Real-time scheduling with resource sharing
on heterogeneousmultiprocessors

Bjorn Andersson & Gurulingesh Raravi

Abstract

Consider the problem of scheduling a task set z of implicit-deadline spo- radic tasks
to meet all deadlines on a t-type he@r{)geneous rpultiprocessor platform where tasks
may access multiple shared resources. The multiprocessor platform has mg
processors of type-k, where k 1, 2,...,t . The executiontime of a task de- pends
on the type of processor on which it executes. The set of shared resources is
denoted by R. For each task zj, there is a resource set Ri R such that for each job
of 7j, during one phase of its execution, the job requests to hold the resource set R;
exclusively with the interpretation that (i) the job makes a single request to hold all
the resources in the resource set Rjand (ii) at all times, when a job of zj holds R, no
other job holds any resource in Rj. Each job of task zj may request the resource set
Ri at most once during its execution. A job is allowed to migrate when it requests a
resource set and when it releases the resource set but a job is not allowed to migrate at
other times. Our goal is to design a scheduling algorithm for this problem and prove
its performance.

We propose an algorithm, LP-EE-vpr. which offers the guarantee that if an
implicit-deadline sporadic task set is schedulable on a t-type heterogeneous mul-
tiprocessor platform by an optimal scheduling algorithm that allows a job to mi-
grate only when it requests or releases a resource set, fhen our algorithm also
meets the deadlines with the same restriction on job migration, if given proces-
sors 4 = (1 + MAXP x FM]] times as fast. (Here MAXP and |P| are

I #i], M7, Mg]
computed based on the resource sets that tasks request.) For the special case that

each task requests at most one resource, the bound of LP-EE-vpr collapses to

4x(1+ (mmlm__lﬂ___m_ﬂ). To the best of our knowledge. LP-EE-vpr is the first

algorithm with proven performance guarantee for real-time scheduling of sporadic
tasks with resource sharing on t-type heterogeneous multiprocessors.

Keywords

Heterogeneous multiprocessors, Real-time scheduling, Resource sharing

1 Introduction

A real-time software system is often modeled as a set of tasks where each task gener-
ates a (potentially infinite) sequence of jobs. Each job of a task may arrive at any time
once a minimum inter-arrival time has elapsed since the arrival of the previous job of
the same task. Each job has an execution time and a deadline within which it has to
complete its execution. Tasks typically share a processor but in many computer sys-
tems, tasks also share other resources such as data structures, sensors, etc. and tasks
must operate on such resources in a mutually exclusive manner while accessing the
resource, that is, at all times, when a job of a task holds a resource, no other job of any
task can hold that resource. Even on a single processor, the sharing of such resources
can have a profound effect on timing behavior as witnessed by the near failure of the
NASA mission, Mars Pathfinder, because the resource-sharing protocol in the op-
erating system was not enabled (Jones 1997). Scheduling real-time tasks that share
resources on a multiprocessor platform is more complex. Our goal in this work is to
design an algorithm for scheduling real-time tasks that share resources (apart from
processors) on t-type heterogeneous multiprocessors so as to meet all the deadlines.
In a t-type heterogeneous multiprocessor platform (also called unrelated paral-
lel machine) (i) not all processors are of the same type, (ii) the execution time of
a task depends on the type of processor on which it executes and (iii) the num-
ber of distinct types of processors is a constant and is given by t 2. Many man-
ufacturers offer chips combining different types of processors (AMD Inc. 2012;
Apple Inc. 2012; Intel Corporation 2012; Intel Corporation 2013; Nvidia Inc. 2012;
Qualcomm Inc. 2012; Samsung Inc. 2012; Ericsson 2012; Texas Instruments 2012;
Alben 2013; Intel Corp. 2013). Clearly, such chips are key components in hetero-
geneous systems, and such systems are increasingly used in practice. Yet, despite
this trend, state-of-the-art in real-time scheduling theory for heterogeneous multi-
processors is under-developed. The reasons include (i) processors typically share
low-level hardware resources such as caches and interconnects, which make task
execution times interdependent and (ii) dispatching limitations, for example, some
processors depend on another processor for dispatching (Gschwind et al. 2006).
Such idiosyncratic challenges must be addressed on a case-by-case basis, account-
ing for the particularities of the architecture. The state-of-the-art does offer some
general ideas on analyzing shared low-level hardware resources (Dasari et al. 2011;
Dasari and Nélis 2012; Li et al. 2009; Lv et al. 2010; Pellizzoni et al. 2010;
Rosén et al. 2007; Schliecker et al. 2010) and scheduling co-processors (Bletsas 2007;
Gai et al. 2002; Lakshmanan and Rajkumar 2010). Unlike the idiosyncratic chal-
lenges though, the dependency of the execution time of a task on the type of proces-
sor to which it is assigned is an inherent property of heterogeneous multiprocessors.

Therefore, designers using heterogeneous multiprocessors today and in the future
can benefit from scheduling theories that consider this inherent property. And for this
reason, in this work, we design an algorithm (considering this property) to schedule
tasks that share resources (in addition to processors) on t-type heterogeneous multi-
processors and prove its performance.

Commonly, the performance of a scheduling algorithm is characterized using the
notion of utilization bound (Liu and Layland 1973). This metric has been used to
evaluate scheduling algorithms on uniprocessors (Liu and Layland 1973), identi-
cal multiprocessors (Andersson et al. 2001) in which the speeds of all processors
are the same and uniform multiprocessors (Darera and Jenkins 2006) in which the
speeds of the processors are different. However, it does not translate to algorithms
on heterogeneous multiprocessors (even when tasks do not share resources), hence
we rely on the resource augmentation framework (Phillips et al. 1997) to charac-
terize the performance of the algorithm under design. We say that an algorithm A
has a speed competitive ratio SCR4 if, for every task set for which it is possible to
meet all deadlines, A succeeds to schedule the tasks to meet all deadlines as well if
the speed of each processor is SCR 4 times faster. In the literature, speed competi-
tive ratio is sometimes referred to as speedup factor (for example, see Baruah 2013;
Wiese et al. 2013).

A low speed competitive ratio indicates high performance; the best achievable is
one (which reflects the optimal algorithm for a given problem). If a scheduling al-
gorithm has an infinite speed competitive ratio then a task set exists which could be
scheduled (by another algorithm) to meet deadlines but would miss deadlines with
the actually used algorithm even if processor speeds were multiplied by an “infinite”
factor. Therefore, a scheduling algorithm with a finite (ideally small) speed compet-
itive ratio is desirable because it can ensure the designer that deadlines will be met
by using faster processors. Consequently, the real-time systems community has em-
braced the development of scheduling algorithms with finite speed competitive ratio,
e.g., Andersson and Tovar (2007), Baruah and Fisher (2007) and Davis et al. (2009).
Unfortunately, the community has not yet developed a multiprocessor scheduling al-
gorithm with a proven speed competitive ratio for the problem of scheduling tasks
that share resources on t-type heterogeneous multiprocessors. Therefore, in this pa-
per, we present an algorithm for this problem and prove its performance.

Problem statement. We consider the problem of scheduling a task set ¢ of implicit-
deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multipro-
cessor platform where a task may access multiple shared resources. There are mg
processors of type-k, where k¢ 4, 2,...,t 3 The execution time of a task depends
on the processor type on which it executes. There is a set R of resources. For each
task zj, there is a resource set Ri — R such that for each job of 7, during one phase
of its execution, the job requests to hold the resource set Rj exclusively with the in-
terpretation that (i) the job makes a single request to hold all the resources in the
resource set Ri and (ii) at all times, when a job of zi holds Ri, no other job holds
any resource in Ri. We assume that each job of task zj may request the resource set
Ri at most once during its execution. We also assume (like the previous work on D-
PCP (Rajkumar et al. 1988)) that a job is allowed to migrate when it requests a

resource set and when it releases a resource set but a job is not allowed to migrate
at other times. One can show (through mapping an instance of 3-PARTITION to an
instance of our problem) that the problem under consideration is NP-Complete in the
strong sense. Our goal is to design a scheduling algorithm for this problem and prove
the speed competitive ratio of thisalgorithm.

Related work. Scheduling a collection of jobs that share resources is well-studied
in operations research (see Blazewicz et al. 1983, for example) but unfortunately
these algorithms deal with jobs which make them less suited for real-time systems
because real-time systems tend to be implemented with tasks that generate a (poten-
tially infinite) sequence of jobs. The problem of scheduling a set of implicit-deadline
sporadic tasks on heterogeneous multiprocessors has been studied in the past (Baruah
20044, 2004b, 2004c; Correa et al. 2012; Lenstra et al. 1990; Andersson et al. 2010;
Raravi et al. 2012, 2013; Raravi and Nélis 2012; Wiese et al. 2013; Horowitz and
Sahni 1976; Jansen and Porkolab 1999) but without considering the case when tasks
share resources. However, recently, a run-time synchronization protocol, PSRP, is
proposed in Holenderski et al. (2012) for the problem of scheduling parallel tasks on
a platform comprising multiple heterogeneous resources. It considers a parallel task
model in which a task may execute on several processors at the same time whereas we
consider a sequential task model in which a task can execute on at most one proces-
sor at any time. In this respect, the task model considered in Holenderski et al. (2012)
is more general than the one considered in this work. However, the PSRP algorithm
of Holenderski et al. (2012) does not have a proven speed competitive ratio whereas
we prove the speed competitive ratio for our algorithm. More importantly, the work
in Holenderski et al. (2012) proposes a “run-time synchronization mechanism” and
thus assumes that an assignment of tasks to processors is given; however, in this
work, we propose an algorithm which assigns tasks to processors before run-time
and handles synchronization at run-time. So, the problem addressed and the goals
of Holenderski et al. (2012) are different than this work although both are related to
sharing multiple resources on multiprocessors.

For the problem of scheduling tasks that share resources on heterogeneous mul-
tiprocessors, one might also consider an obvious solution of assigning tasks to pro-
cessors and then applying a resource-sharing protocol conceived for identical mul-
tiprocessors, for example, D-PCP (Rajkumar et al. 1988). However, protocols for
resource sharing on an identical multiprocessor (such as D-PCP) are less effective in
minimizing priority inversion when used in heterogeneous multiprocessors as they
are in minimizing priority inversion when used in identical multiprocessors. The rea-
son for this is that, a task holding a shared resource may be executing on aprocessor
where it runs slowly—causing large priority inversion to other tasks and poor schedu-
lability. Therefore, a resource-sharing protocol for heterogeneous platforms oughtto
be cognizant of the execution rate of each task on each processor type. It should also
provide a bound on how much worse it performs, compared to an optimal scheme.

This work. In this paper, we propose an algorithm, LP-EE-vpr, for scheduling
implicit-deadline sporadic tasks that share resources on a t-type heterogeneous mul-
tiprocessor platform. We also prove the speed competitive ratio of LP-EE-vpr.

A key idea of our new algorithm is to organize the resource sets into resource
request partitions so that for every pair of tasks 7; and tp. if there is a resource shared
between these two tasks (that is, if R; N R = @) then the resource sets (R; and R;)
belong to the same resource request partition. Hence, if two resource sets of different
tasks belong to different resource set partitions then we know that these tasks do not
share resources. We will create a procedure for forming the resource request partitions
and then we let P denote the set of resource request partitions and MAXPF denote
the number of elements in the resource request partition with the largest number of
elements. (P and MAXP will be defined formally in Sect. 2.)

The algorithm, LP-EE-vpr, offers the guarantee that if a task set is schedulable on
a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm
that allows a job to migrate only when it requests or releases the resources, fthen
our algorithm also meets the deadlines with the same restriction on the job migra-

x . x , | > 3 x
tion, if given processors 4 x (1 + MAXP x [ﬁ%]) times as fast. In order

to prove this bound, we create a new algorithm, ra-np-pEDF-fav, which is used as
one part of LP-EE-vpr and prove a lemma which compares feasibility of tasks on a
multiprocessor with schedulability of tasks scheduled by ra-np-pEDF-fav and as a
corollary of this lemma. we obtain a new, tighter, performance bound of uniproces-
sor non-preemptive EDF scheduling—we improve the (previously known (Anders-
son and Easwaran 2010)) bound from fhree to twe. This is an interesting result in its
own right. For the special case that each task requests at most one resource, the bound
of LP-EE-vpr collapses to 4 = (1 4T

minjmiy,ma,..., rr|,-|-|-"'

Contributions and significance of this work. This paper presents two contributions.
First, for the problem of scheduling implicit-deadline sporadic tasks that share multi-
ple resources on t-type heterogeneous multiprocessors, no previous algorithm exists
and hence our algorithm, LP-EE-vpr, is the first for this problem with a proven speed
competitive ratio. Second, for the problem of non-preemptive scheduling of taskson
a uniprocessor, this paper improves the previously known (Andersson and Easwaran
2010) speed competitive ratio of uniprocessor non-preemptive EDF algorithm from
three to two. This improvement is presented because it is a natural by-product of our
proof of the performance bound of LP-EE-vpr.

Organization of the paper. The rest of the paper is organized as follows. Section 2
briefs the system model. Section 3 gives an overview of our algorithm and Sect. 4
describes the algorithm in detail. Section 5 proves the speed competitive ratio of ra-
np-pEDF-fav (an intermediate result) as well as the speed competitive ratio of LP-
EE-vpr (the main result of this paper). Section 6 discusses useful properties of the
proposed algorithm and finally, Sect. 7 concludes.

2 System model

We consider the problem of scheduling a task set z = {r1, 2, ..., za} of n implicit-
deadline sporadic tasks that share a set R = {rs,r2,..., r,} of p resources on a t-type
heterogeneous multiprocessor platform = = {x1,72,..., z7m} comprising m proces-
sors of which my processors are of type-k, wherek €{1,2,...,t}.

A job of task Job requests Job releases
T, arrives resource set R; resource sct R;

= R

I I
Phase-A Phase-B Phase-C

Job finishes

Time

Fig. 1 Categorization of the execution of a task that requests a resource into three phases

In the task set, each implicit-deadline sporadic task zi generates a (potentially
infinite) sequence of jobs, with the first job arriving at any time and subsequent jobs
arriving at least T time units apart (referred to as minimum inter-arrival time). Each
job of a task zj has to complete its execution within DiTi time units from its arrival
(referred to as deadline).

In the computing platform, a processor zper belongs to one of the t different
types of processors. The computing platform consists of mk processors of type-k,
where k &{2,...t, '}.e., it consists of my processors of type-1, my processors of

type-2, ..., mgprocessors of type-t; hence, m1 ymz | .., m¢ _m.
The tasks share resources from the set B{rl, ra,..., rllg?}of p resources. Specif-
ically, for each task zi <7, there is a resource set Ri ¢ R such that for each job

of zi, during one phase of its execution, the job requests to hold the resource set R;
exclusively, that is, at all times, when a job of zj holds Ri, no other job holds any
resource in Rj . We assume that each job of task zi may request the corresponding
resource set Rj at most once during its execution and further each job must request
all the resources in this set together. We also assume that a job of a task can execute
on at most one processor at any giventime.

For a job of a task ti such that Rj=g we categorize the execution into three
phases as follows. Let phase-A execution of a job of task zj denote the execution the
job performs from when it arrives until it requests Ri. Let phase-B execution of a
job of task zj denote the execution the job performs from when it requests Ri until
it releases Ri . Let phase-C execution of a job of task zj denote the execution the
job performs from when it releases Rj until it finishes execution. This is illustrated in
Fig. 1. For a job of a task =i such that Ri swe categorize its execution into a single
phase, phase-A, which denotes the entire execution of the job, i.e., the execution the
job performs from when it arrives until it finishes execution.

In our model, we allow a job of task zj to migrate at the time when it requests the
resource set Rj and when it releases the resource set Rj but the job is not allowed to
migrate at other times. (This assumption is similar to previous work on D-PCP (Ra-
jkumar et al. 1988).) We assume that the processors a job migrates to/from is deter-
mined by the task that generated the job and consequently, all jobs of the same task
migrate between the same processors. Specifically, phase-A executions of all jobs of
task zj are assigned to the same processor (let pia denote this processor). Analo-
gously, phase-B executions of all jobs of task zj are assigned to the same processor
(let pi,p denote this processor). Phase-C executions of all jobs of task zj are assigned
to the same processor (let pic denote this processor). Thus, all jobs of task zj only
migrate between these (at most three) processors. Note that for a given task zj, it can

happen that the processors p; .. pi.p and p; . are of different types. We refer to such
assumption of migration as restricted migration.

Since a job executing within a phase cannot migrate, we can speak about the exe-
cution time of a job in a phase for a given processor type. Let C.'Af denote an upper
bound on the execution time of phase-A of a job of task 7; if this phase-A execution
1s assigned to a processor of type-k. Analogously, let C.'Bf denote an upper bound on
the execution time of phase-B of a job of task t; if this phase-B execution is assigned
to a processor of type-k. Let C‘Cfc denote an upper bound on the execution time of
phase-C of a job of task r; if this phase-C execution is assigned to a processor of
type-k. For convenience, we introduce the symbaol Cf as follows: For a task 1; whose

jobs access a resource set, C‘f & CAf + C‘B‘flr + CC':‘. For a task t; whose jobs do

not access a resource set, C'f = C‘Af. Intuitively, Cf‘ denotes an upper bound on the
execution time of a job of task 1; if all its phases would be assigned to a processor
of type-k. For convenience, we also use the following notation. The wrilization of a
task 7; on a type-k processor (assuming that all phases of the task are assigned to

processors of type-k) 1s denoted by u and is defined as u* der €

As mentioned earlier, in this work we consider rmphﬁf—deadr’me sporadic tasks,
that 1s, for each task t; : D; = T;. In some parts of our discussion, however, we dis-
cuss constrained-deadline sporadic tasks, that is, for each task 1; : D; = T;. For a

constrained-deadline sporadic task t;, its density on a type-k processor is denoted as
k k
zmd is defined by .5’c def % C—
Rer:all that tasks requesl resources f‘mm set R of resources. This is illustrated
in Fig. 2a. It is helpful to introduce auxiliary variables and form a graph de-
scribing the potential conflicts of resource requests. Let UNER denote the set of

unique non-empty resource sets that tasks request. Formally UNER is defined as

UNER & Ur.emR 2piRi}. The graph (V. E), with the set of vertices V and the

set of edges F is then formed as follows: (i) there is a function FUN that maps
an element in UNER to an element in V, and this is a one-to-one correspon-
dence, and (ii) there is an edge between vertex Vi and vertex Vip if and only
if (FUN-!(V) n (FUN-Y(Vy2)) £ @. Such a graph is shown in Fig. 2b. Let

V ={PV,.PV,,PV py | denote the set of | PV | connected components of this
graph. The connected components in a graph can be found in linear time using a
standard technique (Hoperoft and Tarjan 1973). For a connected component and the
set of connected components, we introduce symbols that describe potential conflicts
between resource sets. Let P; denote the set of unique non-empty resource sets that
correspond to the vertices in PV ;. We refer to P; as a resource request partition.

Formally, P; £ {UNER; : (UNER; € UNER) A (FUN(UNERy) € PV;)}. Let P be
defined as follows: P £ (P; : PV; € PV} and let MAXP be defined as follows:
MAXP% max p;cp | Pj|. These concepts are illustrated in Fig. 2c. Let R(P;) be de-

fined as follows: R(P;) d=er{rg :3dr; € v suchthat R; € P; and r¢e £ R;}. Informally,
E(P;) denotes all the resources in resource request partition P;. We refer to [E(F;)
as 4 resource partition.

Note that for each P; € P, Py € P such that P; # P;,, both of the following
statements are true:

T = {T}, Ty Tas Tas Tss T T Tgr Ta Tug} R=Ary, 1y, 13, Fy, g, f 1o}

R, ={rg}

Ry ={r;} R. = Ry ={r,, rs}
R, = {ry, 13} R: - f':p rs} R, = {ry}
Ry ={r, r5} R, = {r7} Ry = {ra}

(a) A visualization of the resonrees requested by gasks, An

arro ['H)m‘a., task to a resource indicates that the pask re-
ficats the résotirce.

UNER = {R,, R,, Ry, R,, R, R;, Ry}

Rl RZ R3 R1
[J
[J
R5 Rlo R7
by graph Te-

© Consgrngtion ol {he LOFIL I TESOUTCE | Sets
nestod SO0 TS an asso MG BATFRONERS, 5618

PV, PV, PV,
R, R, R, R,
®
PV,
®
RS Rlﬂ R7

o PV PYe PV, PV) of conneeted
{ie)ntlshﬁf%'ﬁth E”‘l"::we obtain set P = {Pl, P, Py, Py} ool redohide
request partitions where Py = {Rq, Ko, R}, e = {Ha, Riot,
P} = {HL}! xr’.] = {.’iT} :Ulll \l\\|' = 3.

AT
[[+ [

R(Py) ={ry, ry 13} RiPy) ={r, rs} R(P)={rg} R(P)={r;}

(d) The resource partition K(#;) for each resource request parti-
tion Py,

Fig. 2 An example to illustrate the resource request information of tasks and how to construct the graph
and connected components using this information

ra-np-pEDF (Resource-Aware-Non-Preemptive-Partitioned-EDF) algorithm

Assumptions: Consider R, a set of resources and a task set such that whenever a task
performs execution it must be holding its resource set. Consider a computer

platform with | UNER | or more identical processors.

Before run-time: Select [UNER |processors and call them ACT-processors and call the other
processors NACT-processors. For ACT-processors, associate a resource set to
each ACT-processor so that the following holds: (i) no two ACT-processors
are associated with the same resource set in UNER and (ii) no two resource
sets in UNER are associated with the same ACT processor and (iii) every
ACT processor is associated with exactly one resource set in UNERand
(iv) every resource set in UNER is associated with exactly one ACT
processor. For NACT-processors, do not associate any resource set to these
processors. A task is assigned to an ACT-processor whose associated resource
set is equal to the resource set of the task.

At run-time: A job is said to be active at time t if the arrival time of the job is <t and the
finishing time of the job is . A job J is said to be eligible at time t if it is
active and no currently executing job holds a resource set that intersects with
the resource set of job J . At each instant t, consider the set of active jobs in
earliest-deadline-first order. If the current job is eligible then start its
execution on the processor to which its corresponding task is assigned. If the
current job is not eligible then do not execute it; consider the next job in the
set of active jobs.

Fig. 3 The description of ra-np-pEDF algorithm

1. R(Pj) n R(Pj!) =0
2. VRj € Pj, VRit € Pjritholds that Ri N Rit =

Also, note that for each task zi, it holds that there is at most one element Rk P such
that Ri Rx . Hence, the tasks in the given task set can be partitioned based on the
resources they request. With this partitioning, it holds that for two tasks in different
partitions, there is no resource that they share. This is illustrated in Fig. 2d.

Figures 3 and 4 show two algorithms ra-np-pEDF and ra-np-pEDF-fav which
we will use as building blocks in the design of our new algorithm. The al-
gorithm ra-np-pEDF runs on an identical multiprocessor whereas the algorithm ra-
np-pEDF-fav runs on a t-type heterogeneous multiprocessor. The algorithm ra-np-
PEDF executes a task on a processor specific for its resource set and hence the
execution of a task can only be delayed because of execution of another task whose
resource set intersects with it. The algorithm ra-np-pEDF-fav works like ra-np-pEDF
but ra-np-pEDF-fav assumes that each task is assigned to a processor that is its fa-
vorite type (a type such that there is no other type for which the task has smaller
execution time).

3 Overview of our algorithm
The algorithm, LP-EE-vpr, can be summarized in four steps as shown in Fig. 5.

Steps 1-3 are executed before run-time and only step 4 is executed at run-time. Step 1
produces subtasks from each task so that if the deadlines are met for these subtasks

ra-np-pEDF-fav (Resource-Aware-Non-Preemptive-Partitioned-EDF-Favorite-Processor) algorithm

Assumptions: Consider R, a set of resources and a task set such that whenevera task
performs execution it must be holding its resource set. Consider a t-type
heterogeneous multiprocessor platform with UNER gr more identical
processors of eachtype.

Before run-time: Foreachtypek e {1, 2,...,t }select UNER |processors and call them
ACT-processors and call the other processors NACT-processors. For
ACT-processors, associate a resource set to each ACT-processor so that for
each typek {1, 2,...,t }the following holds: (i) no two ACT-processors of
type-k are associated with the same resource set in UNER and (ii) no two
resource sets in UNER are associated with the same ACT processor of type-k
and (iii) every ACT processor of type-k is associated with exactly one
resource set in UNER and (iv) every resource set in UNER is associated with
exactly one ACT processor of type-k. For NACT-processors, do not associate
any resource set to these processors. A task is assigned to an ACT-processor
whose associated resource set is equal to the resource set of the task and
whose type is such that there is no other type where the task has smaller
execution time.

At run-time: A job is said to be active at time t if the arrival time of the job is <t and the
finishing time of the job is . A job J is said to be eligible at time t if it is
active and no currently executing job holds a resource set that intersects with
the resource set of job J . At each instant t, consider the set of active jobs in
earliest-deadline-first order. If the current job is eligible then start its
execution on the processor to which its corresponding task is assigned. (Note
that since every task is assumed to be assigned to its favorite processor type,
the jobs of each task execute on the respective favorite processor types). If the
current job is not eligible then do not execute it; consider the next job in the
set of active jobs.

Fig. 4 The descroption of ra-np-pEDF-fav algorithm

then the original task meets its deadline as well. Step 2 creates virtual processors
from physical processors. Step 3 assigns subtasks to virtual processors. Finally, in
Step 4, jobs are dispatched at run-time. We now provide more details about each of
these steps.

Step 1—Creation of subtasks. Categorize the execution of a task that requests a
resource set into three phases as shown in Fig. 6. The three phases of execution
are phase-A, phase-B and phase-C, as mentioned in Sect. 2. Then create three
constrained-deadline sporadic subtasks (one corresponding to each phase) out of
each implicit-deadline sporadic task that requests a resource set and make differ-
ent scheduling provisions for each of these subtasks. A task which does not request
a resource set is categorized into phase-A alone and only one subtask is created for
such a task.

For a task that requests a resource set, the “arrival” of both phase-B and phase-
C subtasks have fixed offsets from the arrival of the respective phase-A subtask.
This guarantees that the subtasks have the same inter-arrival time as the original
task thereby exhibiting no jitter in their arrival times. Section 4.1 shows how these
constrained-deadline subtasks are created and their parameters (worst-case execution
times, minimum inter-arrival times and deadlines) are determined.

’ Tasks ‘ |Processors| ‘Resources‘

Step 1: Create subtasks
|Subtasks| | Processors | ‘Resources‘ ®
8
e
Step 2: Create virtual processors L ia
c
=1
o
Virtual 3
Subtask R
Step 3: Assign subtasks to processors
Assignment of subtasks
to processors 2
b
5
Arrival :) .
rrival of Step 4: Run-time dispatching o
jobs §
(1]

Schedule

Fig. 5 Four steps of our new algorithm LP-EE-vpr. Each of the three first steps takes three inputs and
produces outputs. Some outputs are identical to the inputs (e.g., in Step 1, “processors” are inputs and
they are outputs) and they are marked in white. Some outputs, however, are produced (e.g., “subtasks” are
outputs from Step 1 and they are not inputs to Step 1) and they are marked in gray

Step 2—Creation of virtual processors. Virtual processors are logical constructs,
used as task assignment targets by our algorithm. Create two sets of virtual proces-
sors, namely, VPac and VVPg virtual processors from the given physical processors.
The VPs virtual processors are then grouped together so as to create| P virtual pro-
cessorgroups, onegroupforeveryresourcerequestpartitioninP. Thevirtual proces-
sor group corresponding to the resource request partition Pj is denoted as Groupq i
The specification of the virtual processors (i.e., number of virtual processors and their
speeds), their creation and grouping technique is discussed in Sect. 4.2.

Step 3—Task assignment. The phase-A and phase-C subtasks created from a task
7j are assigned to the same virtual processor in VPac . The phase-B subtask created
from task zi requesting the resource set Rj which is in a resource request partition,

1A virtual processor acts equivalent to a physical processor with speed fl—and we assume that it can be
“emulated” on a physical processor of speed 1, using no more than 1—o@its processing capacity. One

intuitive way of achieving this is by dividing time into short slots of length S and using $-x S time units
in each slot to serve the workload of virtual processor. By selecting S, we can then make the speed of the

emulated processor arbitrarily close to]E—and in practice, S need rarely be impractically short (Bletsas and
Andersson 2009).

Job of task T;
arrives

Job requests
resource sct R;

Job releases
resource set R;

\\

|

Deadline of
the job

|

|

Phase-A

Phase-B

I

t+Ti Time
Phase-C

o | The phase-A The phase-B subtask The phase-C
‘-,5' E subtask is accessing resources subtask is
;: Z assigned to is assigned to assigned to
Z L vPia € VP VP, € VPy VPiac € VP ¢
'é Dispatch Dispatch using Dispatch
< I using ra-np-pEDF-fav using
£ | preemptive EDF preemptive EDI

Fig. 6 Three execution phases of a job along with the design-time and run-time decisions of LP-EE-vpr
algorithm

say Pj, i.e., Ri R(Pj), isassigned to Groupg j[. This step is discussed in detail in
Sect. 4.3.

Step 4—Task scheduling. All phase-A and phase-C subtasks are scheduled using
preemptive Earliest-Deadline-First (EDF) algorithm (Liu and Layland 1973) on their
assigned virtual processors in VPac. All phase-B subtasks that are assigned to virtual
processors in a VVPp virtual processor group are scheduled using ra-np-pEDF-fav.

Remark: In the rest of the manuscript, to avoid tedium, we skip special mentioning
of tasks that do not request a resource set (which are split into only phase-A) and
hence, for such tasks, the discussion about phase-B and phase-C does not apply.

4 The new algorithm: LP-EE-vpr

In this section, we describe the new algorithm, LP-EE-vpr, in detail and also provide
its pseudo-code.

4.1 Creating the subtasks

LP-EE-vpr creates subtasks. It creates three subtasks from each task, one subtask for
each phase of the task and it assigns minimum inter-arrival time, deadlines and exe-
cution times to each subtask. Specifically, each subtask will have t different execution
times, one for each type of processor and each subtask will also have t different dead-
lines, one for each type of processor. When a subtask is assigned to a processor, only
one of its execution times is applicable and only one of its deadlines is applicable;
the type of processor on which the subtask is assigned determines this. The algorithm
assigns parameters (minimum inter-arrival time, deadlines and execution times) to
subtasks and assigns subtasks to processors so that when subtasks are scheduled at

Table 1 The three constrained-deadline subtasks that are derived from a given implicit-deadline sporadic
task zj that requests a resource set. For a task that does not request a resource set, only one subtask
corresponding to phase-A execution, i.e., 7, is derived and hence for such a task, zjg and zjc do not
exist

Subtasks of 1; WCET on type-k Deadline on type-k Minimum
inter-arrival time
. - k Cia _ T - -
Ti A f.l:'“.l = "1"_{ D.".rll = T_L— T .Irli__l = fli
I
TiB ckp=cBf piy=% L g=Ti
. ok . ctLor - .
T o ck.=cct Df = _rﬁf_-f x4 Tie=T;

run-time it holds that (i) the three subtasks of a task execute in sequence (that is, one
of the subtasks of zj must finish execution before another subtask of zj can start ex-
ecution) and (ii) if each subtask meets its deadline then the task from which it was
formed meets its deadline as well.

From each implicit-deadline sporadic task zic , the algorithm creates three
constrained-deadline sporadic subtasks denoted by i, zig and zjc corresponding
to phase-A, phase-B and phase-C execution of task zi , respectively. In the rest of
the paper, the subscript A, B and C will be used in the notations corresponding to
phase-A, phase-B and phase-C subtasks, respectively. Also, the superscript k will be
used in the notations corresponding to a processor of type-k. For example, q'fA,C }fB

and C'i‘ycdenote the worst-case execution time of task zj € 7 on a processor of type-k
before requesting the resource set Ri (phase-A subtask), while holding the resource
set (phase-B subtask) and after releasing the resource set (phase-C subtask), respec-
tively.2

The parameters of the three subtasks zja, zig and zjc that are derived from the
corresponding task zi € 7 are set as shown in Table 1. It is easy to see that the fol-
lowing property holds: for each task zi € 7 and for each pair of processor types k
and k', it holds that D"i’A + DK + DKC < Ti = Di. This implies that if for each task
7i e it holds that phase-A and phase-C of zj are assigned to the same processor
type then if at run-time we can ensure that all subtasks meet their deadlines then the
corresponding tasks meet all their deadlines as well. Indeed, later in Sect. 4.3 while
assigning subtasks to processors, we ensure that this property holds.

We group these derived subtasks into the following task sets:

]'"1' = l]!'l;___Jl |.|'-E[1.2.....H}}
THE‘IP"I=ITE.E|-"-E“-2 IIIII H}-“.R,.'E?*—'{Pj]]
€ ={nclic{l,2.....n}}

Note that zi A refers to a subtask and 7 refers to a set of subtasks. Analogously,
for zig and 78R, Analogously, for zic and zC.

2Recall that, for a task that does not request a resource set, C'i‘ g and CikC do not exist.

IP|*MAXP VP, virtual
processors

|P|*MAXP VP,
virtual processors

VANVANVANRVAN

IP|*MAXP VP,
virtual processors

m; VP, virtual

m, VP, virtual

m, VP, virtual

processors processors processors
m, physical m, physical m, physical
processors processors processors
\ J \] \ J
Y I L Y

Type-1 processors Type-2 processors Type-t processors

Fig. 7 m ytx |Px MAXP virtual processors created from m physical processors of a t-type heteroge-
neous multiprocessorplatform

As opposed to the given task set = which contains implicit-deadline sporadic tasks,
these derived task sets contain constrained-deadline sporadic subtasks. Also, observe

that the task set z” is derived such that, on a processor of type-k, the density of every
subtask zia € 7 is twice the utilization of the corresponding task zi € z. Formally,

ct cf 2% Ct
/ 3 A A =
Vrf..—’lér.t: afl=+=ir—= L=2xu UfTr'ET (n
i’ Dr_. A Cf xT; T:
h CEx2

Analogously, it can be seen that, the density of every subtask zi.c € 7 Cis twice the
utilization of the corresponding task zi €7 .

4.2 Creating virtual processors from a t-type heterogeneous multiprocessor platform

In this section, we describe the creation of virtual processors from the given physical
processors of a t-type heterogeneous multiprocessor platform.

We create my tx P |IMAXP virtual processors from the given m physical
processors as shown in Fig. 7. The main idea is as follows. We treat physical proces-
sors of each type as an identical multiprocessor platform and create a certain number
of virtual processors of the corresponding type from this platform. To be precise,
mg physical processors of type-k are treated as an identical multiprocessor platform
and mk P| |IMAXP virtual processors of type-k are created from them (see dif-
ferent columns in Fig. 7, separated by “solid vertical lines”) and ordered as shown
in Fig. 7. Now, if we look at the first and the second row in Fig. 7 (separated by
“dashed horizontal lines”), each of these rows represent a t-type heterogeneous mul-
tiprocessor platform of virtual processors—the first row represents a t-type hetero-

geneous multiprocessor platform with t X |P | x MAXP virtual processors of which

[#] = MAXP virtual processors are of type-k (Vk : k = {1,2,...,t}) and the second
row represents a t-type heterogeneous multiprocessor platform with m virtual pro-
cessors of which my virtual processors are of type-k (Wk: k< {1,2,....1}). In this
manner, m + f = |P| x MAXP virtual processors are created from m physical pro-
cessors of a t-type heterogeneous multiprocessor platform. Precisely, we create the
virtual processors with following specifications:

— m virtual processors (denoted as VP 4) From my physical processors of type-k.

we create mp virtual processors of type-k (V& : k = {1.2,....r}) each of speed
l - . .
FEYTS L x:iﬂﬁ times the speed of a corresponding physical processor of

type-k. So, in total, m such virtual processors are created from m physical pro-
cessors. These are later used to schedule phase-A and phase-C subtasks and are
referred to as “VP 4 virtual processors”.

— t = |P| » MAXP virtual processors (denoted as VPg): From m; physical pro-
cessors of type-k, we create |P| x MAXP virtual processors of type-k (Vk : k £
(1,2, ...t} each of speed 1—5-1.&?{;4:}5 AR times the speed of a corresponding

physical processor of type-k. So, in total, 1 = | P| x MAXP such virtual processors
are created from m physical processors of a t-type heterogeneous multiprocessor
platform. These are later used to schedule phase-B subtasks and are referred to as
*WPg virtual processors’.

In other words, from each processor type, say type-k, we create m; + | P| = MAXP
virtual processors of type-k, i.e., mgp VP4 virtual processors of type-k and |P| =
MAXP VP virtual processors of type-k. The way these virtual processors are created
is as follows. From each processor mp, of type-k (Wk : ke {1, 2, ...t}

— i] 1
first create one VP4¢ virtual processor of type-k of speed A “,::’L‘Cp]

times the speed of

— then create fw] WPy wvirtual processors of type-k of speed

Mg
MAXP =
times the speed of
1+ MAXP » [EEOARE pe r

Lemma 1 The earlier specified set af virtual processors, VP and VPg. can be
created from the given t-type heterogeneous multiprocessor platform w as described
abave. This procedure to create the virtual processors ensures that the capacity of a
virtual processor comes from a single physical processor.

Proaf The proof is a direct consequence of the fact that each physical processor of
type-k can emulate one VP4 ¢ virtual processor of type-k (Vk 1k € {1,2,...,1}) and
[E%T VPp virtual processors of type-k, as per the specifications of the virtual
processors. Indeed, for each w, € 7. we have

1

| =
1 + MAXP x [LExMAXP Kﬁﬂ*"""]

VP ac virtual processor

=1

N [P|x N[AXF'" MAXP
X il
1 4+ MAXP x [[ZxMAXP “:A’“ 1

m

m

VPpg viral processors

Thus, my physical E]‘ocessors of type-k can emulate my VP4c virtual processors
P MAXP . -

of type-k and [Ixm 1 % mg = |P| x MAXPVPg virtual processors of type-k.

Owerall, m physical processors of a t-type heterogeneous multiprocessor platform can

emulate m VP4 virtual processors and 1 = | P| x MAXP VP virtual processors.
From the above discussion, it 1s trivial to see that no virtual processor is created

using two or more physical processors and hence it holds that the capacity of a virtual

processor comes from a single physical processor alone. Hence the proof. O

We now describe the rest of the steps in the algorithm, LP-EE-vpr, for assigning
and scheduling the tasks that share resources on t-type heterogeneous multiproces-
sors with the help of pseudo-code.

4.3 Pseudo-code of LP-EE-vpr

The pseudo-code of LP-EE-vpr is shown in Algorithm 1. The algorithm works as
follows.

On line 1, it creates the sets £ #, 7 BR(P) and ¢ € of constrained-deadline spo-
radic subtasks from the given set z of implicit-deadline sporadic tasks as described
in Sect. 4.1.

On line 2, it creates m VPac and t x P |x MAXP VPg virtual processors from
the given t-type heterogeneous multiprocessor platform of m physical processors as
discussed in Sect. 4.2.

On line 3, it groups t x P | XMAXP VPg virtual processors into P | groups
of VPg virtual processors; each group contains §&{MAXP VPsg virtual processors,
with MAXP virtual processorsofeachtype, i.e., MAXP virtual processors of type-1,
MAXP virtual processors of type-2 and so on. Each group of virtual processors, de-
noted by Groupg[jl, where j ={1,2,..., |P |}, is used for scheduling phase-B sub-
tasks thataccess a subset of resources from resource partition R(Pj).

On line 4, it assigns the set of phase-A subtasks, 7 A, to VPac virtual proces-
sors using LP-EE algorithm3 (Baruah 2004c). The algorithm, LP-EE, is designed for
non-migratively scheduling a set of implicit-deadline sporadic tasks that do not share
resources on t-type heterogeneous multiprocessors. The internals of LP-EE and its
performance bound are described in detail in Baruah (2004c). The average-case per-
formance of LP-EE is discussed in Raravi et al. (2013). Therefore, we only give an
overview of LP-EE here. The algorithm, LP-EE, has two steps: first, it assigns the
tasks to processors and then schedules the tasks on each processor using preemptive
EDF. The task assignment step works as follows:

3We selected LP-EE because it is simple to implement and easy to explain and it has a proven speed
competitive ratio. However, a couple of other algorithms can be used instead as discussed later in Sect. 6.5

Algorithm 1: LP-EE-vpr(z, I1(m1, my,..., mt), R): for scheduling implicit-
deadline sporadic tasks that share resources on t-type heterogeneous multipro-
Cessors

// Lines 1-10 execute before run-time; line 11
executes at run-time.

1Create the sets 7 A, 7 BR(Pi) and 7 € of constrained-deadline sporadic subtasks

from the given task set = of implicit-deadline sporadic tasks as described in

Sect. 4.1.

2 Create m VPac and t x P|x MAXP VPg virtual processors from the given m

physical processors of a t-type heterogeneous multiprocessor platform as
described in Sect. 4.2.

3Form |P | virtual processor groups out of t X |P | VVPg virtual processors as

follows. Take MAXP VPg virtual processors of each type (i.e., t X MAXP
virtual processors, in total) and form a virtual processor group, Groupg[L]; then
take MAXP more VPg virtual processors of each type and form another virtual
processor group, Groupg @ gnd so on. Overall, we will have P|VPg virtual
processor groups; every group containing t v« MAXP VPg virtual processors;
MAXP virtual processors of each type.

4 Assign all the subtasks zi a7 2to VPac virtual processors using the

algorithm LP-EE (Baruah 2004c) (more details in the description of the
algorithm in Sect. 4.3).

5 foreach 7j ez do

6

7

1

8

if@j:je{l,2,..., P} ARi (Pj)) then
Assign zi g to the MAXP virtual processors in the j ’th VVPg virtual
processor group, Groupyg j , on which subtask zig has the smallest
execution time.

end

gend
10 Assign every subtask zi c € 7€ to that virtual processor in VPac to which the

[

corresponding subtask 7i a ez has been assigned on line 4.

Schedule the subtasks of z A and 7 © that are assigned on each VVPac virtual
processor using preemptive EDF on that virtual processor. Schedule the
subtasks of zj g that are assigned to each VVPg virtual processor group using
ra-np-pEDF-fav, on the respective virtual processor group.

The assignment problem is formulated as Mixed Integer Linear Program (MILP)
and then relaxed to Linear Program (LP). The LP formulation is solved using an LP
solver (such as GUROBI Optimizer 2012 or IBM ILOG CPLEX 2012). Tasks are
then assigned to the processors according to the values of the respective indicator
variables in the solution provided by the solver. Using certain tricks (Potts 1985), it
is shown that there exists a solution (for example, the solution that lies on the vertex
of the feasible region) to the LP formulation in which all but at most m 1 tasks
are integrally assigned to processors where m denotes the number of processors.

— The remaining at most m — 1 tasks are integrally assigned on the remaining capac-
ity of the processors using “exhaustive enumeration”.

The abbreviation LP-EE comes from the fact that the algorithm makes use of
Linear Programming and Exhaustive Enumeration techniques to provide the solu-
tion (Baruah 2004c).

On lines 5-9, it assigns all the phase-B subtasks that request the “related” re-
sources, i.e., resources that belong to the same resource partition, to the same VPg
virtual processor group. Specifically, all the subtasks requesting (a subset of) re-
sources from resource partition R(Pj), Vj € {1, 2,..., |P |}, are assigned to the vir-
tual processors in the j’th VVPg virtual processor group, Groupg j] , on which these
subtasks have the smallest executiontime.

On line 10, it assigns every phase-C subtask, zic , to that virtual processor in
VPac to which the corresponding phase-A subtask, zj a, has been assigned. Such an
assignment does not endanger the schedulability of the tasks assigned on the VPac
virtual processors as there is a precedence constraint between these subtasks—this
is formally proven later in Lemma 9 in Sect. 5.3. Also, such an assignment ensures
that the number of migrations per job is restricted to at most two. This is easy to
verify because both phase-A and phase-C of a task execute on the same physical
processor as they are assigned to the same virtual processor (recall that the capacity
of a virtual processor comes from a single physical processor—Lemma 1) and only
the phase-B subtask might have to execute on a different physical processor as the
virtual processor to which phase-B of the task is assigned might have been created
from a different physical processor.

On line 11, it schedules the subtasks of * and 7€ that are assigned to each VVPac
virtual processor using preemptive EDF on that virtual processor. It schedules the sub-
tasks of zB:R(P) that are assigned to each VPg virtual processor group, Groupg jj .
using ra-np-pEDF-fav, on the respective virtual processor group. Recall that all the
tasks in 7B:R(P) request (a subset of) resources from resource partition R(Pj) and
hence are assigned to VVPg virtual processor group, GroupB[j].

For preemptive EDF scheduling, the following result is well-known (an easily
obtained generalization of the result shown in Liu and Layland 1973), which we
make use of while proving the performance of LP-EE-vpr.

Lemma 2 (Utilization-based schedulability test) Let t[p] denote the tasks assigned
on a processor mp of type-k. If < |, buk i< 1 and tasks are scheduled with pre-
emptive EDF on mp then all deadlines are met.

Note that in Algorithm 1, lines 1-10 execute before run-time and only line 11
executes at run-time. The algorithm, LP-EE-vpr, is named after the fact that it makes
use of the algorithm, LP-EE, for assigning some of the subtasks on virtual processors.

5 Performance analysis of LP-EE-vpralgorithm

In this section, we prove the speed competitive ratio of the proposed algorithm.
But first we present notations (in Sect. 5.1), then prove the speed competitive ra-

tio of ra-np-pEDF (in Sect. 5.2). After that, we present some useful results (a pre-
viously known and a few new results, in Sect. 5.3) and the speed competitive ratio
of ra-np-pEDF-fav that are used later while proving the speed competitive ratio of
LP-EE-vpr (in Sect. 5.4).

5.1 Notations

Let 71(m1, m2,..., m¢) denote a t-type heterogeneous multiprocessor platform of m
processors of which mk processors are of type-k, where k ¢ {1,2,...,t Jand K :
mkg > 0; note thatm =m1 +m2 +... 4+ m.

Let /71(m1, m2,...,mt) x @1, S2,..., St)denote a t-type platform inwhich, for
each k e {1, 2,...,t } the speed of every type-k processor is sk times the speed
of a corresponding type-k processor in I7(m1, mz,..., mt), where s> 0 is a real
number. As a special case of the above, we use 77(m1, M2,..., M) x (S,S,...,S)
to denote a t-type platform in which, for each k < (1, 2,...,t} the speed of ev-
ery type-k processor is s times the speed of a corresponding type-k processor in
II(m1,mz,...,mt), where s >0 is a real number. For convenience, we sometimes
denote H(ml, mz,...,m¢) S,S,...,S as/ll(mg, mz,..., mt) S.

If z is a task set and Y,y at"(are posm\)e real numbers then we ket the symbol
mulCDT(z,y.»',y'"") denote a task set where for each task in < its execution time is
multiplied by y; its deadline is multiplied by y' and its minimum inter-arrival time is
multipliedbyy"".

We will now introduce three types of predicates (i) predicates that state if a task
set is schedulable for a given scheduling algorithm, (ii) predicates that state if a task
set is feasible and (iii) predicates that state if a task set is schedulable for a given
scheduling algorithm according to a certain class of schedulability tests.

For a task set z where tasks do not share any resources, we let the symbol
sched(4,t,I1(m1, m2,..., mt)) be a predicate that indicates that if z is scheduled
by algorithm A on platform I7(m1, m2,..., m¢) then for each set of jobs that 7 can
generate according to the model in Sect. 2, it holds that all jobs meet their deadlines
and the constraint of restricted migration is satisfied (which in this case means that
no migration is allowed because there are only phase-A executions).

For a task set T where tasks may share resources in R, we let the symbol
sched(4,t,R,I[I(m1, m2,..., m)) be a predicate that indicates that if ¢ is sched-
uled by algorithm A on platform II(mz1, m2,..., mt) then for each set of jobs
that = can generate according to the model in Sect. 2, it holds that all jobs meet
their deadlines and the constraint of restricted migration is satisfied and there is
no instant where a resource in R is held by more than one job. Analogously,
for a task set z where tasks may share resources in R, and where Pjis are-
source set and 7 BRI is the task set derived as in Sect. 4.1, we let the symbol
sched(4, BR(P), R(P;), IT(m1, m2,..., mt)) be a predicate that indicates that if
tB:R(P1) js scheduled by algorithm A on platform 77(m1, m2,..., mt) then for each
set of jobs that zB:R(Pi) can generate according to the model in Sect. 2, it holds that
all jobs meet their deadlines and the constraint of restricted migration is satisfied
(which in this case means that no migration is allowed because there are only phase-
B executions) and there is no instant where a resource in R(Pj) is held by more than
one job.

For a task set r where tasks do not share any resources, we let the symbol nmig-
feas(z, I1(m1, m2,..., mt)) be a predicate that indicates that for each set of jobs that
7 can generate according to the model in Sect. 2, it holds that there exist a schedule
that meets all deadlines of all jobs and the constraint of restricted migration is
satisfied (which in this case means that no migration is allowed because there are
only phase-A executions).

For a task set = where tasks may share resources in R, we let the symbol rmig-
feas(z,R,I1(m1, m2,..., mt)) be a predicate that indicates that for each set of jobs
that z can generate according to the model in Sect. 2, it holds that there exist a
schedule that meets all deadlines of all jobs and the constraint of restricted migration
is satisfied and there is no instant where a resource in R is held by more than one job.
Analogously, for a task set = where tasks may share resources in R, and where Pj is
a resource set and 7 BR(P) s the task set derived from z as in Sect. 4.1, we let the
symbol rmig-feas(z BR(P), R(P;), IT(m1, m2,..., mt)) be a predicate that indicates
that for each set of jobs that z B'R(Fi) can generate according to the model in Sect. 2,
it holds that there exist a schedule that meets all deadlines of all jobs and the con-
straint of restricted migration is satisfied (which in this case means that no migration
is allowed because there are only phase-B executions) and there is no instant where a
resource in R(Pj) is held by more than one job.

Some of these predicates will be used by adding a suffix ‘- ¢” to the schedul-

ing algorithm or algorithm class where applicable, for example, for non-migrative
scheduling of constrained-deadline sporadic subtasks corresponding to different
phases. Such predicates with suffix —¢J signify that the schedulability of the task
set other than just being established via some exact test, must additionally be as-
certainable via a (potentially pessimistic) density-based uniprocessor schedulabil-
ity test (similar to Lemma 2). That is, for ; [7p] of tasks assigned ona processor

mp of type-k, to meet deadlines, it must hold that p](Ski < 1. For example,
sched(A-d, 7, I1(m1,m2,..., mt)) denotes a predicate that is true if for the task set z
whichdoesnotshareresourcesisascertainedschedulablebyalgorithmAonplatform
II(m1,m2,..., m¢) using the above mentioned density-based schedulability test.

We use a function create—-fav-taskset(z, [I(m1,mz,..., mt)). This func-
tion takes a task set z as input in which each task zicz is characterized by its min-
imum inter-arrival time Tj and its deadline Dj and its t worst-case execution times
(one WCET on each processor type) Gt,C?, ..., Cti. The function outputs a task set
7' in which each task 7' € 7' is characterized by its minimum inter-arrival time T;
and its deadline D; and its single worst-case execution time C;'. For each task 7' € 7,
it sets T = Ti and D = Di and C = mink¢1,2...t,CY. Informally, from the given
task set, it constructs another task set in which, the execution time of each task is
equal to the execution time of its corresponding task on its favorite processor type
and the minimum inter-arrival time of each task is equal to the minimum inter-arrival
time of its corresponding task and the deadline of each task is equal to the deadline
of its corresponding task.

We also use a function create—fav-platform(z, I1(m1, mz,..., mt), m!)
which generates a multiprocessor platform with m' identical processors where each
processor is such that for each task in 7 it holds that the execution time is as if it
executed on the processor type in I7(mz1, mz,..., m¢) for which its execution time is
the smallest.

5.2 The speed competitive ratio of ra-np-pEDF-favalgorithm

Recall from step 11 of Algorithm 1 in Sect. 4.3, that the algorithm LP-EE-vpr uses the
algorithm ra-np-pEDF-fav (defined in Sect. 2) to schedule phase-B execution of tasks.
For this reason, we need to show that ra-np-pEDF-fav has a finite speed competitive
ratio. We will do so by showing the speed competitive ratio of ra-np-pEDF and later
show (in Sect. 5.3) how it translates to a heterogeneous multiprocessor.

As a by-product of our proof of the speed competitive ratio of ra-np-pEDF, we ob-
tain a corollary which is a new result on the speed competitive ratio of non-preemptive
EDF on a single processor. Previously, it was known that the speed competitive ratio
of non-preemptive EDF on a single processor is at most three. In this section, we see
that it is at most two.

We start by proving a relationship between feasibility of a set of tasks that ex-
ecutes always holding a resource and the feasibility of this task set on an identical
multiprocessor.

Lemma 3 Yo, ¥IT(m,m2, ..., m,), YR, v = |UNER | such that t is an implicit-
deadline sporadic task set and ¥t; € v : R; W and ¥1; € 1 it holds that whenever t;
executes it holds resource set R;:

rmig-feas(t, R, [T(my,ma, ..., m;))
= J'mig—feas{create—fav—taskset(r, Mimy,ma, ..., 1y J)‘ R,

create-fav-platform(r, [T(m,ma,...,m;),v))

Proof The lemma follows from two observations:

1. The task set 7 is such that at each instant, there can be at most UNER jobs |
executing at this instant.

2. If atask set is feasible then giving each task an execution time as if it executed on
the processor where its execution time is smallest cannot violate feasibility.

The truth of first observation can be seen as follows: Suppose that the first ob-
servation was false. Then there would exist a feasible schedule such that there exists
an instant where | UNER| {L or more jobs execute at that instant. Then it follows
that there are two or more jobs that execute holding the same resource set in UNER.
Consequently, this schedule is not feasible. Hence the first observation is true.

The truth of the second observation can be seen as follows: For a feasible schedule,

if we change the execution time of a job to a smaller value then we can simply idle
the processor so that the schedule for all other jobs are the same and hence feasibility
is not violated by reducing the execution time ofa job. D

We can then show (below) how feasibility relates to schedulability of ra-np-pEDF.

Lemma 4 Yr. ¥IT(m;.ma..... my), YR, ¥x = 1, v = |UNER | such rhat is an
implicit-deadline sporadic task set and ¥tv; € v : Ri # @ and ¥1; € v it holds that
whenever 1; executes it holds resource set R;:

rmig-feas(creat e—fav-taskset(r, Mim ma, ..., mgl), R,

create-fav-platform(r. [T{my. ma, ..., my),v))

= sched (m-n p-pEDF.

muICDT(create—fav-taskset(r, Tim, ma, ..., me)),

2xuxx X

l).R.

create-fav-platform(r, [Tim). ma, ..., mg). v))

Proof The proofisby contradiction. Suppose thatthe claimisfalse. Thenthere exists
at Il(mi, mz,.., mt), R,>x 1Lv>UNER spuch that z is an implicit-deadline
sporadic task set andy zic 7 Ri /- @nd gi ¢ it holds that whenever zj executes
it holds resource set R for which it holds that ((2) is true), ((3) is false) where (2)
and (3) are definedas:

rmig-feas(create—fav-taskset(r, T(m, ma, ..., mil). R,

create-fav-platform(r, [T(mi,mz, ... m), v)) (2)

sched [ra-np-pEDF,

muICDT(creat e-fav-taskset(r, T(m,ma, ..., myl),
1 (.
=] R,
Ixvxx x|
create-fav-platform(r, T(m,ma..... my), v) ;] 3)

Note that both (2) and (3) make statements about a task set and a multiprocessor
platform with identical processors. Since it is an identical multiprocessor, we do not
need to specify execution times as depending on processor type and hence, we let C;
denote the execution time of task zj for the task set in (2). Because of our assumption
that the task set 7 is an implicit-deadline sporadic task set and because (2), it follows
that:

Cr=D=TNACr=Dh=Tr - ACy =Dy =Tg) (4

We will now discuss the implication of (3) being false. Since (3) is false, it follows
that there exist an assignment of arrival times to jobs such that a deadline is missed.
Let to denote the earliest time when a deadline is missed. Let us choose a job whose
deadline expires at time tgand let us call it DMJ (deadline miss job). Let t> denote

the arrival time of the job DMJ. Let 7« denote the task that generated DMJ. From (4)
we get:

Ce=Dp =T, (5)
Let S(zk) be defined as:
S(tk) = {w : (tw € create-fav-taskset(r, T(my.ma, ..., myg)))
AT # Te) A (R N Re| = 1)) (6]

S(x) is the set of tasks that can share a resource with task z. If |S(zk) | = 0 then DMJ

would have executed immediately when it arrived and because of (5) and because
1 1 - - - -

axvxx < it would follow that zx would have met its deadline and this would be a

contradiction. Hence, we know that:

|8t} = 1 (7
Let BLT (1, DMI, t2) be defined as:

BLT (g, DMJ, i2) = {q-- o € S(w))A

(there is a job of task T executing at time 13]} (8)

BLT(zk, DMJ, t2) is the set of tasks in S(zk) such that these tasks executed at time to.
Let BLJ(zk, DMJ, t2) be defined as the set of jobs generated by BLT (zx, DMJ, t2)
such that the jobs executed at time to. Clearly, for each element in BLJ(zk, DMJ, t2),
there is a corresponding element in BLT(z, DMJ, t2). Intuitively, BLT means
“blocking-tasks” and BLJ means “blocking-jobs”.

Let us explore two cases:

1. |BLT(x, DMJ, t2) > 1

Let t1 denote maximum of the finishing times of the jobs in BLJ(z, DMJ, t2).
Let us choose a job in BLJ(zk, DMJ, t2) that finished at time t1 and let the task
that generated this job be denoted zj and let t, denote the starting time of this job.
From the definition of t2, we have ty _to.

We will now discuss the time interval [to, to) and we let L denote the duration
of this time interval (that is L=to ts). During this time, at each instant t , at least
one of the following is true: (i) the set of jobs executing at time t includes a job of
task zj or (ii) the set of jobs executing at time t includes DMJ (the job of task zx)
or (iii) the set of jobs executing at time t includes a job of a task in S(zk) \ fi}

Since we had a deadline miss, we obtain that:

[L— D \ Cy
—max({fl.) e—k
L Te | J Ixuvxx

C;

Ixuvxx

I —=t ! ,r_"l)
+ Z mux([]. { T:-x J +1 J P L (%)

TS\

Using (4) on (9) and rewriting yields:

C: L=+ T Ci
: ax| 0, R 1
l:r:L:.\.':—'—md\(L Tk J,Jylxu.\.r

T
L-L4T; Ca
+ Z mux({fl_]‘f_ - J) X 53— zf — =L (1

e S \Inh - if

Since at time tp, there is a job of task zj executing, it follows that this job of
task 7j started to execute at time t2 or earlier. Since ty is defined as the starting

time of this job we obtain: tp < t2. This gives us:
fp—ifh =itg—1ip (11}
Note that to — t2 = Dk/x. Also note that to — tp = L. This gives us:

Dy
x

=< I [I:'

Using (4) on (12) yields:
—=L (13)

We will now discuss the implication of (2) being true. Since (2) is true, it
follows that for every possible assignment of arrival times to jobs in the task
set create—fav-taskset(r, I1(m1, m2,..., mt)), all deadlines are met on an
identical multiprocessor with v processors and where it is required that the re-
source sharing constraints are respected. Let us consider the case that tasks arrive
periodically. Then it follows that there exist a time when a job of task zj arrives.
And since deadlines are met, this job must have finished at most Tj time units later
and hence there exist a time when a job of task zj executed. Let tarbegin denote
the time when this job of task zj started to execute and let tarend denote the time
L' time units later. (Clearly, tarend — tarbegin = L')) We can also observe that for
some other task i, it holds that at each instant, a job of task zj arrives at most Ti:
time units later. Hence, during this time interval [tarbegin, tarend] (of duration L"),
there are at least

{EJ (14)
']I'I-.

jobs of task zit with arrival time within [tarbegin, tarend].
Hence, during this time interval [tarbegin, tarend] (of duration L"), there are at
least

max [C[]. [LJ ;___D'” :I (15)

jobs of task zjr with arrival time and deadline within [tarbegin, tarend].

Using (4) gives us that during this time interval [tarbegin, tarend] (of dura-
tion L"), there are at least

L' =T |
max(O.[- J) (16)
Tir /

jobs of task zit with arrival time and deadline within [tarbegin, tarend].

Note that for the feasible schedule, at each instant, there can be at most v jobs
executing (because otherwise there would be two jobs executing while holding the
same resource set). With this observation and using (16) gives us:

min(C;, L']—mﬂx(ﬂ_ \f‘ — RJ] % Cp

T;

L' =Ty
+ Z max(D,L = 'J)xfr-.--_:a:xf_' (17

tre(S(m\n] a

This expression (17) applies for any choice of L'. Applying itwith L' =2L x x
gives us:

. 2Lxx—T,
min(C;. 2L = x) +max(0. \‘T*J X Cg_-)
k

2w x =Ty
+ Z max(@. \‘%J) w Cp=vxllxx (18)
=) g

(ST

Let us explore two cases.
(@) Ci=2L xx
We will show that if this case is true then it contradicts (2). Note that zj and
7k Share at least one resource and hence it is impossible for them to execute
simultaneously. Recall that (2) states that there is a feasible schedule so in this
feasible schedule, it must hold that zj and =« never execute simultaneously.
With reasoning similar to (16), we obtain that, for the case of periodically
arriving tasks, in a time interval of duration 2Tk, there is at least one job of
task zx that has arrived and whose deadline expired. Hence, from (2), it follows
that in a time interval of duration 2Tk, there is at least one job of task z«
that has executed entirely. Using (13) and the condition of the case gives us
that Ci > 2Tk . Hence, during the time when a job of zj executes, there is at
least one job of zx executing. But this is impossible because zi and z« share
resources. Hence, this is a contradiction.
(b) Ci<2L xx
Using the condition of the case on (18) and dividing by 2v X x gives us:

C; 2L xx—Ty) Cy
+ max| 0, X
2xuvxx (L T: 2xuvxx

2L xx—Ty C; 3
+ Z mm({l\‘ T J)x 2><1=><.1'JL (19)

el Sz n])

Combining (19) with (10) and multiplying by 2v x and observing that the
resulting equation has the same term on both sides’and this can be canceled

out gives us:
2Lxx—T,
max(ﬂ. \‘#J) » Oy
T

2Lxx =Ty |
+ z max(@. L%J) % Cy
i’ /

tre(S(n G h

L—T47
< max(ﬂ. \“—LJ] w O
T)

T, .
L— 5+ Ty
+ z max(@. L;ij] x Cyr (200
£9) : /

(ST
Observe that the left-hand side can be rewritten as a Single sum. And also

observe that the right-hand side can be rewritten as a single sum. Rewriting
each of the sums as two sums gives us:

3 (o ELxx—?:--) .
max| U, T: > Lyt

rel(StmUlm D G ATy <L— L 4 T0)

2w x =T |
+ ax(0, | 22X) Ccy
z mmc(L T J x

(St Ulme DA AT = L—ie 4Ty

L-Tgp
= E max(@. Lrij] % Cy
Tir ,

Ty
T e((S () m IN DA(Tr <L — -4+ T)

: L o))

., . - T -
e ((S{m U me N ATy = L——4-Tyr)

(21)

Observing that the last sum is zero and relaxing the second term on the
left-hand side gives us:

oxx—Tr|
Z max (0. L%J] % Cyr

. . - T. _
(S Ul DA w DA T <L— L 4 T)

T

L——+=+4T,
< Z max({). {%J) % Cpt
T

TSIl DA [E ATy = L— L 4T,

Hence, there exists a task zjt such that
(mir e ((S(ze) U{zed) \ i) ~ (Tfr SL-—+ Ta")
T
— T I — = T
A (max(ﬁ. LMJ) w Cpr = max({]. L‘ihj) * C!--)
T_r'l’ ?_['f
(23)
Hence, there exists a task zjt such that
(tir € ((S(re) U mel) \m))) A (r sL-—+ T)

T
A (EL xx—Tp<L—"14 n--) 24
xX

Hence, there exists a task zj' such that

(mr e ((Smoy U {ze) \zh) A (TT' < L)

A2y =) x L =2 —1/x)x Ty) (25)

Hence, there exists a task zjt such that

(7 2 ((S(xe) U lze)) \Azi)))

T
: ([h_ hx =::2_1,,-_1-Jx?:--) (26)

This is a contradiction.
2. |BLT(w, DMJ,t2)|=0
From the case, we obtain that there is no task in S(zk) such that this task exe-
cuted at the time when DMJ arrived. We will now discuss the time interval [t2, to).
We let L denote the duration of this time interval. Clearly,
Dy

L=— 27
x

Using (4) on (27) yields:
L= % (28)

Duriny uns uine nnervar (12,), d eac ISl BIUIED (1) UlE SEL Ul JUUS EXe-
cuting includes a job of task z or (ii) the set of jobs executing includes a job of a
task in S(zx).

Since we had a deadline miss, we obtain that:

Dy \
i i L-= Cir -]
2><ux.1‘+ Z mzu.(i]_\‘ T J_IJ Ixvxax >L @9

. P
TS (me)

Using (4) on (29) and rewriting yields:

T, \
Cy L——+t4T Cy
S ax(0, | ——=) ~L (30
2><1=><_1'+ z mu(\‘ Ty J I xuxax G0

TrESITE)

We can discuss the implication of (2) being true just like in Case 1 and this

gives us:
2L X — TJ_. A Ck
max | 0,) ®
T , 2xvxx

2L xx =Ty | Cir
+ Z max(O[x; 'J)x,, d =L (3N
u) 2xuxax

T ES(TE)

Combining (31) with gSOR and multlplyln by 2v X x and observing that
max(0, L 2Lxx=Tx J) = max(0 2Tk Tk = 1"and rewriting gives us:

Tk
2L xx =Ty |
z max(ll _] x Cyr
Tir y

TreSiTg)
-y
= Z max(O. L;%J) x Cir (32)
T €8 (xg)

Rewriting each of the sums as two sums gives us:

2L xx —Ty
Z max (0. — || = Cp
Tr Tff

T e(S(m ATy =L— L+ Ty)

2L xx—Ty
+ Z max(@, \‘%J) x Cjr

e SmA T =L 4 T,

T,
L —_ ?"J.l
< E max(@. \“7+J) % Cyr
Ty

Tre(Simlal]‘;--_—:.r,—l_éi+?',r3

L%,
+ z max(@, {%J) x Cpr (33)
. i’
eSO ATy =L 1T

e |

Observing that the last sum is zero and relaxing the second term on the left-hand
side gives us:

Z] (0 2L x x — Ty] c.
max | 0, — | x Cj

el ST)ing]';r:‘.f.—%+?}.']

Ta
= E max (L—" J) x Cir (34)
T

- - L
Te(S(n |J.*-_LT,-.--_-'.!.——;1—fr-.)

Observing (34) gives us that there is at least one term on the left-hand side
that is smaller than the corresponding term on the right-hand side. This together
with (28) give us that there exists a task zj: such that

: T Ti
(meSm)a|Th=L——+Tr A Lz—)
x X

T
A (EL ><.r—T,-r<:L——‘+T}') (35)
X

Hence, there exists a task zjt such that

T T
(t;r € S(t)) A (—rEL) n(=—")
X x
M ((21—|]><L4; (2—l)><]",-.-) (36)
x

Hence, there exists a task jt such that
T
(Tir € S()) 1 (T = L)

A ((Zr— l}xifg (2—1) ><T,-.-) (37
x x

This is a contradiction.

Hence, if the lemma is false then we obtain a contradiction. Consequently, the
lemma is true. D

Combining the two previous lemmas gives us (below) a relationship between fea-
sibility on a heterogeneous multiprocessor and schedulability of ra-np-pEDF.

Lemma 5 ¥1r, ¥Y[T(my,ma.....m:). VR, ¥x = 1, v = |UNER| such that © 15 an
implicit-deadline sporadic task set and ¥v; € v : R # W and V1; t it holds that
whenever 1; executes it holds resource set R;:

rmig-feas(t, R, [T(my, ma,m;))

= sched (ra—np-pEDF,

muICDT(create—fav—taskset[r, Oimy,mz,....m)),

1 1
—_—\— 1. R,
2xvxx x

J:rna-ate—fav—platf|::u:‘m|[1'~ Mimy,ma, ..., 6, 1=})

Proof Follows from Lemmas 3and 4. D

Corollary 1 Consider an implicit-deadline sporadic tasks set that is offline non-
preemptive feasible on a single processor. If this task set is scheduled by the algo-
rithm non-preemptive EDF on a processor with twice the speed then this task set is
schedulable.

Proof Follows from specializing Lemma 5 with v =1 and x = 1 and a system with
a single processor and a single resource and all tasks share this single resource and
whenever a task executes it needs to holdthis resource. D

5.3 Useful results

In this section, we present a previously known (Lemma 6) result and some new results
(Lemmas 7-10 and Corollary 2) that we use while proving the speed competitive ratio
of our algorithm, LP-EE-vpr, in Sect. 5.4.

Lemma 6 states that the speed competitive ratio of algorithm, LP-EE, proposed
in Baruah (2004c) is two. The algorithm, LP-EE, non-migratively schedules a set of
implicit-deadline sporadic tasks that do not share resources on a t-type heterogeneous
multiprocessor platform.

Lemma 6 (From Theorem 3 in Baruah 2004c)

nmig-feas(t, [T(m, ma,...,m;))

= sched(LP-EE, 1, IT(m;.m1....,m,;) % 2)

We now show that if an implicit-deadline sporadic task set z in which tasks do
not share resources is non-migrative-offline schedulable on a t-type heterogeneous
multiprocessor platform [7(m1, my,..., m¢) then the constrained-deadline sporadic
task set 7 A (in which tasks do not share resources as well) which is derived from ¢
(as described in Sect. 4.1) is also non-migrative offline schedulable but on platform
II(m1, m2,..., m¢) %(e.g., by non-migrative preemptive EDF). This is shown with
the help of a density-based schedulability test by exploiting the fact that, on a proces-
sor mp of type-k, the density 5'i‘,Aofatask 7ia € T is always twice the utilization uk i
of the corresponding task zj € = (see Expression (1)). Hence, the density of the task
7i,A € 72 on atwice faster platform I7(m1, m2,..., mt) X 2 is equal to the utilization
of the corresponding task zi € = on platform 77(m1, m2,..., mt).

Lemma 7

nmig-feas(t, [T(my, m,,...,m;))

= J]mig-f&;lﬁ-ﬁ[r"1. Timy.ma,....me) x2)

Proof Suppose that the left-hand side, nmig-feas(z, II(m1, m2,..., mt)), is true.
Then let us arbitrarily choose one set of jobs JS generated by 7 . Since it holds that
nmig-feas(r, I1(m1, mz,..., m¢)) is true, there exists a non-migrative-offline sched-
ule for this job set on platform 77(m1, m2,..., mt) in which all the deadlines are met.
Since jobs do not migrate and since there is only one phase per job (because there are
no resource requests) and since it holds (as stated in Sect. 2) that all phase-A execu-
tions of a given task execute on the same processor, we can form, from this schedule,
a partitioning of the tasks. In this schedule, let 1 np]be the set of tasks assigned to
processor zp. This gives us:

Wk: Vm,oftype-keMimy,my,....m): Z uf =1 (38)
riet[mg]

We now show that there must also exist a non-migrative-offline schedule for the
derived task set z A on platform IZ(m1, m2,..., m¢) X 2 in which all the deadlines
are met. By definition of 7, we know that, for every task zj € 7, there exists a corre-
sponding task zi.a € 7A. Also, from Expression (1), we know that, on a processor of
type-k, where k € {1, 2,....t}, density o ok task zi,a € 7 is twice the utilization
u'i‘ of the corresponding task zj € 7.

Let us assign the tasks in z A on platform 77(m1, mz,..., mt) x 2 as follows: if
7i @ is assigned to a processor of type-k, say zp of type-k ¢ I1(m1, m2,..., mt),
in the non-migrative-offline schedule which meets all deadlines, then we assign its
corresponding task zi,a to the corresponding processor in the faster platform, i.e., to
processor zp of type-kd7(m1, mz2,..., mt) 2, From the fact that this assignment
of 72, which is identical to the assignment of z, is made on a platform twice faster
(on which the densities of tasks will be halved) and from Expressions (1) and (38),
we get:

Wk: Vm,oftypekeIl(m.my, ..., m) =2 Z éf___,l =1 (39)

T acTAm,]

which satisfies density-based schedulability test of non-migrative EDF on a t-type
heterogeneous multiprocessor platform. We can repeat this reasoning for any choice
of JS. Hence, ¢ A is non-migrative-offline feasible on 77(m1, mo,..., mt) 2. Hence
the lemma. D

Corollary 2

mnig—feas—é{r"t. Td(mi.ma, ...,m) % 2)

= nmig—feuﬁfr. Mimy,ma,.... my))
Proof Follows from reasoning analogous to the reasoning for the proof of Lemma 7.
D

The following lemma is an extension of Lemma 6 obtained by applying density-
based test instead of utilization-based test and on twice faster platforms.

Lemma 8

mnig—feas—é{r"“. MTimy,ma, ..., mg) x 2)

Pre = sched(LP-EE-§, A Timy.ma, ... m) x 4) e.

nmig-feas-6(r A I1(m1, mz,..., mt) 2)sis true. Using Corollary 2, we obtain nmig-
feas(z, I1(m1, my,..., mt)). Then, from Lemma 6, the predicate sched(LP-EE,z,71(m1,
my,..., mt) X 2) must hold true. From Expression (1), we

know that on a processor of type-k, density 6% aof every task zia € 7 ”is twice the
utilization uik of the corresponding task zez , and hence sched(LP-EE-6, 7 A IT(m1,
m2,..., mt) 4) must hold true as well, from a similar reasoning as used in Lemma 7.
Hence the proof. D

The following lemma states that if tasks from 7/ are preemptive EDF schedulable
on a processor mp of type-k then we can assign the respective phase-C subtasks from
€ as well onto processor zp and after this assignment, the entire set of tasks assigned
to processor p is preemptive EDF schedulable.

Lemma9 Letz? frp glenote the set of phase-A subtasks assigned on processor zp of
type-k. If A fio 13 preemptive-EDF schedulable ascertainable with a density-based
test on zp, i.e.,

k def koo
I3'."“[.'”(.] - Z 61‘--'1 =1

':l'..‘.ér'J'erJI

then © % mp] 0 mp[(where t C mp[is Jthe set of respective phase-C subtasks
whose arrivals have fixed offset from the arrival of respective phase-A subtasks) is
preemptive-EDF schedulable on processor mp Of type-k.

Proof We know that the task set z A[zp] is preemptive-EDF schedulable, ascertain-
able with a density-based test, on processor zp of type-k, i.e., 5‘;\ Lep] = 1. To show

that A [zp] U zC[xp] is schedulable on processor mp, it is sufficient to show that the
demand—boundkfunction,4 DBF(z AlzplU 7 [mp] 1), of task set 7 Alzp] U 7 € [zp],
never exceeds o ALzp] X tatany instant t (Baruah et al. 1990).

The following holds for every phase-A subtask zj o € 7 and respective phase-C
subtask zic € €:
k

C
DBF([1; A} UlTic)t) <t x 8, =t x D:.! (40)
i, A

*The demand bound function of a task ;, dbf{t;, 1), is the maximum possible execution demand by jobs
of 1;, that have both arnval and deadline within any interval of length 1. The demand bound function of a
task set 1 is defined as: DBF(r, 1) =3, _, dbf(z;, 1) (Baruah et al. 1990).

% ((Ck K K _— _—
25 (ChH A+ Chgt Ch) . , ot
£ &:/’, i
//q' // :
g /', :
° :’r' :
Cki‘.\ + Cki.(‘ - eé:;v‘- - ——
Cl‘. ___________\O/', :
LA ',/ :
4 1
e I
‘ 1
e 1
f”” i
ﬁ 1 > t
k k k k
D isA Ti 2 D A +D i.B +D iC

Fig. 8 Assigning phase-C subtasks to the same virtual processor as the respective phase-A subtasks (ear-
lier assigned using a density-based test) preserves schedulability

This can be verified from Fig. 8 since the maximum ‘k‘slope” to any point in the graph
c
of DBF({zia}U {zic }t) from the origin is &% & %:(yxhich is equal to 2 x uXof
I
7i € 7, as per our choice of D), at abscissa t = DX o Summing Expression (40) for
all the subtasks zia € 7[zp] and the corresponding subtasks zi.c € 7 © [zp] yields:

DBF(tAlmp]UtClm,l) <t x Y & =t x 8

T.-.n'="-'"1[-"P]

Al
Hence the proof. D
We will now prove a guarantee on the schedulability of ra-np-pEDF-fav.

Lemma 10 Let 7 denote an implicit-deadline sporadic task set. Let R denote the set
of resources in the system. Let Pj denote one resource request partition of R and let
R(Pj) denote the resources belonging to this resource request partition.

rmig-feas(t, R, [T(m. ma. ..., m,))
= sched{J'a-np-pEDF-fav.rﬂ';‘”:"].]E(Pj].
a(|pl, 1Pl .., P;|) x 4 x | Pj|) 41
Proof Let ¢ ' denote the subset of tasks in ¢ that request a resource set in Pj. Let
v "' denote a set of tasks derived from z ' but where a task in z "' does not perform
any execution before requesting a resource set and a task in z'' does not perform any

execution after releasing a resource set.
Then consider the three claims below:

I. rmig-feas(t, R, [T(m.my. ... m,)) = rmig-feas(t". R(P;). [T(m.m;. m))

2

rmig-feas(t”, R(P;), [T(my, ma, ..., m;)) = sched(ra-np-pEDF-fav, t"8-B(Fy)

R(P;), TT(|P;|,|P;l, ., 1P;]) x 4 x | P;])
3 "BEP) _ (BR(P)

If we can prove these three claims then the correctness of the lemma follows. Hence,

we prove the claims below.
Proving 1. This claim follows from the fact that feasibility cannot be violated

by only considering a subset of the tasks and by only considering a subset of the
resources and by only considering some of the execution of a task.
Proving 2. Applying Lemma 5 with the task set z "' and the resource set R(Pj)

and with x = 2 and v = |Pj | yields:

rmig—feas{r". RiPj), I(my,my,..., me))

= sched (rﬂ—np—pEDF.

mulCDT(-:reat e—fav-taskset(t”, Mim.ma...., m;)),

1. .I).?&(Pj}_

1| —

create—fav-platform(c”, T(mi, ma, ..., me),v) % 4 x |P,-|)
(42)

The order in which the functions mulCDT and create—fav-taskset are
applied can be changed without affecting the result. And the result of the func-
tion create—fav—platform when taken z ' as input is the same as when taken

mulCDT(z", 1,1, 1) as input. This gives us:
rmig-feas(t"”, B(P;), T (my, ma,...,m,))
1
= sched (ra—np—pEDF_ create—fav-taskset (mulCDT(r". 1, =, I).

Timy, mz,.... ;}:r}).RfPJ-J.

1
c reate—fav—platform(mulCDT(r"_ 1, 3 1)

Timy,my, ... m), u) x4 x |P;) (43)

Observing that mulCDT(z", 1. ~_'r 1) =" B-RFD) gives us:

rmig—feas{r”. R(Pj). Omy, ma. ..., mye))

= sched(ra-np-pEDF, create—fav-taskset ("5 R,

MTimy,ma, ..., mp)). R(P;j),
create—fav-platform(t"5EPD, Mimy, ms, ..., m). v)

x 4 x P_,;|]I (44

Observe that the schedule generated by ra-np-pEDF scheduling of tasks in the task
set create—fav-taskset(r "BRP) 17(m1, m2,..., mt)) on processors in the

platform create—fav—platform "BRP) [Tm1, mz,..., mt), v) is identical
to the schedule generated by ra-np-pEDF-fav scheduling of tasks in '"B:R(P) on
II(IPj !, IPjl, ..., IPjl). Combining this observation with (44) gives us:

rmig-feas (", B(P;), M{m, my, ... m,))
= sched(ra-np-pEDF-fav, "BR(F)) R(P;),
a(el 1Pl ..., Pil) = 4= |Pj|) (45)

This states the Claim 2.

Proving 3. The correctness of this claim (z!'B:R(Pi) _ ¢ B.R(P)) can be seen di-
rectly from the definition of ''B-R(P),

Hence the lemma. D

5.4 The speed competitive ratio of LP-EE-vpralgorithm

We now prove the speed competitive ratio of the proposed algorithm.

Theorem 1 The algorithm LP-EE-vpr has the following speed competitive ratio:
4 x (1 + MAXP x [rif LMAXE__7)

min{em g, m2

Proof We prove the claim by considering the scheduling of tasks in each of the
three phases independently and then merging the results from these three scenarios.
Consider phase-A scheduling. Combining Lemmas 7 and 8, yields:

rmig-feas(z, IT(my, ma, ..., m:))

= sched(LP-EE-4, A Timy.ma, ... my) x 4) (46)

Consider phase-C scheduling. Note that LP-EE-vpr assigns a phase-C subtask,
tic =C , to the same VPac virtual processor to which the corresponding phase-A
subtask, i A 7&, is assigned (see line 10 in Algorithm 1). For convenience, let LP-
EE-J-cp denote such a task assignment policy, i.e., using LP-EE-§ to assign
phase-A subtasks and ‘copying’ the assignment for respective phase-C subtasks.
Lemma 9 showed that such an assignment preserves schedulability of the relevant
tasks. From Lemma 9 and Expression (46), we get:

rmig-feas(t, [T(my, ma., ..., my))

= sched(LP-EE-d-cp, Ut Ty, mo, ..., my) % 4) 47)

Now let us discuss phase-B scheduling. From Lemma 10 we obtain;

YPiepP: rmig-feas(t, R, [T(my, m, i)

= sched(ra-np-pEDF-fav, rB'R(Pf).]R[Pj}. P;.
(| Pil, 1Pjl. -, | Pi]) > 4 x | Pj]) (48)

We know that, MAXP = maxp;<p |Pj|. Using this, Expression (48) can be rewritten
as:

¥P; < P: rmig-feas(r, B(P;), [T(my,m2,...,m;))

= sched(ra-np-pEDF-fav, BRI R(P;j),
A(|P; 1P, ... |P;]) x MAXP x4) (49)

Let us now combine the results obtained for task sets t* U tC and r¥E(77), Dj-

viding the type-k (¥k : k = (1,2, ..., 1}) processor speeds in Expression (47) by
45 (1 + MAXP x [EMARE]) e get:

1
4 3 (1 + MAXP x [LELxMAXP) " 777

ny

1
4% (1 + MAXP xerD

= sched(LP—EE—S{p, AU, Oimy,my,...,m)

1
x =
(1 + MAXP x [[ZIxMAXP "

ny

I
I + MAXP x rwm o

Dividing the type-k (Vk - k € {1, 2, ..., t}) processor speeds in Expression (49) by
45 (1 + MAXP < [EMAREY) e get:

¥P e P: nnig-feas(r. R(P;), T(my,ma. ..., my)

|
® - s
<4x(1+MAXPx[M])

My

1
4% (1 + MAXP x r%j‘”]}))

= sched(ra—np-pEDF—faV. BB, R(P;).

MAXF
1 + MAXP x[121

m

.....

(1P 1P, ... |P;]) ><<

MAXP)] (51)

1 +MAXP x[1]

The specifications of the processors in the right-hand side predicates of Expres-
sion (50) and Expression (51) match those of the virtual processors that LP-EE-vpr
created (see Sect. 4.2). Recall that LP-EE-vpr assigned phase-A and phase-C sub-
tasks to VVPac virtual processors and phase-B subtasks to VVPg virtual processors.

Hence, combining Expression (50) and |P | instances of Expression (51), yields:

I
4 x (1 + MAXP x [LXMAXP Y,

rmig-feas(r. R, O(my,my, ... ,m) % (

1
4x(1 +MAXPX[W]J))
= sched(LP-EE-vpr, t, R, [T(m, ma, ..., my)) (52)

We know that higher speed processors do not jeopardize the feasibility of a task
set. Hence, we can write:

rmig—fcas(r. R, IT(my,mz,....m;)
x {mm{sl. LR TR S TN min{sy, §2, ..., 4 5 ,}:}}
= rmig-feas(rmo, 7, R, T(m,mz, ..., my) % (51, 82,000, 5i))

Substituting sp = | —. ¥k:ke{l,2,...,t}. in the above ex-
g S 43 (1 +MAXP » [= x:l-w]l { }

pression and combining with Expression (52) and rewriting gives:

rng—fea:;(r. R, T(my,may, ..., m;)

I
X v ¥
(4x (1 + MAXP x max([ZxMAXP ©° [IPIxMAXPq),

mi My

)
" 4 % (1 + MAXP x max([ZXMAXPy © p]P *“A"“‘nJ

mi my

= sched(LP-EE-vpr, t, R, T(m.m2, ..., mg)) (53)

Multiplying the speeds '::rf all the processors in Expression (33) by a factor of
4 % (1 + MAXP x max|[ZxMAXP, - [LEMAXP 1 we get:

mj B mr

weviire Fancl= D I Tiwme. . e W

x (4 bs (1 +MAXP = max{[

EET

4 (I +3\1AXmeax”

o))

1P| xMAXP"‘

my

|P| x MAXP
|

Hence the theorem.

Theorem 2 Consider the case in which each task can request at most one resource,
ie,¥riet: |R,-L<_: 1. For this case, LP-EE-vpr has a speed competitive ratio of
e

4x (1 m’]nlm].r.-r!.....rur:'-|}'

Proof If¥t; € T : |R;| = 1 then every connected component in the graph has one ver-
tex and hence every resource request partition has one element. Thus, MAXP = 1.
Also, the number of resource request partitions |P| i1s no greater than |R|, iLe.,
| P| =< |R|. Applying this on Theorem 1 gives us the theorem. O

6 Discussion

In this section, we briefly discuss run-time mechanisms for realizing virtual proces-
sors and the preemptions generated and also highlight a couple of useful properties
of LP-EE-vpr such as deadlock-free property, nested resource access and the bound
on number of migrations per job. Also, a couple of tricks to improve the performance
of LP-EE-vpr are discussed as well.

6.1 Run-time mechanism for realizing virtual processors and the preemptions
generated

Given that the research literature has been lacking a scheduling algorithm for hetero-
geneous multiprocessors with resource sharing such that the algorithm has a proven

speed competitive ratio, our focus in this paper has been to create one. We did not
deal with the cost of preemption.

Assuming that there is no cost of a preemption, one can create a set of vir-
tual processors from a single physical processor without losing capacity as fol-
lows. Choose a timeslot size (denoted as S) and subdivide time into time inter-
vals, each being of duration equal to the timeslot size S. Then if we want to cre-

ate a set VP— { vpy, vpy, ..., vg A} of virtual processors where virtual proces-

sor vp, (where | € {1, 2 | VP|}) has speed SP | and accomplish thisas long as

lef12,..] v |} SP1 < 1, then this can be done as follows. Create a reserve for vp,

in the timeslot so that this reserve has the duration S X vp, and let the time of this

reserve supply time to the virtual processor vp,. Then let S be arbitrarily small. This

gives us the desired virtual processors and this is the idea we have assumed in this
paper.

Unfortunately, this approach generates an infinite number of preemptions. One
could generate virtual processors in two other ways. First, by choosing S being the
greatest common denominator of the parameters of the subtasks, one can still form
virtual processors as mentioned above and still utilize 100 % of the capacity of a
physical processor (Andersson and Bletsas 2008). This approach has two problems
(i) the greatest common divisor of the parameters of the subtasks may not exist (this
is an issue for the case that parameters are not rational numbers) and (ii) even if the
greatestcommon divisor of the parameters of the subtasks exists, it may still be very
small and hence may generate a very large number of preemptions. A second way
to choose S (which avoids this drawback) is to choose a positive integer 6 and then
choose S as the minimum of all parameters of subtasks divided by J. This approach
has been used for creating virtual processors in Andersson and Bletsas (2008) and
Bletsas and Andersson (2009) so that as long as the sum of the speeds of the virtual
processors desired to be formed does not exceed a given bound UB(9) (higher than
60 % but lower than 100 %), which is a function of ¢, then all virtual processors can
be formed. We can use such approaches at the cost of having a speed competitive
ratio being multiplied by 1/UB().

6.2 Bound on the number of migrations per job

The algorithm, LP-EE-vpr, by design, limits the number of migrations per job to at
most two. Recall that, LP-EE-vpr assigns both phase-A and phase-C executions of
a task zj to the same VPac virtual processor and phase-B of that task to another
VPg virtual processor. Since the algorithm creates the virtual processors in such a
manner that the capacity of no virtual processor comes from more than one physical
processor (Lemma 1 in Sect. 4.2), it is clear that both phase-A and phase-C of a task
are assigned to the same physical processor. Since the virtual processor in VVPg to
which phase-B of task zj is assigned may come from a different physical processor,
migration of a job of task zj can only occur at time instants when the job requests or
releases the resource set Ri . Thus, the algorithm limits the number of migrations per
job to at most two.

6.3 Nested resource access
To enable our algorithm for handling tasks with nested resource access, one of the
two below mentioned techniques can be used.

— Group locking. It is a previously known technique (Block et al. 2007) in which
the inner locks of a nested resource access are removed and only an outer lock
(referred to as a group lock) is retained. The following example illustrates how
nested resource access can be handled with the help of group locks. Consider a
nested resource access in which jobs of a task zj request and release the resources
in the following order: Each job of task zj does the following (in order):

request(ry)

request(rz)

release(rz)

request(rs)

release(rs)

release(ry)
With group locking, a new lock would be created, say ri23 and then task zj would
be changed such that each job of zj now does the following (in order):

request(ri23)

release(ri2s)
If there is any other task that requests one or more of these resources (i.e., re-
source r1, r2 and r3) then these tasks need to be changed as well.

— A variant of group locking. Another way to handle nested resource access is to
request all the resources in the nested block at the beginning of the nested block
and release all the resources at the end of this block. With this technique, in the
above example, task zi would be changed such that each job of task zj now does
the following (in order):

request(ry and rz and r3)
release(ry and rz and r3)

Since we allow multiple resources to be requested simultaneously, we can use any of
the above two techniques for handling tasks with nested resource access.

6.4 Deadlock free property
Partial allocation describes a situation where a task is “waiting” for additional re-

source(s) while “holding” previously acquired one(s). Partial allocation is a necessary
condition for deadlock to occur—see Chap. 7 in Silberschatz et al. (2009). Recall that,

we assume (as mentioned in Sect. 2) that a job of task zj performs a single request
for the resource set Rj and then releases all the resources in the resource set Rj at
once. And hence with this assumption, partial allocation never happens. And conse-
quently, the algorithm LP-EE-vpr, for the assumptions stated in Sect. 2, cannot enter
a deadlocked state.

6.5 Performance improvement

In this section, we describe a couple of tricks to improve the performance of the
algorithm.

First, we dimensioned the phase-B virtual processors without considering the pa-
rameters of the subtasks that will execute on this virtual processor. A possible way
to increase the performance of our algorithm though would be to determine, for each
resource request partition, what is the lowest speed that is needed in order for the
subtasks requesting the resources from the corresponding resource partition to be
ra-np-pEDF-fav schedulable.

Second, our algorithm is based on LP-EE (Baruah 2004c) for assigning phase-
A and phase-C subtasks. We selected LP-EE because it is simple to implement and
easy to explain and it has a proven speed competitive ratio. Unfortunately, this algo-
rithm has a time-complexity that is exponential with the number of processors. But
we can replace LP-EE with another algorithm (Baruah 2004b) which has the same
speed competitive ratio but runs with polynomial time-complexity because it does
not perform exhaustive enumeration. In addition, one could replace LP-EE with the
task assignment algorithm in Wiese et al. (2013) (which has a better speed competi-
tive ratio than LP-EE). Then we would have a scheduling algorithm for our problem
(with resource sharing), with a better speed competitive ratio but at the expense of
having a time-complexity that is a polynomial of very high degree.

7 Conclusions

The heterogeneous multiprocessor model is more generic than identical or uniform
multiprocessor model, in terms of the systems that it can accommodate. Hence, it
is interesting to study heterogeneous multiprocessor systems since a solution de-
signed for such systems can also be applied to identical and uniform multiproces-
sor systems. In addition, heterogeneous multiprocessors are increasingly becoming
relevant as many chip manufacturers offer chips with different types of proces-
sors (AMD Inc. 2012; Apple Inc. 2012; Intel Corporation 2012; Intel Corporation
2013; Nvidia Inc. 2012; Qualcomm Inc. 2012; Samsung Inc. 2012; Ericsson 2012;
Texas Instruments 2012; Alben 2013; Intel Corp. 2013). In many computer systems,
apart from processors, tasks also share resources such as data structures, sensors,
etc. and tasks must operate on such resources in a mutually exclusive manner while
accessing the resource. Scheduling real-time tasks that share resources on a heteroge-
neous multiprocessor platform is a complex problem. In this work, we took the first
step to solve the issue via a scheduling algorithm with a proven speed competitive
ratio for heterogeneous multiprocessors.

This work considered the problem of scheduling a task set of implicit-deadline
sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor plat-
form where tasks may share multiple resources. The tasks must operate on such re-
sources in a mutually exclusive manner while accessing the resource, that is, at all
times, when a job of a task holds a resource, no other job of any task can hold that
resource. Each job may request (a subset of) resources at most once during its execu-
tion and it has to request all the resources in the subset together. A job is allowed to
migrate when it requests/releases the resources but a job is not allowed to migrate at
other times.

We presented an algorithm LP-EE-vpr and proved its performance bound. Specif-
ically, we proved that if an implicit-deadline sporadic task set is schedulable on a
t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm
that allows a job to migrate only when it requests or releases a resource set, then
our algorithm also meets the deadlines with the same restriction on job migration, if

. ' = MAXP . .
given processors 4 x (1 + MAXP x [%‘H times as fast. For the special

case that each task requests at most one resource, the bound of LP-EE-vpr collapses
tod = {1+ R —1). To the best of our knowledge, LP-EE-vpr is the first

minfm),ma,....n
algorithm with proven performance guarantee for real-time scheduling of sporadic
tasks with resource sharing on t-type heterogeneous multiprocessors.

Acknowledgements This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. This
material has been approved for public release and unlimited distribution.

DM-0000141.

References

AMD Inc (2012) AMD Accelerated Processing Units. http://www.amd.com/fusion

Andersson B, Baruah S, Jonsson J (2001) Static-priority scheduling on multiprocessors. In: Proceedings
of the 22nd IEEE real-time systems symposium, pp 193-202

Andersson B, Bletsas K (2008) Sporadic multiprocessor scheduling with few preemptions. In: Proceedings
of the 20th euromicro conference on real-time systems, pp 243-252

Andersson B, Easwaran A (2010) Provably good multiprocessor scheduling with resource sharing. Real-
Time Syst 46(2):153-159

Andersson B, Raravi G, Bletsas K (2010) Assigning real-time tasks on heterogeneous multiprocessors with
two unrelated types of processors. In: Proceedings of the 31st IEEE international real-time systems
symposium, pp 239-248

Andersson B, Tovar E (2007) Competitive analysis of partitioned scheduling on uniform multiprocessors.
In: Proceedings of the 15th international workshop on parallel and distributed real-time systems,
pp 1-8

Apple Inc (2012) Apple A5X: Dual-core CPU and Quad-core GPU. http://www.apple.com/ipad/specs/

Baruah S (2004a) Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor
platforms. In: Proceedings of the 25th IEEE international real-time systems symposium, pp 37-46

http://www.amd.com/fusion
http://www.apple.com/ipad/specs/

Baruah S (2004b) Partitioning real-time tasks among heterogeneous multiprocessors. In: Proceedings of
the 33rd international conference on parallel processing, pp 467-474
Baruah S (2004c) Task partitioning upon heterogeneous multiprocessor platforms. In: Proceedings of the
10th IEEE international real-time and embedded technology and applications symposium, pp 536—
543
Baruah S (2013) Partitioned EDF scheduling: a closer look. Real-Time Syst 49(6):715-729
Baruah S, Fisher N (2007) The partitioned dynamic-priority scheduling of sporadic task systems. Real-
Time Syst 36(3):199-226
Baruah S, Mok A, Rosier L (1990) Preemptively scheduling hard-real-time sporadic tasks on one proces-
sor. In: Proceedings of the IEEE real-time systems symposium, pp 182-190
Blazewicz J, Lenstra J, Kan A (1983) Scheduling subject to resource constraints: classification and com-
plexity. Discrete Appl Math 5(1):11-24
Bletsas K (2007) Worst-case and best-case timing analysis for real-time embedded systems with limited
parallelism. PhD thesis, The University of York
Bletsas K, Andersson B (2009) Notional processors: an approach for multiprocessor scheduling. In: Pro-
ceedings of the 15th IEEE international real-time and embedded technology and applications sym-
posium, pp 3-12
Block A, Leontyev H, Brandenburg B, Anderson J (2007) A flexible real-time locking protocol for mul-
tiprocessors. In: Proceedings of the 13th IEEE international conference on embedded and real-time
computing systems and applications, pp 47-56
Correa J, Skutella M, Verschae J (2012) The power of preemption on unrelated machines and applications
to scheduling orders. Math Oper Res 37(2):379-398
Darera V, Jenkins L (2006) Utilization bounds for RM scheduling on uniform multiprocessors. In: Pro-
ceedings of the 12th IEEE international conference on embedded and real-time computing systems
and applications, pp 315-321
Dasari D, Andersson B, Nélis V, Petters S, Easwaran A, Lee J (2011) Response time analysis of COTS-
based multicores considering the contention on the shared memory bus. In: Proceedings of the 8th
IEEE international conference on embedded software and systems, pp 1068-1075
Dasari D, Nélis V (2012) An analysis of the impact of bus contention on the WCET in multicores. In:
Proceedings of the 9th IEEE international conference on embedded software and systems, pp 1450—
1457
Davis R, Rothvol} T, Baruah S, Burns A (2009) Exact quantification of the sub-optimality of uniprocessor
fixed priority pre-emptive scheduling. Real-Time Syst 43(3)
Gai P, Abeni L, Buttazzo GC (2002) Multiprocessor DSP scheduling in system-on-a-chip architectures. In:
Proceedings of the 14th euromicro conference on real-time systems (ECRTS 2002), Vienna, Austria,
pp 231-238
Gschwind M, Hofstee HP, Flachs B, Hopkins M, Watanabe Y, Yamazaki T (2006) Synergistic processing
in cell’s multicore architecture. IEEE MICRO 26(2):10-24
Gurobi Optimization Inc (2012) Gurobi optimizer reference manual. http://www.gurobi.com
Holenderski M, Bril RJ, Lukkien JJ (2012) Parallel-task scheduling on multiple resources. In: Proceedings
of the 24th euromicro conference on real-time systems, pp 233-244
Hopcroft J, Tarjan R (1973) Efficient algorithms for graph manipulation. Commun ACM 16(6):372-378
Horowitz E, Sahni S (1976) Exact and approximate algorithms for scheduling nonidentical processors.
JACM 23:317-327
IBM (2012). IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/
Intel Corp (2013) Bay Trail: Multicore SoC Family for Mobile Devices. http://www.intel.com/newsroom/
kits/idf/2013_fall/pdfs/bay_trail_fact_sheet.pdf
Intel Corporation (2012). Intel Atom Processor Z6xx Series with Intel SM35 Express Chipset. http://www.
intel.com/p/en_US/embedded/hwsw/hardware/atom-z6xx/overview
Intel Corporation (2013) The 4th Generation Intel® Core™ i7 Processo. http://www.intel.com/content/
wwwy/us/en/processors/core/core-i7-processor.html
Jansen K, Porkolab L (1999) Improved approximation schemes for scheduling unrelated parallel machines.
In: Proceedings of the 31stannual ACM symposium on theory of computing (STOC’99), pp 408-417 Alben
J (2013) NVIDIA Brings Kepler, World’s Most Advanced Graphics Architecture, to Mobile De-
vices. http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/
Jones M (1997) What Happened on Mars? http://www.ece.cmu.edu/~raj/mars.html

http://www.gurobi.com/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.intel.com/newsroom/kits/idf/2013_fall/pdfs/bay_trail_fact_sheet.pdf
http://www.intel.com/newsroom/kits/idf/2013_fall/pdfs/bay_trail_fact_sheet.pdf
http://www.intel.com/p/en_US/embedded/hwsw/hardware/atom-z6xx/overview
http://www.intel.com/p/en_US/embedded/hwsw/hardware/atom-z6xx/overview
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/
http://www.ece.cmu.edu/~raj/mars.html

Lakshmanan K, Rajkumar R (2010) Scheduling self-suspending real-time tasks with rate-monotonic pri-
orities. In: Proceedings of the 16th IEEE international real-time and embedded technology and appli-
cations symposium, pp3-12

Lenstra J, Shmoys D, Tardos E (1990) Approximation algorithms for scheduling unrelated parallel ma-
chines. Math Program 46:259-271

Li Y, Suhendra V, Liang Y, Mitra T, Roychoudhury A (2009) Timing analysis of concurrent programs
running on shared cache multi-cores. In: Proceedings of the 30th IEEE real-time systems symposium,
pp 57-67

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.
JACM 20:46-61

Lv M, YiW, Guan N, Yu G (2010) Combining abstract interpretation with model checking for timing anal-
ysis of multicore software. In: Proceedings of the 31st IEEE real-time systems symposium, pp 339—
349

Nvidia Inc (2012) Tegra 2 and Tegra 3 Super Chip Processors. http://www.nvidia.com/object/tegra-3-
processor.html

Pellizzoni R, Schranzhofer A, Chen JJ, Caccamo M, Thiele L (2010) Worst case delay analysis for memory
interference in multicore systems. In: Proceedings of the conference on design, automation and test
in Europe, pp 741-746

Phillips CA, Stein C, Torng E, Wein J (1997) Optimal time-critical scheduling via resource augmentation.
In: Proceedings of the 29th ACM symposium on theory of computing, pp 140-149

Potts CN (1985) Analysis of a linear programming heuristic for scheduling unrelated parallel machines.
Discrete Appl Math 10:155-164

Qualcomm Inc (2012) Snapdragon Processors. http://www.qualcomm.com/chipsets/snapdragon

Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for multiprocessors. In: Pro-
ceedings of the 9th IEEE real-time systems symposium, pp 259-269

Raravi G, Andersson B, Bletsas K (2013) Assigning real-time tasks on heterogeneous multiprocessors
with two unrelated types of processors. Real-Time Syst 49(1):29-72

Raravi G, Andersson B, Bletsas K, Nélis V (2012) Task assignment algorithms for two-type heterogeneous
multiprocessors. In: Proceedings of the 24th euromicro conference on real-time systems, pp 34-43

Raravi G, Nélis VV (2012) A PTAS for assigning sporadic tasks on two-type heterogeneous multiprocessors.
In: Proceedings of the 33rd IEEE international real-time systems symposium, pp 117-126

Rosén J, Andrei A, Eles P, Peng Z (2007) Bus access optimization for predictable implementation of real-
time applications on multiprocessor systems-on-chip. In: Proceedings of the 28th IEEE international
real-time systems symposium, pp 49-60

Samsung Inc (2012) Samsung Exynos processor. www.samsung.com/exynos/

Schliecker S, Negrean M, Ernst R (2010) Bounding the shared resource load for the performance analy-
sis of multiprocessor systems. In: Proceedings of the conference on design, automation and test in
Europe, pp 759-764

Silberschatz A, Galvin P, Gagne G (2009) Operating system concepts, 8th edn. Wiley, New York

Ericsson ST (2012) In: NOVA processor family—highest performance application processors. http://
www.stericsson.com/products/application_processors.jsp

Texas Instruments (2012) OMAP mobile processors. http://www.ti.com/omap

Wiese A, Bonifaci V, Baruah S (2013) Partitioned EDF scheduling on a few types of unrelated multipro-
cessors. Real-Time Syst 49(2):219-238

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.qualcomm.com/chipsets/snapdragon
http://www.samsung.com/exynos/
http://www.stericsson.com/products/application_processors.jsp
http://www.stericsson.com/products/application_processors.jsp
http://www.ti.com/omap

