hold for a very high x. These approximations can be used
in network models to calculate buffer sizes, since they are usually very high.

In our model for the utilization bound, z is very low, so asymptotical
approximations cannot be used. That makes necessary to use expression 17 to
evaluate the influence of the Hurst parameter on the tail behavior.

Figure 11 shows the tail probability P(C(t) > x) for several Hurst values as
a function of the deadline tightness /D with a workload variance (o) of 0.2.

2 Assuming that all deadlines are the same is a weak condition. For different values of D;,
we can obtain the same results if we select, for example, the minimum deadline D = min; D*
(a tight condition) or the maximum deadline D = max; D* (a loose condition).

20

P(C(t)>x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 11: Non schedulability probability depending of the deadline tightness for
different Hurst values. The bound B=1 was set for EDF

It can be seen that the probability that U(t) is greater than the schedulability
bound B (that is, the non-schedulability probability) increases with the Hurst
parameter. This increment is much more significant for loose deadlines (4 <
0.4). In other words, a greater value of the Hurst index has the same effect that
tighting the deadline. Similar results were obtained for the bound of deadline
monotonic schedulers (B = 1/(1 4+ 1/1/2)).

In summary, this section has shown that self-similarity of the workload has
a strong influence on the schedulability of sporadic tasks in real-time system.
These results are consistent with the results presented in queueing performance
[8, 11, 26].

6 Experimental Evaluation

This section evaluates, through simulations, the efficiency of real-time sched-
ulers when applied to self-similar workloads. The experimental evaluation pro-
cess is the following (Figure 12): i) set the parameters of the workload model:
System load (L), Deadlines (D) and Number (N) and type of tasks (T), ii)
generate a sequence of jobs using this workload model: each job is a tuple (%, i,
C, D) representing the arrival time (t), task stream number (i), computation
time (C) and deadline (D), and iii) simulate a preemptive EDF scheduling
for the previous sequence and obtain the deadline miss ratio (percentage of
jobs that miss their deadlines). In every experiment the simulation time was
10,000s and each simulation was repeated 100 times in order to obtain 95%
confidence intervals.

21

jobs

Deadline
Miss
ratio

Workload
parameters

Fig. 12: Experimental evaluation process.

6.1 Sporadic workload

In the following set of experiments, a workload with a constant number of
sporadic tasks (N = 10) was used. In each experiment, a global intensity,
or system load L, and a deadline D were set. The corresponding load factor
for each task was L? = L/N. The execution time was kept constant and the
inter-arrival time was heavy-tailed distributed. Specifically, tasks were assigned
constant execution times (C? = C(0.1s)). This means that for a load of L*, the
inter-arrival mean A’ should be (1/L% — 1) - 0.1. Thus, the parameters for the
Bounded-Pareto distribution used for inter-arrival times were the following:
p = 10s, « = 3 — 2H, and d was calculated in order to have a mean of A*:
d= A" (a—1)/a.

In the first experiment the values of L, D and H were set in order to have
a non self-similar workload: L = 0.75, D = 0.1 and H = 0.5. The simulation
results reflect no deadline miss. The experiment was repeated with the same
L and D and increasing H to 0.8 in order to have a self-similar workload.
The deadline miss ratio in this case was of 0.5%. This proofs that simplistic
workload models can hide the probability of deadline misses of self-similar
workloads and lead to inaccurate results.

The deadline miss ratio versus the Hurst value H is shown in Figure 13.
The deadline miss ratio increases with the Hurst parameter. The first curve
shows the deadline miss ratio for a utilization of 0.75 and a deadline of 1s. For
Hurst parameters above 0.7 the miss ratio increases dramatically. The second
and third curves show the deadline miss ratio with a more stringent deadline.
The miss ratio increases more moderately and is more significant for Hurst
values greater than 0.8.

Figure 14 shows the mean loss probability for several Hurst values as a
function of the deadline tightness. This plot is very similar to the one presented
in the analytical evaluation (figure 11).

The results of the experiments presented in this subsection confirm the
results of the schedulability analysis of Section 5. The effect of the Hurst
parameter is more important for loose-deadlines and lower utilizations (that
logically has lower ratios). For tight-deadlines the influence of self-similarity
on the deadline miss ratio is reduced.

22

1 |[~—L=0.75; D=1
10" 4 -1 1=0.75; D=0.4
-+-L=0.5; D=0.3
10° b
P =7
I -z

Deadline miss ratio %

05 055 06 065 07 075 08
Hurst parameter

0.95

Fig. 13: Deadline miss ratio for a heavy-tailed workload with N = 10, constant

execution times and inter-arrival times Pareto distributed. Note

of the loss ratio and the 95% confidence intervals.

the log-scale

P(C(t)>X)

i
.

b

TR}
o000

ITTITT

0.2 0.4 0.6 0.8 1 1.2

LN G

o

Fig. 14: Deadline mis ratio versus deadline tightness for the sporadic workload

23

-+-PERIODIC
-+ SPORADIC
——SPORADIC CBS

Deadline miss ratio %

05 055 06 065 07 075 08 08 09 095
Hurst parameter

Fig. 15: Deadline miss ratio for a mixed workload. The PERIODIC and SPO-
RADIC curves show the deadline miss ratio for periodic and sporadic heavy-
tailed workload on the EDF scheduler. The SPORADIC CBS curve shows the
deadline miss ratio for the sporadic task miss for the CBS scheduler.

6.2 Mixed workload

The following experiment uses a mixed set of periodic and sporadic tasks in
order to show that the effect of self-similarity on such a workload is very
significant. The periodic task set is the same of Table 3 except for P! (that is,
the same non heavy-tailed tasks). That yields a mean utilization of 0.142 due
to these periodic tasks. The sporadic task set consists of 5 heavy-tailed tasks
with a constant execution time (C* = C(0.1s)) and a Pareto distributed inter-
arrival time A?. The Pareto parameters were calculated in the same way than
in previous experiments in order to maintain a mean load of 0.1 for each task.
The resulting system load was 0.64. The EDF simulation results show the miss
ratio for sporadic and periodic tasks separately (see Figure 15). The results
for sporadic tasks (“SPORADIC” curve) show that the miss ratio increases
when H is greater than 0.7. For periodic tasks (“PERIODIC” curve), deadline
misses occur when the Hurst parameter is higher than 0.6. In other words,
increasing the self-similarity of aperiodic tasks causes deadlines misses in the
non heavy-tailed periodic tasks.

6.3 Self-similar Overload Management

The impact of self-similar workloads on real-time systems really can be stated
as the effect of introducing transient overloads. Previous experiments show

24

that workloads with a Hurst index higher than 0.6 are more likely to produce
such transient overloads.

Depending on system requirements, this problem can be handled in dif-
ferent ways. Hard real-time systems, where all tasks have hard deadline re-
quirements, should be addressed using classic analysis methods (WCET). An
increase of the resources (CPU, etc.) would be strictly required in order to
face these transient overloads. In soft real-time systems the main goal is get-
ting some CPU bandwidth (average utilization) and some amount of deadline
misses can be tolerated. The survey of [33] describes several approaches to deal
with overload management in these systems. A specially suitable approach is
handling transient overloads through the resource reservation technique. A
simple and effective mechanism for implementing temporal isolation under
EDF is the Constant Bandwidth Server (CBS) [3]. A CBS is characterized by
a budget ¢!, a dynamic server deadline d’, and by an ordered pair (Q%;T?),
where @; is the maximum budget and T? is the period of the server. The
ratio U® = Q/T"* is denoted as the server bandwidth. CBS behaves as a work-
conserving algorithm, exploiting the available slack in an efficient way. An
important property is that a CBS with bandwidth U? will never demand more
than U’L for any interval of time of length L, regardless of the current task
requests. This property allows the CBS to be used as a bandwidth reservation
strategy in order to allocate a fraction of the CPU time to soft tasks whose
computation time cannot be easily bounded.

The benefits of using a CBS scheduler on a self-similar system were eval-
uated in a new experiment based on repeating the previous experiment, but
now each task was assigned a bandwidth or utilization. Periodic tasks were
assigned a utilization U? based on their WCET and the period T*. Sporadic
tasks were assigned a utilization based on their mean utilization. The results
of the deadline miss ratio are shown in the curve “SPORADIC CBS” of Fig-
ure 15. In the performed simulations no periodic task ever missed its deadline,
but it came at the cost of increasing the deadline miss rate of sporadic tasks.
However, this increase is moderated and probably it can be allowed most of
the times.

7 Conclusions

This paper has shown that self-similarity can appear in real-time systems
with a combination of variable task inter-arrival times and execution times.
This hypothesis are common in the processing of multimedia and network
streams and simplistic task models of these systems can mask the probability
of deadline misses and thus lead to inaccurate results.

The paper proposes a task simulation model based on the “on-off” model
whose behavior captures the self-similar nature of the workload. Based on
this model the influence of self-similarity on the scheduler efficiency has been
evaluated analytically and trough simulations. The analytical study derives
an expression for the dependence of the deadline miss ratio on the Hurst

25

parameter. Simulations confirm the trends of the analytical expression and
show how a a system that performs correctly under non self-similar workload
starts to miss deadlines when the Hurst parameter is increased. This increase
is dramatic for values above 0.6. Furthermore, the self-similar workload due
to sporadic tasks can jeopardize the deadlines of periodic tasks. Based on this
observation, we can conclude the convenience of using schedulers that enforce
bandwidth isolation (like CBS) in these systems.

As a general conclusion, we can state that conventional task models, analy-
sis methods and scheduling policies should be revised for self-similar workloads.

Acknowledgment

This work was developed under a grant from the European Union (FRESCOR-
FP6,/2005/1ST/5-03402).

A Background on Self-Similarity

The analysis of stationary time series data or stochastic processes can reveal the property of
self-similarity. This is the case, for example, of the CPU utilization over a sampling period.
This has been well studied in network traffic. For a detailed discussion of self-similarity see
[6].

A.1 Definition of Self-Similarity

A phenomenon that is self-similar looks the same at different scales on a dimension. This
means that at different time scales (microseconds, milliseconds, seconds) the statistical prop-
erties are similar.

More formally, let {X; : ¢ =0,1,2,...} ({X¢} for short) be a discrete stationary stochas-
tic process representing the evolution in time of a statistical distribution (for example, the
workload of a system). Let o2 be the variance and let r(k) = Cov(X¢, Xy y)/0? be the

autocorrelation function of {X:}. We define {Xt(m)} as the m-aggregated process of {X;},
which is obtained by aggregating and averaging the data in X; by blocks of size m:

XM = = (Xt + Xmep1 + - + Xm(t41)—1) (20)

1
m
and r("™) (k) is defined as the autocovariance function of {Xfm)}. Aggregating really means
multiplying the sampling period by a factor m. An important effect of the process aggre-
gation is to smooth the traffic rate in each period. Therefore, the variation is reduced. The
question of how this variation changes depending on the aggregation factor is related to the
study of the self-similarity of a process.

A process is distributionally self-similar if the processes {X:} and {X§m>} have the
same distribution, up to a scaling factor. A self-similar process has the property that, when
it is aggregated, the new process has the same autocorrelation function as the original
one. Formally, the process {X:} is called second-order self-similar with Hurst parameter
H=1-|5]if:

{ Var(Xt(m)) =o?m=8 m=12,... (21)

r(m) (k) =r(k)

26

If the second condition only holds when m — oo, then a process is asymptotically second-
order self-similar. If 0 < H < 0.5, the process is Short-Range Dependent (SRD), and if
0.5 < H < 1, the process is Long-Range Dependent (LRD).

The variance of the m-aggregated process can be obtained as:

Var(Xt(m)) =m?H=2 . Var(X:) = m?H 252 (22)

Processes that are LRD exhibit correlations over a wide range of times scales, while
processes that are SRD exhibit correlation functions that decay exponentially fast. This
implies that time-aggregation quickly results in white noise characterized by the absence of
any significant temporal correlations.

The Hurst parameter can be evaluated in several ways [6]. In this paper, we use the

variance-time plot, which is the graph of the variance log(Var(Xt(m))) versus log(m). With
this graph, we can obtain the Hurst parameter by fitting a least-square line with slope
B = 2H — 2 through the resulting points, ignoring those for small m.

Since a self-similar process has observable bursts at a wide range of scales, it can exhibit
long-range dependence: values at any instant are correlated with values at all future instants.
Although the terms self-similarity and long-range dependence are not exactly equivalent,
we use them in an interchangeable fashion throughout the paper.

One of the advantages of using self-similar models is that the degree of variation on
multiple time scales can be expressed using only a single parameter: the Hurst parameter.

A .2 Fractional Brownian Motion

A common way to model self-similar processes is using a fractional Brownian model. The
fractional Brownian motion (denoted fBm) model can be viewed as an extension of the
standard Brownian Motion models that have been used in heavy traffic analysis. Formally,
the normalized fractional Brownian motion {Zg(¢) : t > 0} is a continuous zero mean
Gaussian process with stationary increments and variance |t|2. The correlation of the
increments is characterized by the Hurst index, H. Unlike the standard Brownian motion,
the fractional one has a long-range dependency property when H > 1/2. Since this process
is self-similar: Zp (at) = |a|” Zg (t). Using the normalized fBM Z (t), we can define a new
fBM A*(t) with mean p and variance o2:

A™(t) = pt+ o Zy(t) (23)

In section 4 we see that the proposed “on-off” workload model behaves statistically as
this fractional Brownian motion.

A.3 Heavy-tailed distributions

A distribution is heavy-tailed if
PX>z)~z™% as z—00,0<a<?2 (24)

That is, if the asymptotic shape of the distribution is hyperbolic, it is heavy tailed. Heavy-
tailed distributions have a number of properties that are different from exponential or normal
distributions. If a@ < 2, then the distribution has an infinite variance; if o < 1, then the
distribution has an infinite mean. Thus, as a decreases, a larger portion of the probabilistic
mass function may be present in the tail of the distribution. In practical terms, a random
variable that follows a heavy-tailed distribution can have extremely large values with non-
negligible probability.
The simplest heavy-tailed distribution is the Pareto distribution:

F(x):P(X<z):{O t<d (25)

= I—(det>dl<a<?2

27

where d is the minimal value of the distribution and a is known as the Pareto index.

The problem with using the Pareto distribution is its infinite variance. This poses prob-
lems when simulating a system with heavy-tailed distributions. Specifically, in [9], it is shown
that simulations become infeasible for a« < 1.5. A practical approach for solving this problem
is to bound the Pareto distribution [15]. A Bounded-Pareto distribution is characterized by
three parameters: the Pareto index «, the minimal value d, and the largest value p:

0 t<d
dya
F(z) = l—ié;ad§t<p,1<a<2 (26)
P
1 t>p

It is easy to see that if p is very high, the distribution is very similar to the unbounded one.
Therefore, for large values of p it can be assumed that it is heavy-tailed [15].

Finally, note that self-similarity as well as heavy-tailed distributions are convenient
mathematical idealizations and can never be fully validated from finite data sets. However,
these idealizations are powerful mathematical tools for modeling important aspects of time
series.

References

1. Abdelzaher, T.F., Sharma, V., Lu, C.: A utilization bound for aperiodic tasks and
priority driven scheduling. IEEE Transactions on Computers 53(3), 334-350 (2004)

2. Abeni, L., Buttazzo, G.: QoS guarantee using probabilistic deadlines. In: Proc. of the
Euromicro Confererence on Real-Time Systems (1999)

3. Abeni, L., Buttazzo, G.: Resource reservation in dynamic real-time systems. Real-Time
Systems 37(2), 123-167 (2004)

4. Anantharam, V.: Scheduling strategies and long-range dependence. Queueing Systems
33(1-3), 73-89 (1999)

5. B.B.Mandelbrot: Long run linearity, locally gaussian processes, h-spectra and infinite
variances. International Economics Review 10, 82-113 (1969)

6. Beran, J.: Statistics for Long-Memory Processes. Chapman and Hall, London (1994)

7. Boxma, O., Zwart, B.: Tails in scheduling. SIGMETRICS Performance Evaluation
Review 34(4), 13-20 (2007)

8. Brichet, F., Roberts, J., Simonian, A., Veitch, D.: Heavy traffic analysis of a storage
model with long range dependent on/off sources. Queueing Systems 23(1), 197-215
(1996)

9. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: evidence and pos-
sible causes. IEEE/ACM Transactions on Networking 5(6), 835-846 (1997)

10. Diaz, J., Garcia, D., Kim, K., Lee, C., Bello, L.L., Lépez, J., L.Min, S., O.Mirabella:
Stochastic analysis of periodic real-time systems. In: Proc. of the 23rd IEEE Real-Time
Systems Symposium,, p. 2891300 (2002)

11. Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-
range dependent packet traffic. IEEE/ACM Transactions on Networking 4(2), 209-223
(Apr 1996)

12. Erramilli, A., Roughan, M., Veitch, D., Willinger, W.: Self-similar traffic and network
dynamics. Proceedings of the IEEE 90(5), 800-819 (May 2002)

13. Gardner, M.: Probabilistic analysis and scheduling of critical soft real-time systems.
Phd thesis, University of Illinois, Urbana-Champaign. (1999)

14. Garrett, M.W., Willinger, W.: Analysis, modeling and generation of self-similar vbr
video traffic. In: ACM SIGCOMM (1994)

15. Harchol-Balter, M.: Task assignment with unknown duration. Journal of ACM 49(2),
260-288 (2002)

16. Harchol-Balter, M.: Foreword: Special issue on new perspective in scheduling. SIG-
METRICS Performance Evaluation Review 34(4), 2-3 (2007)

17. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for dynamic
load balancing. ACM Trans. Comput. Syst. 15(3), 253-285 (1997)

28

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Hernandez-Orallo, E., Vila-Carbo, J.: Network performance analysis based on histogram
workload models. In: Proceedings of the 15th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
pp. 331-336 (2007)

Hernandez-Orallo, E., Vila-Carbo, J.: Analysis of self-similar workload on real-time
systems. In: IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 343-352. IEEE Computer Society (2010)

Hernédndez-Orallo, E., Vila-Carbd, J.: Network queue and loss analysis using histogram-
based traffic models. Computer Communications 33(2), 190 — 201 (2010)

Hughes, C.J., Kaul, P., Adve, S.V., Jain, R., Park, C., Srinivasan, J.: Variability in
the execution of multimedia applications and implications for architecture. SIGARCH
Comput. Archit. News 29(2), 254-265 (2001)

J.Beran, Sherman, R., Taqqu, M., Willinger, W.: Long-range dependence in variable-
bit-rate video traffic. IEEE Transactions on Communications 43(2), 1566-1579 (1995)
Leland, W., Ott, T.J.: Load-balancing heuristics and process behavior. SIGMETRICS
Perform. Eval. Rev. 14(1), 54-69 (1986)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20(1), 46-61 (1973)

Mandelbrot, B.: Self-similar error clusters in communication systems and the concept
of conditional stationarity. IEEE Transactions on Communications 13(1), 71-90 (1965)
Norros, L.: A storage model with self-similar input. Queueing Systems 16(3), 387-396
(1994)

Norros, I.: Queueing beahavior under fractional brownian traffic. In: K. Park, W. Will-
inger (eds.) Self-Similar Network Traffic and Performance Evaluation, chap. 4. John
Willey & Sons, New York, NY, USA (2000)

Park, K., Willinger, W.: Self-similar network traffic: An overview. In: K. Park, W. Will-
inger (eds.) Self-Similar Network Traffic and Performance Evaluation, chap. 1. John
Willey & Sons, New York, NY, USA (2000)

Paxson, V., Floyd, S.: Wide area traffic: the failure of poisson modeling. IEEE/ACM
Transactions on Networking 3(3), 226-244 (1995)

Rolls, D.A., Michailidis, G., Herndndez-Campos, F.: Queueing analysis of network traf-
fic: methodology and visualization tools. Comput. Netw. 48(3), 447473 (2005)

Rose, O.: Statistical properties of mpeg video traffic and their impact on traffic modeling
in atm systems. In: Conference on Local Computer Networls (1995)

Roy, N., Hamm, N., Madhukar, M., Schmidt, D.C., Dowdy, L.: The impact of variability
on soft real-time system scheduling. In: RTCSA ’09: Proceedings of the 2009 15th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 527-532. IEEE Computer Society, Washington, DC, USA (2009)
Sha, L., Abdelzaher, T., arzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical per-
spective. Real-Time Systems 28(2), 101-155 (2004)

Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-similar
traffic modeling. SIGCOMM Comput. Commun. Rev. 27(2), 5-23 (1997)

Tia, T., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L., Liu, J.: Probabilistic
performance guarantee for real-time tasks with varying computation times. In: Proc. of
the Real-Time Technology and Applications Symposium, pp. 164-173 (1995)
Vila-Carbé, J., Hernandez-Orallo, E.: An analysis method for variable execution time
tasks based on histograms. Real-Time Systems 38(1), 1-37 (2008)

W.E.Leland, M.S.Taqqu, W.Willinger, D.V.Wilson: On the self-similar nature of eth-
ernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1-15
(1994)

Willinger, W., Taqqu, M., Erramilli, A.: A bibliographical guide to self-similar traffic and
performance modeling for modern high-speed networks. Stochastic Networks: Theory
and applications pp. 339-366 (1996)

Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-similarity through high-
variability: statistical analysis of ethernet lan traffic at the source level. IEEE/ACM
Transactions on Networking 5(1), 71-86 (1997)

